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Abstract 

 

The developments of the Web technology and the mobile devices have blurred the time and space 

boundaries of people’s daily activities, which enable people to work, entertain, and learn through the 

mobile device at almost anytime and anywhere. Together with the life-long learning requirement, such 

technology developments give birth to a new learning style, micro learning. Micro learning aims to 

effectively utilise learners’ fragmented spare time and carry out personalised learning activities.  

However, the massive volume of users and the online learning resources force the micro learning system 

deployed in the context of enormous and ubiquitous data. Hence, manually managing the online resources 

or user information by traditional methods are no longer feasible. How to utilise computational 

intelligence based solutions to automatically managing and process different types of massive information 

is the biggest research challenge for realising the micro learning service. As a result, to facilitate the 

micro learning service in the big data era efficiently, we need an intelligent system to manage the online 

learning resources and carry out different analysis tasks. To this end, an intelligent micro learning system 

is designed in this thesis.  

The design of this system is based on the service logic of the micro learning service. The micro learning 

system consists of three intelligent modules: learning material pre-processing module, learning resource 

delivery module and the intelligent assistant module. The pre-processing module interprets the content of 

the raw online learning resources and extracts key information from each resource. The pre-processing 

step makes the online resources ready to be used by other intelligent components of the system. The 

learning resources delivery module aims to recommend personalised learning resources to the target user 

base on his/her implicit and explicit user profiles. The goal of the intelligent assistant module is to 

provide some evaluation or assessment services (such as student dropout rate prediction and final grade 

prediction) to the educational resource providers or instructors. The educational resource providers can 

further refine or modify the learning materials based on these assessment results. 

Before diving into the technical details of the proposed models, in this thesis, the status of current 

research datasets is analysed and discussed. Based on the prior works from the related area, we identify 

several data challenges that impede the development of online learning research. The requirements of the 

research dataset for this area are highlighted. 
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With the big data challenges mentioned before, in order to fit the big data context, all the proposed 

solutions are intelligence based models constructed by different task-specific datasets. Before 

demonstrating the proposed solutions, recent studies about the state-of-the-art models for different tasks 

are reviewed and discussed.  

For pre-processing the raw learning resources, an information extraction model and a content analysis 

model are proposed in this research. The proposed content analysis model is designed to interpret the 

short informal text of the online learning resource, such as the users’ comments and learners’ discussions. 

The proposed information extraction model aims to extract key information (such as keywords, name 

entities, and relationships) from a given sequence of inputs. The extracted information is fine-grained, 

which can be directly used by other components of the system.  

For the task of learning resource recommendation, a deep-cross-attention network is designed to boost 

recommendation performance. Through integrating various types of the neural networks, the proposed 

model can effectively combine three functionalities: generating high-order feature interactions, 

distinguishing the importance differences of different features, and maintaining the original input 

information for the deep neural network. In the intelligent assistant module, we design a student dropout 

rate prediction model to detect whether a student is about to drop out from an enrolled online course. The 

proposed model is in the double-tower structure, which can separately process different types and 

granularities of information. 

All the models mentioned above are constructed by different task-specific real-world datasets collected 

from various application scenarios in different chapters. Also, the performance of each model is compared 

with the state-of-the-art solutions through comprehensive experiments. The experiment results show that 

most of the proposed models in this research outperform the baselines.  

Moreover, to further enhance the generalisation capability of the recommender system, a GAN-based 

optimisation strategy is also proposed in this research. With the pilot experiment, the proposed new 

optimisation strategy is verified to be useful and efficient for the micro learning service. We then further 

propose a novel GAN framework (which contains three generators and one discriminator) for this 

optimisation strategy. We also carefully design several loss functions to further refine the optimisation 

procedure. Through a comprehensive experiment, the proposed GAN framework and the loss functions 

are proved to be effectiveness. 

 



3 

 

 

Acknowledgments 

Every time when I look back, I am always surprised on the long and often tedious research journey 

that I have already walked through. Many plans I made for this journey did not go well, and maybe I 

will not become the person I planned to be, but this journey itself is very memorable. Not trying to 

be humble, the accomplishment in research might not make this journey memorable, but the people 

around me make this journey memorable. In the near future, or maybe when I leave academia, I will 

definitely forget the exact titles of the papers I have published during my PhD, but I do not think I 

will forget the people who helped me and accompanied me during this period. Hence, first and 

foremost, at the very beginning of this thesis, let me express my sincere appreciation to these people.  

Firstly, I would like to thank my parents, my dad Jianghuai Lin and my mom Zhuang Lin. I am very 

grateful they could understand my choice to start this journey, even though they had no idea how to 

do research and what I was about to do research. The only thing they knew was it would not be an 

easy job. They supported me unwaveringly all the time. And this support was my most powerful 

backing all the way along this journey. Without this understanding and support, I would not even 

start my academia career. Also, I want to thank my aunt, Mrs Lin Jiang, my uncle, Dr Hui Lu, and 

my cousin, Dr Sijie Lu, thanks for their good care. They gave me a place where I could call it home 

when I was far away from my homeland. 

Then, I would like to thank my principal supervisor A/Prof. Jun Shen and two co-supervisors, Dr 

Tingru Cui and A/Prof. Ping Yu. It is them who gave me this chance to start my research. They 

provided me with guidance letting me know how to become a qualified researcher. Also, thanks to 

Dr Geng Sun, he helped me a lot with my research all the time. I also gratefully acknowledge the 

Australian Government Research scholarship for giving me financial support, which made my 

research possible.  

This journey is not merely about the academic; the mundane daily life is also one part of it. Hence, I 

also want to express my gratefulness to my friends. Dr Ting Song offered me countless helps when I 

lived in Wollongong. Even when I got stuck in China during the COVID-19 epidemic, he helped me 

to deal with the trivia I left in Australia. Mr Zhexuan Zhou, another close friend of mine, we share 

similar research interests. In addition to discussing interesting AI topics, we went to the gym together, 



4 

 

played basketball together, and hung out at the weekend together. My after-school life would 

definitely be much dimmer without him. Miss Yunshu Zhu, who helped me a lot and brought much 

laugh to us when we were working in the lab. Dr Jianqing Wu, a warm-hearted peer, showed me 

around the campus and the Wollongong city when I first arrived. Without his help, I could not get 

used to the new environment so quickly. 

Many thanks to those old friends I made in UESTC, UniMelb, and Alibaba Inc. Even though we 

seldom met these years, but they always offered their support in the distance. Some of them gave me 

technical support, and some of them were patient listeners who were never tired of my boring 

research ideas and tedious stories about university life. Sorry, due to the space limit, I cannot list 

your names one by one with unforgettable stories. So, thank you all. 

Thanks to those scholars from different journals and conferences review system, who have ever 

rejected my submissions. These rejections made me feel frustrated and maybe angry sometimes, but 

your feedback and comments let me see my shortcomings and urged me to work harder and move 

forward. 

Thanks to those ones who are or will read my thesis, thank you for being the last audience for my 

PhD research journey. 

Lastly, I would like to express my special thanks to my powerful country, China. 

At this moment, I think it is time to say goodbye to the old days. It is not the end but the beginning of 

the next step. I have no idea after I graduate, where I will be, what kind of job I will get, and whether 

I will still be active in academia. Nothing is settled yet! If life is not like a box of chocolate, what's 

the fun? There is a saying that “today is difficult, tomorrow will be difficult, but the day after 

tomorrow will be beautiful”. I believe the difficulties I meet are the dots, and some day there will be 

a line connecting these dots. By that time, when I look back, everything will look reasonable and 

worthwhile. Many people call this destiny; I call it life. 

 



5 

 

Certification 

 

I, Jiayin Lin, declare that this thesis submitted in fulfilment of the requirements for the conferral 

of the degree Doctor of Philosophy, from the University of Wollongong, is wholly my own work 

unless otherwise referenced or acknowledged. This document has not been submitted for 

qualifications at any other academic institution. 

 

 

 

 

 

 

 

 
 

 

<<Jiayin Lin>> 

<<Date (26th July 2021)>>



6 

 

 

List of Names and Abbreviations 

 

Name Abbreviation 

Technology-enhanced Learning TEL 

Artificial Intelligence A.I. 

Multi-layer Perceptron MLP 

Long Short-Term Memory LSTM 

Gated Recurrent Unit GRU 

Generative Adversarial Network GAN 

Rectified Linear Unit ReLU 

Massive Open Online Course MOOC 

Open Educational Resource OER 

Normalized Discounted Cumulative Gain nDCG 

Mean Reciprocal Rank MRR 

Area Under Curve AUC 

Computer Vision CV 

Natural Language Processing NLP 

Convolutional Neural Network CNN 

Recurrent Neural Network RNN 

Mean Square Error MSE 

Conditional Random Field CRF 

Bidirectional Encoder Representations 

from Transformers 

Bert 

Optical Character Recognition OCR 

Automatic Speech Recognition ASR 

Ant Colony Optimisation ACO 

Particle Swarm Optimization PSO 



7 

 

Genetic Algorithm GA 

Reinforcement Learning RL 

 

 



8 

 

Table of Contents 

_Toc85216421 

1 Chapter 1 Introduction ......................................................................................................................... 1 

1.1 Background ......................................................................................................................... 1 

1.2 Research Problems .............................................................................................................. 2 

1.3 Research Objectives and Contributions .............................................................................. 3 

1.4 Outline of the Thesis ........................................................................................................... 4 

2 Chapter 2 Literature Review ................................................................................................................ 6 

2.1 Micro Learning.................................................................................................................... 6 

2.1.1 The Light-Weight Learning Service ........................................................................... 6 

2.1.2 Challenges in the Micro Learning Service .................................................................. 7 

2.1.2.1 Content Analytics in Micro Learning ................................................................. 7 

2.1.2.2 Trade-off between Personalisation and System Workload.................................. 7 

2.2 Preparation of the Online Learning Resources .................................................................... 8 

2.2.1 Information Extraction ................................................................................................ 9 

2.2.1.1 Background of Information Extraction ............................................................... 9 

2.2.1.2 Related Work of Information Extraction .......................................................... 10 

2.2.2 Text Analysis ............................................................................................................ 11 

2.2.2.1 Background of Multimodal Information Processing ........................................ 11 

2.2.2.2 Related Work of Content Understanding in NLP and CV ................................ 12 

2.3 Recommendation............................................................................................................... 13 

2.3.1 Recommender System for Online Learning Service ................................................. 14 

2.3.2 The state-of-the-art Recommendation Strategies ...................................................... 17 

2.3.3 Data Challenges for Research ................................................................................... 18 

2.3.3.1 Insufficient Data Source ................................................................................... 19 

2.3.3.2 Inaccurate and Unknown Data Source ............................................................. 19 

2.4 Dropout Rate Prediction .................................................................................................... 20 

2.4.1 Background of Dropout Rate Prediction ................................................................... 20 

2.4.2 Related Work of Dropout Rate Prediction ................................................................ 21 

2.5 GAN Framework for the Micro Learning Recommender System .................................... 23 

2.5.1 GAN and Its Milestones............................................................................................ 23 

2.5.2 The Pioneer GAN solution for General Information Retrieval Task ........................ 25 

2.5.3 The GAN-based Recommender System ................................................................... 26 

2.5.4 The GAN-based Data Augmentation ........................................................................ 29 

2.6 Summary ........................................................................................................................... 30 

3 Chapter 3 The Big Picture of the Micro Learning System ................................................................. 32 

3.1 System Framework ............................................................................................................ 32 

3.2 Data Sources ..................................................................................................................... 34 



9 

 

3.2.1 The Utilities of Different Types of Data ................................................................... 34 

3.2.2 The Data Flow and Characteristics ........................................................................... 36 

3.2.2.1 Static Data ........................................................................................................ 36 

3.2.2.2 Dynamic Data ................................................................................................... 37 

3.2.2.3 Data Flow ......................................................................................................... 37 

3.2.3 Isolated Problem for the Research Dataset ............................................................... 38 

3.3 Summary ........................................................................................................................... 39 

4 Chapter 4 Pre-Processing ................................................................................................................... 40 

4.1 Information Extraction ...................................................................................................... 40 

4.1.1 Model Design ............................................................................................................ 40 

4.1.1.1 The Network Architecture ................................................................................ 41 

4.1.1.2 Embedding Layer for Semantic Modelling and Dimension Reduction ............ 41 

4.1.1.3 CNN Layer for Latent Feature Extraction ........................................................ 42 

4.1.1.4 Bi-LSTM Layer for Sequence Labelling .......................................................... 43 

4.1.1.5 Fusion Block for Combining Different Types of Latent Feature ...................... 43 

4.1.1.6 CRF Layer for Adding Local Constrains to the Sequential Model ................... 44 

4.1.2 Experiment and Analysis .......................................................................................... 45 

4.1.2.1 Evaluation Metrics ............................................................................................ 45 

4.1.2.2 Dataset .............................................................................................................. 45 

4.1.2.3 Experimental Setup .......................................................................................... 46 

4.1.2.4 Experiment Results and Discussions ................................................................ 46 

4.1.2.4.1 The Significance of CRF Layer ....................................................... 47 

4.1.2.4.2 The Bi-directional RNN and the CNN Layer .................................. 47 

4.1.2.4.3 Viterbi Algorithm and Cross-entropy ............................................... 48 

4.1.2.4.4 The Significance of the Fusion Block .............................................. 49 

4.1.2.4.5 The Information Distinguishing Ability ........................................... 49 

4.1.2.4.6 The Efficiency of the Proposed Model ............................................ 50 

4.2 Text Analysis .................................................................................................................... 52 

4.2.1 Model Design ............................................................................................................ 52 

4.2.1.1 The Architecture Framework ............................................................................ 52 

4.2.1.2 Problem Formulation ........................................................................................ 53 

4.2.1.2.1 Upstream Component ...................................................................... 53 

4.2.1.2.2 Text Representation ......................................................................... 53 

4.2.1.2.3 Downstream Component ................................................................. 53 

4.2.1.2.4 1D-Bounding Box ............................................................................ 55 

4.2.2 Experiment and Analysis .......................................................................................... 55 

4.2.2.1 Datasets ............................................................................................................ 55 

4.2.2.2 Evaluation Metrics ............................................................................................ 56 

4.2.2.3 Baselines ........................................................................................................... 57 

4.2.2.4 Experimental Setup .......................................................................................... 58 



10 

 

4.2.2.5 Experiment Results and Discussions ................................................................ 58 

4.2.2.5.1 The Effectiveness of the Proposed CNN Model .............................. 59 

4.2.2.5.2 The Importance of Upstream Language Model ............................... 60 

4.2.2.5.3 Locating Key Information................................................................ 61 

4.3 Summary ........................................................................................................................... 62 

4.3.1 Conclusion of Information Extraction and the Future Direction .............................. 62 

4.3.2 Conclusion of Text Content Analysis and the Future Direction ............................... 63 

5 Chapter 5 Personalised Online Learning Resource Delivery ............................................................. 64 

5.1 Background of the Use Case ............................................................................................. 64 

5.2 Model Design .................................................................................................................... 65 

5.2.1 Hypotheses ................................................................................................................ 65 

5.2.2 Model Architecture ................................................................................................... 66 

5.2.2.1 The Embedding Layer ...................................................................................... 66 

5.2.2.2 The Cross Network ........................................................................................... 67 

5.2.2.3 The Deep Network ........................................................................................... 68 

5.2.2.4 The Residual Connection and Attention Network ............................................ 68 

5.3 Experiment and Analysis .................................................................................................. 68 

5.3.1 Evaluation Metrics .................................................................................................... 69 

5.3.2 Dataset ...................................................................................................................... 69 

5.3.3 Baselines ................................................................................................................... 70 

5.3.4 Experimental Setup ................................................................................................... 70 

5.3.5 Experiment Results and Analysis ............................................................................. 70 

5.3.5.1 The Importance of the High-order Feature Interaction ..................................... 71 

5.3.5.2 The Significance of the Attention Mechanism ................................................. 71 

5.3.5.3 The Efficiency of the Proposed Model ............................................................. 72 

5.4 Summary ........................................................................................................................... 72 

6 Chapter 6 Student Dropout Rate Prediction ....................................................................................... 74 

6.1 Research Questions ........................................................................................................... 74 

6.2 Model Design .................................................................................................................... 75 

6.2.1 The Architecture of the Double-Tower Framework ................................................. 75 

6.2.2 Problem Formulation ................................................................................................ 76 

6.2.2.1 Objective .......................................................................................................... 76 

6.2.2.2 Micro Information ............................................................................................ 76 

6.2.2.3 Macro Information ............................................................................................ 76 

6.2.2.4 Convolutional Network with Fixed Kernel Width ............................................ 77 

6.2.3 Separate and Joint Training Strategies ...................................................................... 78 

6.3 Experiment and Analysis .................................................................................................. 79 

6.3.1 Dataset ...................................................................................................................... 79 

6.3.2 Evaluation Metrics .................................................................................................... 79 

6.3.3 Baselines ................................................................................................................... 80 



11 

 

6.3.4 Experimental Setup ................................................................................................... 81 

6.3.5 Experimental Results and Discussion ....................................................................... 81 

6.3.5.1 The Existence of the Time-Series Pattern ......................................................... 81 

6.3.5.2 The Effectiveness of the Double-Tower Framework ........................................ 82 

6.3.5.3 The Specificity of the Time-Series Information in MOOC .............................. 82 

6.3.5.4 Comparison of Effectiveness and Efficiency between Two Training Modes ... 84 

6.3.5.5 The Implication of Two Training Modes .......................................................... 85 

6.4 Summary ........................................................................................................................... 86 

7 Chapter 7 Generative Adversarial Network Based Optimization Strategy for the Micro Learning 

Recommender System ................................................................................................................................ 87 

7.1 GAN and Micro Learning ................................................................................................. 87 

7.2 The Pilot Experiment ........................................................................................................ 89 

7.2.1 Experimental Configurations .................................................................................... 89 

7.2.2 Results....................................................................................................................... 89 

7.2.3 Research Gaps and the Application Background of a Novel GAN Model ............... 90 

7.3 Model Design .................................................................................................................... 91 

7.3.1 The Framework Overview ........................................................................................ 92 

7.3.2 Loss Functions for the Proposed Model ................................................................... 93 

7.3.2.1 Adversarial Loss ............................................................................................... 94 

7.3.2.2 Data Loss .......................................................................................................... 94 

7.3.2.3 Consistency Loss .............................................................................................. 95 

7.3.2.4 Non-positive Feedback Loss ............................................................................ 95 

7.3.3 The Generator and the Discriminator ........................................................................ 96 

7.4 Experiment and Analysis .................................................................................................. 97 

7.4.1 Dataset ...................................................................................................................... 97 

7.4.2 Baseline Comparison Models ................................................................................... 97 

7.4.3 Evaluation Metrics .................................................................................................... 98 

7.4.4 Implementation Settings ........................................................................................... 99 

7.4.5 Results and Discussions ............................................................................................ 99 

7.4.5.1 Model Comparisons .......................................................................................... 99 

7.4.5.2 Effectiveness of each Generator ..................................................................... 101 

7.5 Summary ......................................................................................................................... 102 

8 Chapter 8 Conclusion and the Future Direction ............................................................................... 104 

8.1 Summary of Contributions in the Previous Chapters ...................................................... 104 

8.2 Recommendation for the Future Research ...................................................................... 106 

 

 

 



12 

 

List of Figures  

Figure 2.1 Structure of the GAN Framework .................................................................................... 24 

Figure 2.2 GAN-based Data Augmentation for a Recommender System ......................................... 30 

Figure 3.1 High-level Framework of the Intelligent Micro Learning System ................................... 32 

Figure 3.2 System Workflow (from the user perspective) ................................................................. 33 

Figure 3.3 System Workflow (from the resource perspective) .......................................................... 33 

Figure 3.4 The Data Flow Detail of the Proposed System ................................................................ 36 

Figure 4.1 The Abstract-level of the End-to-end Information Extraction Workflow ........................ 40 

Figure 4.2 The Overall Network Structure of the Proposed Deep Bi-LSTM-CNNs-CRF Model ..... 41 

Figure 4.3 Convolutional Neural Network for Summarizing and Extracting Latent Features .......... 42 

Figure 4.4 Bidirectional Long Short Memory for Modelling Sequential Pattern .............................. 43 

Figure 4.5 The Structure Detail of the Fusion Block ......................................................................... 44 

Figure 4.6 CRF Network ................................................................................................................... 44 

Figure 4.7 The AUC of Total Extracted Information ........................................................................ 50 

Figure 4.8 The ROC and AUC of Different Types of Extracted Information ................................... 51 

Figure 4.9 The Changes of the Loss Values for Each Training Epoch. ............................................. 51 

Figure 4.10 The Framework Architecture ......................................................................................... 52 

Figure 4.11 The Organization of a Piece of Text ‘Figure’ ................................................................ 53 

Figure 4.12 Network Structure of CNN-based Downstream Component ......................................... 54 

Figure 4.13 The Example Represntation of Bounding Box in CV (left) and NLP (right) ................. 55 

Figure 5.1 The Overall Network Structure of the Proposed Cross Attention Boosted Recommender 

System ...................................................................................................................................... 67 

Figure 5.2 Visualization of the Attention Operation ......................................................................... 69 

Figure 5.3 Overall Model structure of AutoInt, DeepFM, AFM, and DCN ...................................... 71 

Figure 5.4 Efficiency Comparison of Different Models in Terms of Rum Time (s/epoch) .............. 73 

Figure 6.1 The Overall Network Structure of the Proposed Double-Tower Framework .................. 75 

Figure 6.2 The Organisation Detail of an Interaction ‘Figure’ .......................................................... 77 

Figure 6.3 The Network Structure of the CNN-based Micro Component ......................................... 78 

Figure 7.1 Network Structure of the Discriminator and the Generator ............................................. 92 

Figure 7.2 Network Structure of the Discriminator and the Generator ............................................. 93 

Figure 7.3 The Recommendation Workflow ..................................................................................... 94 

Figure 7.4 Performance of the Proposed Model During the Training Procedure ............................ 102 

 

 

file:///G:/Desktop/thesis/versions/jlThesis_v2.docx%23_Toc77181167
file:///G:/Desktop/thesis/versions/jlThesis_v2.docx%23_Toc77181168
file:///G:/Desktop/thesis/versions/jlThesis_v2.docx%23_Toc77181169
file:///G:/Desktop/thesis/versions/jlThesis_v2.docx%23_Toc77181170
file:///G:/Desktop/thesis/versions/jlThesis_v2.docx%23_Toc77181171
file:///G:/Desktop/thesis/versions/jlThesis_v2.docx%23_Toc77181172
file:///G:/Desktop/thesis/versions/jlThesis_v2.docx%23_Toc77181173
file:///G:/Desktop/thesis/versions/jlThesis_v2.docx%23_Toc77181174
file:///G:/Desktop/thesis/versions/jlThesis_v2.docx%23_Toc77181175
file:///G:/Desktop/thesis/versions/jlThesis_v2.docx%23_Toc77181176
file:///G:/Desktop/thesis/versions/jlThesis_v2.docx%23_Toc77181177
file:///G:/Desktop/thesis/versions/jlThesis_v2.docx%23_Toc77181178
file:///G:/Desktop/thesis/versions/jlThesis_v2.docx%23_Toc77181179
file:///G:/Desktop/thesis/versions/jlThesis_v2.docx%23_Toc77181180
file:///G:/Desktop/thesis/versions/jlThesis_v2.docx%23_Toc77181181
file:///G:/Desktop/thesis/versions/jlThesis_v2.docx%23_Toc77181182
file:///G:/Desktop/thesis/versions/jlThesis_v2.docx%23_Toc77181183
file:///G:/Desktop/thesis/versions/jlThesis_v2.docx%23_Toc77181184
file:///G:/Desktop/thesis/versions/jlThesis_v2.docx%23_Toc77181185
file:///G:/Desktop/thesis/versions/jlThesis_v2.docx%23_Toc77181186
file:///G:/Desktop/thesis/versions/jlThesis_v2.docx%23_Toc77181186
file:///G:/Desktop/thesis/versions/jlThesis_v2.docx%23_Toc77181187
file:///G:/Desktop/thesis/versions/jlThesis_v2.docx%23_Toc77181188
file:///G:/Desktop/thesis/versions/jlThesis_v2.docx%23_Toc77181189
file:///G:/Desktop/thesis/versions/jlThesis_v2.docx%23_Toc77181190
file:///G:/Desktop/thesis/versions/jlThesis_v2.docx%23_Toc77181191
file:///G:/Desktop/thesis/versions/jlThesis_v2.docx%23_Toc77181192
file:///G:/Desktop/thesis/versions/jlThesis_v2.docx%23_Toc77181193
file:///G:/Desktop/thesis/versions/jlThesis_v2.docx%23_Toc77181194
file:///G:/Desktop/thesis/versions/jlThesis_v2.docx%23_Toc77181195
file:///G:/Desktop/thesis/versions/jlThesis_v2.docx%23_Toc77181196


13 

 

List of Tables 

Table 2.1 The Details of the Objective Function Used in Reviewed Studies .................................... 27 

Table 2.2 The Details of the Objective Function Used in Reviewed Studies (Continue) .................. 28 

Table 3.1 The Utility of Different Types of Data .............................................................................. 34 

Table 3.1 The Utility of Different Types of Data (Continue) ............................................................ 35 

Table 4.1 Statistical Information about the Dataset ........................................................................... 46 

Table 4.2 Experiment Results of Different Models ........................................................................... 48 

Table 4.3 Comparison of the Viterbi Algorithm and Cross-entropy ................................................. 49 

Table 4.4 Data Sample of the Two Dataset ....................................................................................... 57 

Table 4.5 Downstream Component Comparison on the Tasks of Sentiment Analysis and Disaster 

Prediction .................................................................................................................................. 59 

Table 4.6 Upstream Component Comparison on the Task of Disaster Prediction ............................ 60 

Table 4.7 Demonstration of 1D Bounding Box on the Task of Sentiment Analysis ......................... 61 

Table 5.1 Experiment Results of Different Models ........................................................................... 72 

Table 6.1 Comparison of Single Model ............................................................................................. 82 

Table 6.2 Comparison of the Separate Mode and Joint Mode ........................................................... 83 

Table 6.3 Comparison of the Framework Efficiency ........................................................................ 85 

Table 7.1 Item Recommendation Results on Movielens Dataset ...................................................... 88 

Table 7.2 Item Recommendation Results on Netflix Dataset ............................................................ 88 

Table 7.3 Comparison of Models Using and not Using Adversarial Learning .................................. 90 

Table 7.4 Experiment Results (Precision and Recall) ..................................................................... 100 

Table 7.5 Experiment Results (MRR and NDCG) .......................................................................... 101 

file:///G:/Desktop/thesis/versions/jlThesis_v2.docx%23_Toc77181197
file:///G:/Desktop/thesis/versions/jlThesis_v2.docx%23_Toc77181198
file:///G:/Desktop/thesis/versions/jlThesis_v2.docx%23_Toc77181199
file:///G:/Desktop/thesis/versions/jlThesis_v2.docx%23_Toc77181200
file:///G:/Desktop/thesis/versions/jlThesis_v2.docx%23_Toc77181201
file:///G:/Desktop/thesis/versions/jlThesis_v2.docx%23_Toc77181202
file:///G:/Desktop/thesis/versions/jlThesis_v2.docx%23_Toc77181203
file:///G:/Desktop/thesis/versions/jlThesis_v2.docx%23_Toc77181204
file:///G:/Desktop/thesis/versions/jlThesis_v2.docx%23_Toc77181205
file:///G:/Desktop/thesis/versions/jlThesis_v2.docx%23_Toc77181205
file:///G:/Desktop/thesis/versions/jlThesis_v2.docx%23_Toc77181206
file:///G:/Desktop/thesis/versions/jlThesis_v2.docx%23_Toc77181207
file:///G:/Desktop/thesis/versions/jlThesis_v2.docx%23_Toc77181208
file:///G:/Desktop/thesis/versions/jlThesis_v2.docx%23_Toc77181209
file:///G:/Desktop/thesis/versions/jlThesis_v2.docx%23_Toc77181210
file:///G:/Desktop/thesis/versions/jlThesis_v2.docx%23_Toc77181211
file:///G:/Desktop/thesis/versions/jlThesis_v2.docx%23_Toc77181212
file:///G:/Desktop/thesis/versions/jlThesis_v2.docx%23_Toc77181213
file:///G:/Desktop/thesis/versions/jlThesis_v2.docx%23_Toc77181214
file:///G:/Desktop/thesis/versions/jlThesis_v2.docx%23_Toc77181215
file:///G:/Desktop/thesis/versions/jlThesis_v2.docx%23_Toc77181216


14 

 

Publications 

Published Papers: 

1. Jiayin Lin, Geng Sun, Jun Shen, David Pritchard, Tingru Cui, Dongming Xu, Li Li, Ghassan 

Beydoun, and Shiping Chen: ‘Deep-Cross-Attention Recommendation Model for Knowledge 

Sharing Micro Learning Service’. In. International Conference on Artificial Intelligence in 

Education pp. 168-173, 2020. (CORE: A) 

2. Jiayin Lin, Geng Sun, Jun Shen, Tingru Cui, David Pritchard, Dongming Xu, Li Li, Wei Wei, 

Ghassan Beydoun, and Shiping Chen: ‘Attention-Based High-Order Feature Interactions to 

Enhance the Recommender System for Web-Based Knowledge-Sharing Service’. In. 

