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ABSTRACT
Humans are social animals, they interact with different com-
munities of friends to conduct different activities. The lit-
erature shows that human mobility is constrained by their
social relations. In this paper, we investigate the social im-
pact of a person’s communities on his mobility, instead of
all friends from his online social networks. This study can
be particularly useful, as certain social behaviors are influ-
enced by specific communities but not all friends. To achieve
our goal, we first develop a measure to characterize a per-
son’s social diversity, which we term ‘community entropy’.
Through analysis of two real-life datasets, we demonstrate
that a person’s mobility is influenced only by a small frac-
tion of his communities and the influence depends on the
social contexts of the communities. We then exploit ma-
chine learning techniques to predict users’ future movement
based on their communities’ information. Extensive experi-
ments demonstrate the prediction’s effectiveness.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Data mining

General Terms
Algorithms, theory, experiments

Keywords
Human mobility, social networks, network communities

1. INTRODUCTION
Humans are social animals, everyone is a part of the so-

ciety and gets influences from it. For example, our daily
behaviors, such as what types of music we listen to, where
we have lunch on weekdays and what activities we conduct
on weekends, are largely dependent on our social relations.
Normally, we categorize our social relations into different
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groups, i.e., social communities, using different criteria and
considerations. By definition, a community is a social unit
of any size that shares common values.1 Typical commu-
nities include family, close friends, colleagues, etc. In daily
life, humans are engaged in various social environments, and
they interact with different communities depending on the
environments. For our specific behaviors, social influences,
in most of cases, are not from all our friends but from certain
communities. For example, we listen to similar types of mu-
sic as our close friends, but not as our parents; we have lunch
together with our colleagues on weekdays, but not with our
college friends living in another city; on weekends we spend
more time with family, but not with our colleagues.

Location-based social network services (LBSNs) have been
booming during the past five years. Nowadays, it is com-
mon for a user to attach his location when he publishes a
photo or a status using his online social network account.
Moreover, users may just share their locations, called check-
in, to tell their friends where they are or to engage in social
games as in Foursquare. Since these large amount of lo-
cation and social relation data become available, studying
human mobility and its connection with social relationships
becomes quantitatively achievable (e.g., [16, 10, 9, 34, 15, 7,
8]). Understanding human mobility can lead to compelling
applications including location recommendation [44, 41, 43,
14, 20], urban planning [42], immigration patterns [5], etc.

Previous works, including [1, 6, 10, 33], show that human
mobility is influenced by social factors. However, there is one
common shortcoming: they all treat friends of users equally.
Similar to other social behaviors, in most cases mobility is
influenced by specific communities but not all friends. For
example, the aforementioned colleagues can influence the
place a user goes for lunch but probably have nothing to do
with his weekend plans. Meanwhile, where a user visits on
weekends largely depends on his friends or family, but not his
colleagues. Therefore, the impact on a user’s mobility should
be considered from the perspectives of communities instead
of all friends. In a broader view, community is arguably the
most useful resolution to study social networks [39].

Contributions. In this paper, we aim to study the im-
pact from communities on a user’s mobility and predict his
locations based on his community information.

First, we partition each users’ friends into communities
and propose a notion namely community entropy to quantify
a user’s social diversity. Second, we analyze communities’ in-
fluences on users’ mobility and our main conclusions include:

1http://en.wikipedia.org/wiki/Community
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(1) communities’ influences on users’ mobility are stronger
than their friends’; (2) each user is only influenced by a small
number of his communities; and (3) such influence is typi-
cally constrained by temporal and spatial contexts. Third,
we predict users’ locations using their community informa-
tion. Experimental results on two real-life datasets with
millions of location data show that the community-based
predictor achieves a strong performance.

Organization. After the introduction, we present a few
preliminaries and our datasets in Section 2. Then we de-
scribe the community detection process and propose the no-
tion of community entropy in Section 3. The relationship
between users and their communities on mobility is ana-
lyzed in Section 4. Based on our analysis, we propose a
location predictor with features linked to community infor-
mation and present experimental results in Section 5. We
discuss related work in Section 6 and conclude our paper
with some future work in Section 7.

2. PRELIMINARIES
We summarize the notations in Section 2.1 and describe

the datasets that we use throughout the paper in Section 2.2.

2.1 Notations
All users are contained in the set U while a single user is

denoted by u. We use the set f (u) to represent u’s friends.
A community of a user u is a subset of his friends denoted
by c and c ⊆ f (u). Meanwhile, C (u) represents all the com-
munities of u, i.e., C (u) is a set of sets of u’s communities.
Every friend of a user is assigned into one of the user’s com-
munities, the union of all his communities is the set of all his
friends. In this work, we only consider non-overlapping com-
munities, namely c ∩ c′ = ∅ for c, c′ ∈ C (u). However, this
assumption is not crucial to our approach and our results
can be extended for overlapping communities as well.

