333 research outputs found

    Conceptual biology, hypothesis discovery, and text mining: Swanson's legacy

    Get PDF
    Innovative biomedical librarians and information specialists who want to expand their roles as expert searchers need to know about profound changes in biology and parallel trends in text mining. In recent years, conceptual biology has emerged as a complement to empirical biology. This is partly in response to the availability of massive digital resources such as the network of databases for molecular biologists at the National Center for Biotechnology Information. Developments in text mining and hypothesis discovery systems based on the early work of Swanson, a mathematician and information scientist, are coincident with the emergence of conceptual biology. Very little has been written to introduce biomedical digital librarians to these new trends. In this paper, background for data and text mining, as well as for knowledge discovery in databases (KDD) and in text (KDT) is presented, then a brief review of Swanson's ideas, followed by a discussion of recent approaches to hypothesis discovery and testing. 'Testing' in the context of text mining involves partially automated methods for finding evidence in the literature to support hypothetical relationships. Concluding remarks follow regarding (a) the limits of current strategies for evaluation of hypothesis discovery systems and (b) the role of literature-based discovery in concert with empirical research. Report of an informatics-driven literature review for biomarkers of systemic lupus erythematosus is mentioned. Swanson's vision of the hidden value in the literature of science and, by extension, in biomedical digital databases, is still remarkably generative for information scientists, biologists, and physicians. © 2006Bekhuis; licensee BioMed Central Ltd

    MKEM: a Multi-level Knowledge Emergence Model for mining undiscovered public knowledge

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Since Swanson proposed the Undiscovered Public Knowledge (UPK) model, there have been many approaches to uncover UPK by mining the biomedical literature. These earlier works, however, required substantial manual intervention to reduce the number of possible connections and are mainly applied to disease-effect relation. With the advancement in biomedical science, it has become imperative to extract and combine information from multiple disjoint researches, studies and articles to infer new hypotheses and expand knowledge.</p> <p>Methods</p> <p>We propose MKEM, a Multi-level Knowledge Emergence Model, to discover implicit relationships using Natural Language Processing techniques such as Link Grammar and Ontologies such as Unified Medical Language System (UMLS) MetaMap. The contribution of MKEM is as follows: First, we propose a flexible knowledge emergence model to extract implicit relationships across different levels such as molecular level for gene and protein and Phenomic level for disease and treatment. Second, we employ MetaMap for tagging biological concepts. Third, we provide an empirical and systematic approach to discover novel relationships.</p> <p>Results</p> <p>We applied our system on 5000 abstracts downloaded from PubMed database. We performed the performance evaluation as a gold standard is not yet available. Our system performed with a good precision and recall and we generated 24 hypotheses.</p> <p>Conclusions</p> <p>Our experiments show that MKEM is a powerful tool to discover hidden relationships residing in extracted entities that were represented by our Substance-Effect-Process-Disease-Body Part (SEPDB) model. </p

    Literature Based Discovery (LBD): Towards Hypothesis Generation and Knowledge Discovery in Biomedical Text Mining

    Full text link
    Biomedical knowledge is growing in an astounding pace with a majority of this knowledge is represented as scientific publications. Text mining tools and methods represents automatic approaches for extracting hidden patterns and trends from this semi structured and unstructured data. In Biomedical Text mining, Literature Based Discovery (LBD) is the process of automatically discovering novel associations between medical terms otherwise mentioned in disjoint literature sets. LBD approaches proven to be successfully reducing the discovery time of potential associations that are hidden in the vast amount of scientific literature. The process focuses on creating concept profiles for medical terms such as a disease or symptom and connecting it with a drug and treatment based on the statistical significance of the shared profiles. This knowledge discovery approach introduced in 1989 still remains as a core task in text mining. Currently the ABC principle based two approaches namely open discovery and closed discovery are mostly explored in LBD process. This review starts with general introduction about text mining followed by biomedical text mining and introduces various literature resources such as MEDLINE, UMLS, MESH, and SemMedDB. This is followed by brief introduction of the core ABC principle and its associated two approaches open discovery and closed discovery in LBD process. This review also discusses the deep learning applications in LBD by reviewing the role of transformer models and neural networks based LBD models and its future aspects. Finally, reviews the key biomedical discoveries generated through LBD approaches in biomedicine and conclude with the current limitations and future directions of LBD.Comment: 43 Pages, 5 Figures, 4 Table

    Literature based discovery: Techniques and tools

    Full text link
    Literature Based Discovery (LBD) was initially proposed by Don R. Swanson in 1980 as a method to establish relationships between disease and remedy from disjoint science literature. Consequently, he established a link between magnesium and migraines. Since then literature based discovery has been a subject of research and development for discovery in online medical publications. It has further been investigated in both chemistry and mathematics; In this thesis, we give an overview of LBD and the software tools necessary to automate this technique. We further provide an implementation of this technique that is intended to be used for computer science subject matter