International Conference on Web Information Systems Engineering pp. 461-473, 2020. (CORE: 

B) 

3. Jiayin Lin: ‘Hybrid Translation and Language Model for Micro Learning Material 

Recommendation’. In. 2020 IEEE 20th International Conference on Advanced Learning 

Technologies (ICALT) pp. 384-386, 2020. (CORE: B) 

4. Jiayin Lin, Zhexuan Zhou, Geng Sun, Jun Shen, David Pritchard, Tingru Cui, Dongming Xu, 

Li Li, and Ghassan Beydoun: ‘Deep Sequence Labelling Model for Information Extraction in 

Micro Learning Service’. In. 2020 International Joint Conference on Neural Networks (IJCNN) 

pp. 1-10, 2020. (CORE: B) 

5. Jiayin Lin, Geng Sun, Tingru Cui, Jun Shen, Dongming Xu, Ghassan Beydoun, Ping Yu, 

David Pritchard, Li Li, and Shiping Chen: ‘From ideal to reality: segmentation, annotation, and 

recommendation, the vital trajectory of intelligent micro learning’, World Wide Web, 2019, 23, 

(3), pp. 1-21. (CORE: A) 

6. Jiayin Lin, Geng Sun, Jun Shen, Tingru Cui, Ping Yu, Dongming Xu, and Li Li: ‘A Survey of 

Segmentation, Annotation, and Recommendation Techniques in Micro Learning for Next 

Generation of OER’. In. 2019 IEEE 23rd International Conference on Computer Supported 

Cooperative Work in Design (CSCWD) pp. 152-157, 2019. (CORE: B) 

7. Jiayin Lin, Geng Sun, Jun Shen, Tingru Cui, Ping Yu, Dongming Xu, Li Li, and Ghassan 

Beydoun: ‘Towards the readiness of learning analytics data for micro learning’. In. 

International Conference on Services Computing pp. 66-76, 2019. (CORE: B) 



15 

 

 

Papers Under Review: 

8. Jiayin Lin, Geng Sun, Jun Shen, Tingru Cui, David Pritchard, Ping Yu, Ghassan Beydoun, Li 

Li, Applying GAN Techniques in Recommenders for Micro Learning, IEEE Transactions on 

Learning Technologies 

9. Jiayin Lin, Geng Sun, Jun Shen, Ghassan Beydoun, David Pritchard, Ping Yu, Tingru Cui, Li 

Li, Dongming Xu, False Negative, False Positive, and Non-positive Feedback: Adversarial 

Learning for Recommendation in Knowledge Sharing Services, Neurocomputing 

10. Jiayin Lin, Geng Sun, Jun Shen, David Pritchard, Ping Yu, Tingru Cui, Li Li, Ghassan 

Beydoun, MOOC Student Dropout Rate Prediction via Separating and Conquering Micro and 

Macro Information, International Conference on Neural Information Processing, 2021 

11. Jiayin Lin, Geng Sun, Jun Shen, David Pritchard, Ping Yu, Tingru Cui, Dongming Xu, Li Li, 

Ghassan Beydoun, From Computer Vision to Short Text Understanding: Applying Similar 

Approaches into Different Disciplines, International Conference on Neural Information 

Processing, 2021 

This thesis is in the form of thesis by complication. The content of this thesis is based on the above 

publication with a slight modification and adjustment. I, Jiayin Lin, am the first author of the above 

publication and I am the major contributor of the above work. For each work, my contributions 

include all aspects of research design, experimenting, and paper composing.  

For each chapter of this thesis: 

Chapter 2 is mainly based on the publication 5, and 6, and partially based on the related work section 

of publication 1,2,3,4,8,9,10,11. 

Chapter 3 is mainly based on the publication 7. 

Chapter 4 is mainly based on the publication 4 and 11. 

Chapter 5 is mainly based on the publication 1, and 2 and partially based on the publication 3. 

Chapter 6 is mainly based on the publication 10. 

Chapter 7 is mainly based on the publication 8 and 9. 

Other co-authored publications which are not included in this thesis: 

1. Geng Sun, Jiayin Lin, Jun Shen, Tingru Cui, Dongming Xu, and Huaming Chen: 

‘Evolutionary Learner Profile Optimization Using Rare and Negative Association Rules for 

Micro Open Learning’. In. International Conference on Intelligent Tutoring Systems pp. 432-



16 

 

440, 2020. (CORE: B) 

2. Geng Sun, Jiayin Lin, Jun Shen, Tingru Cui, Dongming Xu, and Mahesh Kayastha: 

‘Refinement and augmentation for data in micro open learning activities with an evolutionary 

rule generator’, British Journal of Educational Technology, 2020, 51, (5), pp. 1843-1863 

 

 

 



1 

 

1 Chapter 1 Introduction 

1.1 Background 

The soaring development of the Internet and the mobile device catalyse the evolution of various 

mobile applications and services. Such a development trend aims to break the time-space restriction, 

such that people can work, entertain, or study at almost any time and anywhere. Moreover, in the 

meanwhile, due to the fast-paced modern life and the immersed usage of mobile devices, people’s 

spare time is split into small irregular time-fragments between the switch of different activities. After 

the entertainment industry first starts utilising the high value of people’s fragmented time, 

researchers in the area of technology-enhanced learning (TEL) start to investigate how to make good 

use of such small chunks of time and carry out effective and personalised learning activities.  

As discussed in one prior study [Sun, et al., 2018], to fit the user’s fast-paced lifestyle and satisfy the 

lifelong learning requirement, it is necessary to deliver users personalised adaptive small chunks of 

learning materials. These small chunks of learning materials are coherent knowledge points and can 

be learnt in relatively short and isolated time duration. The term ‘micro learning’ used in this thesis 

refers to the novel learning style that mainly utilises small-time fragments with small pieces of 

learning materials. As found in the studies [Guo, et al., 2014, Anderson, et al., 2014], users’ 

engagement in online learning activities plunges quickly after 7 minutes, and videos with a short 

time duration are more popular among learners. Moreover, as pointed out in the study [Syeda-

Mahmood, et al., 2001], for a short learning session such as a short video, users are less likely to 

leave out the knowledge points. Hence, micro learning has great potential in fitting the fast-paced 

lifestyle and alleviating engagement or dropout issues. 

Based on the service logic of micro learning [Lin, et al., 2019], the full framework can be divided 

into three modules: learning material pre-processing, learning material delivery and the intelligent 

assistant modules. The first module aims to pre-process the online learning materials and make them 

ready to be further used by other intelligent models of the system. The second module is mainly 

focused on recommending learner with personalised materials based on his/her user-characteristics, 

such as historical learning activities, knowledge level, and learning preference. The last module is for 

providing some intelligent services or functionalities (like dropout rate prediction for early 
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intervention of low engagement) for the educational resource providers (such as instructors or 

institutions). For a real-time personalised learning service in the context of big data, the above 

mentioned three modules should be highly automatic, modularised, and cohesive. 

1.2 Research Problems 

In the big data era, the explosive growth of the volume of learning resource on the Internet floods 

learners with tremendous information in both variety and complexity. In the meantime, after leading 

universities proposed the idea of open educational resource (OER), online learning is promoted by 

more and more institutions and companies as a new learning style. Also, many existing online 

learning platforms such as edX1 and Coursera2 are designed to be used under the context of big data 

with massive digital learning resource and users. Managing massive online learning resource and 

users’ information manually by traditional methods is significantly labour intensive and costly. The 

workload of manually processing online information is beyond imagination. Therefore, intelligence, 

automaticity, and personalisation become the three key factors to a successful e-learning application. 

How to use advanced artificial intelligence techniques to maintain the micro learning system and 

manage learning resource and online users is critical to the development of online learning. Hence, 

now and in the future, for the service of online learning, it should be deployed on or attached to a 

highly intelligent system that could automatically manage the massive learning resource and analysis 

underlying characteristics of online learners and resources. 

Specifically, for an open micro learning platform, massive learning resources are generated daily, 

and online learners come and go every second. Manually pre-process the new generated micro 

learning resource one by one is deemed to be impossible under the context of big data. Moreover, the 

massive users in a learning platform have quite different knowledge backgrounds, learning 

requirements, and learning preferences. Hence, the analysis of users’ information and recommending 

suitable learning resources to the target users should also be automatic, it is unrealistic to recruit a 

large number of educationalists to do this job manually. Lastly, the educational providers are eager to 

have an insight view of the effectiveness of the provided online resources, which requires the micro 

learning system has relevant intelligent modules to analyse the learning activities and give those 

feedbacks. Generally speaking, it strongly demands a system that can automatically and intelligently 

 
1 https://www.edx.org/ 
2https://www.coursera.org/ 
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the tasks mentioned above for the micro learning service. Artificial intelligence (A.I.) enhanced 

micro learning is certain to be a future research trend. 

Based on the three modules of the micro learning system, my research aims to solve the problem of 

the lack of comprehensive design of intelligent modules for the micro learning service system. In my 

research, I mainly focus on filling the following three gaps: 

1. The lack of pre-processing strategies for micro learning resource.  

2. The lack of an effective recommender system for the proposed micro learning system. 

3. The lack of assistant plugins can provide the educational resources providers with an insight 

view of the effectiveness of the provided online learning resources. 

1.3 Research Objectives and Contributions 

From a high perspective, the main research object is to design a micro learning system framework 

and develop some task-specific A.I. techniques. 

As the micro learning service involves a series of complex data processing and analysing stages, the 

complete micro learning service could be divided into several modules and each of which has a 

different obligation. The effectiveness of the micro learning service is determined by each of the 

processing or analysing module. Due to the different data requirements and different parts of a micro 

learning system, we should apply different A.I. techniques for different components. Based on the 

resource we have and my research background, besides the main research objective of system design, 

there are three other sub-objectives: 

1. Designing an intelligent pre-processing module that aims to make the learning material ready to 

be delivered to the target learners. The pre-processing step should be able to extract different 

perspectives of hidden information from the learning resource. This module is made up of 

different A.I. models such as information extraction and text analysis. 

2. Designing a recommender system for delivering online learning resource to the target learners. 

For personalised recommendation of micro learning resource: the recommendation strategy 

should be based on analysing users' historical learning records, finding similar learners and 

mining user’s learning requirements and knowledge level. 

3. Designing a dropout rate prediction model for assisting educational resource providers in 

evaluating the effectiveness of learning activities. The dropout rate prediction model can be 
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further used for the early intervention of students with high dropout intention. 

As the results of this research, the contribution of this research can be highlighted as bellows. 

1. A micro learning system framework that focuses on depicting how the A.I. techniques can be 

used to boost the micro learning service. This framework also demonstrates the workflow of the 

involved intelligent modules and the relationships among these modules (in Chapter 3). 

2. The technical details of several intelligent models I designed during this research project. These 

models involve different business aspects (such as backend information pre-processing, service 

evaluation, and resource delivery) of the micro learning system. These proposed models have 

significant reference value to the future research of online learning and micro learning (in 

Chapters 4,5,6, and 7). 

3. A comprehensive discussion and analysis of current mainstream public datasets for the online 

learning research is provided (in Chapter 2 and 3). 

1.4 Outline of the Thesis 

The rest of the thesis is organised as follows: 

Chapter 2 is introducing the basic concepts of this research together with the literature review of the 

current status of the related research. The definition, micro learning characteristics, and its 

relationships with traditional online learning are first introduced and discussed. Then the recent 

studies of content understanding (such as information extraction and text analysis) are presented. 

This part is related to the pre-processing stage of the micro learning service. After that, recent studies 

of the recommender system are discussed. This part contains the current recommendation strategies 

for online learning, the mainstream recommender systems, and the differences between micro 

learning recommendation and the recommenders in other domains. Lastly, related work about 

student dropout rate prediction is introduced in this chapter. 

Chapter 3 is presenting the big picture of the technical part of this research. The A.I. enhanced 

framework of the proposed micro leaning system is presented and introduced in this chapter. Each 

component of the framework is explained in detail, including the functionalities and relationships. 

Also, the data source of each intelligent component is introduced in this chapter, including the 

characteristics of each type of data and its workflow. 

The detail of how the micro learning resources should be pre-processed is demonstrated in chapter 4. 
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This chapter consists of two parts, one is about information extraction, and another one is about text 

analysis. For each part, the technical aspects of the proposed intelligent model are introduced. In the 

experimental section of this chapter, the configurations of the proposed models are demonstrated, 

and the proposed models are compared with the state-of-the-art solutions through comprehensive 

experiments. Moreover, the statistical information of the datasets used in the experiments is also 

discussed and analysed in this chapter. 

Chapter 5 is focusing on the recommendation strategy of the micro learning service. First, the 

proposed recommendation strategy is introduced and discussed in this chapter in detail. Then, in 

order to demonstrate the effectiveness of the proposed recommendation strategy, the proposed 

solution is compared with the state-of-the-art recommender models through experiments. At the end 

of this chapter, together with the involved dataset, the experiment results are analysed and discussed. 

Chapter 6 is investigating the online students’ dropout rate. The dropout rate prediction model is one 

of the representative intelligent assistant plugins for the proposed micro learning system. Similar to 

other A.I. based model of this system, the technical detail of the proposed solution is introduced first. 

Then we conduct a comprehensive experiment in which the proposed model is compared with the 

state-of-the-art solutions. The experiment results are analysed and summarised at the end of this 

chapter. 

Chapter 7 is a further investigation of the optimisation strategy for the recommender system used in 

the micro learning system. Firstly, the current gaps of micro learning resource recommendation are 

discussed and analysed. The proposed generative adversarial network-based optimisation strategy for 

the micro learning recommender system is introduced. Then, the experiment of comparing the 

proposed optimisation strategy with the conventional optimisation method is demonstrated in this 

chapter. Lastly, the experiment results are comprehensively analysed. 

This thesis is concluded in Chapter 8. The suggestion of future research about micro learning is also 

given in this chapter. 
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2 Chapter 2 Literature Review 

In this chapter, we discuss the related studies of the micro learning service. For each intelligent 

module of the micro learning system, we review and discuss the works of information extraction, 

text analysis (NLP techniques), recommender system, and student dropout rate prediction. For the 

GAN-based optimisation strategy of the recommender system, we also investigate the related work 

of the GAN technique and the GAN-based recommendation framework. 

2.1 Micro Learning 

2.1.1 The Light-Weight Learning Service 

As mentioned in the previous chapter, to fit the user’s fast-paced lifestyle and satisfying the life-long 

learning requirements, it is necessary to make good use of the learners’ small chunks of spare time to 

carry effective learning activities. This learning requirement gives birth to a novel learning style, 

micro learning. This learning style aims to utilise learner’s fragmented spare time and curry out 

effective learning activities. The term ‘micro’ refers to the short time length that a learner needs to 

take to consume a learning material. A micro learning material is also in a small format which could 

be just a single knowledge point or a subsection of a learning topic. The term ‘learning’ refers to the 

online learning service or activity that a user is involved in. The online learning service or learning 

activity could be formal, informal, or non-formal.  

Moreover, the soaring development of the Internet and mobile device catalyse the evolution of the 

mobile application and service. Such development breaks the time-space restriction and makes it 

possible that people can work, entertain, and study almost anytime and anywhere. Highlighted in one 

early study that the development of the Web and mobile platforms are significant factors for enabling 

novel learning methods such as micro learning [Kovachev, et al., 2011]. This research also indicated 

that the micro learning consists of a fast, convenient and instant capture of the self-identified 

knowledge gaps, understanding them with the help of online resources, creation of a learning object 

out of these online resources and integration of that learning object into small learning activities 

interwoven into our daily life [Kovachev, et al., 2011]. But the researchers of this study only focused 



7 

 

on promoting micro learning as an informal learning method. As discussed in [Bruck, et al., 2012] , 

micro learning has been designed to increase the usage of technology in learning by making it more 

convenient and adapting the e-learning to the fact that users often have considerable difficulty make 

time for long stretches of learning activity outside the dedicated study times and institutional 

programs of schools, colleges or universities. 

Overall, the micro learning service has great potential in fitting the fast-paced lifestyle and 

alleviating engagement issues. As concluded in one prior study [Mohammed, et al., 2018], that using 

micro learning techniques, the effectiveness and efficiency of learning could be improved, and the 

knowledge could stay memorable for a longer period. 

2.1.2 Challenges in the Micro Learning Service 

2.1.2.1 Content Analytics in Micro Learning 

As discussed before, a great portion of online learning resources are in the audio and video format. 

However, there is a huge research gap in interpreting and analysing the video or audio content, 

especially for the micro learning materials. Nowadays most of the studies heavily rely on OCR, ASR, 

NLP techniques, which are indirect approaches to interpreting and analysing the content of the 

learning resources. The combination of OCR, ASR, and NLP aims to transfer all audio and visual 

information into the textual form. Due to the technical difficulties in directly interpreting the content 

of the video stream or audio signal, textual information becomes the only remaining metadata that 

researchers can interpret and analyse. As discussed in [Bolettieri, et al., 2007], although 

automatically-generated metadata and annotations by using ASR or OCR are sometimes error-prone, 

they are practically two of the limited options for researchers to make the audio-visual content 

retrievable and accessible. 

2.1.2.2 Trade-off between Personalisation and System Workload 

When a real-life problem involves user interactions, machine learning techniques are frequently used 

to construct the user modelling to represent the user’s profile and other related information that 

matters in different complex scenarios. Such a model is intended to represent general user 

information. Conventionally, for the instances of a user model, all users could have different feature 

values but share the same set of feature weightings. For a personalised online learning service, how 

nicely the user information can be modelled and represented determines the extent of personalisation 
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service can a system offer. Many studies argue that, to boost the personalisation of an recommender 

system in the educational scenario, it is necessary to construct a user model for each user individually 

[Al-Shamri, et al., 2008, Wasid, et al., 2015, Fong, et al., 2008, Bobadilla, et al., 2011, Ujjin, et al., 

2003, Ujjin, et al., 2002]. As discussed in  [Al-Shamri, et al., 2008], the main features reflecting 

different users’ preference are naturally different; for example, some users mainly rely on their 

explicit ratings, some rely on the similar age and gender groups, whereas some others rely on all 

features. According to the relevant experiments carried out in the study [Al-Shamri, et al., 2008], 

many cases indicate that, for different users, the feature weights vary greatly, and sometimes for a 

specific user, some features do not contribute at all during the recommendation process. Especially, 

when applying deep learning techniques to the system at scale, it is necessary to consider the 

efficiency of the models [Acun, et al., 2021]. Demonstrated in [Rungsuptaweekoon, et al., 2017] that 

adjusting the trade-off relationship of throughput and power efficiency is necessary for the deep 

learning applied system. 

Optimising the features’ weight individually for each user outperforms optimising the features’ 

weight for all users together. However, tuning features’ weight for each user individually is very 

computationally time-consuming [Al-Shamri, et al., 2008]. In other words, this weighting strategy 

pursues personalisation of the system by constructing a user model for each user; it discards the 

generalisation of conventional user model and sacrifices the computational efficiency of the system. 

Also, such weighting strategy might be very time sensitive. For an active user, some information 

about his/her profile might change very frequently when an interaction occurred with events such as 

rating new items or making new comments. This situation implies that, for active users, the user 

model needs to be updated frequently in order to maintain the recommendation accuracy. For the 

future research of micro learning, especially for the underlying fast-growing data, it is necessary to 

carefully balance the trade-off between the degree of recommender’s personalisation degree and the 

workload of computation behind the system. 

2.2 Preparation of the Online Learning Resources 

As the micro learning service aims to contract a free and open learning environment, in some 

platforms, every registered user can create and upload new learning resources. The newly uploaded 

resources could be in an unstructured and informal format. These resources are hard to be directly 
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processed by the micro learning system for analysing or assessing purpose. Hence, it requires the 

micro learning system has an intelligent module that can automatically pre-process the continually 

generated new learning resources. Therein, extracting the key information and interpreting the 

resource content are two significant pre-processing steps. 

2.2.1  Information Extraction 

2.2.1.1 Background of Information Extraction 

As a form of online service, micro learning targets massive online users of different ages, from 

different locations, and with different learning demands and preferences. Depending on the learners’ 

learning purpose and the credit they can obtain after completing an entire course, this learning 

service could be formal, informal, or non-formal [Eshach, 2007]. The freedom and personalisation of 

this service further require the involved learning materials also to be diversified, which conform with 

the characteristic of ‘big data’ [Lin, et al., 2019]. However, operating and maintaining such an online 

service faces the difficulty of effectively managing dynamic and massive information from both the 

user and the resource side. In addition, sometimes, for a particular single application scenario, a large 

percentage of information is redundant or useless. Hence, effectively analysing information stream 

and precisely extracting valuable information become the significant and necessary pre-processing 

stage for the micro learning service. Such pre-processing stage can save budget, release the heavy 

workload, and improve the quality of the online service. 

In a broad sense, information extraction refers to the task of automatically analysing, locating, 

distilling, summarising, and extracting useful information from massive unstructured multimedia 

documents. For the micro learning service, the utility of the information extraction technique could 

play a vital role in the pre-processing stage. The extracted information could be keywords/phrases, 

name entities, knowledge concepts, and many other types of key information, which will be used to 

train other models (like the recommendation model) of the system. Usually, for the online learning 

service, the raw information always contains temporal information. For example, historical learning 

records of an online learner contains interactions between the user and resources is in chronological 

order; the text content of a learning resource is also composed in sequential order. Hence, in this 

research, we mainly focus on investigating extracting valuable information from the sequential data. 
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2.2.1.2  Related Work of Information Extraction 

In one previous work about cloud-based micro learning system [Sun, et al., 2018], the authors point 

out that keyword extraction is important to learning resource modelling, and real-time data extraction 

and inferencing is vital for constructing a personalised learner model. In another online learning 

related study [Sun, et al., 2018], the authors argued that extracting certain types of information like a 

user’s profile is essential to solving the cold-start problem for recommending online educational 

resources. According to [Sun, et al., 2017], for an online learning service, intelligent components 

such as entity extraction, relationship extraction, and resources disambiguation are based on 

successfully extracting useful information from massive information stream.  

Intuitively, the process of an information extraction task can be roughly divided into two individual 

steps: locate the valuable information from a given multimedia document and then classify the 

located information into the predefined categories. However, constructing two separate models will 

make the whole information extraction procedure error-prone. Especially for the micro learning 

service, the massive volume of information that needs to be extracted and labelled leads to the 

according to the rise of the complexity of their permutation and combination. It is necessary to 

reduce the error rate as low as possible. The better way is to design an end-to-end solution based on 

deep learning technology. An end-to-end solution which is capable to deal with two above-

mentioned sub-tasks at the same time is vital to maintaining the robustness of the extracting 

procedure and effectiveness of the personalised service. Such information extraction solution takes 

input of the raw information and outputs the distilled valuable information, no intermediate output or 

operation involved. Moreover, the end-to-end model does not require many feature engineering tasks 

and domain knowledge [Guo, et al., 2017, Ma, et al., 2016], which makes it have satisfactory 

generalisation performance. Many prior studies suggested using the sequence labelling model for 

solving the information extraction problem. In a sequence labelling model for micro learning, the 

information stream is fed into the model in chronological order. The output is the sequence of 

relevant labels for data elements, each label can indicate the usefulness and category of each data 

element at the same time. Based on this idea, several representative prior studies about sequence 

labelling will be discussed in the following of this section. 

Hidden Markov Model (HMM), Conditional Random Field (CRF), and their variants have been 

widely used in many previous studies for modelling various sequential and temporal problems 
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[McCallum, et al., 2000, Zhu, et al., 2005, Li, et al., 2018]. These models perform well in modelling 

local characteristics and constraints. However, such modelling strategies are based on linear 

information and heavily rely on handcraft features, which make them lack abilities to model complex 

tagging problems in a more general use case such as online non-formal learning. 

Unlike other types of neural network, the recurrent neural network (RNN) shows outstanding ability 

in modelling the temporal dynamic information in many discipline areas. It can memorise historical 

information and combine such historical information with currently received information before 

making predictions. As one class of the RNN family, the Long Short-Term Memory (LSTM) based 

model shows satisfactory performance in modelling both short-term and long-term memory 

[Sutskever, et al., 2014] information. Moreover, bidirectional Long Short-Term Memory (Bi-LSTM) 

can further utilise ‘future’ input information for modelling sequential patterns [Dyer, et al., 2015]. 

Hence, the Bi-LSTM model can not only mine the forward sequential information but also mines the 

backward sequential information. However, such type of model does not perform well in modelling 

local constraints, especially when adjacent outputs in a sequence have a strong influence on each 

other. 

Based on the advantages and disadvantages of various sequential modelling strategies, LSTM-CRF 

and its variants are state-of-art solutions for dealing with the sequence modelling problem. As 

pointed in a prior study [Huang, et al., 2015], such a network has the ability to efficiently use past 

input features from via LSTM layer and sequence level local information via a CRF layer. With the 

advantages of Bi-LSTM, the bidirectional LSTM-CRF (Bi-LSTM-CRF) model is used in many 

studies for different sequence tagging or labelling tasks [Ma, et al., 2016, Huang, et al., 2015, Yang, 

et al., 2018]; and in many cases, it outperforms the LSTM-CRF based model. 

2.2.2 Text Analysis 

2.2.2.1 Background of Multimodal Information Processing 

With the development of Internet and communication technologies such as IoT and 5G, the forms of 

online information resources develop from single form (e.g., pure text or pure picture) to 

diversification (e.g., in a multimodal form). For example, a single online learning course could 

contain textual information (e.g., the discussion from students), audio-video information (e.g., the 

recorded lecture content), and images (e.g., the attached slides) [Chen, et al., 2019]. Alternatively, in 
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the area of e-commerce, a list of goods on Amazon or Taobao can have text, images and even short 

video for its description [Lynch, et al., 2016]. Hence, solely processing a single format of 

information is no longer adequate to fully understand the online resources. Such changes pose new 

challenges for the intelligent multimodal information processing tool towards various big data 

application areas, including e-learning, digital health, traffic information systems, etc. 

However, the research on information processing and fusion for handling different information 

formats is still relatively isolated even though many efforts had been made independently or 

diversely. For example, there is a lack of a robust universal model, which can handle the processing 

task of different types of information (i.e., multimodal information). Hence, multiple models are 

generally involved in a processing system to handle and interpret multimodal information. In the 

prior work of managing the open educational resource in the medical discipline [Zhao, et al., 2016], 

three different models are used to separately handle text, video stream, and pictures. Ultimately, a 

universal and re-useable model or a single model only requiring little adjustment for different types 

of information, can greatly reduce the complexity of the overall system. 

2.2.2.2 Related Work of Content Understanding in NLP and CV 

With the outstanding performance in extracting different granularities of spatial information, the 

convolutional neural network (CNN) based models have become the mainstream solutions to various 

computer vision tasks [O’Mahony, et al., 2019]. To name a few, for the task of image classification, 

the AlexNet [Krizhevsky, et al., 2017], which consists of five convolutional layers, can distinguish 

one thousand different objectives. For the task of object detection, R-CNN [Girshick, et al., 2015], 

Fast R-CNN [Girshick, 2015] and Grid R-CNN [Lu, et al., 2019] are well-adopted region-based 

CNN with the idea of the bounding box to locate target objects. Moreover, besides recognising 

objects, the CNN-based model can also work as a tracker in the task of object tracking. One 

representative object tracking model is FCNT [Bertinetto, et al., 2016], which takes advantage of the 

feature map from the model VGG [Simonyan, et al., 2014]. Multi-hierarchical independent 

correlation filter is also used for visual tracking [Bai, et al., 2020]. As the network goes deep, 

different types of features (such as edges, shape, and so on) are extracted and modelled successively, 

but the network will face the challenge of vanishing gradients. Hence, the ResNet [He, et al., 2016], 

which consists of 152 layers, is designed to maintain the robustness of the deep model. All these 

works demonstrate the outstanding non-linear transforming ability of the CNN mechanism, which 
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can be used to interpret the content of the complex data or signals in the format of pixels. 

In NLP, constrained by ‘rules’ (such as grammar and idioms), a meaningful sentence is commonly 

composed with specific patterns. When interpreting the meaning of a piece of text, a sequence of a 

bunch of words is usually more important than the individual words themselves. Due to the 

significance of modelling temporal/time-series information, the recurrent neural network (RNN) 

based model can be regarded as the dominant solution for various NLP tasks in recent years. For 

example, the combination of RNN and conditional random field (CRF) has been regarded as the 

optimal choice for the tasks of sequence labelling and information extraction in various application 

areas [Zhai, et al., 2018]. Similarly, for the task of text classification and text generation, most of the 

solutions are based on the famous RNN framework and its variants [Pawade, et al., 2018]. 

From the viewpoint of mathematics, the goals of both the CNN and RNN networks are to project the 

given input to the required output through complex non-linear transformation. Many prior studies 

have been successfully using the CNN model to solve NLP problems or the RNN model to solve CV 

problems in recent years. In [Zhai, et al., 2018], CNN is used to generate word embeddings by 

extracting character-level semantic information such as prefix and suffix. TextCNN [Kim, 2014] is 

designed for the task of sentence classification. This work demonstrates that a simple CNN with little 

hyperparameter tuning has the potential to achieve excellent results on multiple benchmarks. In the 

area of CV, the combination of CNN and RNN is used in [Wang, et al., 2016] and [Guo, et al., 2018] 

for image classification. The LSTM-C framework is used to incorporate the knowledge from 

external sources in another prior study [Yao, et al., 2017] t to address predicting novel objects in 

image captioning task. However, these studies do not dig and explore the relationship between these 

two areas in further depth and do not analyse whether it is feasible to have a universal framework or 

model for both areas. 