A check-in of u is denoted by a tuple 〈u, t, `〉, where t
represents the time and ` is the location that corresponds to
a pair of latitude and longitude. We use CI (u) to represent
all the check-ins of u. Without ambiguity, we use location
and check-in interchangeably in the following discussion.

2.2 The datasets
We exploit two types of social network datasets for this

work. The first one is collected by the authors of [10] from
Gowalla – a popular LBSN service back in 2011. The dataset
was collected from February 2009 to October 2010 and it
contains 6,442,892 check-ins. Besides location information,
the dataset also includes the corresponding social data which
contains around 1.9 million users and 9.5 million edges. Due
to the large data sparsity, we mainly focus on the check-in
data in two cities in US, including New York (NY (G)) and
San Francisco (SF (G)). They are among the areas with
most check-ins in the dataset. In addition, when performing
mobility analysis and location prediction, we only focus on
users who have conducted at least 100 check-ins in each city
and we term these users as active users.

The second dataset is collected from Twitter from Decem-
ber 2014 to April 2015 by the authors of this paper. Again,
we focus on the data in New York (NY (T)) and San Fran-
cisco (SF (T)) and treat all the geo-tagged tweets (tweets
labeled with geographical coordinates) as users’ check-ins.

We exploit Twitter’s Streaming API2 to collect all the geo-
tagged tweets. Each check-in is organized as a 4-tuple.

〈uid , time, latitude, longitude〉

Figure 1 depicts a sample of check-ins in New York. To col-
lect the social relationships among users, we adopt Twitter’s
REST API3 to query each user’s followers and followees.
Two users are considered friends if they follow each other
mutually.

Similar to the Gowalla dataset, we only focus on active
users (users with more than 100 check-ins) in the Twitter
dataset. Moreover, we also filter out the users who have
more than 2,000 check-ins since most of them are public ac-
counts such as @NewYorkCP which publishes 16,681 check-
ins at the exact same location. Table 1 summarizes the two
datasets. The Twitter dataset is available upon request.

3. COMMUNITIES
We first show how to detect communities in social net-

works in Section 3.1 and then propose a new notion to char-
acterize users’ social diversity in Section 3.2.

3.1 Community detection in social networks
Community detection in networks (or graphs) has been

extensively studied for the past decade (e.g., see [25, 31, 2,
18, 32, 22, 38, 37, 21, 39, 23]). It has important applica-
tions in many fields, including physics, biology, sociology as
well as computer science. The principle behind community
detection is to partition nodes of a large graph into groups
following certain metrics on the graph structure [18]. In the
context of social networks, besides the social graph, each
user is also affiliated with attributes. These information can
also be used to detect communities (e.g., see [22, 38, 23]).
For example, people who graduate from the same university
can be considered as a community. Since the datasets we use
only contain social graphs and no personal information are
provided, we apply the algorithms that are based on infor-
mation encoded in graph structure to detect communities.

According to the comparative analysis [18], among all the
community detection algorithms, Infomap [31] has the best
performance on undirected and unweighted graphs and has
been widely used in many systems [26, 29]. Therefore, we
apply it in this work. Next we give a brief overview of In-
fomap and describe how we use it to detect communities.

The main idea of Infomap can be summarized as follows:
information flow in a network can characterize the behav-
ior of the whole network, which consequently reflects the
structure of the network. A group of nodes among which
information flows relatively fast can be considered as one
community. Therefore, Infomap intends to use information
flow to detect communities in a network. In the beginning,
Infomap simulates information flow in a network with ran-
dom walks. Then the algorithm partitions the network into
communities and exploits Huffman coding to encode the net-
work at two levels. At the community level, the algorithm
assigns a unique code for each community based on the infor-
mation flow among different communities; at the node level,
the algorithm assigns a code for each node based on the in-
formation flow within the community. Infomap allows the
Huffman codes in different communities (node level) being

2https://dev.twitter.com/streaming/overview
3https://dev.twitter.com/rest/public
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Figure 1: Check-ins in New York.

