54 research outputs found

    Deep learning for i-vector speaker and language recognition

    Get PDF
    Over the last few years, i-vectors have been the state-of-the-art technique in speaker and language recognition. Recent advances in Deep Learning (DL) technology have improved the quality of i-vectors but the DL techniques in use are computationally expensive and need speaker or/and phonetic labels for the background data, which are not easily accessible in practice. On the other hand, the lack of speaker-labeled background data makes a big performance gap, in speaker recognition, between two well-known cosine and Probabilistic Linear Discriminant Analysis (PLDA) i-vector scoring techniques. It has recently been a challenge how to fill this gap without speaker labels, which are expensive in practice. Although some unsupervised clustering techniques are proposed to estimate the speaker labels, they cannot accurately estimate the labels. This thesis tries to solve the problems above by using the DL technology in different ways, without any need of speaker or phonetic labels. In order to fill the performance gap between cosine and PLDA scoring given unlabeled background data, we have proposed an impostor selection algorithm and a universal model adaptation process in a hybrid system based on Deep Belief Networks (DBNs) and Deep Neural Networks (DNNs) to discriminatively model each target speaker. In order to have more insight into the behavior of DL techniques in both single and multi-session speaker enrollment tasks, some experiments have been carried out in both scenarios. Experiments on the National Institute of Standard and Technology (NIST) 2014 i-vector challenge show that 46% of this performance gap, in terms of minDCF, is filled by the proposed DL-based system. Furthermore, the score combination of the proposed DL-based system and PLDA with estimated labels covers 79% of this gap. In the second line of the research, we have developed an efficient alternative vector representation of speech by keeping the computational cost as low as possible and avoiding phonetic labels, which are not always accessible. The proposed vectors will be based on both Gaussian Mixture Models (GMMs) and Restricted Boltzmann Machines (RBMs) and will be referred to as GMM-RBM vectors. The role of RBM is to learn the total speaker and session variability among background GMM supervectors. This RBM, which will be referred to as Universal RBM (URBM), will then be used to transform unseen supervectors to the proposed low dimensional vectors. The use of different activation functions for training the URBM and different transformation functions for extracting the proposed vectors are investigated. At the end, a variant of Rectified Linear Unit (ReLU) which is referred to as Variable ReLU (VReLU) is proposed. Experiments on the core test condition 5 of the NIST Speaker Recognition Evaluation (SRE) 2010 show that comparable results with conventional i-vectors are achieved with a clearly lower computational load in the vector extraction process. Finally, for the Language Identification (LID) application, we have proposed a DNN architecture to model effectively the i-vector space of four languages, English, Spanish, German, and Finnish, in the car environment. Both raw i-vectors and session variability compensated i-vectors are evaluated as input vectors to DNN. The performance of the proposed DNN architecture is compared with both conventional GMM-UBM and i-vector/Linear Discriminant Analysis (LDA) systems considering the effect of duration of signals. It is shown that the signals with duration between 2 and 3 sec meet the accuracy and speed requirements of this application, in which the proposed DNN architecture outperforms GMM-UBM and i-vector/LDA systems by 37% and 28%, respectively.En los últimos años, los i-vectores han sido la técnica de referencia en el reconocimiento de hablantes y de idioma. Los últimos avances en la tecnología