2.3 Recommendation  

As the key to personalisation, a recommender system, to a great extent, determines what kind of 

information will be finally delivered to the users. A good recommendation strategy should have the 

ability to automatically adjust the type of information to be delivered based on the user’s background 

and the surrounding environment of the current learning activity. Compared to the other domains like 

e-commerce or entertainment, a recommending task in the educational domain has several unique 
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characteristics and requirements: 

1. The learning activity and the learner profile always contain vague and uncertain information 

[Wu, et al., 2015]. A subject can belong to several different categories. For example, the subject 

‘statistical machine learning’ is mainly relevant in the computer science area but also involves 

mathematics. Sometimes similar courses have totally different names such as ‘Java’ and 

‘Object-Oriented Programming’. And for a subject, it can have different difficulty levels for 

learners with different knowledge levels. 

2. Pedagogical issues also influence recommending procedures significantly [Wu, et al., 2015]. 

Items liked by certain learners might not be pedagogically appropriate for them [Sikka, et al., 

2012]. Unlike the recommender systems in the entertainment or social media domain, in the 

educational area, many subjects have various prerequisite courses. Also, for a certain learning 

period, a review or quizzes always need to be involved for pedagogical purposes. 

3. As the micro-learning units vary in types (such as lecture, quiz, and tutorial) and formats (such 

as PDF, video, and audio) [Al-Hmouz, et al., 2012], recommending process should also 

consider how to choose the most suitable format and type of a learner based on the different 

contexts. 

2.3.1 Recommender System for Online Learning Service 

Recommender systems have been studied for many years based in various application areas. 

However, as mentioned above, due to some pedagogical considerations, a recommendation strategy 

used in other domains cannot be directly transformed to fulfil the requirements of online learning 

services. This is particularly true for the micro learning service. Hence, it still lacks a sophisticated 

solution to enable recommending personalised online resources to target users. 

Ant colony optimisation (ACO) algorithm is used in many studies to tackle the path 

planning/recommendation problem. In [Zhao, et al., 2016], an ACO model is proposed to detect 

learners’ learning transition such as knowledge area, and learning goal. In this study, the authors 

suggest that similar learning paths could represent a certain learning goal and learning requirements 

of a certain group of learners, and a learning path which is finished by a large number of learners 

could be seen as a valid or optimal learning sequence. This unsupervised learning path 

recommending strategy is self-adjusting and does not require labelled data. However, ACO is very 
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sensitive to the cold start problem as it requires predefined paths at the initial stage of the execution 

of algorithm. Interestingly, another study used improves ACO with adopted Mahalanobis distance to 

recommend learning paths to learners [Chen, et al., 2017]. Such model can avoid the side effects of 

the high dimensional space problem. 

As another branch of soft computing, genetic algorithm (GA) has been widely used as an adaptive 

weighting method in the recommender system [Al-Shamri, et al., 2008, Fong, et al., 2008, Bobadilla, 

et al., 2011], which can further optimise the user model and boost the performance of collaborative 

filtering-based recommender system. Unlike conventional optimisation method, such as gradient 

descent, in GA, the searching for the optimal solution is mainly based on three genetic operators, 

namely selection, crossover, and mutation. The highlight of GA parameter tuning process is the 

operation of mutation and crossover, which can ‘break the box’ and find the new combinations of 

factors not being captured and recorded in the training dataset. With such ability, GA can explore 

new feature combinations in the global area with a relatively small sample set, it also alleviates the 

requirement of large amount data in the training step. When using GA to explore feature 

combination, some rare combinations of features could be explored as well, even if they would not 

appear in the training set. Different to the ant colony optimisation, which is mainly used for solving 

route optimisation like learning path design, particle swarm optimization (PSO) is mainly used for 

tuning parameters [Wasid, et al., 2015, Ujjin, et al., 2003]. The principle of PSO is to mimic the 

movement of an organism population, such as birds and bees; each individual has a trend moving to 

close to the ‘optimal’ point/area in their living environment based on the historical movement 

information of the whole population and itself. Similar to the GA as discussed above, PSO can 

improve the collaborative-filtering recommending result by well tuning the weights of the involved 

user model [Wasid, et al., 2015, Ujjin, et al., 2003]. Comparing to GA, PSO requires less 

computational time while demonstrating higher accuracy [Wasid, et al., 2015, Ujjin, et al., 2003]. 

Reinforcement learning (RL) has been widely used in various domains for sequential decision-

making. The idea behind RL is to make sequential decisions (and take continuous actions) in an 

environment to maximise the notion of the cumulative reward. As mentioned above, learning path 

design is the extension of a recommender system in micro learning. With the concept of RL, a 

learning path can be naturally seen as a sequence of individual learning activities, and the knowledge 

gained from the learning activities can be seen as the accumulated rewards from the learning 
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activities. RL is utilised for choosing the difficulty level of learning materials for learners in [Fenza, 

et al., 2017]. In this study, the proposed recommending strategy was based on the Vygotsky's Zone 

of Proximal Development (ZPD) theory [Vygotsky, 1980]. ZPD is used to define and quantify the 

‘area’ most suitable for a learner based on cognitive and affective perspectives. In ZPD, a learner 

would be kept in his/her leading edge which fell in between ‘confused’ and ‘bored’ status; this area 

challenged but would not overwhelm the learner [Murray, et al., 2002]. [Fenza, et al., 2017] also 

borrows the solution of the Cliff-Walking problem [Sutton, et al., 1998]. The goal of the Cliff-

Walking problem is to find an optimal route, which can arrive at goal state ‘G’ from the starting 

stage ‘P’ or any other positions without stepping into the ‘cliff’ area. 

A blended model is proposed in a prior study [Hoic-Bozic, et al., 2015], which combines a learning 

management system, a set of web 2.0 tools and the e-learning recommender system to enhance 

personalised online learning. However, this study does not provide technical innovations of a 

recommender system for online learning service. In an early survey [Sikka, et al., 2012], several 

recommendation approaches for e-learning service are listed and analysed. However, they are all too 

preliminary to be applied to the micro learning services. Another study [Chen, et al., 2014] proposes 

a hybrid recommendation algorithm which combines the collaborative filtering and sequential 

pattern mining together for a peer-to-peer learning environment. Learning path recommendation is 

investigated in [Rusak, 2017] and [Zhao, et al., 2016]. In [Zhao, et al., 2016], the ACO algorithm is 

proposed to recommend personalized learning paths to users based on the demographic information. 

The ontology-based method is used to add extra user’s profile information for relieving the cold-start 

problem for micro learning service [Sun, et al., 2017, Sun, et al., 2018]. Study [Rusak, 2017] 

investigates the learning path recommendation for micro learning service from an exploitation 

perspective. However, the proposed models are constructed mainly based on demographic 

information, which does not provide much scope for exploring individual preferences. So far, there 

are few efforts on deep learning solutions to this problem. 

A content-based convolutional neural network (CBCNN) recommender system is proposed in a prior 

study [Shu, et al., 2018], which shows fairly satisfying ability in mining new or unpopular learning 

materials for a target learner. Based on the usage of the online learning materials, another study 

proposes a new way to calculate similarities between online learning materials for recommendation 

tasks [Niemann, et al., 2013]; and the authors in that paper argue that the usage context-based model 
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has potential to outperform the content-based model, if the usage data is sufficiently fine-grained. 

And a system for recommending OERs in MOOC is proposed in [Hajri, et al., 2017], which has 

emphasised the significance of modelling users and learning materials. However, none of these 

studies mentioned the significance of the ranking for the success of an online learning service. 

2.3.2 The state-of-the-art Recommendation Strategies 

In many recommendation scenarios, the involved features have impacts on each other, aka feature 

interaction. For example, the feature pair (learning interests, knowledge level) determines the 

difficulty of a specific course for a learner. A classic work Factorization machine (FM) [Rendle, 

2010] uses the inner product to model the feature interaction. This alleviates the data sparsity 

problem by using embeddings to represent the user and the item. However, due to computational and 

space complexity, only up to second-order feature interaction can be applied to many real-world 

applications. 

The deep learning technique has been used in many application areas [He, et al., 2016, Fischer, et al., 

2018, Liu, et al., 2017] and has demonstrated its outstanding ability to model complex problems. 

Hence, many researchers are investigating combining the deep learning technique with conventional 

recommendation strategies. One representative model proposed by Google is ‘Wide&Deep’. This 

model combines the benefits of memorization and generalization by using a linear model and a deep 

network [Cheng, et al., 2016]. Both low-order and high-order feature interactions are also 

investigated in [Guo, et al., 2017] through FM and DNN components. As the DNN models high-

order interactions in an implicit manner, the learned results can be arbitrary. In another work, an 

extreme deep factorization machine (xDeepFM) is proposed for generating and modelling feature 

interactions of a bounded degree [Lian, et al., 2018]. Similarly, model [Lian, et al., 2018] also 

contains two components, a compressed interaction network (CIN) and a DNN. The CIN and DNN 

learn the explicit and implicit feature interaction, respectively. 

With the successes of ‘Wide&Deep’ and DeepFM [Guo, et al., 2017], the multi-component network 

structured recommender system becomes increasingly popular. Such structure shows outstanding 

performance in merging different techniques to mining latent information from different perspectives 

simultaneously. Among them, feature interaction and the weighting strategies are mostly benefitting 

from such type of multi-component structured network. 
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Feature interaction is a fundamental problem and plays a significant role in a recommendation task. 

There are also many prior studies [Wang, et al., 2017, Song, et al., 2019] mainly focusing on feature 

interaction strategies. The study [Wang, et al., 2017] proposes a novel cross-network, which 

explicitly applies feature interaction in each layer, and the cross-network consists of all the cross-

terms of degree up to the highest. In another study [Song, et al., 2019], the key-value attention 

mechanism is used for determining which feature combinations are meaningful. 

Attention mechanism has been widely used in many areas, such as computer vision and natural 

language processing. This allows the network to pay different degrees of attention to different parts. 

The attentional factorization machine is proposed in [Xiao, et al., 2017], which can distinguish the 

importance differences of various feature combinations. Instead of a simple attention network, the 

multi-head attention mechanism [Vaswani, et al., 2017] is also used in the study [Song, et al., 2019]. 

This study shows that the multi-head attention mechanism has the ability to explore meaningful 

feature combinations through different non-linear transformations. Squeeze-and-Excitation network 

(SENET) [Hu, et al., 2018] is used in the study of Feature Importance and Bilinear feature 

Interaction network (FiBiNET) [Huang, et al., 2019]. SENET is used to make the model pay more 

attention to the important features and decrease the weight of uninformative features by using the 

inner product and Hadamard product. 

As demonstrated in [He, et al., 2016], the idea of the residual mechanism shows outstanding 

performance in stabilizing the optimization process of a deep network. Moreover, the residual 

function can also improve the model performance by providing sufficient information from previous 

layers of the network. Hence, for the recommendation task, as the network becomes deeper, many 

researchers start involving the residual connection (unit) in some components of the network. One 

prior study [Shan, et al., 2016] uses residual units to implicitly perform specific regularizations 

leading to better stability. Similarly, in the crossing component of the ‘Deep&Cross’ Network [Wang, 

et al., 2017], the residual unit is used in each crossing layer to add the current input information back. 

In [Song, et al., 2019], standard residual connections are added in both interaction and output layers 

to achieve a hierarchical operation manner. 

2.3.3 Data Challenges for Research 

When investigating the solution of a recommender system for the micro learning service, besides the 
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technical difficulties, there are also data challenges that exist. 

2.3.3.1 Insufficient Data Source 

The term ‘insufficient data’ means the data used in a study can only partially reflect the underlying 

issues against the context of potentially bigger data, and the experiment result of recommendation 

might be biased. Many current studies of e-learning recommender systems are based on a small 

amount of data.  

The study [Chen, et al., 2014] proposed a hybrid recommendation algorithm which can reflect the 

timeliness of a learning procedure, but only 30 students are involved in this study. Metadata for 

Architectural Contents in Europe (MACE) and TravelWell datasets are used in the study [Niemann, 

et al., 2013] for training the usage context-boosted recommender system. However, both datasets 

contain very few users and only a fraction of subjects. One prior study [Shu, et al., 2018] uses 

convolutional neural network (CNN) to model the latent factors based on the Book-Crossing [Ziegler, 

et al., 2005] dataset. In this study [Shu, et al., 2018], the authors argue that CNN has the ability to 

better mining the textual information and can further boost a content-based recommender system. 

However, the type of learning materials could be video, audio, and text. Therefore, solely using a 

book dataset is insufficient for training a sophisticated recommender system for e-learning, 

especially for micro learning whose primary type of learning materials are in the video format. The 

fault-tolerant and the capability of self-optimization make Swarm Intelligence and Evolutionary 

Computing applied in many studies for learning path optimization [Zhao, et al., 2016, Chen, et al., 

2017, Dwivedi, et al., 2018]. However, only 80 students are involved in the experiments of the study 

[Zhao, et al., 2016], and only one chapter of high school mathematics is used to train and validate the 

model in the study [Chen, et al., 2017]. Due to the heterogenetic between users and between subjects, 

insufficient subjects cannot generally reflect the underlying latent patterns or information of e-

learning scenarios, and insufficient users cannot reflect the whole user population with different 

background and learning requirements under the big data era. 

2.3.3.2 Inaccurate and Unknown Data Source 

In addition, inaccurate and unknown datasets used in the research can impede the development of the 

research of micro learning. An inaccurate dataset refers to the dataset coming from noisy sources, 

other domains, or even simulated. An unknown dataset refers to the dataset used in the research, but 
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the researchers do not mention its source. Therefore, the experiment results obtained from such data 

set could be problematic, unconvincing or unrealistic. 

Simulated data is used in the study to construct long short term memory (LSTM) model for learning 

path recommendation [Zhou, et al., 2018]. However, the simulation procedure and the validity of the 

simulated data are not mentioned in this study. The simulated data could be inaccurate, as in most 

cases we have no prior knowledge about users and learning materials such as their distribution. Due 

to lacking required dataset from the e-learning domain, another prior study [Wu, et al., 2015] uses 

MovieLens [Harper, et al., 2016] dataset to demonstrate that a fuzzy-tree-based collaborative 

filtering model has the potential to boost the recommending result. However, MovieLens is not a 

dataset from the educational domain. Using such an irrelevant dataset might not truly solve the 

recommendation problems in the e-learning domain. 

Many studies about the recommending strategy are based on the applications or learning platform 

which developed by researchers themselves [Fenza, et al., 2017, Chen, et al., 2014]. For constructing 

the proposed recommending model, the study collects data from an educational game application 

called ‘Itsego’ and the feedbacks of expert teachers [Fenza, et al., 2017]. Similarly, the study [Chen, 

et al., 2014] is based on a learning system developed by researchers themselves. Most of the datasets 

from self-developed platforms or the LMSs hosted by researchers’ affiliations are not open to the 

public. The study [Dwivedi, et al., 2018] collects four years of program from the CSED department 

in MNNIT Allahabad and uses the genetic algorithm to recommend learning paths. Prior research 

[Al-Hmouz, et al., 2012] demonstrates that an adaptive Neuro-Fuzzy inference system can 

recommend users with a suitable format of learning materials based on the users’ current status and 

surrounding environments. Another study [Dorça, et al., 2017] uses clustering techniques to group 

learners with similar learning style together before recommending relevant learning objects. But 

these three studies do not claim the sources of the datasets they used and the acquisition procedure of 

the data sets. Such non-public datasets or the datasets with unknown sources make these studies 

difficult to be followed up, imitated, validated and further improved by other research groups. 

2.4 Dropout Rate Prediction 

2.4.1 Background of Dropout Rate Prediction 

Since its first introduction in 2006 by Stanford University, learning through Massive Open Online 
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Courses (MOOC) has become one of the most popular online learning channels. Famous MOOC 

platforms, such as Coursera, EdX, and Udacity, provide high-quality learning resources to learners 

globally every day. So far, there have been more than one billion active MOOC users around the 

world. Prior to the COVID-19 pandemic, as of 2019 with a confirmed record, more than nine 

hundred universities have offered online courses on various MOOC platforms. Despite this 

advancement, a high dropout rate for MOOC courses persists [Kloft, et al., 2014]. The causes for 

dropout rates have been difficult to precisely pin down or predict. It could be the quality issue of the 

quiz question, or the unsatisfactory presentation of the course material, or maybe even just some 

personal issues. At the early stage of a learning activity, the ability to accurately and timely identify 

the “at-risk” student with a high probability of dropping out is vital for the continuous development 

of an efficient and intelligent MOOC platform and online learning. Also, as highlighted in the prior 

research, dropout prediction can be an effective precursor for early intervention [Whitehill, et al., 

2015]; it can also be used as a pedagogy enhancement method to decide whether an online course 

needs adjustment or modification [Tang, et al., 2018]. 

In general, an online course is composed of several instructional videos and each video contains a 

certain number of complete knowledge points. Such course structure can offer two types of 

information for the dropout prediction task, micro information and macro information. The coarse-

grained macro information refers to the overall profile of a course, like a discipline area it belongs to 

and the difficulty level of the course. The micro information is fine-grained information, which refers 

to the interaction detail between a user and a certain video, such as duration and the start time of 

video watching. Both types of information offer valuable information about the course itself and how 

a user interacted with this course historically. Accurate dropout rate prediction depends on whether a 

prediction model can robustly incorporate and interpret these two types of information. However, to 

the best of our knowledge, the research about how to properly handle these two types of information 

still remains less touched. 

2.4.2 Related Work of Dropout Rate Prediction 

With growing interest in applying the machine learning technique to the e-learning problems in the 

multi-disciplinary research community, learner dropout prediction models have been generated using 

various techniques [Wang, et al., 2017, Dalipi, et al., 2018]. They include logistic regression and its 
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variants [He, et al., 2015], support vector machine [Kloft, et al., 2014, Amnueypornsakul, et al., 

2014], and decision trees [Al-Shabandar, et al., 2017, Al-Shabandar, et al., 2017]. Deep learning-

based models have also shown great potential in mining complex latent information for the task of 

dropout prediction in more recent years. For example, multi-layer perceptron (MLP) with different 

combinations of hidden layer architectures for dropout prediction is used with an in-depth 

comparison concerning various evaluation metrics [Imran, et al., 2019]. Model ConRec is proposed 

by [Wang, et al., 2017], which combines the merits of the recurrent neural network (RNN) and the 

convolutional neural network (CNN). A context-aware feature interaction model is proposed in 

[Feng, et al., 2019], which utilises the technique of context-smoothing to smooth feature with 

different contexts and combine user and course information by the attention mechanism. However, to 

the best of our knowledge, for the task of learner dropout prediction, none of the prior studies have 

tried to distinguish and model the micro and macro information separately; this has primarily 

motivated this paper. 

Benefiting from its effectiveness in extracting complex information sequences, the deep learning-

based model has become the preferred choice for modelling temporal information. Typical examples 

include using bidirectional long short term memory (Bi-LSTM) based network for labelling visual 

sequence [Koller, et al., 2017]. For name entity extraction in natural language processing (NLP), the 

combination of LSTM and conditional random field (CRF) and its variants have been adopted in 

many applications [Huang, et al., 2015]. For monitoring machine health, some authors proposed a 

local feature-based Gated Recurrent Unit (GRU) [Zhao, et al., 2017]. Similarly, the position-aware 

bidirectional attention network (PBAN), based on GRU, is used in [Gu, et al., 2018] to distinguish 

each specific aspect's sentiment polarity in a given sentence. In [Kim, 2014], as one of the earliest 

efforts, the authors demonstrate that the convolutional neural network (CNN) could also be used to 

model time-series information.  

However, for different application scenarios, the characteristics of the time-series information vary 

and are modelled differently by using various architectures of deep learning networks. Hence, 

directly using the mainstream solutions (like LSTM-based network) might not be the optimal 

solution for the task of dropout rate prediction. To date, there is little effort in comparing the efficacy 

of different time-series modelling techniques in predicting the learner dropout rate, as required for 

this research. 
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2.5 GAN Framework for the Micro Learning Recommender 

System 

2.5.1 GAN and Its Milestones 

The idea of GAN [Goodfellow, et al., 2014] is firstly proposed in 2014. Until then, the mainstream 

generative models are Restricted Boltzmann machine (RBM) [Smolensky, 1986], deep belief 

network (DBN) [Hinton, et al., 2006], and Autoencoder [Kramer, 1991]. Comparing with RBM, 

DBN, and Autoencoder, GAN shows the advantage of higher flexibility. GAN can be conditioned by 

different input with diverse network structures. The original GAN contains two networks, a 

generator G and a discriminator D, each can be a simple multilayer perceptron. The framework 

structure of GAN is shown in Figure 2.1. The generator produces fake sample to fool the 

discriminator, whereas the discriminator differentiates the fake sample from the real sample. 

The training process of the GAN is based on a minimax gaming algorithm in which a generator and a 

discriminator compete against each other until an optimal point (i.e., the Nash Equilibrium [Heusel, 

et al., 2017]) is reached [Torres-Reyes, et al., 2019]. The objective function of this process can be 

formulated as Equation (2.1): 

                   min
𝐺

max
𝐷

𝑉(𝐷, 𝐺) = 𝔼𝑥~𝑃𝑑𝑎𝑡𝑎(𝑥)
[𝐿𝑜𝑔(𝐷(𝑥))] + 𝔼𝑧~𝑃𝑧

[𝐿𝑜𝑔(1 − 𝐷(𝐺(𝑧)))]             (2.1) 

𝑥 is the real data over the distribution of 𝑃𝑥, 𝑧 is the input noise over the distribution of 𝑃𝑧. 𝐷(𝑥) 

denotes the probability that 𝑥  is the real data. 𝐿𝑜𝑔(𝐷(𝑥)) and 𝐿𝑜𝑔(1 − 𝐷(𝐺(𝑧))) are the cross-

entropies. 

Generally, there are two schools of thoughts competing to further develop the GAN technique. The 

first is application-oriented and focuses on incorporating the state-of-the-art machine learning 

techniques into the GAN framework and applying them in various real-life tasks such as image 

generation and text generation. The second is theory-oriented and is motivated by the view that GAN 

is still intricate to implement and difficult to tame. Therefore, this second school of thought focuses 

on working out its training, evaluating, and optimising problems from the theoretical viewpoint to 

ameliorate existing drawbacks of GAN. 

GAN and its variants have been applied in various application areas. Herein we mainly focus on 

representative first attempts and milestones about applying the idea of GAN in a new domain. 
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Figure 2.1 Structure of the GAN Framework 

Using adversarial training to generate text sequence has been most often discussed. TextGAN 

demonstrates that GAN can produce realistic sentences by mimicking a real input sentence, and the 

learned latent representation space can continuously encode plausible sentences [Zhang, et al., 2016]. 

The study of SeqGAN [Yu, et al., 2017] integrates sequence modelling strategy with the GAN 

framework. This is the first work extending GANs to generate sequences of discrete tokens. It is very 

informative in signal processing and sequence modelling, such as text generation and music 

generation. IRGAN [Wang, et al., 2017] is also a big milestone in information retrieval. Indeed, it is 

the first study introducing the GAN technique to the recommendation problem. Details of this study 

will be later reviewed in Section 2.5.2. 

DCGAN [Radford, et al., 2015] primarily implements the GAN framework with a convolutional 

neural network. This study also discusses and analyses the feature visualisation of the GAN 

framework and the interpolation problem of latent feature space. Considered as a huge leap in 

computer vision, vid2vid is capable of synthesising 2K resolution video up to 30 seconds long 

[Wang, et al., 2018]. As the extension of the prior work [Wang, et al., 2018], the vid2vid involves 

extra information about optical flow in the generator and the discriminator, and constructs models for 

foreground and background. StyleGAN [Karras, et al., 2019] is based on an alternative generator 

architecture. This model can be regarded as one of the most complicated GAN models in recent 

years. This work uses adaptive instance normalisation (AdaIN) to control the vectors in the latent 

space. This work has demonstrated that StyleGAN has a surprising ability to automatically learn, 

unsupervised separation of high-level attributes, and generated images entitled with a stochastic 

variation. In the task of infrared small object segmentation, GAN is used to balance miss-detection 

and false alarm. For example, one research demonstrates that, besides the powerful ability in 

generating the true-to-nature data [Wang, et al., 2019], GAN can be trained to form a sophisticated 
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classifier with proper adjustments (such as tuning the loss function and the structure of the GAN 

framework). 

2.5.2 The Pioneer GAN solution for General Information Retrieval Task 

Prior to the idea of using GAN in a recommender system, there are two extant information retrieval 

approaches, the generation process and the discrimination process. The classic recommender system 

assumes that there is an underlying generation process between items and information needs, q→D, 

that the relevant documents D are generated/clued by a query q [Lafferty, et al., 2003]. For example, 

when processing the query “weather tomorrow newyork”, a model aims to obtain documents clued 

by this query, ideally the one containing information about “What’s the weather like in New York 

tomorrow”. The modern approach argues that the process of the information retrieval problem is a 

discriminative task, no matter whether or not a document is relevant to the query, such as the 

representative work reported in [Koren, et al., 2009]. Under this assumption, queries and documents 

are joint as a single feature and their relevancy (q+D→r) is provided. Thus, the model depicts the 

above example as: how the relevant degree of the query “weather tomorrow newyork” is, and the 

document contains the information “What’s the weather like in New York tomorrow”. 

IRGAN combines the ground-breaking idea of generation and discrimination together by involving a 

generator and a discriminator. The generative model tries to generate or select relevant document 

based on the given query q; its goal is to approximate the true relevance distribution over the 

documents [Wang, et al., 2017]. While the discriminative model in IRGAN tries to discriminate 

well-matched query-document pair and ill-matched ones, which is determined by the relevance of a 

document and a query; the goal of the discriminator is to distinguish relevant documents and non-

relevant ones for a given query. During the training process of IRGAN, the generative model is 

guided by the signal obtained from the discriminative model that minimises the probability that the 

discriminator can distinguish the real and generated samples. In contrast, the discriminative model is 

enhanced to rank top recommendations better by maximizing the log-likelihood of correctly 

distinguishing the real and generated samples [Wang, et al., 2017]. The objective function of the 

generator and discriminator are formulated as Equation (2.2) ~ (2.4). 

                                    𝐽𝐺 =  𝑚𝑎𝑥 ∑ (𝔼𝑑~𝑝𝜃(𝑑|𝑞𝑛, 𝑟) [log (1 + exp (𝑓𝜙(d, 𝑞𝑛)))])𝑁
𝑖=1                   (2.2) 

             𝐽𝐷 = 𝑚𝑎𝑥 ∑ (𝔼𝑑~𝑝𝑡𝑢𝑟𝑒(𝑑|𝑞𝑛, 𝑟) [log (𝜎 (𝑓𝜙(𝑑, 𝑞𝑛)))] +  𝔼𝑑~𝑝𝜃∗(𝑑|𝑞𝑛 , 𝑟)[log(1 −𝑁
𝑖=1
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                                                                       𝜎(𝑓𝜙(𝑑, 𝑞𝑛)))])                                                                  (2.3) 

                                                              𝜎(𝑓𝜙(𝑑, 𝑞)) =
exp (𝑓𝜙(𝑑,𝑞))

1+exp (𝑓𝜙(𝑑,𝑞))
                                                (2.4) 

Based on the pioneering work of IRGAN, the development of GAN-based recommender systems 

can be roughly divided into two categories. One focuses on investigating the end-to-end 

recommendation strategy, and another branch focuses on exploring how to augment data quality and 

boost the recommendation results. The representative works of both categories will be discussed in 

the following subsections. 

2.5.3 The GAN-based Recommender System 

This section will first show how GAN-based recommender systems have been applied to solve 

different recommendation problems and what distinct advantages these models have. The 

mathematic detail of the objective functions and the descriptions of the relevant concepts of these 

models are shown in the Table 2.1 and Table 2.2. 
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Table 2.1 The Details of the Objective Function Used in Reviewed Studies 

Model Object Function for G and D Notes 

CFGAN  

[Chae, et al., 

2018] 

𝐽𝐺 =  𝑚𝑖𝑛 ∑ (𝑙𝑜𝑔(1 − 𝐷(𝒓�̂�⨀(𝒆𝑢 + 𝒌𝑢)|𝒄𝑢))
𝑢

+ 𝛼 ∙ ∑ (𝑥𝑢𝑗 − �̂�𝑢𝑗)2

𝑗
) 

Information about non-

purchased item is involved 

in the loss functions of the 

generator and discriminator 

through zero-reconstruction 

term ∑ (𝑥𝑢𝑗 − �̂�𝑢𝑗)2
𝑗  and 

partial-masking ( 𝒌𝑢  vector 

denotes the negative items). 