NY (G) SF (G) NY (T) SF (T)

# of users 7,786 6,617 207,805 113,383
# of check-ins 176,324 177,357 2,325,907 2,163,959

Avg.# of check-ins 21.6 26.8 11.2 19.1
# of active users 175 236 1,636 1,626

Avg.# of friends (active user) 79.4 69.7 376.9 289.0

Table 1: Summary of the datasets.

duplicated which results in a more efficient encoding (less
description length). In the end, finding a Huffman code to
concisely describe the information flow while minimizing the
description length is thus equivalent to discovering the net-
work’s community structure. In other words, the objective
of Infomap is to find a partition of a network such that the
code length for representing information flow among com-
munities and within each community is minimized. Since
it is infeasible to search all possible community partitions,
Infomap further exploits a deterministic greedy search algo-
rithm [11, 36] to find partitions.

In our work, to detect communities of u, we first find all
his friends as well as the links among them. Then, we delete
u and all edges linked to him and apply Infomap algorithm
to the remaining part of the graph. Figure 2 presents the
detected communities of two users in the Gowalla dataset.
Each community is marked with a different color.
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Figure 2: Communities of users 521 and 727.

Gowalla Twitter

Avg.# of communities 4.5 5.3
Avg. community size 13.2 20.8

Table 2: Community summary of active users.

Table 2 lists the summary of community information of
all active users in the two datasets. Each active user in
Gowalla has on average 4.5 communities while the value is
5.3 for the Twitter users. In addition, the average com-
munity size of Twitter users is bigger than Gowalla users
(20.8 vs. 13.2). This is because active users in the Twitter
dataset have more friends than those in the Gowalla dataset
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Figure 3: Distribution of users w.r.t the number of commu-
nities and distribution of communities w.r.t their size.

(see Table 1), which indicates general social network ser-
vices, such as Twitter, contain more users’ social relation-
ships than LBSN services, such as Gowalla. In spite of the
differences on the average value in Table 2, community num-
ber and community size in the two datasets follow a similar
distribution. As we can see from Figure 3, both community
number and size follow the power law: most of the users
have small number of communities and most of the detected
communities are small as well.

3.2 Community entropy
After detecting communities, we are given a new domain

of attributes on users. We are particularly interested in how
diverse a user’s communities are. We motivate this social di-
versity through an example. Suppose that a user is engaged
in many communities, such as colleagues at work, family
members, college friends, chess club, basketball team, etc,
then he is considered an active society member. Users of
this kind are always involving in different social scenarios or
environments, and his daily behaviors are largely dependent
on his social relations.

Although we do not have the semantics of each of our de-
tected communities, such as the aforementioned colleagues
at work or chess club, we can still use the information en-
coded in the graph to define a user’s social diversity. For
instance, for a user with several communities whose sizes
are more or less the same, his social diversity is for sure
higher than those with only one community.

To quantify the social diversity of a user, we introduce the
notion of community entropy.

Definition 1. For a user u, his community entropy is de-
fined as

coment(u) =
1

1− α ln
∑

c∈C(u)

(
|c|
|f (u)| )

α.



Our community entropy follows the definition of Rényi en-
tropy [30]. Here, α is called the order of diversity, it can
control the impact of community size on the value which
gives more flexibility to distinguish users when focusing on
the sizes of their communities. In simple terms, our com-
munity entropy,

• when α>1, values more on larger communities;

• when α<1, values more on smaller communities.

The limit of coment(u) with α→ 1 is the Shannon entropy.4

In general, if a user has many communities with sizes equally
distributed, then his community entropy is high and this
indicates that his social relations are highly diverse.

We set α > 1 in the following discussion to limit the im-
pact of small communities since a user may randomly add
strangers as his friends in online social networks and these
strangers normally form small communities (such as a one-
user community5), which have less impact on the user’s mo-
bility. For example, if a user u has three communities with
sizes equal to 1, 1 and 10, then his communities are not that
diverse following the above intuition. When we set α less
than 1, such as 0.5, we have coment(u) = 0.79 which is a
high value indicating u’s social circles are diverse. On the
other hand, if we set α bigger than 1, such as 10, coment(u)
drops to 0.20 which captures our intuition. In the following
experiments, we set α = 10 when calculating users’ com-
munity entropies. Note that we have also set α to other
numbers bigger than one and observed similar results. Fig-
ure 4 shows the histogram of community entropies of all
active users in two datasets.
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Figure 4: Distribution of community entropies of active
users in Gowalla (left) and Twitter (right).

4. COMMUNITIES AND MOBILITY
It has been proved that social factors play an important

role on users’ mobility, e.g., see [10]. For instance, one may
go to lunch with his friends or go to a bar to hangout with his
friends. Meanwhile, for a user, friends of his social networks
(as well as in real life) are not all equal. Instead friends nor-
mally belong to certain communities. When considering a
user’s mobility, intuitively different communities can impose
different influence within certain contexts or social environ-
ments. Continuing with the above example, the people the
user has lunch with are normally his colleagues while the
people he meets at night are his close friends. Therefore, in
order to analyze the impact from a user’s social relations on

4https://en.wikipedia.org/wiki/Renyi_entropy
5In our community detection algorithm, if u′ himself forms
a community of u, then it indicates that u′ does not know
any other friends of u.

his mobility, it is reasonable to focus on social influence at
the community level.