de Aprendizaje Profundo (Deep Learning. DL) han mejorado la calidad de los i-vectores, pero las técnicas DL en uso son computacionalmente costosas y necesitan datos etiquetados para cada hablante y/o unidad fon ética, los cuales no son fácilmente accesibles en la práctica. La falta de datos etiquetados provoca una gran diferencia de los resultados en el reconocimiento de hablante con i-vectors entre las dos técnicas de evaluación más utilizados: distancia coseno y Análisis Lineal Discriminante Probabilístico (PLDA). Por el momento, sigue siendo un reto cómo reducir esta brecha sin disponer de las etiquetas de los hablantes, que son costosas de obtener. Aunque se han propuesto algunas técnicas de agrupamiento sin supervisión para estimar las etiquetas de los hablantes, no pueden estimar las etiquetas con precisión. Esta tesis trata de resolver los problemas mencionados usando la tecnología DL de diferentes maneras, sin necesidad de etiquetas de hablante o fon éticas. Con el fin de reducir la diferencia de resultados entre distancia coseno y PLDA a partir de datos no etiquetados, hemos propuesto un algoritmo selección de impostores y la adaptación a un modelo universal en un sistema hibrido basado en Deep Belief Networks (DBN) y Deep Neural Networks (DNN) para modelar a cada hablante objetivo de forma discriminativa. Con el fin de tener más información sobre el comportamiento de las técnicas DL en las tareas de identificación de hablante en una única sesión y en varias sesiones, se han llevado a cabo algunos experimentos en ambos escenarios. Los experimentos utilizando los datos del National Institute of Standard and Technology (NIST) 2014 i-vector Challenge muestran que el 46% de esta diferencia de resultados, en términos de minDCF, se reduce con el sistema propuesto basado en DL. Además, la combinación de evaluaciones del sistema propuesto basado en DL y PLDA con etiquetas estimadas reduce el 79% de esta diferencia. En la segunda línea de la investigación, hemos desarrollado una representación vectorial alternativa eficiente de la voz manteniendo el coste computacional lo más bajo posible y evitando las etiquetas fon éticas, Los vectores propuestos se basan tanto en el Modelo de Mezcla de Gaussianas (GMM) y en las Maquinas Boltzmann Restringidas (RBM), a los que se hacer referencia como vectores GMM-RBM. El papel de la RBM es aprender la variabilidad total del hablante y de la sesión entre los supervectores del GMM gen érico. Este RBM, al que se hará referencia como RBM Universal (URBM), se utilizará para transformar supervectores ocultos en los vectores propuestos, de menor dimensión. Además, se estudia el uso de diferentes funciones de activación para el entrenamiento de la URBM y diferentes funciones de transformación para extraer los vectores propuestos. Finalmente, se propone una variante de la Unidad Lineal Rectificada (ReLU) a la que se hace referencia como Variable ReLU (VReLU). Los experimentos sobre los datos de la condición 5 del test de la NIST Speaker Recognition Evaluation (SRE) 2010 muestran que se han conseguidos resultados comparables con los i-vectores convencionales, con una carga computacional claramente inferior en el proceso de extracción de vectores. Por último, para la aplicación de Identificación de Idioma (LID), hemos propuesto una arquitectura DNN para modelar eficazmente en el entorno del coche el espacio i-vector de cuatro idiomas: inglés, español, alemán y finlandés. Tanto los i-vectores originales como los i-vectores propuestos son evaluados como vectores de entrada a DNN. El rendimiento de la arquitectura DNN propuesta se compara con los sistemas convencionales GMM-UBM y i-vector/Análisis Discriminante Lineal (LDA) considerando el efecto de la duración de las señales. Se muestra que en caso de señales con una duración entre 2 y 3 se obtienen resultados satisfactorios en cuanto a precisión y resultados, superando a los sistemas GMM-UBM y i-vector/LDA en un 37% y 28%, respectivament