𝐽𝐷 =  𝑚𝑎𝑥 ∑ (𝑙𝑜𝑔 𝐷(𝒓𝑢|𝒄𝑢) + 𝑙𝑜𝑔 (1
𝑢

− 𝐷(𝒓�̂�⨀(𝒆𝑢 + 𝒌𝑢)|𝒄𝑢))) 

RecGAN 

[Bharadhwaj, 

et al., 2018] 

𝐽𝐺 = 𝑚𝑖𝑛 ∑ ∑ ∑(𝔼𝑟~𝐷(𝑟|𝑖,𝑗)𝜃|𝑡
[log (1

𝑀

𝑗=1

𝑁

𝑖=1

𝑇

𝑡=1

− 𝐷(𝑟|𝑖, 𝑗, 𝑡))]) 

Temporal information is 

encoded into the loss 

functions by involving 

additional time indexes T. 

Both network of the 

generator and discriminator 

are constructed using Gated 

Recurrent Unit. 

𝐽𝐷

=  𝑚𝑎𝑥 ∑ ∑ ∑(𝔼𝑟~𝐷(𝑟|𝑖,𝑗)𝑟𝑒𝑎𝑙|𝑡
[log 𝐷(𝑟|𝑖, 𝑗, 𝑡)]

𝑀

𝑗=1

𝑁

𝑖=1

𝑇

𝑡=1

+ 𝔼𝑟~𝐷(𝑟|𝑖,𝑗)𝜃∗|𝑡
[log (1 − 𝐷(𝑟|𝑖, 𝑗, 𝑡))]) 

𝐽𝐷 =  max
𝜂

1

𝒯𝑢
∑ (𝑙𝑜𝑔𝒟𝜂(𝑢, 𝑇) + log (1 − 𝒟𝜂(𝑢, 𝒯𝒢)))

𝑇∈𝒯𝑢

 

 
 

Table 2.2 The Details of the Objective Function Used in Reviewed Studies (Continue)Table 2.3 The 

Details of the Objective Function Used in Reviewed Studies 

Model Object Function for G and D Notes 

CFGAN  

[Chae, et al., 

2018] 

𝐽𝐺 =  𝑚𝑖𝑛 ∑ (𝑙𝑜𝑔(1 − 𝐷(𝒓�̂�⨀(𝒆𝑢 + 𝒌𝑢)|𝒄𝑢))
𝑢

+ 𝛼 ∙ ∑ (𝑥𝑢𝑗 − �̂�𝑢𝑗)2

𝑗
) 

Information about non-

purchased item is involved 

in the loss functions of the 

generator and discriminator 

through zero-reconstruction 

term ∑ (𝑥𝑢𝑗 − �̂�𝑢𝑗)2
𝑗  and 

partial-masking ( 𝒌𝑢  vector 

denotes the negative items). 

𝐽𝐷 =  𝑚𝑎𝑥 ∑ (𝑙𝑜𝑔 𝐷(𝒓𝑢|𝒄𝑢) + 𝑙𝑜𝑔 (1
𝑢

− 𝐷(𝒓�̂�⨀(𝒆𝑢 + 𝒌𝑢)|𝒄𝑢))) 

RecGAN 

[Bharadhwaj, 

et al., 2018] 

𝐽𝐺 = 𝑚𝑖𝑛 ∑ ∑ ∑(𝔼𝑟~𝐷(𝑟|𝑖,𝑗)𝜃|𝑡
[log (1

𝑀

𝑗=1

𝑁

𝑖=1

𝑇

𝑡=1

− 𝐷(𝑟|𝑖, 𝑗, 𝑡))]) 

Temporal information is 

encoded into the loss 

functions by involving 

additional time indexes T. 

Both network of the 

generator and discriminator 

are constructed using Gated 

Recurrent Unit. 

𝐽𝐷

=  𝑚𝑎𝑥 ∑ ∑ ∑(𝔼𝑟~𝐷(𝑟|𝑖,𝑗)𝑟𝑒𝑎𝑙|𝑡
[log 𝐷(𝑟|𝑖, 𝑗, 𝑡)]

𝑀

𝑗=1

𝑁

𝑖=1

𝑇

𝑡=1

+ 𝔼𝑟~𝐷(𝑟|𝑖,𝑗)𝜃∗|𝑡
[log (1 − 𝐷(𝑟|𝑖, 𝑗, 𝑡))]) 

𝐽𝐷 =  max
𝜂

1

𝒯𝑢
∑ (𝑙𝑜𝑔𝒟𝜂(𝑢, 𝑇) + log (1 − 𝒟𝜂(𝑢, 𝒯𝒢)))

𝑇∈𝒯𝑢

 

 

Real-value vector-wise adversarial training is proposed in CFGAN [Chae, et al., 2018], which shows 

the ability to fully exploit the advantage of adversarial training with higher accuracy in the prediction 

results. Moreover, three different reconstructed loss functions are proposed and compared, making 

the model not only focus on the positive user feedback but also the negative ones. The combination 

of recurrent neural network (RNN) and GAN technique is proposed in [Bharadhwaj, et al., 2018], 

RecGAN uses the customised Gated Recurrent Unit (GRU) to replace the original fully connected 

layer of the generator and the discriminator. Such modification makes the proposed model have the 

ability to capture temporal information from historical interactions between the users and the items 

[Bharadhwaj, et al., 2018]. 
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Table 2.4 The Details of the Objective Function Used in Reviewed Studies (Continue) 

Model Object Function for G and D Notes 

KTGAN 

[Yang, et al., 

2018] 

𝐽𝐺 = 𝑚𝑎𝑥 ∑ 𝔼𝑚~𝑝𝜃(𝑚|𝑢𝑖 , 𝑟)[log (1

𝑁

𝑖=1

+ 𝑒𝑥𝑝(𝑓𝜙(𝑢𝑖 , 𝑚)))]) 

Side information are used 

through the score function 

𝑠(𝑢, 𝑚) = 𝒆𝑢 ∙ 𝒆𝑚 + 𝑏𝑚 , 

and the softmax function is 

formulated as: 

𝑝𝜃(𝑚𝑘|𝑢, 𝑟)

=
exp (𝑠𝜃(𝑢, 𝑚𝑘))

∑ exp (𝑠𝜃(𝑢, 𝑚))𝑚
⁄  

𝐽𝐷

=  𝑚𝑎𝑥 ∑(𝔼𝑚~𝑟𝑒𝑎𝑙(𝑚|𝑢𝑖 , 𝑟) [log 𝜎 (𝑓𝜙(𝑢𝑖 , 𝑚))]

𝑁

𝑖=1

+ 𝔼𝑚~𝑝𝜃(𝑚|𝑢𝑖 , 𝑟)[log (1 − 𝜎(𝑓𝜙(𝑢𝑖 , 𝑚)))]) 

APOIR 

[Zhou, et al., 

2019] 

𝐽𝐺=𝑚𝑖𝑛 ∑ 𝔼𝑙𝑅~𝑅
𝜃(𝑙𝑅|𝑢𝑖)

[log(1 −𝑢𝑖∈𝒰

𝜎(𝐷𝜙(𝑢𝑖 , 𝑙𝑅)))] 

The combination of GRU 

and Matrix Factorization is 

used to model the temporal 

information of POIs. 

𝑙𝑅~𝑅𝜃∗(𝑙𝑅|𝑢𝑖)  is the 

generated POIs by the 

current optimal 𝑅𝜃 ,  𝑙+~ℒ 𝑢𝑖  

are positive samples. 

𝐽𝐷 = 𝑚𝑎𝑥 ∑ (𝔼𝑙+~ℒ𝑢𝑖 [log 𝐷𝜙(𝑢𝑖, 𝑙+)]

𝑢𝑖∈𝒰

+ 𝔼𝑙𝑅~𝑅
𝜃∗(𝑙𝑅|𝑢𝑖)

[log(1

− 𝐷𝜙(𝑢𝑖 , 𝑙𝑅))]) 

LambdaGA

N [Wang, et 

al., 2019] 

𝐽𝐺 =  𝑚𝑖𝑛 ∑(𝔼
𝑜′~𝑝𝜃(𝒐′

|𝑢𝑖)
[1

𝑁

𝑖=1

− 𝑓(D(𝒐′, 𝑢), 𝜍𝑢)]) 

𝜍𝑢  is the item ranking list 

for user u, the ranking 

information is calculated 

through NDCG, which is 

formulated as 

𝑓(𝐷(< 𝑖𝑝, 𝑖𝑞 > |𝑢), 𝜍𝑢) =

𝐷(< 𝑖𝑝, 𝑖𝑞 >

|𝑢)|∆𝑁𝐷𝐶𝐺𝑝,𝑞| 

𝐽𝐷 =  𝑚𝑎𝑥 ∑(𝔼𝑜~𝑟𝑒𝑎𝑙(𝒐|𝑢𝑖)[f(D(𝒐, 𝑢), 𝜍𝑢)]

𝑁

𝑖=1

+ 𝔼
𝒐′~𝑝𝜃(𝑜′

|𝑢𝑖)
[1

− 𝑓(D(𝒐′, 𝑢), 𝜍𝑢)]) 

DP-GAN 

[Wu, et al., 

2019] 

𝐽𝐺 =  min
𝜃

∑ log (1 − 𝒟𝜂(𝑢, 𝒢𝜃))

𝑁

𝑖=1

 

DPP is used to sequentially 

sample top-K diverse items 

with kernel matrix L, the 

sampling process is denoted 

as  
𝑆𝐾−𝐷𝑃𝑃(𝑳)~𝒢𝜃(𝑢) . The 

reward function reflects how 

much the generator can 

deceive the discriminator is 

formulated as ℛ(𝑢, 𝒯𝒢) =

−log (1 − 𝒟𝜂(𝑢, 𝒯𝒢)). 

𝐽𝐷 =  max
𝜂

1

𝒯𝑢

∑ (𝑙𝑜𝑔𝒟𝜂(𝑢, 𝑇) + log (1

𝑇∈𝒯𝑢

− 𝒟𝜂(𝑢, 𝒯𝒢))) 

 

The framework proposed in the study of KTGAN illustrates how to incorporate the various pre-

trained embedding results with a GAN-based recommender system [Yang, et al., 2018]. This 

framework makes the original GAN-based recommender system more extendable and flexible when 

involving different types of side-information based on the requirements of different tasks. 

Specifically, by integrating geographical and social information into the reward function, APOIR 
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obtains a significant improvement in handling the recommendation task of point-of-interest (POI) 

[Zhou, et al., 2019]. Two novel loss functions are used in the study of LambdaGAN [Wang, et al., 

2019], which focus on making GAN-based recommender system gain the ability to precisely rank 

the recommendations by involving NDCG metrics [Burges, et al., 2007]. This study is the first study 

combining the lambda strategy with generative adversarial learning; its experimental result shows 

that the LambdaGAN outperforms the original IRGAN in pairwise scenarios with dataset 

MovieLens-100K3 and Netflix4. 

How to balance the trade-off between relevance and diversity of the recommendation results is 

discussed and analysed in the research on DP-GAN [Wu, et al., 2019]. The pre-trained 

Determinantal Point Process (DPP) model [Chen, et al., 2018] is incorporated with the conventional 

GAN framework for capturing the diversity of items. Such improvement makes the generator to be 

able to generate a set of diverse and relevant items that are similar to the ground truths in order to 

fool the discriminator [Wu, et al., 2019]. 

2.5.4 The GAN-based Data Augmentation 

Another branch of the studies focuses on utilising GAN to augment various kinds of information 

involved in the recommendation task. The representative workflow of GAN-based data 

augmentation for a recommender system is shown in Figure 2.2. The generated fake data and the real 

data are combined as the input of the recommender system during the training process. As the 

extension of CFGAN, [Chae, et al., 2019] proposes the RAGANBT model to augment rating 

information. The goal of the proposed model is to alleviate the data sparsity problem in collaborative 

filtering. Similarly, one prior study [Wang, et al., 2019] proposes AugCF based on the Conditional 

Generative Adversarial Net [Mirza, et al., 2014]. This model utilises the side information (e.g., the 

user’s age and gender) to generate new interactions for less active users. In another study [Gao, et al., 

2019], the authors argued that many datasets contain a huge amount of negative user feedback, but 

the quality of such feedback is low. Hence, the model DRCGR is proposed to generate high-quality 

negative samples from implicit user feedback (i.e., skipping behaviour during the interaction) [Gao, 

et al., 2019]. The generated negative items which a given user might not be interested in are 

produced in the study of Collaborative Adversarial Autoencoder [Chae, et al., 2019]. In this study, 

 
3 https://grouplens.org/datasets/movielens/ 
4 https://www.kaggle.com/netflix-inc/netflix-prize-data 

https://grouplens.org/datasets/movielens/
https://www.kaggle.com/netflix-inc/netflix-prize-data
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Figure 2.2 GAN-based Data Augmentation for a Recommender System 

the autoencoder is used as the generator and the Bayesian personalised ranking model [Rendle, et al., 

2012] is used as the discriminator. 

Authors of [Sun, et al., 2020] propose LARA to generate fake user representations for the new item, 

and the similarity measurement is used to find the most similar users for the new item. This model 

aims to address the cold-start problem for new items by jointly modelling and obtaining the user-

item attribute-level interaction information. A creative study about fashion recommendation uses 

GAN to generate complementary images to promote people’s interest and participation in the online 

retail market [Kumar, et al., 2019]. The generated images could be further used to fetch purchasable 

items from any image search on an e-commerce platform. 

GAN-based recommender systems are also proposed in several recent studies to solve cross-domain 

recommendation problem. In the work of CnGAN [Perera, et al., 2019], the user’s preference 

information is generated by using the Twitter dataset and further used to solve video 

recommendation in the YouTube platform. These generated user preferences improve the results of 

recommendation for non-overlapped users. On the other hand, RecSys-DAN addresses the cross-

domain data imbalance issue by adopting an adversarial loss for the cold start problem [Wang, et al., 

2019]. 

2.6 Summary 

In this chapter, the related prior works of micro learning and its required processing methods are 

discussed and analysed. In summary, the drawbacks and technical requirements of existing research 

can be concluded as: 

1. Different application scenarios or domain require different pre-processing models. The pre-

processing model for the specific application background of micro learning is not fully explored 

and comprehensively investigated by the prior research from the related area. 
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2. Little research has investigated the recommender system for micro learning service. Due to the 

domain differences, current the state-of-the-art recommender systems might not be suitable for 

the micro learning service. It is required to design a recommender system for the micro learning 

service basing on various existing recommendation strategies.  

3. For educational purposes, a mature online learning platform/system requires to have some 

assistant plugins which can evaluate the course quality or assess the engagement of an online 

user. The dropout rate prediction is one way to reflect the current course quality or a student’s 

future engagement. How to design a dropout rate prediction for the online learning service such 

as micro learning is vital for the development of online learning/micro learning. 

4. And from the above reviewed studies, we can see that the GAN technique has demonstrated its 

advantages of generalisation and flexibility when dealing with complex real-world problems. 

Such characteristics of generalisation and flexibility are required for the recommender system of 

a micro learning service. However, how to apply GAN to this service is still not touch by 

researchers from either educational domain or computer science domain. We hold that the 

GAN-based model has the potential to further exploring latent information from user-item 

interaction logs for the recommender system of the micro learning service. 

It can be concluded that, the research of the specific AI solution for many micro learning processing 

stage is still less touched. In most case, the researchers have to reference the solutions from other 

application domains. In this research, I investigate applying AI solutions to the pre-processing, 

recommendation, and for assistant purposes of the micro learning service. The following chapters of 

this thesis will show the AI solution to these tasks and problems. 
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Figure 3.1 High-level Framework of the Intelligent Micro Learning System 

3 Chapter 3 The Big Picture of the Micro 

Learning System 

In this chapter, I propose the framework of the A.I. based micro learning system. Despite introducing 

each intelligent module, the dataflow of the system and the characteristics of the involved data 

sources are also discussed in this chapter. 

3.1  System Framework 

As a comprehensive intelligent system for the online learning service, the proposed micro learning 

system should contain a complete path of end-to-end resource/information processing chain. From a 

high-level point of view, the proposed system can be regarded as a bridge that connects the users and 

online learning resources (as shown in Figure 3.1). The learning resources are delivered to the target 

user through the micro learning system, and this procedure is driven by several intelligent modules of 

the system. In the meantime, the interaction records between the users and the learning resources are 

fed back to the system to further optimise the involved intelligent modules. 

From the resource-side perspective, the processing workflow of the micro learning system is shown 

in Figure 3.2. As micro learning can be informal, the new learning resources are created from time to 

time by different online users. The newly created learning resources contain unregulated or 

unstructured information. Hence, the pre-processing module of the micro learning system takes in 

new learning resources and makes them ready for delivery or assessment. The recommender system 

takes in the pre-processed learning resources and ranks them. The ranked online learning resources 
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Figure 3.2 System Workflow (from the resource perspective) 

 

Figure 3.3 System Workflow (from the user perspective) 

are delivered to the target user during the learning activities. In the meantime, the information of the 

pre-processed learning resources is also passed into several assistant plugins for different 

evaluation/assessment purposes. These plugins can analyse the learning materials based on the pre-

process information such as the course summary and extracted keywords/sentence of the course 

content. The final evaluation/assessment results will be fed back to the educational resource 

providers.  

From the user-side perspective, the processing workflow of a micro learning system is shown in 

Figure 3.3. During the online learning activities, a user interacts with one or many learning resources. 

These interactions records are stored in the form of interaction logs. The interaction logs are fed back 

to the recommender system and the assistant plugins for the further optimisation of these modules. 

These logs can provide and reflect user-side information such as learning behaviours, which is 

significant for personalised online learning service. Similarly, together with the information provided 
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Table 3.1 The Utility of Different Types of Data 

Data Type Utility and Description 

User’s 

Interaction 

Learning 

Interactions 

Clickstream 
The interaction records between users and 

resources are indispensable for constructing a 

recommender system. The interaction record is 

also the main information sources for the tasks 

of performance prediction and analysis. This 

type of information reflects how users react in 

different learning activities. Various prediction 

and analysis models, such as dropout prediction 

and learning path design, are also based on such 

information. Demographic information (such as 

the popularity of a course) extracted from users’ 

interaction can also be used to improve the 

recommendation. 

Comments 

User’s 

Access log 

Temporal 

Type 

Information 

Quiz/Exam Performance 

 

by a pre-processing module that we mentioned above, the assessment plugins can generate insight 

useful assessment information to the educational resource providers. Based on these feedbacks the 

providers can further update the learning resources or create better new learning resources.  

3.2 Data Sources 

3.2.1 The Utilities of Different Types of Data 

A micro learning system consists of two core parts and several prediction and analysis modules, 

which work together to provide a complete real-time personalised online learning service. The 

summarisation of the utilities of the different types of data is shown in table 3.1. As discussed in the 

previous sections, most intelligent models involved in the system are driven by data. For a micro 

learning system, based on the data types, the required data source can be roughly classified into four 

categories: user’ historical learning and interaction records from log files, users’ profile and items’ 

content information stored in the relevant databases, and other contextual information captured by 

the platform or client during the learning activities. Usually, the interaction records between the user 

and online learning resource are used to construct and optimise the recommender system. The 

content information of the learning resource is regarded as the raw material for constructing the 
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Table 3.1 The Utility of Different Types of Data (Continue) 

Data Type Utility and Description 

Content 

Information 

Textual Information 

(such as course title 

and description) 

The Content information usually comes from the 

learning resource itself. The useful information is 

extracted in the pre-processing module of the system. 

The fine-grained content information is usually used 

for constructing the profile for the learning resource. 

Audio/Video 

Information 

Other Metadata (such 

as instructors, pre 

required knowledge, 

and difficulty level) 

User’s Profile 

The main source of the information about user explicit 

characteristics. This type of information is usually used 

for providing user’s personal details for constructing 

the user model. The constructed user model can be 

used for the downstream personalized modelling 

purposes. 

Contextual Information 

For a personalized online real-time service, the 

contextual information is usually used as the 

supplementary information in a decision-making 

process, which could be time, location, internet band 

width, or anything included in the learning activity. 

This type of information reflects users’ real-time status.  

 

resource profile. It is the main source to provide resource-side information for various kinds of task. 

The user’s personal profile is another type of user-side information, which is usually provided by 

user himself/herself. Hence, it explicitly reflects user’s subjective personal characteristics. Together 

with user’s activity record, the user’s profile is usually used for constructing the user model for the 

personalised online service. Lastly, the contextual information, which is usually captured in real-time, 

reflects the contextual characters of current learning activities. It is usually used for providing 

supplementary evidence for an intelligent model to further enhance the personalisation level of an 

online service.  

javascript:;
javascript:;
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Figure 3.4 The Data Flow Detail of the Proposed System 

3.2.2 The Data Flow and Characteristics 

In the proposed micro learning system, different types of information exchanges among different 

intelligent models. The overall data flow in a micro learning system is shown in Figure 3.4. Based on 

the different characteristics of the above mentioned four types of data, they can be further classified 

into two categories: the dynamic and the static data. 

3.2.2.1 Static Data 

The content of the online learning resource and the user profile belongs to the category of static data. 

The static data means this type of data rarely changes after it is stored in the relevant database. For 

example, the content information could be the video content of a certain course, the course name, 

and the instructor of this video. Once a learning material is uploaded to the micro learning system, 

usually, its content and related information will not change significantly over a certain period of time. 

Hence, the content information of the learning resource is relatively static data. Similarly, in many 

online systems, the user will provide some basic profile when creating an account or the first time 

they log in. For an online learning system, the user profile usually contains the user’s basic 

information such as gender, age, occupation, and learning preference. Such information is also 

relatively static and will not change often over a certain period of time. In a micro learning system, 

both content information and user profile are stored in the related databases. The content of the 

online learning resource and the user profile belong to the category of static data. The static data 

means this type of data rarely changes after it is stored in the relevant database. For example, the 

content information could be the video content of a certain course, the course name, and the 
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instructor of this video. Once a learning material is uploaded to the micro learning system, usually, 

its content and related information will not change significantly over a certain period of time. Hence, 

the content information of the learning resource is relatively static data. Similarly, in many online 

systems, the user will provide some basic profile when creating an account or the first time they log 

in. For an online learning system, the user profile usually contains the user’s basic information such 

as gender, age, occupation, and learning preference. Such information is also relatively static and 

will not change often over a certain period of time.  

3.2.2.2 Dynamic Data 

Dynamic data means this type of data changes or evolves frequently from time to time. As discussed 

in the previous section, contextual information is about the user’s current environmental 

surroundings during a learning activity. Usually, the contextual information (such as geolocation and 

internet bandwidth) is capture in real-time by the client or system. Hence, it is relatively dynamic; 

and due to its time-sensitive characteristic (previous contextual information is not very useful for 

current learning activity), it is not stored in the databases of the system or only stored for a short time. 

The interaction record between the user and the learning resources is another type of dynamic data 

with incremental character. When a user interacts with a learning material each time, the system will 

generate a log file that records the interaction details such as the clickstream and date-time. The 

generated records will be processed and stored in the database for a certain period of time. Usually, 

the active user will have rich interaction records and the inactive user will have little such type of 

information. 

3.2.2.3 Data Flow 

Before the commencement of recommendation, there is a pre-processing stage to get micro learning 

materials settled. This part mainly focuses on dealing with the content of the online learning resource 

(content information). The content information of the learning resource is interpreted, analysed, and 

summarised in this pre-processing step. Most types of content information (course title, course 

description, and instructor) of the learning material are open to the public, while the demographic 

information (like the regional distribution of the enrolled students) is not. The pre-processing module 

takes the raw content information of the learning resource as the input. Then different A.I. models 

simultaneously process the raw input information and output the cleaned fine-grained information. 
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For the recommender system of a micro learning system, users’ historical learning activities are 

indispensable for constructing and optimising the models, no matter what recommending strategy is 

applied. In most cases, the information about the user’s historical activities only exists in the log files 

and cannot be crawled from online learning platforms or websites. As discussed in one prior study 

[Shu, et al., 2018], historical data-based recommendation methods require extensive historical data, 

which is difficult to obtain from the e-learning system directly. And with only the user’s historical 

learning activities is not enough to fully describe the learning requirement and the surrounding 

contextual environments. A mature recommending decision should also be based on the contextual 

information of current learning activity, the user’s profile, and the item’s profile. Hence, as shown in 

Figure 3.4, the recommender system takes various types of information as input. 

For other intelligent analysing modules (assistant plugins), they involved both user-side and item-

side information (from the pre-processing module). The detail of the involved information might 

vary from task to task. For example, for the task of distraction-level prediction, the model needs to 

involve contextual information which could reflect a user’s current surrounding environment, such as 

geolocation (learning in a library could have low distraction level than learning in a bus station). For 

the task of final grade prediction, the model needs to access and analyse a user’s quizzes 

performance, the difficulty level of this course, and his/her historical learning behaviour of this 

course. 

3.2.3 Isolated Problem for the Research Dataset 

Considering the representative studies and experiments discussed in Chapter 2, except non-publicity, 

insufficient and inaccurate dataset problem for micro learning recommender system, isolated 

research dataset is another obstacle for the research of micro learning. 

The datasets obtained from different sources are isolated. This has not been brought to sufficient 

attention from previous studies. Unlike research in some other domains, which often have standard 

datasets; the datasets from different online platforms are isolated, due to the vague information of 

learning resources and different curriculum structures. For research purpose, it is hard to use an 

auxiliary data source to supplement the target data source. For example, the study [Yang, et al., 2014] 

captures the textual information from the video content, and [Niemann, et al., 2013] uses the co-

occurrence information to boost the collaborative filtering result. The textual information is useful in 
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mining semantic information among the learning resources, which may further boost the 

recommender system as proposed in the study [Niemann, et al., 2013]. However, because of the 

different sources, these two datasets cannot be fused directly. Although there are initiatives to push a 

non-profit sharing of research-oriented MOOC data [Lopez, et al., 2017]. Unfortunately, most data 

from several learning platforms (e.g., edX and Coursera) are still partially open to researchers, or 

merely open to their partners. Most research teams can but get access to very limited datasets. To 

solve the underlying awkward situation, researchers demand more complete and diverse data to drive 

the decision-making system. 

3.3 Summary 

In this chapter, the big picture of the proposed micro learning system is introduced and discussed. 

Firstly, we demonstrate the framework of the proposed system from the different perspective of 

views. Then, the data involved in the system is introduced from three aspects, which are the utilities 

of different types of input data, the data flow and their characteristics, and the problem of the 

research data in the micro learning area. Specifically, we discuss and analyse each intelligent module 

of the micro learning system, the inputs and the outputs of these modules, and how the information 

flow exchanges among these modules. We also give insight discussion of the different types of 

involved data. 
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Figure 4.1 The Abstract-level of the End-to-end Information Extraction Workflow 

4 Chapter 4 Pre-Processing 

As mentioned in the previous chapters that a sophisticated micro learning system needs an intelligent 

pre-processing module to make the raw learning resources ready to be processed by other parts of the 

system. This intelligent module could consist of several A.I. based models for different pre-

processing tasks. In my research, two pre-processing models are designed and evaluated, one for 

extracting key information and another for interpreting text content of the learning resources. 

4.1 Information Extraction 

In this research, a sequence labelling model is designed for automatically analysing the content of the 

information stream and then identifying, locating, and classifying the valuable information for the 

micro learning service. We herein propose a deep sequence labelling model (namely, deep Bi-

LSTM-CNNs-CRF) for information extraction. This model tries to insightfully depict different 

aspects of the online micro learning scenario, summarises them together, and extracts valuable 

information for assisting the follow-up different intelligent processing modules of the micro learning 

service. 

4.1.1 Model Design 

In this section, we describe the design of the proposed deep sequence labelling model for information 

extraction. As mentioned in Chapter 2, it is an end-to-end model; its abstract-level workflow is 

shown in Figure 4.1. It takes the raw information as input and outputs the extracted key information. 

No intermediate output will be produced in this model. For the detail of the proposed model, firstly, 

from a high-level perspective, we introduce the overall architecture of this model. Next, for each 
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Figure 4.2 The Overall Network Structure of the Proposed Deep Bi-LSTM-CNNs-CRF Model 

low-level vital component of this model, we discuss its characteristics. 

4.1.1.1 The Network Architecture 

The proposed network contains four important layers and one block. The embedding layer is used for 

mapping the one- or multi-hot raw data to dense representations. The Bi-LSTM layer is used for 

modelling the temporal pattern of the embedded input sequence. The convolution neural network 

(CNN) layer is used for extracting adjacent latent features from the embedded input data. The CRF 

layer is used for adding extra local constraints, which are not captured by the previous layers. 

Moreover, the fusion block is used for combining different types of latent features. In the proposed 

network, the CNN layer and the Bi-LSTM layer model the embedded input separately. The input of 

this model is a sequence of vectors in the high dimension space. Each vector represents the selected 

features of an individual raw micro learning resource. The outputs of the CNN layer and the Bi-

LSTM layer are jointly fed into the fusion block, which contains several non-linear transformation 

layers for better information fusion. The general architecture of the proposed neural network is 

shown in Figure 4.2. 

4.1.1.2 Embedding Layer for Semantic Modelling and Dimension Reduction 

The embedding technique is an effective method for dimensionality reduction and feature 

representation, which transfers the points lying in a high dimensional space to a low dimensional one 

while approximately preserving pairwise distances between points [Abdullah, et al., 2016]. Such 

technique shows satisfactory performance in reducing the data and model complexity, and has been 

used in various machine learning-related tasks, such as information retrieval [Mitra, et al., 2017], 

multimedia data processing [Wang, et al., 2018], and data mining [Zhou, et al., 2016]. For sequential 
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Figure 4.3 Convolutional Neural Network for Summarizing and Extracting Latent Features 

signal processing, especially in natural language processing (NLP), the embedding layer also 

contributes to modelling the semantic information of raw input data [Zhang, et al., 2015]. In our 

proposed model, an embedding layer is used to map sparse high-dimensional raw data into low-

dimensional continuous dense one and extract the first-step semantic information. 