In this section, we first study communities’ influence on
users’ mobility. After that, we study the characteristics of
the influential communities with the following two intuitions
in mind: (1) a user’s daily activities are constrained, and
the number of communities he interacts with is limited; (2)
communities influence a user’s social behavior under differ-
ent contexts.

4.1 Influential communities
Figure 5a depicts a user’s two communities’ check-ins in

Manhattan of the New York City. We can observe a quite
clear separation between these two communities’ check-ins:
members of community 1 mainly visit Uptown and Mid-
town Manhattan while community 2 focuses more on Mid-
town. This indicates that different communities have their
social activities at different areas. In a broader view, this
shows that partitioning users’ check-ins at the social network
level (through community detection) can result in meaning-
ful spatial clusters as well.

A single community also has several favorite places. For
example, community 1 in Figure 5a visits Times Square and
Broadway quite often while members of community 2 like
to stay close to Madison square park. A user may socialize
with different communities at different places, for example,
he may go to watch a basketball game with his family at the
stadium and have lunch with his colleagues near his office.
Therefore, to study influences on mobility from communities
to a user, we need to summarize each community’s frequent
movement areas. To discover a community’s frequent move-
ment areas, we perform clustering on all locations that the
community members have been to. Each cluster is then rep-
resented by its central point and a community’s frequent
movement areas are thus represented by the centroids of all
clusters. The clustering algorithm we use is the agglom-
erative hierarchical clustering. We regulate that any two
clusters can be aligned only if the distance between their
corresponding centroids is less than 500m which is a reason-
able range for human mobility.

To illustrate the mobility influence from communities to
users, we choose to use ‘distances’. More precisely, we rep-
resent the influence by the distances between a user’s loca-
tions and the frequent movement areas of his communities.
Shorter distances imply stronger influences. For each loca-
tion a user has visited, we calculate the distances between
the location and all his communities’ frequent movement ar-
eas. Then, for each community of the user, we choose the
shortest distance between the location and the community’s
frequent movement areas as the distance between the lo-
cation and the community. The community which has the
smallest distance to the location is considered as the influ-
ential community of the user at this location. The distance
between the influential community and the user’s location is
further defined as the distance between the user’s location
and his communities. Note that a user can have multiple
influential communities and an influential community can
influence a user on multiple locations.

Figure 5b depicts the distribution of distances between
users’ locations and their communities in New York and
San Francisco in the two datasets. As we can see, most
of the distances are short which indicates the communities
are quite close to users’ locations. To illustrate that these

https://en.wikipedia.org/wiki/Renyi_entropy
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Figure 5: (a) A user’s two communities’ check-ins in Manhattan; (b) distribution of distances between users and their
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Figure 6: (a) Distribution of the number of influential communities; (b) distribution of influence entropies (bucketed by 0.2)
(c) influence entropy vs. community entropy.

short distances are not due to the limits of the city areas,
for each location of a user, we pick some random users in
the city, summarize their frequent movement areas through
clustering and find the minimal distance between their fre-
quent movement areas and the location. In Figure 5c6, the
curve of cumulative distribution function (CDF) for these
random users (purple) is much lower than the one for com-
munities (blue). This means that these random users are
farther away from the users than communities. To show
that community is a meaningful level to study mobility, we
also calculate distances between a user and all his friends.
The curve for friends (red) in Figure 5c is lower than the
one for communities as well, meaning that a user is closer
to his communities than to all his friends in general. As a
user’s community is a subset of his friends, to illustrate that
the shorter distances for communities than friends are not
caused by frequent movement areas clustered from a small
number of friends’ check-ins, for each community of a user,
we randomly sample the same number of his friends to build
a “virtual” community and calculate the distances between
the user and his virtual communities. The CDF curve in
Figure 5c (yellow) shows that these virtual communities are
even farther away from users than all friends.

From the above analysis, we conclude that (1) communi-
ties have strong influences on users’ mobility and (2) com-

6The results in Figure 5c are based on the data from two
cities in both datasets.

munity is a meaningful resolution to study users’ mobility.

4.2 Number of influential communities
Research shows that a user’s mobility is constrained geo-

graphically (see [9, 10]), e.g., a user normally travels in or
around the city where he lives. Meanwhile, social relations
are not restricted by geographic constrains. For instance,
a user’s college friends as a community can spread all over
the world. Now we focus on how many communities ac-
tually influence a user’s mobility i.e., how many influential
communities a user has. Intuitively, this number should be
small as each user only interacts with a limited number of
communities in his daily life such as colleagues and family.

