17,505 research outputs found

    Confidence Statements for Ordering Quantiles

    Full text link
    This work proposes Quor, a simple yet effective nonparametric method to compare independent samples with respect to corresponding quantiles of their populations. The method is solely based on the order statistics of the samples, and independence is its only requirement. All computations are performed using exact distributions with no need for any asymptotic considerations, and yet can be run using a fast quadratic-time dynamic programming idea. Computational performance is essential in high-dimensional domains, such as gene expression data. We describe the approach and discuss on the most important assumptions, building a parallel with assumptions and properties of widely used techniques for the same problem. Experiments using real data from biomedical studies are performed to empirically compare Quor and other methods in a classification task over a selection of high-dimensional data sets

    Interpretable Categorization of Heterogeneous Time Series Data

    Get PDF
    Understanding heterogeneous multivariate time series data is important in many applications ranging from smart homes to aviation. Learning models of heterogeneous multivariate time series that are also human-interpretable is challenging and not adequately addressed by the existing literature. We propose grammar-based decision trees (GBDTs) and an algorithm for learning them. GBDTs extend decision trees with a grammar framework. Logical expressions derived from a context-free grammar are used for branching in place of simple thresholds on attributes. The added expressivity enables support for a wide range of data types while retaining the interpretability of decision trees. In particular, when a grammar based on temporal logic is used, we show that GBDTs can be used for the interpretable classi cation of high-dimensional and heterogeneous time series data. Furthermore, we show how GBDTs can also be used for categorization, which is a combination of clustering and generating interpretable explanations for each cluster. We apply GBDTs to analyze the classic Australian Sign Language dataset as well as data on near mid-air collisions (NMACs). The NMAC data comes from aircraft simulations used in the development of the next-generation Airborne Collision Avoidance System (ACAS X).Comment: 9 pages, 5 figures, 2 tables, SIAM International Conference on Data Mining (SDM) 201

    GOexpress: an R/Bioconductor package for the identification and visualisation of robust gene ontology signatures through supervised learning of gene expression data

    Get PDF
    Background: Identification of gene expression profiles that differentiate experimental groups is critical for discovery and analysis of key molecular pathways and also for selection of robust diagnostic or prognostic biomarkers. While integration of differential expression statistics has been used to refine gene set enrichment analyses, such approaches are typically limited to single gene lists resulting from simple two-group comparisons or time-series analyses. In contrast, functional class scoring and machine learning approaches provide powerful alternative methods to leverage molecular measurements for pathway analyses, and to compare continuous and multi-level categorical factors. Results: We introduce GOexpress, a software package for scoring and summarising the capacity of gene ontology features to simultaneously classify samples from multiple experimental groups. GOexpress integrates normalised gene expression data (e.g., from microarray and RNA-seq experiments) and phenotypic information of individual samples with gene ontology annotations to derive a ranking of genes and gene ontology terms using a supervised learning approach. The default random forest algorithm allows interactions between all experimental factors, and competitive scoring of expressed genes to evaluate their relative importance in classifying predefined groups of samples. Conclusions: GOexpress enables rapid identification and visualisation of ontology-related gene panels that robustly classify groups of samples and supports both categorical (e.g., infection status, treatment) and continuous (e.g., time-series, drug concentrations) experimental factors. The use of standard Bioconductor extension packages and publicly available gene ontology annotations facilitates straightforward integration of GOexpress within existing computational biology pipelines.Department of Agriculture, Food and the MarineEuropean Commission - Seventh Framework Programme (FP7)Science Foundation IrelandUniversity College Dubli

    Genetic programming in data mining for drug discovery

    Get PDF
    Genetic programming (GP) is used to extract from rat oral bioavailability (OB) measurements simple, interpretable and predictive QSAR models which both generalise to rats and to marketed drugs in humans. Receiver Operating Characteristics (ROC) curves for the binary classier produced by machine learning show no statistical dierence between rats (albeit without known clearance dierences) and man. Thus evolutionary computing oers the prospect of in silico ADME screening, e.g. for \virtual" chemicals, for pharmaceutical drug discovery

    Variable selection for the multicategory SVM via adaptive sup-norm regularization

