15,896 research outputs found

    Towards trajectory anonymization: a generalization-based approach

    Get PDF
    Trajectory datasets are becoming popular due to the massive usage of GPS and locationbased services. In this paper, we address privacy issues regarding the identification of individuals in static trajectory datasets. We first adopt the notion of k-anonymity to trajectories and propose a novel generalization-based approach for anonymization of trajectories. We further show that releasing anonymized trajectories may still have some privacy leaks. Therefore we propose a randomization based reconstruction algorithm for releasing anonymized trajectory data and also present how the underlying techniques can be adapted to other anonymity standards. The experimental results on real and synthetic trajectory datasets show the effectiveness of the proposed techniques

    Discovering Valuable Items from Massive Data

    Full text link
    Suppose there is a large collection of items, each with an associated cost and an inherent utility that is revealed only once we commit to selecting it. Given a budget on the cumulative cost of the selected items, how can we pick a subset of maximal value? This task generalizes several important problems such as multi-arm bandits, active search and the knapsack problem. We present an algorithm, GP-Select, which utilizes prior knowledge about similarity be- tween items, expressed as a kernel function. GP-Select uses Gaussian process prediction to balance exploration (estimating the unknown value of items) and exploitation (selecting items of high value). We extend GP-Select to be able to discover sets that simultaneously have high utility and are diverse. Our preference for diversity can be specified as an arbitrary monotone submodular function that quantifies the diminishing returns obtained when selecting similar items. Furthermore, we exploit the structure of the model updates to achieve an order of magnitude (up to 40X) speedup in our experiments without resorting to approximations. We provide strong guarantees on the performance of GP-Select and apply it to three real-world case studies of industrial relevance: (1) Refreshing a repository of prices in a Global Distribution System for the travel industry, (2) Identifying diverse, binding-affine peptides in a vaccine de- sign task and (3) Maximizing clicks in a web-scale recommender system by recommending items to users

    Efficient chain structure for high-utility sequential pattern mining

    Get PDF
    High-utility sequential pattern mining (HUSPM) is an emerging topic in data mining, which considers both utility and sequence factors to derive the set of high-utility sequential patterns (HUSPs) from the quantitative databases. Several works have been presented to reduce the computational cost by variants of pruning strategies. In this paper, we present an efficient sequence-utility (SU)-chain structure, which can be used to store more relevant information to improve mining performance. Based on the SU-Chain structure, the existing pruning strategies can also be utilized here to early prune the unpromising candidates and obtain the satisfied HUSPs. Experiments are then compared with the state-of-the-art HUSPM algorithms and the results showed that the SU-Chain-based model can efficiently improve the efficiency performance than the existing HUSPM algorithms in terms of runtime and number of the determined candidates

    An Efficient Mining Approach for Handling Web Access Sequences

    Get PDF
    The World Wide Web (WWW) becomes an important source for collecting, storing, and sharing the information. Based on the users query the traditional web page search approximately retrieves the related link and some of the search engines are Alta, Vista, Google, etc. The process of web mining defines to determine the unknown and useful information from web data. Web mining contains the two approaches such as data-based approach and process-based approach. Now a day the data-based approach is the widely used approach. It is used to extract the knowledge from web data in the form of hyper link, and web log data. In this study, the modern technique is presented for mining web access utility-based tree construction under Modified Genetic Algorithm (MGA). MGA tree are newly created to deploy the tree construction. In the web access sequences tree construction for the most part relies upon internal and external utility values. The performance of the proposed technique provides an efficient Web access sequences for both static and incremental data. Furthermore, this research work is helpful for both forward references and backward references of web access sequences

    Sharing Computer Network Logs for Security and Privacy: A Motivation for New Methodologies of Anonymization

    Full text link
    Logs are one of the most fundamental resources to any security professional. It is widely recognized by the government and industry that it is both beneficial and desirable to share logs for the purpose of security research. However, the sharing is not happening or not to the degree or magnitude that is desired. Organizations are reluctant to share logs because of the risk of exposing sensitive information to potential attackers. We believe this reluctance remains high because current anonymization techniques are weak and one-size-fits-all--or better put, one size tries to fit all. We must develop standards and make anonymization available at varying levels, striking a balance between privacy and utility. Organizations have different needs and trust other organizations to different degrees. They must be able to map multiple anonymization levels with defined risks to the trust levels they share with (would-be) receivers. It is not until there are industry standards for multiple levels of anonymization that we will be able to move forward and achieve the goal of widespread sharing of logs for security researchers.Comment: 17 pages, 1 figur

    An efficient parallel method for mining frequent closed sequential patterns

    Get PDF
    Mining frequent closed sequential pattern (FCSPs) has attracted a great deal of research attention, because it is an important task in sequences mining. In recently, many studies have focused on mining frequent closed sequential patterns because, such patterns have proved to be more efficient and compact than frequent sequential patterns. Information can be fully extracted from frequent closed sequential patterns. In this paper, we propose an efficient parallel approach called parallel dynamic bit vector frequent closed sequential patterns (pDBV-FCSP) using multi-core processor architecture for mining FCSPs from large databases. The pDBV-FCSP divides the search space to reduce the required storage space and performs closure checking of prefix sequences early to reduce execution time for mining frequent closed sequential patterns. This approach overcomes the problems of parallel mining such as overhead of communication, synchronization, and data replication. It also solves the load balance issues of the workload between the processors with a dynamic mechanism that re-distributes the work, when some processes are out of work to minimize the idle CPU time.Web of Science5174021739
    corecore