We plot the distribution of the number of user’s influential
communities in Figure 6a. From two datasets, we can ob-
serve a similar result. Most of the users are influenced only
by a small number of communities and there are more users
who have two influential communities than others. For ex-
ample, almost 30% of users in New York have two influential
communities in the Twitter dataset.

Each location corresponds to an influential community.
We proceed with studying how a user’s influential commu-
nities are distributed over his check-ins. We first propose a
notion named influence entropy, it is defined as

infent(u) = −
∑

c∈C(u)

|CI (u, c)|
|CI (u)| ln

|CI (u, c)|
|CI (u)|



where CI (u, c) represents u’s check-ins that are closest to
the community c. The influence entropy is defined in the
form of Shannon entropy: higher influence entropy indicates
that the user’s locations are close to his different communi-
ties more uniformly. Figure 6b depicts the distribution of
users’ influence entropies. As we can see, in New York (NY
(T)), around 20% of users’ influence entropies are between
0 and 0.2 which means they have one dominating influen-
tial community that is close to most of their locations. We
also notice that there is a peak around 0.6 in all the cities.
For example, if a user u’s 50% check-ins corresponds to one
influential community and the other 50% corresponds to an-
other one, then infent(u) = 0.69 which falls into this range.
This shows that around 20% of users are influenced by their
two major communities at a similar level.

Community entropy introduced in Section 3 is a notion
for capturing a user’s social diversity. We further study the
relationship between community entropy and influence en-
tropy. As shown in Figure 6c, more diverse a user’s social
relationship is, more probably his locations are distributed
uniformly over his influential communities.

From the above analysis, we conclude that only a small
number of communities have influences on users’ mobility.

4.3 Communities under contexts
Influential communities are constrained by contexts. For

instance, a user has lunch with his colleagues and spends
time with his family near where he lives. Here, the lunch
hour and the home location can be considered as social con-
texts, and the two communities (colleague and family) have
impact on the user’s behavior under each of the context,
respectively. Thus it is interesting to study whether this
hypothesis holds generally.

Temporal contexts. First, we focus on temporal contexts.
The pair of contexts we choose are Lunch (11am–1pm) and
Dinner (7pm–9pm) hours on Wednesday. For each user,
we extract his check-ins during lunch and dinner time and
find his influential communities w.r.t. these two contexts.
We randomly choose four users and plot the distributions
of their check-ins over their influential communities under
these two contexts in Figure 7. As we can see, a user’s com-
munities behave quite differently on influencing his check-ins
during lunch and dinner time. For example, the first user in
New York in the Twitter dataset is only influenced by his
community 3 during lunch time while communities 1 and 2
give him similar influences during dinner time. This simply
reflects the fact that the people who users have lunch and
dinner with are different. In addition, users’ average influ-
ence entropies drop as well under different temporal con-
texts compared with the general case (see Table 3), this
suggests that the influential communities tend to become
more unique.

For each user during lunch (dinner) time, we create a vec-
tor where the i-th component counts the number of locations
that are the closest to community i. We then exploit the co-
sine similarity between a user’s lunch and dinner vectors as
his influence similarity. The results are listed in Table 4.
Note that, we also choose other pairs of temporal contexts
for analysis, such as working hours (9am–6pm) and nightlife
(10pm–6am) and have similar observations.

Spatial contexts. Next we study the influence of spatial
contexts. In each city, we pick two disjoint regions (called

Region 1 and Region 2, respectively) including Uptown and
Downtown Manhattan in New York and Golden Gate Park
and Berkeley in San Francisco. Then, we extract users’
check-ins in these areas. By performing the same analysis
as the one for temporal contexts, we observe similar results
(see Figure 8, Table 3 and Table 4). Note that we choose
the areas without special semantics in mind, e.g., business
areas or residential areas.

Influence entropy NY (G) SF (G) NY (T) SF (T)

General 0.56 0.73 0.69 0.70
Temporal (Lunch) 0.35 0.39 0.22 0.25
Temporal (Dinner) 0.27 0.43 0.30 0.31

Spatial (Region 1 ) 0.45 0.20 0.52 0.23
Spatial (Region 2 ) 0.42 0.21 0.61 0.26

Table 3: Influence entropy under different social contexts.

Influence similarity NY (G) SF (G) NY (T) SF (T)

Temporal 0.80 0.74 0.67 0.66
Spatial 0.77 0.56 0.48 0.41

Table 4: Influence similarity w.r.t. social contexts.