    Restricted Boltzmann machines for vector representation of speech in speaker recognition

    Get PDF
    Over the last few years, i-vectors have been the state-of-the-art technique in speaker recognition. Recent advances in Deep Learning (DL) technology have improved the quality of i-vectors but the DL techniques in use are computationally expensive and need phonetically labeled background data. The aim of this work is to develop an efficient alternative vector representation of speech by keeping the computational cost as low as possible and avoiding phonetic labels, which are not always accessible. The proposed vectors will be based on both Gaussian Mixture Models (GMM) and Restricted Boltzmann Machines (RBM) and will be referred to as GMM–RBM vectors. The role of RBM is to learn the total speaker and session variability among background GMM supervectors. This RBM, which will be referred to as Universal RBM (URBM), will then be used to transform unseen supervectors to the proposed low dimensional vectors. The use of different activation functions for training the URBM and different transformation functions for extracting the proposed vectors are investigated. At the end, a variant of Rectified Linear Units (ReLU) which is referred to as variable ReLU (VReLU) is proposed. Experiments on the core test condition 5 of NIST SRE 2010 show that comparable results with conventional i-vectors are achieved with a clearly lower computational load in the vector extraction process.Peer ReviewedPostprint (published version

    ROBUST SPEAKER RECOGNITION BASED ON LATENT VARIABLE MODELS

    Get PDF
    Automatic speaker recognition in uncontrolled environments is a very challenging task due to channel distortions, additive noise and reverberation. To address these issues, this thesis studies probabilistic latent variable models of short-term spectral information that leverage large amounts of data to achieve robustness in challenging conditions. Current speaker recognition systems represent an entire speech utterance as a single point in a high-dimensional space. This representation is known as "supervector". This thesis starts by analyzing the properties of this representation. A novel visualization procedure of supervectors is presented by which qualitative insight about the information being captured is obtained. We then propose the use of an overcomplete dictionary to explicitly decompose a supervector into a speaker-specific component and an undesired variability component. An algorithm to learn the dictionary from a large collection of data is discussed and analyzed. A subset of the entries of the dictionary is learned to represent speaker-specific information and another subset to represent distortions. After encoding the supervector as a linear combination of the dictionary entries, the undesired variability is removed by discarding the contribution of the distortion components. This paradigm is closely related to the previously proposed paradigm of Joint Factor Analysis modeling of supervectors. We establish a connection between the two approaches and show how our proposed method provides improvements in terms of computation and recognition accuracy. An alternative way to handle undesired variability in supervector representations is to first project them into a lower dimensional space and then to model them in the reduced subspace. This low-dimensional projection is known as "i-vector". Unfortunately, i-vectors exhibit non-Gaussian behavior, and direct statistical modeling requires the use of heavy-tailed distributions for optimal performance. These approaches lack closed-form solutions, and therefore are hard to analyze. Moreover, they do not scale well to large datasets. Instead of directly modeling i-vectors, we propose to first apply a non-linear transformation and then use a linear-Gaussian model. We present two alternative transformations and show experimentally that the transformed i-vectors can be optimally modeled by a simple linear-Gaussian model (factor analysis). We evaluate our method on a benchmark dataset with a large amount of channel variability and show that the results compare favorably against the competitors. Also, our approach has closed-form solutions and scales gracefully to large datasets. Finally, a multi-classifier architecture trained on a multicondition fashion is proposed to address the problem of speaker recognition in the presence of additive noise. A large number of experiments are conducted to analyze the proposed architecture and to obtain guidelines for optimal performance in noisy environments. Overall, it is shown that multicondition training of multi-classifier architectures not only produces great robustness in the anticipated conditions, but also generalizes well to unseen conditions

    Scalable learning for geostatistics and speaker recognition

    Get PDF
    With improved data acquisition methods, the amount of data that is being collected has increased severalfold. One of the objectives in data collection is to learn useful underlying patterns. In order to work with data at this scale, the methods not only need to be effective with the underlying data, but also have to be scalable to handle larger data collections. This thesis focuses on developing scalable and effective methods targeted towards different domains, geostatistics and speaker recognition in particular. Initially we focus on kernel based learning methods and develop a GPU based parallel framework for this class of problems. An improved numerical algorithm that utilizes the GPU parallelization to further enhance the computational performance of kernel regression is proposed. These methods are then demonstrated on problems arising in geostatistics and speaker recognition. In geostatistics, data is often collected at scattered locations and factors like instrument malfunctioning lead to missing observations. Applications often require the ability interpolate this scattered spatiotemporal data on to a regular grid continuously over time. This problem can be formulated as a regression problem, and one of the most popular geostatistical interpolation techniques, kriging is analogous to a standard kernel method: Gaussian process regression. Kriging is computationally expensive and needs major modifications and accelerations in order to be used practically. The GPU framework developed for kernel methods is extended to kriging and further the GPU's texture memory is better utilized for enhanced computational performance. Speaker recognition deals with the task of verifying a person's identity based on samples of his/her speech - "utterances". This thesis focuses on text-independent framework and three new recognition frameworks were developed for this problem. We proposed a kernelized Renyi distance based similarity scoring for speaker recognition. While its performance is promising, it does not generalize well for limited training data and therefore does not compare well to state-of-the-art recognition systems. These systems compensate for the variability in the speech data due to the message, channel variability, noise and reverberation. State-of-the-art systems model each speaker as a mixture of Gaussians (GMM) and compensate for the variability (termed "nuisance"). We propose a novel discriminative framework using a latent variable technique, partial least squares (PLS), for improved recognition. The kernelized version of this algorithm is used to achieve a state of the art speaker ID system, that shows results competitive with the best systems reported on in NIST's 2010 Speaker Recognition Evaluation