    Get PDF
    The Support Vector Machine (SVM) is a popular classification paradigm in machine learning and has achieved great success in real applications. However, the standard SVM can not select variables automatically and therefore its solution typically utilizes all the input variables without discrimination. This makes it difficult to identify important predictor variables, which is often one of the primary goals in data analysis. In this paper, we propose two novel types of regularization in the context of the multicategory SVM (MSVM) for simultaneous classification and variable selection. The MSVM generally requires estimation of multiple discriminating functions and applies the argmax rule for prediction. For each individual variable, we propose to characterize its importance by the supnorm of its coefficient vector associated with different functions, and then minimize the MSVM hinge loss function subject to a penalty on the sum of supnorms. To further improve the supnorm penalty, we propose the adaptive regularization, which allows different weights imposed on different variables according to their relative importance. Both types of regularization automate variable selection in the process of building classifiers, and lead to sparse multi-classifiers with enhanced interpretability and improved accuracy, especially for high dimensional low sample size data. One big advantage of the supnorm penalty is its easy implementation via standard linear programming. Several simulated examples and one real gene data analysis demonstrate the outstanding performance of the adaptive supnorm penalty in various data settings.Comment: Published in at http://dx.doi.org/10.1214/08-EJS122 the Electronic Journal of Statistics (http://www.i-journals.org/ejs/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Convex Optimization for Binary Classifier Aggregation in Multiclass Problems

    Full text link
    Multiclass problems are often decomposed into multiple binary problems that are solved by individual binary classifiers whose results are integrated into a final answer. Various methods, including all-pairs (APs), one-versus-all (OVA), and error correcting output code (ECOC), have been studied, to decompose multiclass problems into binary problems. However, little study has been made to optimally aggregate binary problems to determine a final answer to the multiclass problem. In this paper we present a convex optimization method for an optimal aggregation of binary classifiers to estimate class membership probabilities in multiclass problems. We model the class membership probability as a softmax function which takes a conic combination of discrepancies induced by individual binary classifiers, as an input. With this model, we formulate the regularized maximum likelihood estimation as a convex optimization problem, which is solved by the primal-dual interior point method. Connections of our method to large margin classifiers are presented, showing that the large margin formulation can be considered as a limiting case of our convex formulation. Numerical experiments on synthetic and real-world data sets demonstrate that our method outperforms existing aggregation methods as well as direct methods, in terms of the classification accuracy and the quality of class membership probability estimates.Comment: Appeared in Proceedings of the 2014 SIAM International Conference on Data Mining (SDM 2014

    Outlier Detection from Network Data with Subnetwork Interpretation

    Full text link
    Detecting a small number of outliers from a set of data observations is always challenging. This problem is more difficult in the setting of multiple network samples, where computing the anomalous degree of a network sample is generally not sufficient. In fact, explaining why the network is exceptional, expressed in the form of subnetwork, is also equally important. In this paper, we develop a novel algorithm to address these two key problems. We treat each network sample as a potential outlier and identify subnetworks that mostly discriminate it from nearby regular samples. The algorithm is developed in the framework of network regression combined with the constraints on both network topology and L1-norm shrinkage to perform subnetwork discovery. Our method thus goes beyond subspace/subgraph discovery and we show that it converges to a global optimum. Evaluation on various real-world network datasets demonstrates that our algorithm not only outperforms baselines in both network and high dimensional setting, but also discovers highly relevant and interpretable local subnetworks, further enhancing our understanding of anomalous networks

    Distributed classifier based on genetically engineered bacterial cell cultures

    Full text link
    We describe a conceptual design of a distributed classifier formed by a population of genetically engineered microbial cells. The central idea is to create a complex classifier from a population of weak or simple classifiers. We create a master population of cells with randomized synthetic biosensor circuits that have a broad range of sensitivities towards chemical signals of interest that form the input vectors subject to classification. The randomized sensitivities are achieved by constructing a library of synthetic gene circuits with randomized control sequences (e.g. ribosome-binding sites) in the front element. The training procedure consists in re-shaping of the master population in such a way that it collectively responds to the "positive" patterns of input signals by producing above-threshold output (e.g. fluorescent signal), and below-threshold output in case of the "negative" patterns. The population re-shaping is achieved by presenting sequential examples and pruning the population using either graded selection/counterselection or by fluorescence-activated cell sorting (FACS). We demonstrate the feasibility of experimental implementation of such system computationally using a realistic model of the synthetic sensing gene circuits.Comment: 31 pages, 9 figure
    corecore