From the above analysis, we can conclude that community
impact is constrained under spatial and temporal contexts.

5. LOCATION PREDICTION
Location prediction can drive compelling applications in-

cluding location recommendation and targeted advertising.
On the other hand, it may also threat users’ privacy [35].
Following the previous analysis, we continue to investigate
whether it is possible to use community information to effec-
tively predict users’ locations, using machine learning tech-
niques. More precisely, the question we want to answer is:
given a user’s community information, whether he will check
in at a given place at a given time. Note that the time here
is a certain hour on a certain day (Monday to Sunday).

We first list all the features in the community-based loca-
tion prediction model. Then, we present the baseline pre-
dictors. Experimental results are described in the end.

5.1 Community-based location predictor
To predict whether a user will visit a certain location,

we use one of his communities’ information to establish the
feature vector, i.e., the influential community of the location
(see Section 4).

Community related features. Having chosen the com-
munity, we extract its following features for prediction.

• Distance between the community and the location.
This is the distance between the location and the com-
munity’s nearest frequent movement area.

• Community size. Number of users in the community.

• Number of the community’s frequent movement areas.

• Community’s total number of check-ins.
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Figure 7: Distribution of influential communities on users’ check-ins (temporal contexts).
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Figure 8: Distribution of influential communities on users’ check-ins (spatial contexts).

• Community connectivity. This is the ratio between the
number of edges in the community and the maximal
number of possible edges.

Time. Check-ins are related to time as well. Figure 9a
(Figure 9b) plots the total number of check-ins in New York
and San Francisco in a daily (weekly) scale. Since we aim
to predict whether a user will check in at a place at a cer-
tain time, the time-related features we consider are the total
number of check-ins at the time7 and the day (i.e., Monday
to Sunday) from all users.

5.2 Baseline models
Sample friends. In our community-based predictor, each
location corresponds to the user’s nearest community. To
illustrate the effectiveness of communities on predicting a
user’s mobility, in the first baseline model, for each location,
we randomly sample the same number of friends as the com-
munity and use these friends to build a “virtual community”
(as in Section 4). We then replace the community related
features with this virtual community’s corresponding ones.
The time-related features of this model are exactly the same
as the ones for the community-based model.

Friends. In the second baseline model, we consider a user’s
all friends instead of his communities. The features include
the shortest distance from his friends to the location and the
time-related features.

User. It has been shown in [10, 6] that a user’s past mobility
can predict his future mobility effectively. Therefore, we also
extract features from a user himself to perform prediction.
The features include the following.

• The shortest distance from a user’s frequent movement
areas (through hierarchical clustering with cut-off dis-

7We consider time at a per hour unit, thus the feature is the
number of check-ins of all the users at that hour.
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Figure 9: Check-in time in the datasets.

tance equal to 500m) to the location.8

• The total number of check-ins during the day.

• The total number of check-ins during the hour.

User and community. In the last baseline model, we com-

8To avoid overfitting, we use half of each user’s check-ins to
discover his frequent movement areas and the other half are
used for training and testing the model.



bine the features from the user’s model and our community-
based predictor.

5.3 Metrics
We partition the cities into 0.001×0.001 degree latitude

and longitude cells, a user is said to be in a cell if he has
been to any place belonging to the cell. Let TP, FP, FN
and TN denote true positives, false positives, false negatives
and true negatives, respectively. The metrics we adopt for
evaluation include (1) Accuracy,

Accuracy =
|TP |+ |TN |

|TP |+ |FP |+ |FN |+ |TN | ;

(2) F1 score,

F1 = 2 · Precision × Recall

Precision + Recall
, with

Precision =
|TP |

|TP |+ |FP | , Recall =
|TP |

|TP |+ |FN | ;

and (3) AUC (area under the ROC curve).

5.4 Experiment setup
We build a classifier for each user. A classifier needs both

positive and negative examples. So far we only have the
positive ones, i.e., a user visits a location. To construct the
negative examples, for each location a user visits, we ran-
domly sample a different location (within the city) as the
place that he does not visit at that moment. In this way,
a balanced dataset for each user is naturally formed. As in
the data analysis, we only focus on active users who have
at least 100 check-ins in the city. For each user, we sort his
check-ins chronologically and put his first 80% check-ins for
training the model and the rest 20% for testing. The ma-
chine learning classifier we exploit here is logistic regression.
In all sets, we perform 10-fold cross validation.