4.1.1.3 CNN Layer for Latent Feature Extraction 

Because of the competitive performance in extracting the latent feature, CNN has been widely used 

in the research area of computer vision and many other applications like NLP [Yin, et al., 2017]. 

Many previous studies such as [Ma, et al., 2016, Sutskever, et al., 2014, Zhai, et al., 2018], use CNN 

to extract and model character-level semantic information such as prefix and suffix.  

However, not all types of information contain character-level semantic information. As a result, for 

constructing a more general model towards the information extraction task, after embedding layer, 

two continuous CNN layers are used to further mining and summarizing local features from adjacent 

inputs (object-level) in our proposed model. The utility of the CNN layers is quite different from the 

studies mentioned above. We may assume that such CNN layer can capture different types of 

information and boost the performance of Bi-LSTM-CRF. In computer vision, the sliding window 

strategy is widely used to restrict the amount of information involved in each summarization process 

[Papandreou, et al., 2015]; in our proposed model, we use a fix-size sliding window in each of the 

CNN layers. As shown in Figure 4.3, which is a single CNN layer for extracting latent features of 

adjacent embedded inputs, 𝐸𝑖 is the i-th embedding vector generated from the previous embedding 

layer; the information from adjacent input embedding vectors is summarised. The rectangle is the 

sliding-window moving from left to right, and at each iteration, the information inside the window 

will be summarised. 
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Figure 4.4 Bidirectional Long Short Memory for Modelling Sequential Pattern 

4.1.1.4 Bi-LSTM Layer for Sequence Labelling 

In our proposed model, one RNN layer is added as the core component after the embedding layer. 

This layer aims to extract and model temporal features. For a typical information extraction task, we 

may assume that both past and future inputs can provide valuable information in recognising and 

locating the information that needs to be extracted. Hence, in our model, a Bi-LSTM structure is 

used in the RNN layer. The workflow of Bi-LSTM is shown in Figure 4.4. The embedded 

information is fed into the Bi-LSTM layer in both the successive order and the reverse order; then for 

each time step, the Bi-LSTM layer will output a prediction based on the ‘past’ and ‘future’ 

information of the current ‘moment’. 

4.1.1.5 Fusion Block for Combining Different Types of Latent Feature 

As discussed in [Chen, et al., 2017], properly fusing different types of features can make the 

information representation more reliable and more accurate. Inspired by this concept, a fusion block 

is added behind the CNN and Bi-LSTM components, and this block aims to better combine those 

different types of latent features. In the fusion block of the proposed model, latent features extracted 

from the CNN layer and the Bi-LSTM layer are firstly merged together by a concatenation operation. 

Then several non-linear transformation layers are used to further combine the latent features into 

fine-grained features. Such type of non-linear transformation layer could vary greatly respective to 

the problem domain and the complexity of the input data. In this study, we used another Bi-LSTM 

layer and a fully connected neural network to model this non-linear transformation. The structure 

detail of this fusion block is shown in Figure 4.5. 
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Figure 4.6 CRF Network  

 

Figure 4.5 The Structure Detail of the Fusion Block 

4.1.1.6 CRF Layer for Adding Local Constrains to the Sequential Model 

As discussed earlier, a pure RNN model has its own disadvantage in modelling local constraints. 

Hence, a CRF layer is used prior to the final output layer of the whole model.  

In the CRF model, for a given sequence x, the probability of output y could be simply formulated as 

Equation (4.1). From this equation, we can easily observe that 𝑦𝑖  and 𝑦𝑖−1 influences each other, 

indicating that this probability value considers the correlation between outputs in neighbourhoods. 

The network structure of CRF is shown in Figure 4.6 [Huang, et al., 2015]. Herein the prediction of 

the second output 𝑌2 is not only determined by the second input 𝑋2but also influenced by the first 

output 𝑌1. Function t(𝑌𝑖−1, 𝑌𝑖) and s(𝑌𝑖 , 𝑋𝑖) models the state transitions and emissions, respectively. 

This CRF layer aims to add more local constraints, especially the local constraints of the output 

sequence, which is not captured by former embedding, Bi-LSTM, and CNN layers [Ma, et al., 2016].  
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                                                      p(𝐲|𝐱) =  
∏ exp (𝑦𝑖−1,𝑦𝑖,𝒙)𝑛

𝑖=1

∑ ∏ exp (𝑦𝑖−1,𝑦𝑖𝒙)𝑛
𝑖=1𝑦∈𝑦(𝒙)

                                                (4.1) 

4.1.2 Experiment and Analysis 

We compare the performance of CRF, LSTM, Bi-LSTM, and Bi-LSTM-CRF with our proposed 

deep Bi-LSTM-CNNs-CRF model using different experiment settings. We use three different 

evaluation metrics: precision, recall, f1-score, and the area under curve (AUC) value. 

4.1.2.1 Evaluation Metrics 

Precision is the number of true positive predictions divided by the total number of positive elements 

that predicted, which reflects how accurate the model is getting out of the predicted positives. The 

recall is the number of true positive predictions divided by the total number of positive elements in 

the data set, reflecting how many of the actual positives that the model predicts through all the 

positives. F1-score considers both the precision value and the recall value, which can better reflect 

the model performance when the class distribution is uneven. The receiver operating characteristic 

curve (ROC) is about plotting the true positive rate (TPR) against the false positive rate (FPR). The 

area under curve (AUC) can reflect the ability of how much a model can distinguish different 

information. 

4.1.2.2 Dataset 

The data used in the experiment comes from different fields of documents where we aim to facilitate 

the information extraction task of an online learning service that covers a variety of disciplines. 

There are two separate datasets used in this study; one is a labelled dataset for training the model 

except for the embedding layer, which contains four different types of information that need to be 

extracted. Another dataset is unlabelled, which is used for training the embedding layer, whereas the 

training is unsupervised. The unlabelled dataset is about a hundred times bigger than the labelled 

counterparts. Both datasets are encoded sequential of data and coming from the same source. 

For a single case of a certain online learner, most of the online information is redundant. As a result, 

in this experiment, the information that needs to be extracted is very sparse. Also, in order to better 

reflect the real-world task where information with different significant levels or in different types 

could have totally different distributions, in the datasets, these four types of information are not 

evenly distributed. The statistical information about each type of information involved in the dataset 

https://en.wikipedia.org/wiki/True_positive_rate
https://en.wikipedia.org/wiki/False_positive_rate
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Table 4.1 Statistical Information about the Dataset 

 Information A Information B Information C Unwanted 
Information 

Total 

Number 45,736 34,655 26,221 761,237 867,849 

Percentage 5.26% 3.99% 3.02% 87.71% 100% 

 

is shown in Table 4.1. 

Moreover, to maintain the generalization ability of our proposed deep Bi-LSTM-CNNs-CRF model, 

no handcraft domain-relevant feature is involved in this study. All the features that contain domain 

information are automatically selected, or extracted, or summarized by different layers of the neural 

network. There is no pre-trained model used in this study, even some of them are powerful and can 

greatly simplify the training process, such as Bert [Devlin, et al., 2019] and ELMo [Peters, et al., 

2018]. Our goal is to demonstrate that the proposed model is not restricted to any domain-relevant 

datasets or any domains. And how to effectively apply it to a specific online educational scenario or 

a problem domain is beyond the scope of this paper and will be considered as future work. 

4.1.2.3 Experimental Setup 

In order to make these models comparable, we fixed the hyper-parameters of each neural network 

component during the training process of each model based on the pre-experiment results. The 

embedding technique used in this study is the classic unsupervised word2vec model [Mikolov, et al., 

2013], and the embedding dimension is 32. The output dimension of the first CNN layer is 128 and 

the second CNN layer is 64, and the sliding window size for both CNN layers is 5. The output 

dimensions of the Bi-LSTM outside and inside the fusion block is 128 and 64, respectively, and the 

maximum sequence length for modelling the chronological pattern is 128. All the neural network 

layers held a 0.3 dropout rate, and we used default initialized settings for other parameters such as 

activation function and weight initialization method. Ten-fold cross-validation is used in the 

experiments. 

4.1.2.4 Experiment Results and Discussions 

The experiment results of the proposed model for information extraction are shown in Table 4.2. To 
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better represent the performance of each model, despite the recall, precision, and f1-score, we also 

involved the total number of information that each model extracted containing true positive (TP) and 

true negative (TN) results. The total number of ground truth information that needs to be extracted is 

7,345. 

4.1.2.4.1 The Significance of CRF Layer 

Although the neural network has demonstrated its superb ability in modelling complex problems, 

based on our experiment results, we can easily find out that the pure CRF model greatly outperforms 

pure RNN-based models (LSTM and Bi-LSTM). This finding highlights the significance of the CRF 

layer, especially for the problems where the adjacent outputs have strong correlation or connections 

with each other. 

In this study, we also compare the performance of the CRF method and the widely used softmax 

function. We keep all the settings of the model constant, only replacing the final CRF layer with the 

softmax function.  From the bottom two rows of Table 4.2, we can observe that, for extracting 

information from the information sequence, the CRF layer is greatly outperforming the softmax 

function. 

4.1.2.4.2 The Bi-directional RNN and the CNN Layer 

The experiment results show that the pure Bi-LSTM model performs better than the pure LSTM 

model. This result confirms our assumption in Section 4.1.1. For a general sequential modelling 

problem, ‘future information’ does help the model make more accurate predictions and, therefore, 

should be involved in the model. 

From the last column of Table 4.2, we can find that the number of information extracted by Bi-

LSTM is higher than CRF and LSTM, but the performance of Bi-LSTM is much worse than CRF. 

This indicates that Bi-LSTM can extract more information than LSTM, but it is also prone to 

involving more true-negative information. In general, Bi-LSTM has the potential to extract more 

diverse information but requires a constraining module or layer to filter out the true-negative 

predictions.  

The model combining Bi-LSTM and CRF shows a huge leap in the recall, precision, and F1 score. 

This proves that the Bi-LSTM-CRF model can maintain the strength of the pure CRF model and 
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Table 4.2 Experiment Results of Different Models 

             Metrics 

 

    Model 
Recall Precision F1 

# Results 

(TP+TN) 

CRF 0.5164 0.3682 0.4299 5,238 

LSTM 0.3016 0.1994 0.2401 4,858 

BiLSTM 0.3231 0.2509 0.2824 5,704 

BiLSTM-CRF 0.8168 0.7908 0.8089 7,113 

Proposed model 

(without fusion 

block) 
0.8083 0.7851 0.7951 7,136 

Proposed model 0.8223 0.8188 0.8206 7,316 

Proposed model 

(use softmax function 

to replace the CRF 

layer) 
0.8052 0.7897 0.7974 7,205 

 

pure Bi-LSTM model and eliminate the drawbacks of these two models. 

The model proposed in this study outperforms the Bi-LSTM-CRF model. This result suggests that 

adding a convolution layer and then using appropriate fusion block is really achieving the extraction 

of some latent information, which is not captured by former embedding, RNN and later CRF layers. 

We maintain the reason for the improvement of the model is towing to the structure difference of the 

CNN layer and the RNN layer, and this makes it easier to model and represent different aspects of 

the same problem. 

4.1.2.4.3 Viterbi Algorithm and Cross-entropy 

This study also compares the model performance between using the Viterbi algorithm combined 

with negative log-likelihood and using cross-entropy for calculating the loss during the model 

optimisation stage. Viterbi algorithm is mainly used for dynamically searching the best path for 

sequential predictions. 

The performances of three representative models, pure CRF, Bi-LSTM-CRF, and the proposed 

model with different optimisation strategies are shown in Table 4.3. The results demonstrate that 

using the Viterbi algorithm combined with negative log-likelihood for optimising the model 

outperforms using cross-entropy. Simply using cross-entropy is prone to involving more true-

negative predictions, which also indicates that, the Viterbi algorithm adds some constraints to 

eliminate wrong predictions during the prediction process, as well. 
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This phenomenon is because the outputs are not independent, and the Viterbi algorithm has a better 

ability to find the best path for the sequential output. 

4.1.2.4.4 The Significance of the Fusion Block 

Moreover, by comparing the model with the fusion block and without the fusion block, we can see 

that the model with the CNN layer performs even worse than the Bi-LSTM-CRF model without the 

fusion block. The model extracts more true-negative information when adding the CNN layer but 

without using fusion block. This result indicates that, even though the CNN layer can extract some 

other latent information, the model still requires a proper information fusion procedure to combine 

different aspects of information. Simply adding a fusion block does increase the recall, precision, and 

F1-score in this experiment. 

4.1.2.4.5 The Information Distinguishing Ability 

As discussed in the previous section, the distribution of different types of information could vary 

greatly. For a personalized online learning service like micro learning, the ability to distinguish and 

extracting different types of information is significant for capturing characteristics of both learners 

and learning materials. From the other perspective to demonstrate the robustness of the proposed 

deep Bi-LSTM-CNNs-CRF model, we also compared such ability of representative models on 

different types of information. The overall information distinguishing ability of these models is 

Table 4.3 Comparison of the Viterbi Algorithm and Cross-entropy 

             Metrics 

 

    Model 
Recall Precision F1 

# Results 

(TP+TN) 

CRF (Viterbi) 0.5164 0.3682 0.4299 5,238 

CRF (Cross-entropy) 0.2535 0.1999 0.2236 5,795 

Bi-LSTM-

CRF(Viterbi) 
0.8168 0.7908 0.8089 7,113 

Bi-LSTM-CRF(Cross-

entropy) 
0.7367 0.7319 0.7343 7,299 

Proposed model 

(Viterbi) 0.8223 0.8188 0.8206 7,316 

Proposed model 

(Cross-entropy) 
0.8057 0.8056 0.8057 7,346 
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Figure 4.7 The AUC of Total Extracted Information 

Bi-LSTM CRF

Bi-LSTM-CRF Proposed model

shown in Figure 4.7. 

The proposed deep sequence labelling model greatly outperforms the pure CRF model and pure Bi-

LSTM model, and the AUC score of our proposed model is about 2% higher than the mainstream 

Bi-LSTM-CRF model. For different types of information, the proposed model shows satisfactory 

performance than any other models. This result indicates that our model has great robustness, which 

can precisely locate and classify different types of information with different distributions. The 

details of the model performance in distinguishing our pre-defined types of information are shown in 

Figure. 4.8, where the class 1 to 3 represent the information A, B, and C, respectively (Table 4.1); the 

class 0 represents the useless information. The distributions of these types of information are shown 

in Table 4.1. 

4.1.2.4.6 The Efficiency of the Proposed Model 

Lastly, in this study, we also compare the training efficiency of the three most complex models, Bi-

LSTM-CRF, the proposed model, and the proposed model without fusion block. Due to the 

simplicity of the model structure and less satisfying performance, the training efficiency of pure CRF, 
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Figure 4.9 The Changes of the Loss Values for Each Training Epoch. 

(Vertical and horizontal coordinate refers to the learning loss and learning epoch, respectively) 

Bi-LSTM-CRF

Proposed model

Proposed model without fusion block

 

Figure 4.8 The ROC and AUC of Different Types of Extracted Information 

 

Proposed modelBi-LSTM-CRF

CRFBi-LSTM

LSTM, Bi-LSTM are not compared in the experiments. The decrease of the loss value during the 

training process is shown in Figure 4.9. According to Figure 4.9, three models converge within 

similar training steps. Comparing with the mainstream sequence labelling model Bi-LSTM-CRF, the 

proposed model with additional CNN layer and fusion block does not show any obvious drop in the 
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Figure 4.10The Framework Architecture 

training efficiency. And the difference in training efficiency between the proposed model with and 

without fusion block is also very unnoticeable. Hence, our model does not require more extra 

training steps to reach an optimal state. 

4.2 Text Analysis 

The online learning resource contains various types of short text contents, such as course title, course 

description, and learners’ comments. These text contents can provide useful information about the 

resources themselves and user experience to different decision-making modules of a micro learning 

system. Compared to the well-structured formal text content (such as course description), the 

comments given by the online learners are hard to interpret, as they are informal and contain much 

rich information. Hence, in this study, a deep learning model is designed to interpreting the content 

of the informal short text. This part of the research aims to develop a universal deep learning model 

which has the potential to be applied to other formats of information (like images) with little 

technical adjustments. 

4.2.1 Model Design 

In this section, we describe the design of the proposed CNN-based framework for interpreting the 

content of the short text. Firstly, from a high-level perspective, we introduce the overall architecture 

of this framework. Next, how the research problem is formulated in this study will be demonstrated. 

4.2.1.1 The Architecture Framework 

The proposed framework contains two components which are the upstream component and the 

downstream component. The general architecture of the proposed framework is shown in Figure 

4.10. The upstream component is a pre-trained language model. It is used to transform the raw text 

input into dense embeddings. The downstream component is a task-specific model, which takes in 

the dense embeddings and produces the final predictions for a specific NLP task. In this study, we 
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Figure 4.11 The Organization of a Piece of Text ‘Figure’ 

only focus on applying CV ideas to the downstream component, whereas designing the upstream 

component is beyond the scope of this research as many studies have been carried out in this field. 

However, to get comprehensive experiment results, different pre-trained language models will be 

compared and discussed in this chapter later. 

4.2.1.2 Problem Formulation 

To clearly formulate the task of informal short text content understanding, we would have the 

following definitions. 

4.2.1.2.1 Upstream Component 

In this study, the pre-trained language model L is used to generate dense word embeddings 𝒆 with 

dimension m. For each word w from a sequence of text 𝒕 = (w1,  w2, … wi), the mapping procedure 

can be formulated as 𝑳(wi) => ei, ei ∈ ℝm. 

4.2.1.2.2 Text Representation 

In this study, a sequence of text is represented in the form of 2D ‘figure’ P by stacking all 

embeddings together, such procedure is formulated as 𝑷 = 𝑆𝑡𝑎𝑐𝑘(𝑒1,  𝑒2, … 𝑒𝑖). To prevent any 

information loss in this procedure, the order of the embeddings is kept the same with the original text 

sequence. The illustration of this process is shown in Figure 4.11. 

4.2.1.2.3 Downstream Component 

Given different NLP tasks have different goals, the designs of the downstream component can vary 

from task to task. The downstream component takes in generated text ‘figure’ P and makes the final 
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Figure 4.12 Network Structure of CNN-based Downstream Component 

prediction 𝑦. Two different datasets are used in this study, one for topic prediction and another for 

sentiment analysis. For a topic prediction task, the goal is to analyse the content of a given sequence 

of text 𝒕 and predict whether this sequence of text is about the target topic or not. For this task, 

defining the ground-truth as ytopic ∈ {0, 1}, where 1 is for the target topic and 0 is for not about the 

target topic. For the sentiment analysis task, the goal is to find out whether a given sequence of text 𝒕 

contains a certain sentiment or not, and what its sentiment is. For this task, defining the ground-truth 

as ysentiment ∈ {0, 1, 2}, where 0 is for neutral (no obvious sentiment involved in a sequence of text), 

1 is for negative sentiment, and 2 is for positive sentiment. Hence, together with the above two 

definitions, the goal of the downstream component is to learn the following Equation (4.2) ℱ: 

                                                                         ℱ(𝐩) ⟹ 𝑦                                                                   (4.2) 

Inspired by the prior work [Kim, 2014] and the idea of the n-gram model [Roark, et al., 2007], we 

have carefully designed a CNN-based network to interpret the text content. The generated ‘2D’ text 

figure is scanned by multiple kernels 𝑘1~𝑘𝑖 serval times to extract semantic information. Different 

kernels have different widths 𝑑𝑖 but share the same height h. The kernel height h is equal to the word 

embedding size. With these settings, kernels can summarise the information of number of 𝑑𝑖 

successive words at each step during the first convolutional operation, such procedure is similar to 

generating n-gram samples. The following convolutional operations extract different levels of 

granularity of information in the same way as it has been frequently used in the CV area. After a set 

of successive convolutional operations, pooling operation and fully connected layers are applied to 

summarise all extracted information and produced the final predictions. The illustration of the 

network structure of the proposed CNN-based downstream component is shown in Figure 4.12. 
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Figure 4.13 The Example Representation of Bounding Box in CV (left) and NLP (right) 

4.2.1.2.4 1D-Bounding Box 

Moreover, in this study, despite making the proposed model understand informal short text content, 

we also investigate whether the proposed model can identify which phrases or words in a sequence 

of text would express the key information. In another word, for the sentiment analysis task, we want 

the model to be able to identify which words or phrases could express a negative or positive 

sentiment for a given sequence of text. Inspired by the utility of the bounding box in object detection, 

a 1D ‘bounding box’5 is used to mark the key information. The example of the bounding box in both 

areas is shown in Figure 4.13. In Figure 4.13, the left part is the bounding box of the object detection 

results of cats; the right part is the bounding box of the sentiment analysis result of negative feeling. 

The 1D bounding box is formulated as 𝑩(cindex , l), the first element is the center index of the 

selected sequence of text and the second element is the length of selected text. The loss function to 

measure the prediction and the ground-truth of the bounding box is formulated as Equation (4.3): 

                                                 𝐿𝑜𝑠𝑠𝐵 = 𝑀𝑆𝐸(cindex − cindex̂) + 𝑀𝑆𝐸( l −  l̂)                               (4.3) 

where the 𝑀𝑆𝐸  is the mean square error loss. Difference between the predicted centre and the 

ground-truth centre is measured by the first term, and the difference between the predicted length of 

key words/phrase and the ground-truth length is measured by the second term. 

4.2.2 Experiment and Analysis 

The experimental details are demonstrated and analysed in this section, including the introduction of 

the datasets, the used evaluation metrics, the baselines, the settings of the experiment and the 

analysis of the results. 

4.2.2.1 Datasets 

As there is no public informal short text from the educational domain for the research usage, the 

 
5 The working manner and optimization process of the proposed bounding box is different from the one in computer vision. We 

merely use a similar idea to identify the wanted information. 
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datasets used in this study are collected from the social media platform. Two short text datasets are 

used in the experiments; and both are collected from the Twitter platform and open to the public6. 

The first dataset contains more than 10 thousand tweets, some of which talk about real disaster 

events. The ratio of disaster-related against non-disaster-related is 43:57. This dataset contains the 

raw text of each tweet, keyword from the tweets, and location information where a tweet was sent 

from. The keyword and location information may be blank; we only utilise raw text information to 

train the model. The second dataset contains 30 thousand tweets with or without sentiment 

information. The ratio of the number of neutral against positive against negative sample is 41:31:28. 

This dataset contains the raw text of each tweet and the text fragment that support the tweet’s 

sentiment. Similarly, only the raw text is used to train the model. The raw text is collected directly 

from the Twitter platform and has not been pre-processed yet. The example of these two datasets is 

shown in Table 4.4. 

4.2.2.2 Evaluation Metrics 

In order to reflect the model performance from different perspectives, three different types of 

evaluation metrics are used in the experiment. The first evaluation metric is accuracy (Acc), 

formulated as Equation (4.4), which directly reflects the proportion of the correct predictions 

produced by each model. However, for imbalanced distributed ground-truth, this metric might not be 

suitable for comparing the effectiveness of the models [Valverde-Albacete, et al., 2014].  

                                                      𝐴𝑐𝑐 =  
𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛
                                        (4.4) 

The second evaluation metric used in this study is the Area Under Curve (AUC) value. AUC value 

reflects the ability of a model to distinguish different types of information (i.e., for task one about 

whether it is a disaster or not, for task two about whether they are different sentiments). When 

dealing with the multi-class classification task (the task of sentiment analysis), the one-versus-one 

strategy was used in the experiment. AUC value is the area under the Receiver Operating 

Characteristic (ROC). 

 
6 The dataset about disaster prediction was created by the company figure-eight and originally shared on https://www.figure-

eight.com/data-for-everyone/. The second dataset about sentiment analysis was extracted from 
https://appen.com/resources/datasets/. 

https://www.figure-eight.com/data-for-everyone/
https://www.figure-eight.com/data-for-everyone/
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The last evaluation metric is the F-score, formulated as Equation (4.5), which is the harmonic mean 

of the Recall score, formulated as Equation (4.6), and the Precision score, formulated as Equation 

(4.7). Herein, TP is the number of true-positive results, FN is the number of false-negative results 

and FP is the number of false-positive results. Because of the trade-off between Recall and Precision, 

we cannot conclude a good model merely based on a high Recall score or high Precision score. 

Hence, using F-score is a better choice for model comparison. 

                                                                𝐹1 = 2 ×  
𝑟𝑒𝑐𝑎𝑙𝑙 ×𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑟𝑒𝑐𝑎𝑙𝑙+𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
                                                    (4.5) 

                                                                       𝑟𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                            (4.6) 

                                                                      𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                      (4.7) 

4.2.2.3 Baselines 

In the experiments, different pre-trained models are used to investigate the effectiveness of applying 

the CV solution to the NLP problem. Specifically, for the upstream component, we involve the 

following pre-trained language models: 

1. Word2Vec [Mikolov, et al., 2013]: This model has high optimization efficiency, but can only 

model the local semantic information within the pre-defined window.  

2. GloVe [Pennington, et al., 2014]: This model combines the merits of LSA [Deerwester, et al., 

1990] and Word2vec. It uses the co-occurrence matrix to model the local and global semantic 

information at the same time. 

3. Bert [Devlin, et al., 2018]: Bert and its variants dynamically model the semantic information. 

As indicated in the original study that a multitask fine-tuning approach could be used to train 

Table 4.4 Data Sample of the Two Dataset 

Dataset Information 

Disaster 

Prediction 

Raw text Keyword Location 

I-77 Mile Marker 31 to 40 

South Mooresville Iredell 

Vehicle Accident Congestion at 

8/6 1:18 PM 

accident North 

Carolina 

Sentiment 

Analysis 

Raw text Text fragment 

A little happy for the wine jeje 

ok it`sm my free time so who 

cares, jaja i love this day 

A little happy 
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the model, and this would boost the performance even further. 

For the downstream component, we compare the following models’ effectiveness in understanding 

tweet content: 

1. Bi-GRU: Bi-directional gated recurrent unit neural network. 

2. Bi-LSTM: Bi-directional long-short-term-memory neural network. 

3. The proposed CNN-based model in this research. 

4.2.2.4 Experimental Setup 

In this research, all the models are implemented using PyTorch framework [Paszke, et al., 2019]. 

The pre-trained language models Bert and Word2Vec are implemented through Transformer7 and 

Gensim8, respectively; the pre-trained GloVe model is reproduced through its pre-trained word 

vectors9. Six different kernels with 128 output channels are used in the proposed CNN-based model. 

ReLU is used as the activation function for each convolutional output, and there are four successive 

convolutional layers in total. The dimension number for the hidden layer of Bi-LSTM and Bi-GRU 

is set to 256. The sigmoid function is used to produce the final prediction for the disaster prediction 

task, while the softmax function is used to produce the final prediction for the sentiment analysis task. 

All the other settings strictly stick to the original work, or we directly use the default settings of the 

PyTorch framework. The early-stop mechanism is applied to all the training processes to prevent 

overfitting. 

Before using the language model to convert the tweet content to dense vectors, the raw text is pre-

processed through several NLP data cleaning and normalizing stages, ranging from removing the 

stop-words, lemmatization, to removing URLs and emojis. 

4.2.2.5 Experiment Results and Discussions 

Table 4.5 illustrates the effectiveness comparison of different downstream components for two 

different NLP tasks. Table 4.6 reports the effectiveness of different upstream components. As we 

have obtained similar results from two datasets, we only present the experimental results of the task 

disaster prediction (topic detection) in Table 4.6. The demonstration of the 1D bounding box to 

locate key information is shown in Table 4.7. 

 
7 https://huggingface.co/transformers/index.html 
8 https://radimrehurek.com/gensim/# 
9 https://nlp.stanford.edu/projects/glove/ 
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4.2.2.5.1 The Effectiveness of the Proposed CNN Model 

According to the results in Table 4.5, we can easily conclude that, with the same Bert upstream 

component, the proposed CNN-based downstream component shows competitiveness comparing to 

mainstream NLP solutions in all criteria for two different tasks (highlighted in bold text). For the task 

of disaster prediction, the Bi-LSTM model slightly outperforms the Bi-GRU model, while for the 

task of sentiment analysis, the Bi-GRU model greatly outperforms the Bi-LSTM model. We would 

argue such improvement was produced by the structure difference between the LSTM cell and GRU 

cell. According to the original work of LSTM [Gers, et al., 1999] and GRU [Cho, et al., 2014], the 

LSTM tends to remember longer semantic information than GRU. Hence, we consider that for 

different tasks, involving too much information during the modelling procedure will not always 

improve the model performance. 

The task of disaster prediction needs to understand the whole tweet to predict whether the given 

tweet is about disaster or not. It is hard to infer whether a tweet is about a disaster or not merely 

based on a short text segment or phrase. As shown in the following example: 

“All residents asked to 'shelter in place' are being notified by officers. No other 

evacuation or shelter in place orders are expected” 

 Remembering more words or longer text sequence is helpful to understand the context of the whole 

tweets. Hence, for such a task, the LSTM-based model is better than the GRU-based model. 

