We describe a conceptual design of a distributed classifier formed by a
population of genetically engineered microbial cells. The central idea is to
create a complex classifier from a population of weak or simple classifiers. We
create a master population of cells with randomized synthetic biosensor
circuits that have a broad range of sensitivities towards chemical signals of
interest that form the input vectors subject to classification. The randomized
sensitivities are achieved by constructing a library of synthetic gene circuits
with randomized control sequences (e.g. ribosome-binding sites) in the front
element. The training procedure consists in re-shaping of the master population
in such a way that it collectively responds to the "positive" patterns of input
signals by producing above-threshold output (e.g. fluorescent signal), and
below-threshold output in case of the "negative" patterns. The population
re-shaping is achieved by presenting sequential examples and pruning the
population using either graded selection/counterselection or by
fluorescence-activated cell sorting (FACS). We demonstrate the feasibility of
experimental implementation of such system computationally using a realistic
model of the synthetic sensing gene circuits.Comment: 31 pages, 9 figure