5.5 Results
Performance in general. As depicted in Figure 10, our
community-based predictor’s performance is promising and
it outperforms two baseline models that exploit friends’ in-
formation. Especially for the sample friends model, the
community-based model is almost 20% better among all
three metrics in the Twitter dataset. By studying logis-
tic model’s coefficients, the most important feature is the
distance between the community and the location, followed
by the community connectivity and size.

On the other hand, two predictions that are based on
user’s own information perform better than our community-
based predictor. Also, the predictor combining user and
community information does not improve the performance.
This indicates that a user’s past check-ins are the most useful
information for predicting where he will be in the future
which also validates the results proposed in [10, 6].

Prediction vs. community entropy. In Figure 11, we
bucket community entropy by intervals of 0.2 and plot its
relationship with the prediction results (AUC). As we can
see, with the increase of community entropy, the AUC grows
for the community-based model which means the predictor
works better for users with high community entropies. For
example, the AUC value increases more than 5% in San
Francisco in the Gowalla dataset (community entropy from
[0, 0.2) to [1.2, 1.4)).

We further calculate the Pearson’s correlation coefficient9

between community entropy and our prediction results. In
the Twitter dataset, the correlation coefficient for New York
and San Francisco is 0.88 and 0.97 respectively,10 indicat-
ing that community entropy and the prediction results are
strongly correlated. This validates our intuition that a user
with high social diversity is clearly influenced by his com-
munities. We can conclude that community information can
be explored to achieve promising location predictions, espe-
cially for those users with high community entropies.

Community Entropy
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Figure 11: AUC as a function of community entropy, values
of the Pearson’s correlation: 0.60 (NY (G)), 0.75 (SF (G)),
0.88 (NY (T)), 0.97(SF (T)).

Difference between cities. In Figure 10 and Figure 11,
we observe that the prediction results are different between
two cities. New York has the better performance than San
Francisco in the Gowalla dataset. On the other hand, the
prediction results are similar in the Twitter dataset. The
reason for different performances in different cities could be
due to the density of the cities (e.g., New York’s population
density is higher than San Francisco), or the adoption of
LBSN services by users in different cities. We leave the
investigation as a future work.

5.6 Other strategies to choose communities
So far, we have shown that exploring community informa-

tion can lead to effective location prediction. The commu-
nity we choose is the one that has the closest frequent move-
ment area to the target location. We would like to know if
other strategies to choose community can achieve similar re-
sults. We consider three strategies including choosing the
community with most users (max-size), the community with
highest connectivity (max-con) and random community (ran-
dom). Table 5 summarizes the prediction performances in
New York in the Twitter dataset. As we can see, our orig-
inal strategy outperforms these three. Among these three
strategies, max-con performs slightly better than the other
two, but it is still relatively worse than our original strategy
to choose community. This again validates our observation
in Section 4 that influential communities are constrained by
contexts (spatially or temporally), in other words one com-
munity cannot influence every location of the user.
9Pearson’s correlation coefficient is the covariance of two
variables divided by the product of their standard devia-
tions.

10The two values are slightly smaller for the Gowalla dataset,
which is probably due to the fact that the Twitter dataset
contains more information on social relations than the
Gowalla dataset (see discussions in Section 3).
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Figure 10: Prediction results.

AUC Accuracy F1score

Community 0.83 0.78 0.79
max-size 0.73 0.72 0.74
max-con 0.74 0.73 0.74
random 0.71 0.71 0.72

Table 5: Performance of community-choosing strategies.

5.7 Comparison with the PSMM model
In [10], the authors establish a mobility model (PSMM)

for each user based on his past check-ins. The assumption
behind this model is that a user’s mobility is mainly cen-
tered around two states such as home and work. Each state
is modeled as a bivariate Gaussian distribution and the total
mobility is then formalized into a dynamic Gaussian mixture
model with time as an independent factor. The check-ins
that do not fit well with the two states are considered as
social check-ins and are modeled through another friends-
based distribution. We implement the PSMM model and
compare its performance with our community-based predic-
tor. Each user’s first 80% check-ins are used for training
his PSMM model. For testing, besides the rest 20% check-
ins, we also construct the same number of locations that
the user does not go at the moment (as our classification
setup). As the PSMM model’s output is the exact location
of the user, we consider the prediction is correct when the
output location is within 1km of the real location. Table 6
shows the accuracy between our model and PSMM. In all
the datasets, our community-based predictor significantly
outperforms PSMM. As suggested in [33], this is probably
because two states are not enough to capture a user’s mo-
bility in a city. Moreover, a user’s check-in data is also too
sparse to train a good PSMM model. We leave the further
investigation as a future work.

NY (G) LA (G) NY (T) SF (T)

Community 0.76 0.67 0.78 0.81
PSMM 0.55 0.60 0.67 0.65

Table 6: Comparison with PSMM on prediction accuracy.