As for the task of the sentiment analysis, in most cases, sentiment is just one part of tweet content. 

Table 4.5 Downstream Component Comparison on the Tasks of Sentiment Analysis and Disaster 

Prediction 

Disaster Prediction 

Models Acc F1 AUC 

Bert + Proposed 0.8238 0.8169 0.8798 

Bert + Bi-GRU 0.8108 0.8044 0.8698 

Bert + Bi-LSTM 0.8172 0.8128 0.8695 

Sentiment Analysis 

Models Acc F1 AUC 

Bert + Proposed 0.8573 0.8354 0.8998 

Bert + Bi-GRU 0.8465 0.8273 0.8800 

Bert + Bi-LSTM 0.8159 0.7927 0.8543 
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As a negative sentiment tweet shown in the following example, a user posts a certain event and 

expresses how he/she feels about it: 

“Grrr..stupid internet connection ruined a great scrabble game” 

Interpreting the sentiment of a user relies on a short text sequence or phrase. Inferring from the 

longer text sequence might negatively affect the model performance, as the phrase “a great scrabble 

game” shows positive sentiment in the above example, which contains negative sentiment. Hence, 

with the same settings, the Bi-GRU model greatly outperforms the Bi-LSTM model in the second 

task.  

 The above long-short-sequence modelling problem can be avoided by using the proposed CNN-

based model. Using the CNN-based model, we can flexibly control the length of the word sequence 

to be modelled at each step by setting the kernel size at the first convolutional layer. The 

configuration of the kernel sizes can be determined on domain knowledge or pilot experiments. 

4.2.2.5.2 The Importance of Upstream Language Model 

We also investigate the framework performances in using different language models in the upstream 

component. From Table 4.6, we can conclude that the frameworks with the pre-trained Bert model 

outperform the ones with the GloVe model or Word2Vec model (highlighted in bold text). As 

mentioned in Section 4.2.2.3, the Bert model can capture more semantic information. A better 

language model indicates the downstream component can access more useful information. From the 

Table 4.6 Upstream Component Comparison on the Task of Disaster Prediction 

Models Acc F1 AUC 

Bert + Proposed 0.8238 0.8169 0.8798 

GloVe + Proposed o.8173 0.8145 0.8723 

Word2Vec + Proposed 0.6852 0.6762 0.7271 

Bert + Bi-GRU 0.8108 0.8044 0.8698 

GloVe + Bi-GRU 0.7667 0.7598 0.8097 

Word2Vec + Bi-GRU 0.6819 0.6760 0.7348 

Bert + Bi-LSTM 0.8172 0.8128 0.8695 

GloVe + Bi-LSTM 0.8107 0.8039 0.8588 

Word2Vec + Bi-LSTM 0.6770 0.6625 0.7283 
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CV perspective, a better language model can generate ‘higher resolution text figure’, which is critical 

for mining details from the ‘text figure’. As argued in one prior study [Neubig, et al., 2013], tweets 

generally contain more information per character, likely a result of Twitter-specific abbreviations 

and a less consistent writing style. Hence, to better interpret the tweet content, it is necessary to use a 

powerful language model for maximizing the retention of semantic information. 

4.2.2.5.3 Locating Key Information 

Making use of the second dataset, we also further investigate whether our proposed model can 

identify and locate the key information (i.e., keywords). As mentioned in section III, a 1D-bounding 

box is designed to select the keywords (for an NLP task, such job is usually accomplished by using 

the attention mechanism). Due to the space limitation, in this thesis, we only randomly present five 

positive and five negative results as shown in Table 4.7. The column of ‘Ground-truth Key Words’ 

Table 4.7 Demonstration of 1D Bounding Box on the Task of Sentiment Analysis 

Raw Text Selected Text Ground-truth Key 

Words 

Sentiment 

Grrr..stupid internet connection 

ruined a great scrabble game 

grrr..stupid Grrr..stupid internet 

connection 

negative 

listening to the best days of your 

life by kellie pickler 

listening to the best days listening to the best 

days of your life 

positive 

awesome! All deserved I`m 

sure. Miss the Crabs games 

awesome awesome positive 

Are you going to hate being 

around my baby? 

are you going to hate 

being 

hate negative 

awww I love me some charlies  

we are enjoying some lucky 

food LOL 

awww i love me some love positive 

NICE! Got any that are indexed 

that you want to unload?  I need 

a few. 

nice! got any that NICE! positive 

Still gutted that man utd lost Still gutted that man utd 

lost 

Still gutted that 

man utd lost 

negative 

i miss him  ALOT but im not 

gonna talk to him, i HOPE 

i miss him alot but im not 

gon na talk to him 

miss negative 

Starting to spoil my pug since 

her brother Max passed away on 

Tuesday. We miss him. 

starting to spoil my pug We miss him. negative 

Just try to do your best. I hope 

you don`t get laid off. 

try to do your best. Just try to do your 

best. I hope you 

don`t get laid off. 

positive 
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shows the labelled ground-truth words containing sentiment information. The column of ‘Selected 

Text’ is showing the keywords selected by the bounding box. We can clearly see that our proposed 

model can not only understand the sentiment meaning of the tweet content but also identify which 

words express such meaning. The only drawback of our bounding box is that it is prone to selecting 

longer text than the ground truth (by comparing the second and the third column). We attribute it to 

the common situations that longer text could contain more information and would be more 

supportive of the bounding box to make a decision. 

4.3 Summary 

In this Chapter, two novel models are proposed for pre-processing the raw information of the 

massive online learning resources.  

4.3.1 Conclusion of Information Extraction and the Future Direction 

Firstly, we propose a deep Bi-LSTM-CNNs-CRF model to extract valuable information from 

massive and redundant information streams for micro learning services. We compare our proposed 

model with several classical and widely adopted sequence labelling models. The experiments 

conducted in this study demonstrate the robustness of the proposed model. The model can identify 

new latent features and outperforming the mainstream Bi-LSTM-CRF based model.  

From our experimental results, we can conclude five specific points about information extraction or 

sequence labelling: 1. the CRF layer is vital for sequence modelling; for some cases, pure CRF 

model performs even better than pure RNN models such as LSTM or Bi-LSTM; 2. for a general 

application case, using bi-directional RNN such as Bi-LSTM is a better choice than using single 

direction RNN; as ‘future’ input can anyhow provide some information for the sequence modelling; 

3. CNN is useful in mining supplementary information and further boosting the performance of the 

current model; 4. the model proposed in this study demonstrates that it has the ability to efficiently 

mine useful information for online service. 5. compared with other representative models, our model 

shows satisfactory characteristics in both efficiency and robustness. 

As discussed in a recent study [Wu, et al., 2015], a learning service always has underlying 

pedagogical issues. Different subjects or disciplines present different contexts and may require 

significantly different information. Hence, in order to better adapt to a general micro learning service, 
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it is pertinent to involve more global information in the information extraction process. In the future, 

it is necessary to continue improving the proposed information extraction model by mining and 

involving global information about the education and learning domain. 

4.3.2 Conclusion of Text Content Analysis and the Future Direction 

In this chapter, we investigate the feasibility of designing a generic model to solve the multimodal 

information problem. A CNN-based model and a further bounding box are proposed to demonstrate 

that, with proper adjustments, the mainstream solutions from the CV area can also be used to solve 

NLP problems with different goals. With proper configurations, the proposed CNN-based model can 

yield a better generalization ability than the RNN-based model. Based on the experiment results, we 

discover the significance of the language model in modelling textual information. The experimental 

results have also shown that our proposed solution has competitive performance compared to 

mainstream NLP solutions such as Bi-LSTM and Bi-GRU for the task of short text understanding. 

Moreover, the proposed model shows satisfactory performance in locating key information. 

In the future, firstly, we will continue investigating the effectiveness of the proposed solution for 

long text understanding. To better design such a generic model for processing multimodal 

information, we will also investigate in applying CNN-based solution to solve other forms of 

information such as audio signals. In the meantime, we will also try to use NLP solutions reversely 

to solve other forms of information. 
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5 Chapter 5 Personalised Online Learning 

Resource Delivery 

In this chapter, we combine high-order feature interactions and the attention mechanisms to refine a 

recommender system, the proposed model combines several advantages from different state-of-the-

art recommender systems and offers them in a smooth one-stop manner. This model enables 

automatic exploration of high-order feature interactions, differentiating the important degrees for 

different features, and mining latent features from the original input.  

5.1 Background of the Use Case 

The micro learning service aims to provide personalised small size learning materials in real-time. 

The learning material can be just some knowledge points [Lin, et al., 2019]. The online knowledge 

sharing service is one representative online learning service of the idea of micro learning. Hence, the 

investigation of the recommender system discussed in this chapter is mainly based on the application 

background of online knowledge sharing service. In the online knowledge platform, online users post 

and answer questions from various disciplines in a knowledge-sharing platform (like Quora10 and 

Stackoverflow11), and the platform engages users with new questions or topics based on their profile 

and historical activities. However, the plethora of user interests and backgrounds could easily result 

in massive volumes of options and induce disengagement, i.e., producing questions that have the 

opposite effect. Hence, an online knowledge-sharing platform has to rely on a sophisticated 

recommender system to filter out irrelevant information to truly create a personalised learning 

service. 

An effective recommender system needs to handle and merge different types and formats of 

information from the users’ profiles and historical activities and resource profiles. Higher-order 

feature interaction (combination) is also crucial for good performance [Song, et al., 2019]. However, 

manually generating high-order feature interaction requires strong domain background. It is very 

time-consuming and labour-intensive, making it impractical for the large-scale online system, in the 

 
10 https://www.quora.com/ 
11 https://stackoverflow.com/ 

https://www.quora.com/
https://stackoverflow.com/
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context of big data. Furthermore, different features have various importance levels for a personalised 

recommendation task [Huang, et al., 2019]. How to precisely distinguish the importance differences 

of different features for a specific user is also vital for a personalised web-based learning service. 

Conventional recommendation strategies such as simple collaborative filtering and content-based 

filtering [Pazzani, 1999] are no longer adequate to handle massive, complex, dynamic data due to 

their drawbacks in scalability and modelling higher-order features. 

5.2 Model Design 

In this research, we aim to effectively combine these functionalities: mining and generating high-

order feature interaction, distinguishing the importance differences of both implicit and explicit 

features, and maintaining the original input information in a single network. To this end, we propose 

a new deep cross attention network (DCAN) model for the recommendation task of the online 

knowledge sharing service. The input of the model contains both user-side and question-side 

information, and the embedding layer maps such information into a low dimensional space. The 

embedding vectors are then passed into the DNN network and crossing network separately for 

mining latent information and high-order feature interactions. The processed results are fused 

together, and an attention network is used to distinguish the importance differences of different 

features. Finally, the output layer is used to make predictions with weighted features. In this section, 

we firstly propose three hypotheses which might be significant to personalised micro learning service. 

The design of the model and technical details of each component is then presented and discussed.  

5.2.1 Hypotheses 

In this study, the proposed model is designed based on the following hypotheses: 

1. High-order feature interaction is vital to further improve the performance of a recommender 

system which used for a web-based big data application. Low-order feature interaction cannot 

sufficiently mine and model the underlying complex feature interactions for informal learning 

service. 

2. The features involved in a learning platform have different important degrees. Precisely 

differentiate the feature importance is vital to a personalized learning service, and it can further 

improve the recommendation results. 
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3. The proposed model also holds moderate efficiency. For a web-based learning service in the 

big data era, efficiency is also an important indicator. 

For example, the proposed model manages to recommend the question to the user that he/she might 

be interested in. The recommended question given by the system is about machine learning; the 

difficulty level of this question is entry-level. And we have two users with the following features: 

User_1: (Interested topic: computer science, Occupation: student, Gender: male, Age:23, Location: 

Australia) 

User_2: (Interested topic: computer science, Occupation: research fellow, Gender: male, Age 32, 

Location: China) 

For the example, the proposed model should effectively and automatically generate meaningful 

feature combinations such as (Interested topic, Occupation) and (Gender, Age), distinguish the 

importance difference between different features such as for a given question the feature (Interested 

topic, Occupation) might be more important than the feature (Gender, Age) and decide that the 

User_1 might be more interested in this question. 

5.2.2 Model Architecture 

Based on the above hypotheses and one previous proposed initial idea [Lin, et al., 2020], the general 

architecture of our model is shown in Figure 5.1. Our proposed model contains three significant 

networks: a cross-network for exploring feature interactions, a deep network for mining latent 

information, and an attention network for distinguishing the importance of different features. The 

input of the model is high dimensional vectors that contain both user and item relevant information. 

The output of the model are decimals range from 0~1 indicating how much a user will be interested 

in the given question. 

5.2.2.1 The Embedding Layer 

 For a recommendation task, the input contains many highly sparse categorical data, such as the 

genre describing the discipline of the educational resource, which may be multi-valued (for example, 

the subject of ‘machine learning’ could belong to both disciplines of ‘mathematics’ and ‘computer 

science’). In our proposed model, we apply an embedding layer to reduce the dimensionality and 

sparsity of the raw data. The raw input contains the history of interaction between the user and the 

online resource and the side information of the user and the online resource. The embedding 
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Figure 5.1 The Overall Network Structure of the Proposed Cross Attention Boosted Recommender 

System 

operation can not only reduce the computational workload, but also boost the model performance. 

This process can be formulated as Equation (5.1):   

                                                                𝑋𝑒𝑚𝑏𝑒𝑑,𝑖 = 𝑊𝑒𝑚𝑏𝑒𝑑,𝑖 𝑋𝑖                                                       (5.1) 

Where 𝑋𝑒𝑚𝑏𝑒𝑑,𝑖 is the embedding result of the i-th categorical feature, 𝑊𝑒𝑚𝑏𝑒𝑑,𝑖 is the embedding 

matrix that maps the i-th original categorical feature into the low dimensional space, and 𝑋𝑖 is the i-

th feature. 

5.2.2.2 The Cross Network 

The cross-network used in this study is based on the method proposed in [Wang, et al., 2017]. The 

cross-network is used to automatically generate the high-order feature interactions. Such network 

consists of several layers, and each layer is an operation of feature interaction. For each interaction 

layer, the operation of feature crossing can be simply formulated as Equation (5.2):  

                                                             𝑋𝑙+1 =  𝑋0𝑋𝑙
𝑇𝑊𝑙 + 𝑏𝑙 + 𝑋𝑙                                                    (5.2) 

Where 𝑋𝑙 is the output of the l-th crossing layer, 𝑊𝑖 and 𝑏𝑖  are weights and bias parameters of each 

crossing-layer. As demonstrated in [Wang, et al., 2017], such special structure of network can 

increase the interaction degree as the network goes deep, with the highest n+1 polynomial degree of 

the n-th layer. Moreover, regarding the efficiency of the network [Wang, et al., 2017], the time and 

space complexity are both linear in input dimension. 



68 

 

5.2.2.3 The Deep Network 

A conventional fully connected neural network (multi-layer perceptron) is used in the proposed 

model as the deep component for simplicity and generalisation. The deep network implicitly captures 

the latent information and feature combinations. Each layer of the DNN network can be formulated 

as Equation (5.3): 

                                                                   ℎ𝑙+1 = 𝑓(𝑊𝑙ℎ𝑙 + 𝑏𝑙)                                                      (5.3) 

Where ℎ𝑙  denotes the output of the l-th layer of the deep component, 𝑓(∙) is the activate function, 

where ReLU is used in this study. 𝑊𝑙  and 𝑏𝑙  are parameters of the l-th layer of the deep network. 

5.2.2.4 The Residual Connection and Attention Network 

Before providing transformed information to the attention network, the original input information is 

continuously added to the output of the deep network and the cross-network by using residual. This 

aims to maintain the original input information, which might suffer information loss after going 

through several layers of the neural network. The residual connection used in this research connects 

the output of one earlier layer to the input of another future layer several layers later. 

An attention network is applied right after the combination layer to interpret the important difference 

of various features. The attention mechanism can be formulated as Equation (5.4) and (5.5):  

                                                               𝑎𝑖
′ = 𝑅𝑒𝐿𝑈(𝑊𝑋𝑖 + 𝑏)                                                         (5.4) 

                                                                      𝑎𝑖 =
exp (𝑎𝑖

′)

∑ exp (𝑎𝑖
′)𝑖

                                                                (5.5) 

where, both 𝑊 and 𝑏 are the model parameters. The attention score is calculated through Softmax 

function. The calculated attention scores are projected back to the output of the combination layer. 

The process can be formulated as Equation (5.6): 

                                                                           𝑋𝑠 = 𝑎𝑖𝑊𝑋                                                               (5.6) 

Where, 𝑎𝑖 is the calculated attention score, 𝑊 is the weight adopted in the network, and the 𝑋 is the 

output of the former combination layer, and 𝑋𝑠 is the final value after attention mechanism is applied. 

The demonstration of the attention operation is shown in Figure 5.2. Where 𝒇𝟏 to 𝒇𝒏 are the latent 

features passed into the attention network, the outputs of the network are attention scores for latent 

features with Softmax function. Lastly, each score is assigned to the feature by Hadamard product. 

5.3 Experiment and Analysis 
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Figure 5.2 Visualization of the Attention Operation  

In this section, we compare our proposed model with several state-of-the-art recommendation 

strategies. 

5.3.1 Evaluation Metrics  

In the experiment, we used the Area Under Curve (AUC) as the main criteria to evaluate the 

performance of each model. The proposed is a binary classifier which predicts whether a user will be 

interested in a given question, and the AUC can measure the capability of a model in distinguishing 

two labels. The calculation of the AUC used in this study is calculated as Equation (5.7): 

                                                         AUC  =  
∑ 𝑟𝑎𝑛𝑘𝑖−

𝑀(1+𝑀)

2𝑖∈𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝐶𝑙𝑎𝑠𝑠

𝑀×𝑁
                                          (5.7) 

Where M and N are the number of positive and negative samples respectively, 𝑟𝑎𝑛𝑘𝑖  is the location 

of the i-th sample. We also used mean square error (MSE) and binary cross entropy to reflect the 

errors that made by each model. The binary cross entropy used in this study is formulate as Equation 

(5.8): 

                                              H = −
1

𝑁
∑ 𝑦𝑖 log(𝑝(𝑦𝑖)) + (1 − 𝑦𝑖) log(1 − 𝑝(𝑦𝑖))𝑁

𝑖=1                     (5.8) 

5.3.2 Dataset 

The dataset used in the experiment contains 10 million (question, user) pair, which is collected from 

Zhihu12. The user here stands for an online learner who is or is not a participant in a certain question. 

This dataset also contains other types of side-information about the users and the questions, such as 

the answers to the question, categorical information (such as gender) about the user, and the user’s 

learning interests. Moreover, the distribution of the samples is unbalanced (the ratio of negative 

 
12 https://www.zhihu.com/ 

https://www.zhihu.com/
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samples to positive samples is around 4), which reflects the real and typical online application 

scenario, where for most users, only a small amount of questions they would like to answer due to 

various reasons, such as ‘pedagogical lurking’. A negative sample stands for recommending a 

question to a user, but the user does not participate in any learning activities; while a positive sample 

stands for recommending a question to a user and the user participate in a certain learning activity 

which could be answering the question or commenting the answers given by other users. As 

discussed in many pedagogical studies [Dobozy, 2017, Beaudoin, 2002, Dennen, 2008], for the 

online learning service, it is very difficult to enable learners to interact with each other like offline 

learning, even if the online learners have great and similar interests in the current learning session. 

5.3.3 Baselines 

AutoInt [Song, et al., 2019], FM, DeepFM, Deep&Cross Network (DCN), Attention Factorization 

Machine (AFM) are used as baselines in the experiment. The overall architecture comparison of 

AutoInt, DeepFM, AFM, and DCN is shown in Figure 5.3. Each of these models contains an 

embedding layer, a feature interaction layer and uses the Softmax function to make a prediction. The 

main difference among these models is the choice of techniques for feature interaction, where multi-

head self-attention is used in AutoInt, the combination of the FM and the DNN is used in DeepFM, 

the combination of FM and simple forward attention network is used in AFM, and combination of 

the cross-network and the FM is used in DCN. 

5.3.4 Experimental Setup 

All the models involved in the experiments are implemented using PyTorch [Paszke, et al., 2019]. 

Each categorical feature is represented as an embedding vector with six dimensions. All the non-

linear transformations are activated by ReLU except the output layer. The output is activated by the 

softmax function. All baselines are implemented strictly follow the suggestions and guideline of their 

original research. The early-stop mechanism is applied to all models involved in this experiment in 

order to prevent overfitting. Ten-fold-cross-validation is applied in the experiment. 

5.3.5 Experiment Results and Analysis 

The comparative experiment result is shown in Table 5.1 and Figure 5.4, which illustrates the overall 
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Figure 5.3 Overall Model structure of AutoInt, DeepFM, AFM, and DCN 

performance of each model based on three different criteria, AUC, MSE, and binary cross-entropy. 

According to the results, we can easily get the following three conclusions. 

5.3.5.1 The Importance of the High-order Feature Interaction 

According to the results in Table 5.1, we can clearly see that the AUC scores of FM and AFM are 

the lowest ones, and the MSE and binary cross-entropy values of these two models are the highest. 

These two models are the only two of which involves up to second-order feature interactions. Other 

baseline methods and our proposed model all involved high-order feature interactions, even though 

the ways of feature interaction are different. Hence, we argue that the high-order feature interaction 

(complex feature combination) does reflect how online learners make their decisions and involving 

the high-order feature interaction is useful and necessary to the large-scale web-based learning 

recommendation task. This finding proves the first hypothesis that made in the previous section. 

5.3.5.2 The Significance of the Attention Mechanism 

Another conclusion we can get from Table 5.1 is the models (AFM and our proposed model) that 

involve the attention mechanism have higher AUC scores than the models which do not. One 
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Table 5.1 Experiment Results of Different Models 

Model AUC MSE Binary 

cross 

entropy 

FM 0.6934 0.1243 0.4060 

DCN 0.7603 0.1134 0.3690 

AFM 0.6881 0.1255 0.4094 

AutoInt 0.7613 0.1130 0.3679 

DeepFM 0.7404 0.1128 0.3671 

Proposed model 0.7848 0.1071 0.3442 

 

possible explanation is AFM and our proposed model refine the results of high-order feature 

interaction via the attention mechanism. Such a result approves the second hypothesis that we made 

in the previous section. The main difference between the AutoInt and the proposed model is that they 

use different techniques to explore the feature interactions. According to the experiment result, we 

can see that our proposed model outperforms the AutoInt when handling the recommendation 

problem in the online knowledge sharing scenario. 

5.3.5.3 The Efficiency of the Proposed Model 

To investigate the third hypothesis that we made in the previous section, we also evaluate the 

computation efficiency of our proposed model and various state-of-the-art recommendation models. 

The result is also shown in Figure 5.4. The proposed model is in third place, outperforming the FM, 

AutoInt and DeepFM, and very close to the second one (AFM). However, the AFM does not involve 

high-order feature interactions. The most efficient model is DCN, which only takes around 195 

seconds under our experiment setting, while our proposed model takes 261 seconds on average for 

each training epoch. As the network architecture of our proposed model is extended from DCN and 

much more complex than other baselines, considering the improvements in recommendation 

performance and other models that have been verified their efficiency on real-world applications, the 

slight increase of the training time is reasonable and acceptable. The possible reason for this is many 

operations involved in the proposed model run simultaneously (such as the crossing network and 

deep network). Hence, we trust that with proper configurations, our model can reach efficiency 

requirements. 

5.4 Summary 

In this Chapter, we refine an existing recommender system [Lin, et al., 2020] using the attention 
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Figure 5.4 Efficiency Comparison of Different Models in Terms of Rum Time (s/epoch) 
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mechanism together with high-order feature interaction methods to boost the performance of a web-

based knowledge-sharing service. By comparing with the state-of-the-art recommender system, we 

confirm three hypotheses about the proposed model: 1. The involved high-order interaction is 

meaningful and can help further boosting recommendation performance. 2. Features used in the 

recommender system have different degrees of importance. The attention mechanism can better 

distinguish such difference comparing to the conventional weighting method. 3. Even though the 

structure of our model is more complex than the baselines, it still shows acceptable running 

efficiency. The experiment results clearly demonstrate that our model has the potential in handling 

complex online learning recommendation problem. More specifically, according to the experiment 

results with authentic online knowledge sharing data, the strengths of DCAN can be concluded into 

two points: 1.the proposed model can automatically mine and generate high-order feature 

interactions in both explicit and implicit ways; 2. the proposed model can further distinguish the 

importance differences of different features. 

For future directions, it is worth further exploring the recommendation strategy for online learning 

service. It is worth investigating how to precisely represent, model and integrate chronological or 

temporal factor in the recommendation task. As highlighted in [Zhou, et al., 2019], with the changing 

external environment and the internal cognition, a user’s interest might evolve over time. Especially 

for the online informal and non-formal educational activities, many factors are dynamic, such as 

learning interest drifting and the changes in knowledge level.  
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6 Chapter 6 Student Dropout Rate 

Prediction 

In this chapter, we propose a double-tower-based framework for dropout prediction. It separately 

models the macro and micro information from the learner’s historical interactions with the course 

contents. This chapter also demonstrates the design of a Convolutional Neural Network (CNN)-

based model for effectively mining time-series information from the online learner’s sequence of 

activity records. 

6.1 Research Questions 

As a course is made up of several instructional videos, the interactions between a user and a course 

can be regarded as a sequence of interaction logs with such videos. In general, both the course 

structure and the learner’s interaction record are in the form of sequential patterns. Whether a learner 

will drop out from an enrolled course can be predicted based on the sequence of historical online 

learning behaviours he/she has taken. This suggests the need for using a temporal modelling method 

to mine the time-series patterns, i.e., discovering patterns from the learner’s historical activity record. 

Hence, to better predict the dropout rate based on the learner’s historical activity records of the 

course, it is also vital to mine the hidden time-series patterns. A double tower-based deep learning 

framework with a carefully designed CNN-based micro component is proposed in this chapter to 

tackle the above research motivation. The contribution of our work mainly tries to answer the 

following research questions and address the related problems:  

1. Does the user’s interaction log record contain any useful time-series patterns for predicting 

learner dropout rate? 

2. For learner behaviour modelling like dropout rate prediction, is it necessary to use different 

modelling components to handle different granularities of information? 

3. If the data contains the latent time-series patterns, what is an effective method to model such 

patterns? 
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Figure 6.1 The Overall Network Structure of the Proposed Double-Tower Framework 

6.2 Model Design 

This section describes the architecture of our proposed double-tower framework from a high-level 

perspective at first. Then, the design details of the framework are presented and discussed. 

Subsequently, the relevant loss functions used in the training steps are explained. 

6.2.1 The Architecture of the Double-Tower Framework 

Inspired by the prior exceptional work in the recommender systems [Cheng, et al., 2016], the 

proposed framework is in a double-tower structure containing two intelligent components, one for 

modelling the macro information and another for modelling the micro information (see Figure. 6.1). 

The design of the framework structure is based on the idea of ‘separate and conquer’, which aims to 

separate different types of information and use the most suitable model to conquer each type of 

information. The raw input comes from the user’s interaction logs and the courses’ profile, which 

contain a mixture of both micro and macro information (indicated in blue and red colour in Figure 

6.1, respectively). Each component takes and handles different information and produces an 

intermediate result solely bases on one type of information (micro or macro). At last, two 

intermediate results are summarized through a regression function and used to produce the final 

prediction. 
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6.2.2 Problem Formulation 

To clearly formulate the problem of the learner dropout prediction, we firstly present the following 

definitions. 

6.2.2.1 Objective 

Given the input with different types and granularities of information, the goal of the proposed 

framework is to predict whether a learner will drop a given online course. Mathematically, such a 

task can be regarded as a binary classification problem. Defining the ground truth as 𝑦 ∈ {0, 1} 

(where 1 stands for dropout and 0 for not dropout), and the prior knowledge of course profile and 

user’s historical learning records as x. Given the input signal x and the target output y, the prediction 

process is notated as ℱand can be simply formulated as Equation (6.1): 

                                                                       ℱ(𝑥) ⟹ y                                                                     (6.1) 

6.2.2.2 Micro Information 

In this study, the term of micro information refers to the interaction details (i.e. watching times, 

video watching start time, and video watching end time) of a certain user 𝑢𝑖 with a course c; it is 

formulated as 𝑳𝑖 (𝑢𝑖, c). As one course may contain several instruction videos, the above definition 

can be further notated as 𝑳𝑖 (𝑢𝑖, c)∈ ℝ𝑛𝑥𝑚, 𝒄 = {𝑣1, 𝑣2, … , 𝑣𝑛}; where n is the number of the videos 

(belonging to the course c) that the user 𝑢𝑖 has already interacted with, m is the dimensionality of the 

feature space. The features notated as 𝑓1~𝑓𝑚 represent the interaction detail between the user 𝑢𝑖 and 

a video 𝑣𝑗. Specifically, given a course c, 𝑳𝑖,𝑗 is the interaction record between a certain user 𝑢𝑖 and a 

certain video 𝑣𝑗, and 𝑳𝑖,𝑗(𝑢𝑖, 𝑣𝑗) ∈  𝑳𝑖(𝑢𝑖 , 𝒄). Inspired by the research of pattern recognition from 

computer vision, in this study, the interaction between a user and a course is organised and 

represented in the form of a ‘figure’. The organisation and relationships between the user-video 

interaction and the user-course interaction are thus shown in Figure 6.2. As such organisation of the 

information may contain latent time-series pattern, a deep learning-based model is used to mine the 

underlying features and make predictions. 