    Annotating the human genome with Disease Ontology

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The human genome has been extensively annotated with Gene Ontology for biological functions, but minimally computationally annotated for diseases.</p> <p>Results</p> <p>We used the Unified Medical Language System (UMLS) MetaMap Transfer tool (MMTx) to discover gene-disease relationships from the GeneRIF database. We utilized a comprehensive subset of UMLS, which is disease-focused and structured as a directed acyclic graph (the Disease Ontology), to filter and interpret results from MMTx. The results were validated against the Homayouni gene collection using recall and precision measurements. We compared our results with the widely used Online Mendelian Inheritance in Man (OMIM) annotations.</p> <p>Conclusion</p> <p>The validation data set suggests a 91% recall rate and 97% precision rate of disease annotation using GeneRIF, in contrast with a 22% recall and 98% precision using OMIM. Our thesaurus-based approach allows for comparisons to be made between disease containing databases and allows for increased accuracy in disease identification through synonym matching. The much higher recall rate of our approach demonstrates that annotating human genome with Disease Ontology and GeneRIF for diseases dramatically increases the coverage of the disease annotation of human genome.</p

    CoPub Mapper: mining MEDLINE based on search term co-publication

    Get PDF
    BACKGROUND: High throughput microarray analyses result in many differentially expressed genes that are potentially responsible for the biological process of interest. In order to identify biological similarities between genes, publications from MEDLINE were identified in which pairs of gene names and combinations of gene name with specific keywords were co-mentioned. RESULTS: MEDLINE search strings for 15,621 known genes and 3,731 keywords were generated and validated. PubMed IDs were retrieved from MEDLINE and relative probability of co-occurrences of all gene-gene and gene-keyword pairs determined. To assess gene clustering according to literature co-publication, 150 genes consisting of 8 sets with known connections (same pathway, same protein complex, or same cellular localization, etc.) were run through the program. Receiver operator characteristics (ROC) analyses showed that most gene sets were clustered much better than expected by random chance. To test grouping of genes from real microarray data, 221 differentially expressed genes from a microarray experiment were analyzed with CoPub Mapper, which resulted in several relevant clusters of genes with biological process and disease keywords. In addition, all genes versus keywords were hierarchical clustered to reveal a complete grouping of published genes based on co-occurrence. CONCLUSION: The CoPub Mapper program allows for quick and versatile querying of co-published genes and keywords and can be successfully used to cluster predefined groups of genes and microarray data

    Semantic Approaches for Knowledge Discovery and Retrieval in Biomedicine

    Get PDF

    Discovering context-specific relationships from biological literature by using multi-level context terms

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Swanson's ABC model is powerful to infer hidden relationships buried in biological literature. However, the model is inadequate to infer relations with context information. In addition, the model generates a very large amount of candidates from biological text, and it is a semi-automatic, labor-intensive technique requiring human expert's manual input. To tackle these problems, we incorporate context terms to infer relations between AB interactions and BC interactions.</p> <p>Methods</p> <p>We propose 3 steps to discover meaningful hidden relationships between drugs and diseases: 1) multi-level (gene, drug, disease, symptom) entity recognition, 2) interaction extraction (drug-gene, gene-disease) from literature, 3) context vector based similarity score calculation. Subsequently, we evaluate our hypothesis with the datasets of the "Alzheimer's disease" related 77,711 PubMed abstracts. As golden standards, PharmGKB and CTD databases are used. Evaluation is conducted in 2 ways: first, comparing precision of the proposed method and the previous method and second, analysing top 10 ranked results to examine whether highly ranked interactions are truly meaningful or not.</p> <p>Results</p> <p>The results indicate that context-based relation inference achieved better precision than the previous ABC model approach. The literature analysis also shows that interactions inferred by the context-based approach are more meaningful than interactions by the previous ABC model.</p> <p>Conclusions</p> <p>We propose a novel interaction inference technique that incorporates context term vectors into the ABC model to discover meaningful hidden relationships. By utilizing multi-level context terms, our model shows better performance than the previous ABC model.</p

    Literature Mining for the Discovery of Hidden Connections between Drugs, Genes and Diseases

    Get PDF
    The scientific literature represents a rich source for retrieval of knowledge on associations between biomedical concepts such as genes, diseases and cellular processes. A commonly used method to establish relationships between biomedical concepts from literature is co-occurrence. Apart from its use in knowledge retrieval, the co-occurrence method is also well-suited to discover new, hidden relationships between biomedical concepts following a simple ABC-principle, in which A and C have no direct relationship, but are connected via shared B-intermediates. In this paper we describe CoPub Discovery, a tool that mines the literature for new relationships between biomedical concepts. Statistical analysis using ROC curves showed that CoPub Discovery performed well over a wide range of settings and keyword thesauri. We subsequently used CoPub Discovery to search for new relationships between genes, drugs, pathways and diseases. Several of the newly found relationships were validated using independent literature sources. In addition, new predicted relationships between compounds and cell proliferation were validated and confirmed experimentally in an in vitro cell proliferation assay. The results show that CoPub Discovery is able to identify novel associations between genes, drugs, pathways and diseases that have a high probability of being biologically valid. This makes CoPub Discovery a useful tool to unravel the mechanisms behind disease, to find novel drug targets, or to find novel applications for existing drugs
    • …
    corecore