6. RELATED WORK
Thanks to the emerging of LBSNs, mobility as well as its

connection with social relations have been intensively stud-

ied [9, 34, 15]. There are mainly two directions of research
going on in the area. One direction is to use the location
information from LBSNs to predict friendships (see e.g. [19,
13, 12, 6, 33, 28, 40]), the other studies the impact from
friendships on locations [1, 6, 10, 33, 24] which is what we
focus on in the current work.

Backstrom, Sun and Marlow [1] study the friendship and
location using the Facebook data with user-specified home
addresses. They find out that the friendship probability as a
function of home distances follows a power law, i.e., most of
friends tend to live closely. They also build a model to pre-
dict users’ home location based on their friends’ home. Their
model outperforms the predictor based on IP addresses. The
authors of [6] use the Facebook place data to study check-
in behaviors and friendships. They train a logistic model
to predict users’ locations. Besides that, they also inves-
tigate how users respond to their friends’ check-in and use
the location data to predict friendships. Cho, Myers and
Leskovec [10] investigate the mobility patterns based on the
location data from Gowalla, Brightkite as well as data from
a cellphone company. Based on their observation, they build
a dynamic Gaussian mixture model for human mobility in-
volving temporal, spatial and social relations features. Sadilek,
Kautz and Bigham [33] propose a system for both location
and friendship prediction. For location prediction, they use
dynamic Bayesian networks to model friends’ locations (un-
supervised case) and predict a sequence of locations of users
over a given period of time. McGee, Caverlee and Cheng [24]
introduce the notion of social strength based on their obser-
vation from the geo-tagged Twitter data and incorporate it
into the model to predict users’ home locations. Experi-
mental results show that their model outperforms the one
of [1]. Jurgens in [17] proposes a spatial label propagation
algorithm to infer a user’s location based on a small num-
ber initial friends’ locations. Techniques such as exploiting
information from multiple social network platforms are inte-
grated into the algorithm to further improve the prediction
accuracy.

The main difference between previous works and ours is
the way of treating friends. We consider users’ friends at a
community level while most of them treat them the same
(except for the paper [24] which introduce ‘social strength’,
which is based on common features but not on communities).
Moreover, our location predictor doesn’t need any user’s own
information but his friends’ to achieve a promising result, es-
pecially for users’ with high community entropies. Other mi-



nor differences include the prediction target: we want to pre-
dict users’ certain locations in the future not their home [1,
24, 17] or a dynamic sequences of locations [33].

We focus on understanding users’ mobility behavior from
social network communities. The authors of [4] tackle the
inverse problem, i.e., they exploit users’ mobility informa-
tion to detect communities. They first attach weights to the
edges in a social network based on the check-in information,
then the social network is modified by removing all edges
with small weights. In the end, a community detection al-
gorithm (louvain method[2]) is used on the modified social
graph to discover communities. The experimental results
show that their method is able to discover more meaningful
communities, such as place-focused communities, compared
to the standard community detection algorithm.

More recently, Brown et al. [3] analyze mobility behav-
iors of pairs of friends and groups of friends (communities).
They focus on comparing the difference between individual
mobility and group mobility. For example, they discover
that a user is more likely to meet a friend at a place where
they have not visited before; while he will choose a familiar
place when meeting a group of friends.

7. CONCLUSION AND FUTURE WORK
In this paper, we have studied the community impact on

user’s mobility. Analysis leads us to several important con-
clusions: (1) communities have a stronger impact on users’
mobility; (2) each user is only influenced by a small number
of communities; and (3) different communities have influ-
ences on mobility under different spatial and temporal con-
texts. Based on these, we use machine learning techniques
to predict users’ future locations focusing on community in-
formation. The experimental results on two types of real-life
social network datasets are consistent with our analysis and
show that our prediction model is very effective. The scripts
for conducting the analysis and experiments as well as the
Twitter dataset are available upon request.11

In the future, we plan to extend our work in several di-
rections. First, we have shown in this paper that commu-
nities can be exploited to achieve a promising location pre-
diction. We are also interested in extending our work to
other applications such as location recommendation. It is
possible to redesign the cost function in matrix factoriza-
tion based methods for location recommendation by taking
into account community information. Second, we would like
to conduct the analysis of community impact on other social
behaviors such as information sharing or interests adoption.
Third, in a broader point of view, our current work is ac-
tually a demonstration of the communities’ effect on human
behaviors. As pointed by [39], community is the most mean-
ingful resolution to study social network. Therefore, we also
plan to investigate a user’s role in his social network based
on the structure of his communities.
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