5,566 research outputs found

    A scalable mining of frequent quadratic concepts in d-folksonomies

    Full text link
    Folksonomy mining is grasping the interest of web 2.0 community since it represents the core data of social resource sharing systems. However, a scrutiny of the related works interested in mining folksonomies unveils that the time stamp dimension has not been considered. For example, the wealthy number of works dedicated to mining tri-concepts from folksonomies did not take into account time dimension. In this paper, we will consider a folksonomy commonly composed of triples and we shall consider the time as a new dimension. We motivate our approach by highlighting the battery of potential applications. Then, we present the foundations for mining quadri-concepts, provide a formal definition of the problem and introduce a new efficient algorithm, called QUADRICONS for its solution to allow for mining folksonomies in time, i.e., d-folksonomies. We also introduce a new closure operator that splits the induced search space into equivalence classes whose smallest elements are the quadri-minimal generators. Carried out experiments on large-scale real-world datasets highlight good performances of our algorithm

    Horn axiomatizations for sequential data

    Get PDF
    AbstractWe propose a notion of deterministic association rules for ordered data. We prove that our proposed rules can be formally justified by a purely logical characterization, namely, a natural notion of empirical Horn approximation for ordered data which involves background Horn conditions; these ensure the consistency of the propositional theory obtained with the ordered context. The whole framework resorts to concept lattice models from Formal Concept Analysis, but adapted to ordered contexts. We also discuss a general method to mine these rules that can be easily incorporated into any algorithm for mining closed sequences, of which there are already some in the literature

    Sequence Classification Based on Delta-Free Sequential Pattern

    Get PDF
    International audienceSequential pattern mining is one of the most studied and challenging tasks in data mining. However, the extension of well-known methods from many other classical patterns to sequences is not a trivial task. In this paper we study the notion of δ-freeness for sequences. While this notion has extensively been discussed for itemsets, this work is the first to extend it to sequences. We define an efficient algorithm devoted to the extraction of δ-free sequential patterns. Furthermore, we show the advantage of the δ-free sequences and highlight their importance when building sequence classifiers, and we show how they can be used to address the feature selection problem in statistical classifiers, as well as to build symbolic classifiers which optimizes both accuracy and earliness of predictions

    Computational Intelligence for the Micro Learning

    Get PDF
    The developments of the Web technology and the mobile devices have blurred the time and space boundaries of people’s daily activities, which enable people to work, entertain, and learn through the mobile device at almost anytime and anywhere. Together with the life-long learning requirement, such technology developments give birth to a new learning style, micro learning. Micro learning aims to effectively utilise learners’ fragmented spare time and carry out personalised learning activities. However, the massive volume of users and the online learning resources force the micro learning system deployed in the context of enormous and ubiquitous data. Hence, manually managing the online resources or user information by traditional methods are no longer feasible. How to utilise computational intelligence based solutions to automatically managing and process different types of massive information is the biggest research challenge for realising the micro learning service. As a result, to facilitate the micro learning service in the big data era efficiently, we need an intelligent system to manage the online learning resources and carry out different analysis tasks. To this end, an intelligent micro learning system is designed in this thesis. The design of this system is based on the service logic of the micro learning service. The micro learning system consists of three intelligent modules: learning material pre-processing module, learning resource delivery module and the intelligent assistant module. The pre-processing module interprets the content of the raw online learning resources and extracts key information from each resource. The pre-processing step makes the online resources ready to be used by other intelligent components of the system. The learning resources delivery module aims to recommend personalised learning resources to the target user base on his/her implicit and explicit user profiles. The goal of the intelligent assistant module is to provide some evaluation or assessment services (such as student dropout rate prediction and final grade prediction) to the educational resource providers or instructors. The educational resource providers can further refine or modify the learning materials based on these assessment results
    • …
    corecore