    Linguistically Aided Speaker Diarization Using Speaker Role Information

    Full text link
    Speaker diarization relies on the assumption that speech segments corresponding to a particular speaker are concentrated in a specific region of the speaker space; a region which represents that speaker's identity. These identities are not known a priori, so a clustering algorithm is typically employed, which is traditionally based solely on audio. Under noisy conditions, however, such an approach poses the risk of generating unreliable speaker clusters. In this work we aim to utilize linguistic information as a supplemental modality to identify the various speakers in a more robust way. We are focused on conversational scenarios where the speakers assume distinct roles and are expected to follow different linguistic patterns. This distinct linguistic variability can be exploited to help us construct the speaker identities. That way, we are able to boost the diarization performance by converting the clustering task to a classification one. The proposed method is applied in real-world dyadic psychotherapy interactions between a provider and a patient and demonstrated to show improved results.Comment: from v1: restructured Introduction and Background, added experimental results with ASR text and language-only baselin

    Diarization of telephone conversations using probabilistic linear discriminant analysis

    Get PDF
    Speaker diarization can be summarized as the process of partitioning an audio data into homogeneous segments according to speaker identity. This thesis investigates the application of the probabilistic linear discriminant analysis (PLDA) to speaker diarization of telephone conversations. We introduce a variational Bayes (VB) approach for inference under a PLDA model for modeling segmental i-vectors in speaker diarization. Deterministic annealing (DA) algorithm is employed in order to avoid locally optimal solutions in VB iterations. We compare our proposed system with a well-known system that applies k-means clustering on principal component analysis coe cients of segmental i-vectors. We used summed channel telephone data from the National Institute of Standards and Technology 2008 Speaker Recognition Evaluation as the test set in order to evaluate the performance of the proposed system. We achieve about 20% relative improvement in diarization error rate as compared to the baseline system

    The Effect Of Acoustic Variability On Automatic Speaker Recognition Systems

    Get PDF
    This thesis examines the influence of acoustic variability on automatic speaker recognition systems (ASRs) with three aims. i. To measure ASR performance under 5 commonly encountered acoustic conditions; ii. To contribute towards ASR system development with the provision of new research data; iii. To assess ASR suitability for forensic speaker comparison (FSC) application and investigative/pre-forensic use. The thesis begins with a literature review and explanation of relevant technical terms. Five categories of research experiments then examine ASR performance, reflective of conditions influencing speech quantity (inhibitors) and speech quality (contaminants), acknowledging quality often influences quantity. Experiments pertain to: net speech duration, signal to noise ratio (SNR), reverberation, frequency bandwidth and transcoding (codecs). The ASR system is placed under scrutiny with examination of settings and optimum conditions (e.g. matched/unmatched test audio and speaker models). Output is examined in relation to baseline performance and metrics assist in informing if ASRs should be applied to suboptimal audio recordings. Results indicate that modern ASRs are relatively resilient to low and moderate levels of the acoustic contaminants and inhibitors examined, whilst remaining sensitive to higher levels. The thesis provides discussion on issues such as the complexity and fragility of the speech signal path, speaker variability, difficulty in measuring conditions and mitigation (thresholds and settings). The application of ASRs to casework is discussed with recommendations, acknowledging the different modes of operation (e.g. investigative usage) and current UK limitations regarding presenting ASR output as evidence in criminal trials. In summary, and in the context of acoustic variability, the thesis recommends that ASRs could be applied to pre-forensic cases, accepting extraneous issues endure which require governance such as validation of method (ASR standardisation) and population data selection. However, ASRs remain unsuitable for broad forensic application with many acoustic conditions causing irrecoverable speech data loss contributing to high error rates
    • …
    corecore