23,605 research outputs found

    Geo-Spotting: Mining Online Location-based Services for Optimal Retail Store Placement

    Full text link
    The problem of identifying the optimal location for a new retail store has been the focus of past research, especially in the field of land economy, due to its importance in the success of a business. Traditional approaches to the problem have factored in demographics, revenue and aggregated human flow statistics from nearby or remote areas. However, the acquisition of relevant data is usually expensive. With the growth of location-based social networks, fine grained data describing user mobility and popularity of places has recently become attainable. In this paper we study the predictive power of various machine learning features on the popularity of retail stores in the city through the use of a dataset collected from Foursquare in New York. The features we mine are based on two general signals: geographic, where features are formulated according to the types and density of nearby places, and user mobility, which includes transitions between venues or the incoming flow of mobile users from distant areas. Our evaluation suggests that the best performing features are common across the three different commercial chains considered in the analysis, although variations may exist too, as explained by heterogeneities in the way retail facilities attract users. We also show that performance improves significantly when combining multiple features in supervised learning algorithms, suggesting that the retail success of a business may depend on multiple factors.Comment: Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining, Chicago, 2013, Pages 793-80

    Location Prediction: Communities Speak Louder than Friends

    Get PDF
    Humans are social animals, they interact with different communities of friends to conduct different activities. The literature shows that human mobility is constrained by their social relations. In this paper, we investigate the social impact of a person's communities on his mobility, instead of all friends from his online social networks. This study can be particularly useful, as certain social behaviors are influenced by specific communities but not all friends. To achieve our goal, we first develop a measure to characterize a person's social diversity, which we term `community entropy'. Through analysis of two real-life datasets, we demonstrate that a person's mobility is influenced only by a small fraction of his communities and the influence depends on the social contexts of the communities. We then exploit machine learning techniques to predict users' future movement based on their communities' information. Extensive experiments demonstrate the prediction's effectiveness.Comment: ACM Conference on Online Social Networks 2015, COSN 201

    A novel Big Data analytics and intelligent technique to predict driver's intent

    Get PDF
    Modern age offers a great potential for automatically predicting the driver's intent through the increasing miniaturization of computing technologies, rapid advancements in communication technologies and continuous connectivity of heterogeneous smart objects. Inside the cabin and engine of modern cars, dedicated computer systems need to possess the ability to exploit the wealth of information generated by heterogeneous data sources with different contextual and conceptual representations. Processing and utilizing this diverse and voluminous data, involves many challenges concerning the design of the computational technique used to perform this task. In this paper, we investigate the various data sources available in the car and the surrounding environment, which can be utilized as inputs in order to predict driver's intent and behavior. As part of investigating these potential data sources, we conducted experiments on e-calendars for a large number of employees, and have reviewed a number of available geo referencing systems. Through the results of a statistical analysis and by computing location recognition accuracy results, we explored in detail the potential utilization of calendar location data to detect the driver's intentions. In order to exploit the numerous diverse data inputs available in modern vehicles, we investigate the suitability of different Computational Intelligence (CI) techniques, and propose a novel fuzzy computational modelling methodology. Finally, we outline the impact of applying advanced CI and Big Data analytics techniques in modern vehicles on the driver and society in general, and discuss ethical and legal issues arising from the deployment of intelligent self-learning cars

    A Survey of Location Prediction on Twitter

    Full text link
    Locations, e.g., countries, states, cities, and point-of-interests, are central to news, emergency events, and people's daily lives. Automatic identification of locations associated with or mentioned in documents has been explored for decades. As one of the most popular online social network platforms, Twitter has attracted a large number of users who send millions of tweets on daily basis. Due to the world-wide coverage of its users and real-time freshness of tweets, location prediction on Twitter has gained significant attention in recent years. Research efforts are spent on dealing with new challenges and opportunities brought by the noisy, short, and context-rich nature of tweets. In this survey, we aim at offering an overall picture of location prediction on Twitter. Specifically, we concentrate on the prediction of user home locations, tweet locations, and mentioned locations. We first define the three tasks and review the evaluation metrics. By summarizing Twitter network, tweet content, and tweet context as potential inputs, we then structurally highlight how the problems depend on these inputs. Each dependency is illustrated by a comprehensive review of the corresponding strategies adopted in state-of-the-art approaches. In addition, we also briefly review two related problems, i.e., semantic location prediction and point-of-interest recommendation. Finally, we list future research directions.Comment: Accepted to TKDE. 30 pages, 1 figur
    • …
    corecore