6.2.2.3 Macro Information 

The macro information refers to the high-level, general information of a certain course. This includes 

basic profile information of this course (i.e. description, discipline, and the number of videos) and 
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Figure 6.2 The Organisation Detail of an Interaction ‘Figure’ 

descriptive statistical information about all learners’ interaction history with the course (i.e. the 

course popularity and the number of enrolled students). For the interaction between a certain user 

𝑢𝑖 and a course c, the macro information is formulated as 𝑮𝑖 ( 𝑢𝑖 , c) ∈ ℝℎ , where h is the 

dimensionality that used to represent the macro information. As the macro information only includes 

high-level general information without complex patterns, to reduce the time and space complexity, a 

less complex model (e.g., logistic regression) will be used to process them. 

Together with the definition of the objective and micro information, the dropout prediction task can 

be further defined as: given the macro information 𝑮𝑖(𝑢𝑖 , c) and the micro information 𝑳𝑖(𝑢𝑖 , c) 

between the user 𝑢𝑖 and the course c as the input signal, our goal is to predict whether the user 𝑢𝑖 

will drop out from course c in the future. The proposed framework is to learn the following Equation 

(6.2) ℱ: 

                                                            ℱ(𝑮𝑖(𝑢𝑖 , 𝒄), 𝑳𝑖(𝑢𝑖 , 𝒄)) ⟹ 𝑦(𝑢𝑖,𝒄)                                           (6.2) 

6.2.2.4 Convolutional Network with Fixed Kernel Width 

Inspired by the network structure proposed in the prior work reported in [Kim, 2014], we have also 

carefully designed a CNN-based network to capture the micro information, which may contain 

valuable time-series patterns. The interaction ‘figure’ is scanned by multiple kernels with a fixed-

width m, which equals to the feature size (the dimension size). Hence, each convolutional operation 

summarizes  𝑘𝑖  pieces of successive learning activities where 𝑘𝑖  equals to the kernel height. As 

illustrated in Figure 6.3, two kernels, denoted in red and blue, with heights 𝑘1and 𝑘2, summarize 

successive learning activities with different time length 𝑘1and 𝑘2. Next, the extracted time-series 

patterns are further processed and summarized by following convolutional and pooling operations. A 
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Figure 6.3The Network Structure of the CNN-based Micro Component  

fully connected layer is used to produce the intermediate result for the micro component. For the 

comprehensive evaluation of the time-series modelling capability, in our experiments, the 

mainstream solutions such as LSTM, GRU and their variants were also implemented and compared 

with the proposed CNN-based model. The details will be discussed in Section 6.2.3. 

6.2.3 Separate and Joint Training Strategies 

As shown in Figure 6.1, the intermediate results produced by the micro component and the macro 

component are combined using a weighted sum before being passed into the regression layer for the 

final prediction. This processing step is formulated as Equation (6.3). 

                                           𝑃(𝑌 = 1|𝑥) =  𝜎(𝑊𝑚𝑖𝑐𝑟𝑜𝑟𝑚𝑖𝑐𝑟𝑜 + 𝑊𝑚𝑎𝑐𝑟𝑜𝑟𝑚𝑎𝑐𝑟𝑜 + 𝑏)                        (6.3) 

where 𝑟𝑚𝑖𝑐𝑟𝑜 and 𝑟𝑚𝑎𝑐𝑟𝑜 are the intermediate results from micro and macro components, respectively; 

𝑊𝑚𝑖𝑐𝑟𝑜  and 𝑊𝑚𝑎𝑐𝑟𝑜  are two different weights; b is the bias value; and 𝜎  represents regression 

function. 

Note that in this framework, the micro and macro components can be trained in two different ways: 

joint mode or separate mode. As its name implies, in the joint mode, two components are trained 

jointly. It is an end-to-end training process with all of the parameters optimized simultaneously. 

Conversely, in the separate mode, two components are trained separately without knowing each 

other. When using the seperate mode, after training, the two intermediate results can be directly 

combined by applying weighted means or be combined through an additional regression layer, same 

as Equation (3). As for training the joint mode, an additional loss function can be used to add 
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constraints for the intermediate output of each component. As formulated as Equation (6.4) and (6.5), 

it is to ensure both components focus on predicting the learner’s dropout rate. 

                                    𝐿𝑜𝑠𝑠𝑙 =  − ∑ 𝑙𝑟𝑖
𝑙𝑜𝑔𝑦𝑖 + (1 − 𝑙𝑟𝑖

) log(1 − 𝑙𝑟𝑖
)𝑛

𝑖=1                                       (6.4) 

                                   𝐿𝑜𝑠𝑠𝑔 =  − ∑ 𝑔𝑟𝑖
𝑙𝑜𝑔𝑦𝑖 + (1 − 𝑔𝑟𝑖

) log(1 − 𝑔𝑟𝑖
)𝑛

𝑖=1                                    (6.5) 

where 𝑙_𝑟𝑖 and 𝑔_𝑟𝑖 are the intermediate outputs of the micro and macro component, respectively. 

The 𝑦𝑖  is the ground truth label for the i-th sample. The final loss for the joint mode was calculated in 

Equation (6.6). 

                                                           𝐿𝑜𝑠𝑠 =  𝐿𝑜𝑠𝑠𝑙 +  𝐿𝑜𝑠𝑠𝑔 + 𝐿𝑜𝑠𝑠𝑓                                       (6.6) 

where 𝐿𝑜𝑠𝑠𝑙  and 𝐿𝑜𝑠𝑠𝑔  are the loss values for micro component and macro component, respectively. 

𝐿𝑜𝑠𝑠𝑓 is the final loss of the entire double-tower framework. 

6.3 Experiment and Analysis 

The details of the conducted experiments are discussed in this section, including details of the used 

dataset, evaluation metrics, involved baselines, relevant experiment settings and the comparative 

analysis of the results. 

6.3.1 Dataset 

The dataset used in this experiment was collected from XuetangX13, the largest MOOC platform in 

China launched by Tsinghua University in 2013. Up to now, this platform has hosted more than three 

thousand high-quality courses and has more than 58 million registered online users. The data used in 

the experiment was extracted from the public data repository MOOCCube14, which hosted 706 

online courses, more than 30 thousand videos, and about 200 thousand users. We used data from all 

available courses and videos, but we left out the information about the concept, taxonomy, and paper 

information of the dataset, as this was beyond the scope of this study. For details of the statistic 

information about MOOCCube and the explanation of the dataset, please refer to the original work 

reported in [Yu, et al., 2020]. 

6.3.2 Evaluation Metrics 

 
13 https://www.xuetangx.com/ 
14 http://moocdata.cn/data/MOOCCube 
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An intuitive approach to directly measure the overall performance of a binary classification model is 

by using accuracy (ACC). This is the proportion of the correct predictions out of the total number of 

predictions, as formulated in Equation (6.7): 

                                                    𝐴𝐶𝐶 =  
𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛
                                (6.7) 

It should be noted that the accuracy paradox might occur [Valverde-Albacete, et al., 2014], 

especially for the imbalanced distributed dataset. Hence, for a comprehensive evaluation, we also 

involved some other evaluation metrics discussed as follows. 

Another evaluation metric used in the experiment is the F-measure, which is the harmonic mean of 

Recall and Precision. It is worth mentioning that due to the trade-off between Recall and Precision, 

high Recall or Precision cannot directly and correctly indicate a good model. Hence, F-measure will 

be a better option for evaluating the binary classification results. Specifically, F1-score was used in 

the experiment. 

To achieve a more comprehensive evaluation result, the Area Under Curve (AUC) score is also used 

as an evaluation metric in the experiments. Known as the area under the Receiver Operating 

Characteristic (ROC) curve, AUC reflects the distinguishing ability of positive and negative labels 

for a model. 

6.3.3 Baselines 

In the experiments, to comprehensively investigate the learner dropout prediction problem for the 

MOOC learning environment and demonstrate the effectiveness of our proposed solution, different 

models were used to construct the proposed double-tower framework. For the macro component, we 

applied: 

1. LR: logistic regression model. It is one of the most straightforward and efficient models that 

requires very little computation power. LR can also give direct inference about the importance 

of the involved features. 

2. GBDT: gradient boosting decision tree. GBDT and its variants have been proved to be a good 

choice to handle machine learning tasks in the industry area and various data science 

competitions. GBDT has several advantages, such as flexibility, less data pre-processing 

required, and the ability in handling missing data. 

For the micro component, we implemented and compared the following models: 
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1. The proposed CNN-based neural network. 

2. (Bi-)GRU: (bi-directional) gated recurrent unit neural network. (Bi-)GRU is more efficient than 

(Bi-)LSTM, with less training time. 

3. (Bi-)LSTM: (bi-directional) long-short-term-memory neural network. Comparing to (Bi-)GRU, 

(Bi-)LSTM shows better performance when mining the long sequence pattern. 

4. MLP: multi-layer perceptron neural network. MLP is the most intuitive and simple network, it 

is frequently used as the benchmark when the experiment involves comparing different deep 

learning or neural network models. 

6.3.4 Experimental Setup 

All neural networks are implemented using the PyTorch framework [Paszke, et al., 2019]. To ensure 

that the objective functions work properly, all continuous features used in selected neural networks 

are scaled using the z-score normalization strategy. The dimension number of the hidden layer for 

GRU and LSTM is set to 64, and 32 for Bi-GRU and Bi-LSTM. For the CNN model, three different 

kernels (height 3, 4, and 5) are used with 32 output channels. Power-average pooling with Power 2 is 

used in the CNN network. The input of the MLP is the concatenation of shuffled interaction records. 

We use the shuffled data in MLP to verify the existence of the time-series pattern in the micro 

information. The categorical features are converted into dense embeddings. ReLU is used as the 

activation function for all non-linear transformation layers except for the output layer, which is 

activated by a Sigmoid function. All the other settings strictly followed the guidance of the original 

work of each model or the default settings in the used frameworks and libraries. 

6.3.5 Experimental Results and Discussion 

6.3.5.1 The Existence of the Time-Series Pattern 

To find out whether the interaction log contains any latent time-series information, in the experiment, 

we firstly apply several models with/without time-series modelling mechanisms to handle the micro 

and macro information. Specifically, LR, GBDT and MLP are the models that do not involve any 

specialized time-series modelling mechanisms. The GRU, LSTM and the proposed CNN-based 

network are the ones that contain time-series modelling mechanisms. According to the comparison 

results (see Table 6.1), it is comfortable to find that the models with the time-series modelling 
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mechanism outperform the ones without it. This finding suggests the existence of the latent time-

series pattern in the online learning interaction log, which answers the first research question in 

Section 6.1. As the macro information only contains the category and demographic information 

(such as subject popularity, number of courses involved, and subject discipline), we can further 

conclude that the time-series pattern exists in the micro information. Hence, to achieve better 

performance, we should use the model with time-series pattern modelling ability when handling the 

micro information. 

6.3.5.2 The Effectiveness of the Double-Tower Framework 

By comparing the results from Table 6.1 and Table 6.2, we can conclude that the double-tower 

framework in either joint mode or separate mode outperforms the single model. Using different 

components to handle different types of information, respectively, can further improve the model 

performance. Solely using a single model to process all types of information is difficult to find the 

optimal solution. This observation answers the second research question aforementioned in Section 

6.1. The diversity of the information in an online learning platform like MOOC requires us to 

involve different models for better system performance. Moreover, when closely looking at the 

results in Table 6.2, we can also find out that the effectiveness of the double-tower framework is 

determined by the model used in each component and the training mode. The analysis of this result 

will be discussed in the remainder of this section. 

6.3.5.3 The Specificity of the Time-Series Information in MOOC 

When comparing the time-series modelling ability of the proposed model with (Bi-) LSTM and (Bi-) 

GRU, the results clearly suggest that the proposed CNN-based model surpasses the rest, either in 

Table 6.1 Comparison of Single Model 

Models ACC F1 AUC 

LR  0.7727 0.7037 0.8382 

GBDT 0.7967 0.7293 0.8619 

Proposed  0.8292 0.7859 0.8948 

GRU 0.8211 0.7730 0.8918 

LSTM 0.8142 0.7560 0.8892 

MLP 0.8032 0.7462 0.8739 
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single model comparison (see Table 6.1, highlighted in bold) or to be compared as a component in 

the double-tower framework (see Table 6.2, highlighted in bold). Specifically, the framework with a 

GRU-based micro component outperformed the one with the LSTM-based micro component. Bi-

directional GRU or LSTM did not show any remarkable improvements, and sometimes they were 

even worse (in the separate mode). Similar results can be observed in Table 6.2. Hence, we can 

conclude the result of model performance as CNN > GRU > LSTM, and GRU/LSTM ≈  Bi-

GRU/Bi-LSTM15. 

The above finding answers the last research question mentioned in Section 6.1, that comparing to the 

mainstream time-series modelling solution such as LSTM and GRU, our model is more suitable for 

an online learning scenario. This can be ascribed to the specificity of the time-series information in 

the online educational activity. For online learning, the relationships between information sequences 

are relatively weak. 

Based on the mathematical concepts of LSTM [Gers, et al., 1999] and GRU [Cho, et al., 2014], 

LSTM has a more complex structure, and tends to model longer sequences than GRU. In other 

 
15 Marks ‘>’ and ‘≈’ are used as shorthand to represent outperformance and similar performance, 

respectively. 

Table 6.2 Comparison of the Separate Mode and Joint Mode 

Models 
Separate Mode Joint Mode 

ACC F1 AUC ACC F1 AUC 

LR + 

Proposed 
0.8363 0.7875 0.9004 0.8566 0.8223 0.9194 

LR + GRU 0.8259 0.7755 0.8940 0.8449 0.8109 0.9143 

LR + Bi-

GRU 
0.8220 0.7694 0.8915 

0.8472 0.8120 0.9178 

LR + 

LSTM 
0.8187 0.7601 0.8895 

0.8377 0.7908 0.8972 

LR + Bi-

LSTM 
0.8172 0.7639 0.8858 

0.8396 0.7928 0.9013 

GBDT + 

Proposed 
0.8423 0.8016 0.9093    

GBDT + 

GRU 
0.8395 0.7988 0.9095    

GBDT + 

Bi-GRU 
0.8386 0.7962 0.9084    
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words, the LSTM model tries to encode more long-term and short-term information than GRU, but 

for the recording of online learning activity, the dataset does not actually contain much relevant time-

series information. Similarly, whilst bi-directional LSTM or GRU tries to model more complex 

sequential information, the result suggests that the dataset does not contain much complex time-

series information. 

In most cases where LSTM and GRU outperform the CNN model, the datasets always contain ‘rich’ 

time-series information. Such sequence of information is strictly composed of certain rules or 

domain-specific requirements or features, such as the grammar rules in NLP, and genetic patterns in 

the DNA sequence.  

However, for the activity records of online learning, the connection between adjacent activities is 

weaker than the relationships between words in the NLP task. Each video is a relatively independent 

unit, which contains a certain amount of complete knowledge points. The interactions with videos 

can be relatively random. Although the learning records in MOOC do contain some useful time-

series information, which could be useful for dropout prediction, such information does not contain 

the obvious long-term pattern. Therefore, for mining or modelling sequence of learning activities, it 

is suggested to choose a model with better generalization ability and less constraint. 

6.3.5.4 Comparison of Effectiveness and Efficiency between Two Training Modes 

When comparing the left part of the first five results with the right part in Table 6.2, we can see that 

training micro and macro components jointly produces better results than training them separately. 

We ascribe this improvement to sufficient information exploring in the joint mode. As an end-to-end 

framework, all the information is exposed to the framework and exchanged between two 

components at the same time. In the experiments, we also monitored the training time in order to 

compare the efficiency of the proposed framework in different settings. Table 6.3 records the running 

time (seconds) per training epoch and the number of epochs a training process needs to reach the 

optimal point16. It is worth mentioning that when using the separate mode, two components can be 

trained simultaneously. In addition, the macro component requires much less training time than the 

micro component as it has a simpler structure. Hence, we had merely measured the running time of 

the micro component for the separate mode. 

 
16 The optimal point does no refer to the point that model training terminates. As the neural networks were 

initialized by random seed every time, it is an approximated epoch number that the model required to 

get close to the final state.  
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The frameworks with the proposed CNN-based component requires the least time for both joint 

mode and separate mode (see Table 6.3, the first and fourth row). The frameworks with the LSTM 

component took longer time in each training epoch comparing to the ones with GRU. Notably, such 

a result corresponds with the mathematical definitions [Cho, et al., 2014] of these two models, where 

GRU is much simpler and lightweight than LSTM. Furthermore, the joint mode required a little 

more time for each training epoch but less training epoch to reach the optimal point (see Table 6.3, 

the comparison of the first three results and the last three results). This also corresponds to the 

mathematical derivation from which the joint mode has involved more parameters in the training 

process and has higher time complexity. As the joint mode required fewer training epochs, it is also 

viable to conclude that the additional loss functions (Equation 6.6) used in the joint mode have 

forced the two components to efficiently exchange information flow during the training process. 

Such internal information exchange also exposed additional information to both components. 

6.3.5.5 The Implication of Two Training Modes 

As for the implications, the joint mode is an end-to-end training process, which is a more efficient 

training strategy. Compared to the separate mode, it requires less training time and fewer epochs to 

find the optimal solution, as discussed before. 

However, in some cases, these two components cannot be trained simultaneously. For example, in 

some high-performance conventional models, such as the random forest, they are very difficult to be 

trained together with a neural network because they use quite different optimization strategies. To 

better demonstrate such a situation, GBDT was also used as another type of macro component, 

which was difficult to implement under the PyTorch framework. According to Table 6.2, the 

Table 6.3 Comparison of the Framework Efficiency 

Models Epoch 

number 

Time 

(s/epoch) 

LR + Proposed (J) 15 287.12 

LR + GRU (J) 15 320.35 

LR + LSTM (J) 15 345.04 

LR + Proposed (S) 25 286.36 

LR + GRU (S) 25 294.97 

LR + LSTM (S) 25 327.27 
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framework using GBDT as the macro component outperformed those having used LR as the macro 

component in the same setting. Empirically, one of the two components may reuse an existing 

trained model. This will allow us to only train one new model for another component. Undoubtedly, 

in these situations, the separate mode is more efficient than the joint mode. In summary, the joint is 

more efficient, but the separate mode is more flexible than the joint mode. 

6.4 Summary 

In this study, we investigate and analyse the learner dropout prediction problem for the MOOC 

platform. In order to deal with different types of information, we propose a double-tower framework. 

We design a CNN-based network to model the time-series information from users’ successive 

learning records. In the experiments, the proposed framework is comprehensively evaluated by 

applying different settings and combinations of components. The difference in time-series modelling 

approaches between dropout rate prediction tasks and the tasks from other disciplines (e.g. NLP and 

bioinformatics) are also discussed. The results have shown that the proposed framework with a 

CNN-based micro component outperforms all baseline models. The experiments demonstrate that, 

both the proposed double-tower framework and the CNN-based neural network are entitled with 

high effectiveness. This novel work also provides empirical implications for the practical usage of 

different training modes. Moreover, the proposed model shows effectiveness in both the joint mode 

and the separate mode. 

In our future research, to ensure the model to be more robust, we will seek to integrate other state-of-

the-art techniques, such as attention-based and residual networks. 
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7 Chapter 7 Generative Adversarial 

Network Based Optimization Strategy for 

the Micro Learning Recommender System 

This chapter highlights and discusses advantages of GAN-based recommender system and gaps with 

micro learning service through comprehensive discussions and a pilot experiment. This chapter also 

proposes a novel adversarial training model to balance the trade-off between the false-negative rate 

and false-positive rate of the recommendation results and mine the implicit non-positive feedback 

from the learner’s historical interaction records. 

7.1 GAN and Micro Learning 

According to the reviewed prior studies in Chapter 2, in addition to the combination of generation 

and discrimination, we can identify advantages of GAN that naturally comply with the demands of 

the development of recommender system for the micro learning service.  

The experimental results of two pioneer works, CFGAN and IRGAN, have demonstrated the 

potentials of GAN when comparing to many state-of-the-art recommender systems. The 

representative statistics details are shown in Table 7.1 [Chae, et al., 2018] and Table 7.2 [Wang, et al., 

2017]. In these two studies, top N results are evaluated separately for each model; ndcg@N, mrr@N, 

p@N, and r@N are the shorthand for nDCG, MRR, precision and recall scores for different N values. 

The experimental results from prior studies have shown that the GAN-based recommender system 

has better performance than various other state-of-the-art recommender systems in different 

application scenarios. 

Nevertheless, to fill the gaps of the micro learning service, which have been discussed in Chapter 2, 

the feasible solutions towards the motivations raised in applying GAN-based recommendation 

strategy in micro learning can be summarised as follows: 
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Table 7.1 Item Recommendation Results on Movielens Dataset  

Model p@20 r@20 ndcg 

@10 

mrr@20 

ItemPop 0.138 0.251 0.195 0.292 

BPR 0.236 0.287 0.380 0.574 

FISM 0.285 0.353 0.429 0.685 

CADE 0.287 0.353 0.425 0.674 

GraphGAN 0.151 0.260 0.249 0.312 

IRGAN 0.221 0.275 0.368 0.523 

CFGAN 0.294 0.360 0.433 0.693 

 

Table 7.2 Item Recommendation Results on Netflix Dataset 

Model p@5 p@10 ndcg 

@5 

ndcg@10 mrr@all 

MLE 0.2945 0.2777 0.3011 0.2878 0.5058 

BPR 0.2933 0.2774 0.2993 0.2866 0.5040 

LambdaFM 0.3790 0.3489 0.3854 0.3624 0.5857 

IRGAN 0.4335 0.3923 0.4404 0.4097 0.6371 

 

1. Imbalanced data distribution and cold-start problem frequently occur in recommendation 

scenario of micro learning service. Data augmentation is a straightforward way to supplement 

the system with extra information. As aforementioned in Chapter 2 (Section 2.5.4), GAN 

naturally has the advantages of generating lifelike data. GAN-based data augmentation models 

have been demonstrated that they can boost the quality of recommendation result, like using 

negative samples for precisely modelling user behaviour [Gao, et al., 2019] and new 

interactions for less active users [Wang, et al., 2019]. 

2. As discussed in Chapter 2 (Section 2.5.3), with proper adjustments in the loss function, GAN-

based models can precisely rank the recommendation list. The ranking ability is significant for 

a recommender system when a learner is not familiar with the discipline he wishes to study, or 

ad hoc online resources. 

3. Diversity is one prominent characteristic in the informal learning scenario. It is proven in the 

research of DP-GAN (discussed in Chapter 2 (Section 2.5.3), GAN is one possible solution to 
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balance the trade-off of relevance and diversity. 

4. As mentioned in Chapter 2 (2.5.1), GAN has been used in various generation tasks from natural 

language to the video stream and demonstrate its outstanding creativity. Micro learning mainly 

targets the self-directed learner to quickly gain required knowledge under few constraints. In 

that sense, the learning style and learning resources could vary considerably in a different 

context. Complimented by such creativity, GAN also has the potential to positively influence 

the learning outcome of such informal learning. 

7.2 The Pilot Experiment 

7.2.1 Experimental Configurations 

In order to find out whether the merit of the GAN-based framework can bridge the gaps in micro 

learning service, as we discussed before, we compare the effectiveness of two classic neural 

network-based recommender systems with or without using the adversarial learning strategy. The 

dataset used in this pilot experiment is collected from ZhiHu, the detail of this dataset please refer to 

the experiment section in Chapter 5. 

Two classic neural network-based recommender systems are involved in the experiments, one is 

multi-layer perceptron (MLP) and another one is stacked autoencoder (SAE) [Tallapally, et al., 

2018]. Both models can mine latent information from interaction records. In the experiments, these 

two models are trained with and without adversarial learning strategy. For the adversarial mode, both 

models are used as generators to select micro learning units from online resources that a user might 

be interested in. 

7.2.2 Results  

The pilot experiment results are shown in Table 7.3. The first and the third rows are the results 

produced by the models trained using the adversarial learning strategy, while the second and the 

fourth are trained without using the adversarial learning strategy. We can easily observe that using an 

adversarial learning strategy to train the model can further boost the model performance. Moreover, 

we can see that the simpler model MLP outperforms the complex model SAE without using the 

adversarial learning strategy. However, when using adversarial learning, SAE outperforms all the 

models to a great extent.  
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Table 7.3 Comparison of Models Using and not Using Adversarial Learning 

Model 
ndcg@10 mrr@10 p@10 r@10 ndcg@20 mrr@20 p@20 r@20 

MLP 

(GAN) 
0.4116 0.6501 0.3431 0.2223 0.4092 0.6536 0.2764 0.3396 

MLP 
0.407 0.6414 0.3417 0.2094 0.3934 0.6438 0.2712 0.304 

SAE 

(GAN) 
0.435 0.6827 0.3595 0.2371 0.4269 0.6855 0.284 0.3497 

SAE 
0.3941 0.6385 0.3261 0.2151 0.3934 0.6423 0.2638 0.326 

 

After analysis, we suggest that using the adversarial learning strategy can force the information 

flowing and exchanging between the generator and the discriminator, and such a process is helpful 

for the recommender system to avoid getting stuck in the local optimum point. Hence, we can 

conclude that using adversarial learning (i.e., GAN) has the potential to further boost the 

performance of a recommender system for micro learning service. 

7.2.3 Research Gaps and the Application Background of a Novel GAN Model 

As discussed in Chapter 5, a well-designed recommender system is a key factor to personalised 

online learning service. However, the recent mainstream studies in this field only focus on improving 

the performance of a recommender system by adding new features. For example, features about 

user/item’s profile are used in [Lin, et al., 2020], time-series information is used in [Feng, et al., 

2019], and DCN is based on interactions of various features [Wang, et al., 2017]. One drawback of 

this strategy is that sometimes some of the features are hard to be captured in some application 

scenarios or are not captured in many exist (public) datasets. Hence, in this research, based on the 

application background of online knowledge sharing service, we trace back to the fundamental issue 

about the recommender system of how to effectively utilise the user-resource interaction logs. 

For a personalised online learning service, the recommended resources that match a learner’s interest 

are regarded as positive results and those which do not are regarded as negative results. False-

positive and false-negative are two different types of errors that affect the robustness of a 

recommender system. One of the key challenges for a recommendation task in online learning is to 

balance the false-negative rate (FNR) and the false-positive rate (FPR) of the recommendation 

mailto:ndcg@10
mailto:mrr@10
mailto:precision@10
mailto:recall@10
mailto:ndcg@20
mailto:mrr@20
mailto:precision@20
mailto:recall@20
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results [Schröder, et al., 2011]. This usually requires two ‘opposite’ strategies to control and suppress 

these two errors: one for guiding the model to identify as many positive results as possible and the 

other for preventing the model from choosing negative results. Here are two well-known extreme 

situations: When the model regards all the candidate results as positive, all positive results are found, 

but the FPR is the highest. Conversely, when the model regards all the candidate results as negative, 

it avoids all negative results, but the FNR reaches the highest. For an effective recommender system, 

as many positive and as few negative results are the aim.  

 Moreover, in the recommendation scenario, there are massive implicit non-positive feedbacks, such 

as unrated items from a learner. The unrated items can be the negative learning materials that a 

learner is not interested in or the items that a learner has not yet interacted with. Properly utilising 

such non-positive information can more precisely profile a user’s learning preference. Therefore, 

balancing the trade-off between FNR and FPR and distilling the non-positive information can be the 

key to improve the recommendation effectiveness for the online learning services. 

 With the advantages of generalisation and flexibility, we hold that the GAN-based model has the 

potential to further exploring latent information from user-item interaction logs. As discussed in the 

prior studies [Lin, et al., 2019, Wu, et al., 2015] that the online learning scenario involves massive 

vague information, and for a knowledge-sharing platform it always covers a wide range of 

disciplines. A recommender system for online knowledge service is required to be flexible and 

generalise enough. Hence, in this research, we propose an adversarial learning framework to 

recommend personalised learning resource to online learners engaged with the online knowledge 

sharing service. The proposed framework is composed of three generators and one discriminator. 

With well-designed loss functions, this framework can suppress the FPR and FNR at the same time 

and also involve learner’s implicit non-positive feedbacks. 

7.3 Model Design 

The overview of our proposed model is introduced firstly in this section. Next, the loss functions 

used in this research is presented and explained. Last, the designing details of the generators and the 

discriminator are discussed. 
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Figure 7.1 Network Structure of the Discriminator and the Generator 

7.3.1 The Framework Overview 

In this study, a novel GAN framework is designed to solve the well-known collaborative filtering 

problem [Schafer, et al., 2007] for the micro learning service. The proposed framework consists of 

three generators and one discriminator. These generators have different goals and are optimised by 

different loss functions. The first generator 𝐺1 aims to avoid selecting learning resources that do not 

meet the user’s preference (minimise the FPR). The second generator 𝐺2 aims to select as many as 

possible learning resources that meet the user’s preference (minimise the FNR). The third generator 

𝐺3 aims to select the learning resources that a user will not be interested in. The generators are 

constructed by using the stacked autoencoder and the discriminator is constructed by using multi-

layer perceptron conditioned by learners’ historical learning activities. The network structures of the 

discriminator and the generator are shown in Figure 7.1. 

 The training workflow is shown in Figure 7.2, which is partially based on the prior work of cGAN 

[Mirza, et al., 2014]. X is the input information for the discriminator and the generators. The 

difference between the proposed model and cGAN is that our model has three generators 𝐺1, 𝐺2, and 

𝐺3. Therein, 𝐺1 and 𝐺2 generate (select) positive learning resources 𝑅1 and 𝑅2, while 𝐺3 generates 

(selects) negative learning resources 𝑅3  from the candidates. Formally, these processes can be 

represented as 𝐺1(X) → 𝑅1 , 𝐺2(X) → 𝑅2 , and 𝐺3(X) → 𝑅3 . During the adversarial training, the 
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Figure 7.2 Network Structure of the Discriminator and the Generator 

discriminator D is assigned to distinguish four types of selected learning resources 𝑅0, 𝑅1, 𝑅2, and 

𝑅3, where 𝑅0 denotes the ground truth learning resources that the user is interested in, and the 𝑅1, 𝑅2, 

and 𝑅3 are the fake learning resources selected by different generators. 

 Specifically, the proposed three generators are jointly trained through the cGNA framework, which 

avoids the generators being optimised in different ways or selecting inferior learning resources to the 

target user. During the training step, the discriminator acts as a medium, connecting all the 

generators and allowing the distilled information to flow among them. Such type of information 

exchanging strategy can guarantee mining implicit, non-positive feedback and reducing FPR and 

FNR simultaneously. 

 After training, each of the generators17 can be used as a recommender model to select learning 

resources that the user might be interested in. As all the generators have been trained jointly through 

the adversarial training process and the entire information flow is shared among them, each generator 

can recommend reasonable results consequently. However, in practice, we intend to use all three 

generators to recommend learning resources and fuse their outputs into the final recommendation 

results to guarantee better robustness. The recommendation (prediction) stage is shown in Figure 7.3. 

7.3.2 Loss Functions for the Proposed Model 

In order to better optimize our model, four loss functions ℒ were carefully designed, the adversarial 

loss between the generators and a discriminator, the data loss for suppressing FPR and FNR, the 

 
17 For the third generator 𝐺3, we need to choose the leaning materials with the lowest scores, because 𝐺3 

is trained to select negative samples.  
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Figure 7.3 The Recommendation Workflow 

consistency loss for forcing different generators to be optimized towards the same goal, and the non-

positive feedback loss for modelling unrated resources. In summary, the complete objective of the 

proposed model is formulated as Equation (7.1) ( 𝐺1
∗, 𝐺2

∗, 𝐺3
∗, and 𝐷∗ represent for the generators and 

discriminator, four different types ℒ are the loss functions used in this study): 

                  (𝐺1
∗, 𝐺2

∗, 𝐺3
∗, 𝐷∗) = arg min

𝐺1,𝐺2,𝐺3

max
𝐷

(ℒ𝑐𝐺𝐴𝑁 + ℒ𝐷𝑎𝑡𝑎 +   ℒ𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦  +  ℒ𝑛𝑓)                (7.1) 

7.3.2.1 Adversarial Loss 

The adversarial loss models the competition manner between the generators and the discriminator. 

Different from the commonly used adversarial loss function like the one proposed in IRGAN one 

[Wang, et al., 2017], the adversarial loss used in this study contains four terms according to the usage 

of three generators and one discriminator, which can be formulated as Equation (7.2). 

ℒ𝑐𝐺𝐴𝑁(𝐺, 𝐷) =  𝔼𝑥~𝑝𝑑𝑎𝑡𝑎
[𝑙𝑜𝑔𝐷(𝑐, 𝑋0)] + 𝔼𝑥~𝑝𝜙

[log (1 − 𝐷(𝑐, 𝐺1(𝑥)))] + 𝔼𝑥~𝑝𝜙
[log (1 −

                                                  𝐷(𝑐, 𝐺2(𝑥)))] + 𝔼𝑥~𝑝𝜙
[log (1 − 𝐷(𝑐, 𝐺3(𝑥)))]                                (7.2) 

Where the first term corresponds to the discriminator and the last three terms correspond to the 

generators, c is the condition for cGAN, x is input information for the generators and 𝑋0  is the 

ground truth. Maximizing this loss function guides the generators to generate more vivid results 

which are close to the ground truth. Minimizing this loss function enhances the discrimination ability 

of the discriminator to tell the difference between the generated data and the real one. 

7.3.2.2 Data Loss 

The second loss function is the data loss, which measures the FPR and FNR. The data loss for the 

first generator, 𝐺1, and second generator, 𝐺2, is formulated in Equation (7.3) and (7.4), respectively. 
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The final data loss is the sum of these two losses, as Equation (7.5). It is worth noting that as the third 

generator G3 was designed for selecting negative samples, we did not calculate data loss for 𝐺3. 

                                                     ℒ𝐷𝑎𝑡𝑎1
(𝐺1) = 

1

𝑛
∑ (𝜆1𝐹𝑁1𝑖  + 𝐹𝑃1𝑖)𝑛

𝑖=1                                           (7.3) 

                                                       ℒ𝐷𝑎𝑡𝑎2
(𝐺2) = 

1

𝑛
∑ (𝐹𝑁2𝑖 + 𝜆2𝐹𝑃2𝑖)𝑛

𝑖=1                                         (7.4) 

                                                      ℒ𝐷𝑎𝑡𝑎 = ℒ𝐷𝑎𝑡𝑎1
+ℒ𝐷𝑎𝑡𝑎2

                                                                 (7.5) 

Where  𝜆1 and 𝜆2 are weighting parameters which balance the influences of false-negative results 

and false-positive results, respectively. This weighting strategy makes two generators focus on 

distilling different types of information; where one pays more attention to selecting as many positive 

results as possible, and the other pays more attention to avoiding selecting negative results. One 

noteworthy point is that the data losses formulated above still focus on different objective FPR and 

FNR, respectively. The FPR regularized by a small FNR value (controlled by 𝜆1) in 𝐺1 can achieve 

better initialization for training (similar for 𝐺2). 

7.3.2.3 Consistency Loss 

Argued in the prior work of [Wang, et al., 2019], the generators are optimised towards the gradient, 

which has strong randomicity based on different initial settings. This could lead the generators to 

converge in different ways to cause discrepant results. To avoid this problem, a consistency loss is 

used to bind these generators and to further force the medium training information to flow among 

them. L2 norm is used to measure the difference between the outputs of two generators. Thus, 

consistency loss for each generator is formulated as Equation (7.6), (7.7), and (7.8). 

                                 ℒ𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦(𝐺1) = 𝛼1||𝐺1(𝑥) − 𝐺2(𝑥)||2
2 + 𝛼2||𝐺1(𝑥) − 𝐺3(𝑥)||2

2                (7.6) 

                                ℒ𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦(𝐺2) = 𝛼3||𝐺2(𝑥) − 𝐺1(𝑥)||2
2 + 𝛼4||𝐺2(𝑥) − 𝐺3(𝑥)||2

2                (7.7) 

                               ℒ𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦(𝐺3) = 𝛼5||𝐺3(𝑥) − 𝐺1(𝑥)||2
2 + 𝛼6||𝐺3(𝑥) − 𝐺2(𝑥)||2

2                 (7.8) 

Where 𝛼𝑖 is a hyper parameter that indicates the weight of each loss value. 

7.3.2.4 Non-positive Feedback Loss 

Inspired by the idea of zero-reconstruction used in a prior CFGAN [Chae, et al., 2018], in this study, 

we applied this idea to formulate the loss function for implicit non-positive feedback and applied it to 

each generator. For each user, a certain number of non-positive feedbacks were randomly selected. 

As discussed in section 7.3, using non-positive feedbacks can better reflect what a user does not 
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prefer. Equation (7.9) accumulates the loss of the prediction of non-positive feedbacks. 

                                                         ℒ𝑛𝑓(𝐺) = 𝛽 ∑ (𝑥𝑢𝑗
− − 𝑥𝑢𝑗

−̂ )2
𝑗                                                        (7.9) 

Where 𝑥𝑢𝑗
−  represents a randomly selected sample which the user u has not given any positive 

feedbacks to the learning resource j, �̂�𝑢𝑗  is the prediction made by the model, and 𝛽  is a hyper 

parameter that controls the importance of this loss value. 

7.3.3 The Generator and the Discriminator 

It has been demonstrated in many existing representative studies that the autoencoder and its variants 

can precisely generate (select) the appropriate candidates based on a user’s historical online 

behaviours. For example, the collaborative variational autoencoder (CVAE) model used in the study 

[Li, et al., 2017] can learn deep latent representations from content data in an unsupervised manner 

and capture the implicit relationships between users and items. A stacked denoising autoencoder is 

used in [Liu, et al., 2018] to learn user and item features from auxiliary information. In addition, an 

augmented variational autoencoder shows outstanding performance in dealing with auxiliary 

information and modelling the implicit user feedback in work [Lee, et al., 2017]. Hence, for 

simplicity, we design the generators directly follow the idea of using autoencoders. While the design 

of the generator is beyond the scope of this study, we only need to confirm that the used network can 

generate (select) reasonable learning resources based on a learner’s historical learning activities. For 

experimental simplicity and mathematical convenience, the generators used in this study are 

constructed using stacked autoencoders (in Figure 7.1 left). 

 The discrimination process can be roughly regarded as a binary classification task. The design of 

the discriminator follows the idea proposed in the original work of cGAN [Mirza, et al., 2014], by 

considering not to make the discriminator so powerful that it dominates the adversarial training 

process and hinders the optimising of the generators. Therefore, a simple multi-layer fully connected 

perceptron with input condition is used as the discriminator in this study (as shown in Figure 7.1 

right). 

 Theoretically, any conventional or state-of-the-art neural networks can be used in a GAN 

framework as long as their training process is in an adversarial manner. This offers huge flexibility to 

our model, which can be further optimised by simply replacing the network structure of each 

generator or discriminator based on the application requirement or the data source. 
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7.4 Experiment and Analysis 

The experiment is conducted by using a real-world dataset to verify the effectiveness of the proposed 

model. 

7.4.1 Dataset 

The dataset collected from the ZhiHu Platform is still used in this part. To emphasise the 

fundamental issue of a recommender system that the recommendations are produced based on the 

historical interaction records between the user and resource, in this study, we only use the interaction 

records to construct a recommender system. Utilising other side information, such as answers to the 

questions and user’s profile, is beyond the scope of this study and will be investigated in our future 

research. The selected dataset contains about 1.8 million different questions and users. The 

distribution of the (user, learning resource) interactions are extremely imbalanced, with a sparsity 

degree greater than 99%, which means that most users have only accessed a tiny minority of online 

learning resources. In addition, due to the difference of learning requirements and preferences, there 

is little overlap between different users’ interaction histories with the online learning resources. Such 

sparsity and imbalance reflect the characteristics of personalised online learning services in the 

context of big data. 

7.4.2 Baseline Comparison Models 

For a fair comparison, we only include the models which only utilise the user-item interaction 

records. The models that make use of other types of features are excluded in the experiments. Firstly, 

to demonstrate the superior performance of the designed GAN framework, the proposed model is 

compared with two representative GAN-based recommendation strategies: IRGAN and CFGAN 

[Chae, et al., 2018, Wang, et al., 2017]. Moreover, to demonstrate the challenges brought by big data 

and personalisation of online learning service, the proposed model was also compared with several 

conventional recommender systems: Collaborative filtering, SVD++, Factorization Machine, and 

stacked autoencoder.  

1. IRGAN. IRGAN is the pioneering work that was built upon the adversarial learning to handle 

the recommendation task., which showed the potential of applying the GAN framework to 

general information retrieval tasks, such as web search, item recommendation and question 



98 

 

answering [Wang, et al., 2017].  

2. CFGAN. CFGAN is the enhanced version of IRGAN, which used a vector-wise training 

strategy. CFGAN demonstrates its outstanding performance in consistent and universal 

recommendation accuracy in comparison with the state-of-the-art recommenders [Chae, et al., 

2018].  

3. SVD++. As the extension of singular value decomposition (SVD), SVD++ takes into account 

implicit rating information [Koren, 2008]. 

4. Factorization Machine (FM). As a more general approach to model the interactions between 

users and items, FM shows good resistance in sparsity problem [Rendle, 2010]. A large number 

of state-of-the-art deep learning recommender system (such as AFM, deepFM, and DCN) are 

based on the idea of FM. 

5. Stacked autoencoder (SAE). It is a deep neural network technique to mine latent information 

from both user and item sides [Tallapally, et al., 2018]. 

6. Collaborative filtering (CF). CF is the most classic recommendation model. In this study, the 

CF model is enhanced by involving z-score normalisation to better describe the degree of 

similarity between two users. 

7.4.3 Evaluation Metrics 

According to the prior studies and the pilot experiment, we select five representative evaluation 

metrics to evaluate the proposed model from different perspectives. 

Recall, Precision and F1-score. Recall reflects the fraction of the total amount of positive learning 

materials which interested by the learner are selected by the model. Precision indicates the amount of 

positive learning materials in the selected learning materials. F1-score considers both Precision and 

Recall value, which is often used in the field of information retrieval. 

Normalized Discounted Cumulative Gain (nDCG). nDCG considers the different importance in 

positions of the selected learning resources, which reflects the quality of the ranking results. This 

metric is formulated as Equation (7.10) and (7.11). 

                                                                      𝑛𝐷𝐶𝐺𝑝 =  
𝐷𝐶𝐺𝑝

𝐼𝐷𝐶𝐺𝑝
                                                        (7.10) 

                                                                       𝐼𝐷𝐶𝐺𝑝 =  ∑
2𝑟𝑒𝑙𝑖−1

𝑙𝑜𝑔 (𝑖+1)

|𝑅𝐸𝐿𝑝|

𝑖=1
                                       (7.11) 

Mean Reciprocal Rank (MRR). MRR also reflects the ranking quality of the recommendation results. 
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It is formulated as the multiplicative inverse of the first correct result in Equation (7.12) below: 

                                                                𝑀𝑅𝑅 =  
1

𝑛
∑

1

𝑟𝑎𝑛𝑘𝑖

𝑛
𝑖=1                                                          (7.12) 

Here, rankiis the ranking position of the first relevant learning resource for the i-th user.  

In general, the metrics of Precision, Recall and F1-score provide indications about to what extent the 

correct results are selected by the model, while nDCG and MRR measure the model’s ranking ability. 

Moreover, in this study, recall@N, precision@N, nDCG@N, and MRR@N were further used to 

evaluate the top N results selected by the model. 

7.4.4 Implementation Settings 

All the baselines and the proposed model are implemented using the PyTorch framework [Paszke, et 

al., 2019]. The number of hidden layers for the fully connected perceptron and the discriminator D is 

set to three; the number of hidden layers for SAE and the generator Gs is set to 4. Batch 

normalization is used with batch number 256 before the activation function at each layer during the 

training process. The output of each hidden layer is activated by the ReLU function, and the final 

result is activated by the sigmoid function. Adam optimizer is used for all neural networks with a 

learning rate of 0.0001. The parameters are initialized by using the Xavier strategy [Glorot, et al., 

2010]. As four networks (three generators and one discriminator) are involved in the proposed model, 

each optimisation procedure could require different numbers of training epoch. Therefore, the early-

stop strategy is used to prevent the overfitting of each model. All the baselines are constructed 

strictly following their original studies. Other settings use the default settings provides by the 

PyTorch framework. 

7.4.5 Results and Discussions 

The performances of each model are shown in Table 7.4 and Table 7.5 (P@k and R@k represent the 

Precision and Recall value for top k recommended results, respectively). 

7.4.5.1 Model Comparisons 

All metrics of the CF model are comparatively unsatisfactory, even if a z-score normalisation 

strategy is applied to better represent the difference between the users. This result reflects a typical 

case of the failure of solely utilising user-item interaction logs for recommendation purpose. Our 

analysis suggests that this failure is caused by the highly sparse high dimensional data. Such input 
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Table 7.4 Experiment Results (Precision and Recall) 

  Metric 

 

Model 

P@5 P@10 P@15 P@20 R@5 R@10 R@15 R@20 

CF (with 

Z-score) 

0.0094 0.0078 0.0106 0.0126 0.0012 0.0021 0.0051 0.0077 

SVD++ 0.0730 0.0650 0.0636 0.0624 0.0137 0.0254 0.0326 0.0407 

FM 0.1774 0.1408 0.1312 0.1213 0.0732 0.1185 0.1464 0.1673 

SAE 0.3431 0.3154 0.2825 0.2564 0.1601 0.2043 0.2633 0.3114 

IRGAN 0.3322 0.3037 0.2688 0.2452 0.1493 0.1911 0.2468 0.2946 

CFGAN 0.3936 0.3546 0.3098 0.2796 0.1804 0.2252 0.2886 0.3362 

Proposed 

Model 

0.4086 0.3701 0.3247 0.2923 0.1930 0.2392 0.3072 0.3572 

 

data led to the failure of similarity measurement [Houle, et al., 2010], which is the core part of the 

CF model. 

 Comparing with CF, SVD++ show a clear improvement, but it is still unsatisfying. Such 

improvement is made by adding the stage of dimension reduction during the modelling process. 

However, as discussed in [Rendle, 2010], without tuning hyperparameters carefully, SVD++ is not 

applicable to the general task and has special requirements for the input data. The generalisation 

ability of a recommender system is a key parameter for the informal learning service, as the type, 

format, and discipline of the learning resources might vary greatly. In prior research [Rendle, 2010] 

it is declared that FM could be a more general approach. Compared with SVD++, in our experiment, 

FM shows a big improvement in all metrics. 

 Moreover, figures in Table 7.4 and Table 7.5 show that the deep neural network-based models 

(SAE, IRGAN, CFGAN, and the proposed model) achieve remarkable improvement in comparison 

with the model with a shallow network (e.g. FM) or the ones without neural network (e.g. CF and 

SVD++). These results highlight the importance of using complex non-linear transformation to 

model the learner’s preference in the context of an open learning environment. Another notable 



101 

 

Table 7.5 Experiment Results (MRR and NDCG) 

  Metric 

 

Model 

MRR@5 MRR@10 MRR@15 MRR@20 ndcg 

@5 

ndcg 

@10 

ndcg@15 ndcg 

@20 

CF (with 

Z-score) 

0.0341 0.0374 0.0410 0.0437 0.0118 0.0098 0.0116 0.0131 

SVD++ 0.1790 0.1963 0.2000 0.2027 0.0780 0.0714 0.0703 0.0702 

FM 0.3409 0.3519 0.3523 0.3662 0.1956 0.1870 0.1855 0.1833 

SAE 0.6124 0.6173 0.6196 0.6207 0.3880 0.3791 0.3763 0.3779 

IRGAN 0.5797 0.5847 0.5875 0.5902 0.3706 0.3608 0.3548 0.3539 

CFGAN 0.6656 0.6737 0.6718 0.6737 0.4430 0.4275 0.4128 0.4181 

Proposed 

Model 

0.6909 0.6931 0.6966 0.6975 0.4635 0.4488 0.4411 0.4403 

 

result is that the SAE outperforms the IRGAN. The generator in IRGAN is constructed by MLP. 

Hence, one possible reason could be the inferior non-linear modelling ability of perceptron compared 

with SAE. 

 Lastly, the proposed model outperforms the CFGAN in all metrics. SAE is used in both CFGAN 

and the proposed model to construct the generator. The main difference between CFGAN and our 

proposed model is the additional generators used in our model with carefully designed loss functions. 

Hence, we can infer that our model and the loss functions do further improve the model performance. 

7.4.5.2 Effectiveness of each Generator 

The optimisation process of the proposed model is shown in Figure 7.4. Due to the difficulty to 

directly compare Recall and Precision values, we use F1-score together with MRR and NDCG to 

measure our model performance during the training process. 𝐺1, 𝐺2, and 𝐺3 are the three generators 

in the proposed GAN framework, respectively. To guarantee better robustness, the Gs is the model 

that combines all three generators' outputs. 
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Figure 7.4 Performance of the Proposed Model During the Training Procedure 

We can clearly see the converging optimisation trends from all the models (Figure 7.4), i.e., the 

generators all reach the optimal states at similar training epochs. The performance of 𝐺3 is slightly 

worse in comparison with the others during the training process. However, when reaching the 

optimal states, all the generators show similar performances. These results verify the hypotheses 

proposed earlier that the proposed GAN framework and the associated loss functions can ensure that 

all information can be shared among the four generators. After training, each generator can make 

reasonable recommendations independently and together. 

7.5 Summary 

This chapter discusses the connections between the GAN technique and the recommendation task for 

the micro learning service. A pilot experiment based on the application of online knowledge sharing 

service has verified our assumption that the GAN-based model does have the potential to further 

improve the recommendation effectiveness of micro learning service. 

Based on the specific application scenario, we further propose a novel GAN based recommendation 

framework. The model can fully explore the latent information from the simple user’s historical 

interaction records with online learning resources with well-designed loss functions. By comparing 

with the state-of-the-art GAN-based recommender systems and conventional recommendation 

strategies, we have confirmed the robustness of the proposed model when facing the challenges of 

extreme data sparseness and unbalanced distribution in the existing platforms such as Quora and 

Zhihu. 

In the future, we will continue investigating how to suit the GAN-based model to solve 

recommendation problem for micro learning service, considering other performance metrics, such as 

model training time, which has been considered still challenging in the research and development of 
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GAN based recommendation system. 
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8 Chapter 8 Conclusion and the Future 

Direction 

This thesis is summarised in this chapter. Also, the future research directions are also suggested in 

this chapter. 

8.1 Summary of Contributions in the Previous Chapters 

In this thesis, we have introduced the research on realising the micro learning service through A.I. 

techniques. An intelligent micro learning system is proposed with the details of each intelligent 

component and the involved data flow. All the proposed models are evaluated with the-state-of-the-

art solutions and real-world datasets. 

In the first chapter, as the commence of this research, we have discussed the application background 

of the micro learning service. What is micro learning and why micro learning is significant to us are 

first introduced. This service aims to facilitate personalised online learning activities by using 

learner’s fragmented spare time. Based on the prior work from the related areas, we conclude that as 

the product of the big data era, the micro learning service has to be deployed in the context of 

massive users and online resources. Then, we pin down the research challenges and problems of 

promoting this online learning service, which are the conflicts between handing massive online 

information and offering convenient real-time service. An A.I. embedded system can maximise the 

reduction of the labour force of managing massive online information and automatically provide the 

required service flexibly. To this end, the research objectives and contributions of this thesis are 

highlighted in Section 1.3. 

A comprehensive literature review is made in the following Chapter 2. In this chapter, we firstly 

discuss the prior studies about the micro learning service, which include its definitions, 

characteristics, advantages, and the remained research gaps. It is safe to conclude that micro learning 

service is in line with the development trend of technologies and modern life, but it still requires 

much more work and research to be perfect. By breaking down the entire micro learning workflow 

into three modules, we then discuss the recent studies about the pre-processing of raw online 

resources, recommendation strategies, and dropout rate prediction methods. Technical backgrounds, 
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application scenarios, data requirements, and the comparison of different models are involved in the 

review. Recent research about the GAN technique is also reviewed in this chapter. The reviewed 

studies mainly cover the representative GAN milestones, the pioneering work of applying GAN to 

the recommendation task, and two branches of research about GAN-based recommender system. 

Based on the reviewed studies, we conclude that GAN has the potential to further boost the 

recommender system for the micro learning service. 

The big picture of our proposed micro learning system is introduced in Chapter 3. In this chapter, the 

system framework is demonstrated from different perspectives which are the high-level point of view, 

the resource-side perspective, and the user-side perspective. After that, the involved data sources of 

the proposed system are discussed from their types, characteristics, and utilities. We also analyse the 

isolated data problem in this research area.  

In Chapter 4, we have proposed two novel models for the pre-processing module of the micro 

learning system. The first model is for extracting valuable information from a sequence of the data 

stream. According to the experiment results, we conclude that our model outperforms the 

mainstream solutions in both efficiency and robustness. We also highlight the significance of the 

fusion block and the CRF layer, and the usefulness of using the CNN layer to mine supplementary 

information. The second model proposed in this chapter is a CNN-based text analysis solution. This 

solution aims to use a general model which has the potential to interpret both text and visual 

information. The proposed model is constructed by utilising the mainstream CV models. The 

experiment results indicate that our proposed model shows the competitive performance when 

interpreting the short informal text compared to other mainstream NLP models. 

A deep cross attention network is proposed for delivering personalised learning materials in Chapter 

5. The proposed model combines different deep learning techniques, such as attention mechanism, 

cross-network, and residual connection. Such network architecture makes the model has the ability to 

automatically generate high-order feature interactions and distinguish the importance differences 

among the massive features. In the experiment, the proposed model is compared with AutoInt, FM, 

DeepFM, DCN, and AFM. All the baselines are the representative recommender systems and have 

been widely used in both industry and research fields. The experiment results that our model 

outperforms the above baselines in both effectiveness and efficiency. 

For assessing the effectiveness of the student’s online learning activity, a dropout rate prediction 
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model is proposed in Chapter 6. The proposed model predicts whether a student will drop out from 

an enrolled course based on his/her historical learning records of this course. This model consists of 

two different components (micro component and macro component), which separately model the 

different granularity of information. According to the conducted experiment, except demonstrating 

our model can outperform the selected baselines, we have verified the existence of the temporal 

pattern of the learning interaction records and proved the effectiveness of each proposed mechanisms. 

We also have analysed and discussed the characteristics of the temporal pattern from the interaction 

records, which are different to the ones from the areas of NLP and computational genomics. At the 

end of this chapter, we also give out some suggestions on the implication of real-world applications 

of two training methods of the proposed model. 

The GAN technique for boosting the performance of the recommender system in the micro learning 

service is discussed in Chapter 7. The advantages of applying GAN optimisation strategy to a 

recommender system for micro learning service have between firstly analysed in this chapter, 

followed by a pilot study which proves the correctness of the above theoretical analysis. Then, we 

dive deep to design a novel GAN framework for optimising the recommender system. The proposed 

GAN framework consists of three generators and one discriminator, which ensure balancing the 

trade-off between FNR and FPR and distilling the non-positive information. In the meantime, to 

make sure the generators and the discriminator can focus on their own tasks, several loss functions 

are designed to guide the optimisation process. In the experiment, the proposed GAN-based solution 

is compared with two representative GAN-based recommender systems (CFGAN and IRGAN) and 

several mainstream solutions. According to the results, we have confirmed the robustness of the 

proposed model when facing the challenges of extreme data sparseness and unbalanced distribution. 

8.2 Recommendation for the Future Research 

For the direction of future research in the related area, we give out the following recommendations 

and suggestions: 

As most models involved in the proposed system are data-driven, the idea behind these optimisation 

and analysis strategies significantly overlaps with the other data-driven research topics in the 

technology-enhanced learning (TEL) domain. Even though this thesis is under the topic of micro 

learning, many points derived from the discussion and analysis of this can be extended to other e-
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learning related research topics. The data challenges mentioned in Section 2.3.3 and Section 3.2.3 

also impede the development of the relevant research in other TEL fields. Hence, it is worthwhile to 

construct a complete public dataset. The construction process requires more efforts from researchers 

and institutions worldwide. 

A micro learning system can be regarded as a big online ecosystem, which can cover the entire 

lifecycle of the online learning resources and multiple types of learning activities. This system is 

made up of many different intelligent models. Each model aims to solve a specific task. In this thesis, 

we only realise a portion of these intelligent models. Hence, it is worthwhile to continue developing 

other models for different tasks for future research, such as final grade prediction, learning path 

generation, and learner’s knowledge level assessment. 

For the model proposed in Section 4.2, we only focus on using the CV method to understand the 

informal short text. In the future, firstly, it is worth continuing to investigate the effectiveness of the 

proposed solution for long text understanding (like the text content of a course). To better design 

such a generic model for processing multimodal information, it also needs to investigate applying the 

CNN-based solution to solve other forms of information such as audio signals. In the meantime, 

researchers can also try to use NLP solutions reversely to solve other forms of information. 

In Chapter 5, our proposed recommender system is a static model, the model structure and all the 

involved parameters are fixed once the training procedure is finished. However, the data stream from 

the micro learning platform can be dynamic. The learning requirement of a user might drift from 

time to time after he/she finishes some courses, or obtain a certain degree, or hands on a new task. 

And the popularity of the courses will also change with the development of each discipline. When 

dealing with the dynamic data, we need to update (retrain) the constructed static model from time to 

time based on the evolution rate and degree of the data. Hence, for future research, it is worthwhile to 

continue investigating how to make the model self-adjustable. A self-adjustable model should be 

able to identify the changes in the data and make necessary adjustments to itself automatically. 

In Chapter 7, we have traced back to the fundamental issue of the recommender system about 

utilising the interaction records between the users and the online resources. A novel GAN-based 

optimisation strategy is proposed, which solely uses the interaction records to make 

recommendations. However, for many real-world scenarios, we can obtain many other types of 

supplementary information or side information from users and items, such as the user’s gender and 
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occupation. Hence, it is necessary for future research to further investigate how to utilise such extra 

information to further enhance the recommendation results. 
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