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TaggedPAbstract

Over the last few years, i-vectors have been the state-of-the-art technique in speaker recognition. Recent advances in Deep

Learning (DL) technology have improved the quality of i-vectors but the DL techniques in use are computationally expensive and

need phonetically labeled background data. The aim of this work is to develop an efficient alternative vector representation of

speech by keeping the computational cost as low as possible and avoiding phonetic labels, which are not always accessible. The

proposed vectors will be based on both Gaussian Mixture Models (GMM) and Restricted Boltzmann Machines (RBM) and will

be referred to as GMM�RBM vectors. The role of RBM is to learn the total speaker and session variability among background

GMM supervectors. This RBM, which will be referred to as Universal RBM (URBM), will then be used to transform unseen

supervectors to the proposed low dimensional vectors. The use of different activation functions for training the URBM and differ-

ent transformation functions for extracting the proposed vectors are investigated. At the end, a variant of Rectified Linear Units

(ReLU) which is referred to as variable ReLU (VReLU) is proposed. Experiments on the core test condition 5 of NIST SRE 2010

show that comparable results with conventional i-vectors are achieved with a clearly lower computational load in the vector

extraction process.

� 2017 The Authors. Published by Elsevier Ltd.

This is an open access article under the CC BY-NC-ND license. (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

TaggedPThe low dimensional representation of a speech utterance based on the factor analysis technique is well-known as

i-vector (Dehak et al., 2011a). Over the past few years, i-vectors have shown a great performance not only in speaker

recognition but also in other applications (e.g., Dehak et al., 2011b; Bahari et al., 2012; Xia and Liu, 2012). Two

commonly used scoring techniques for i-vectors are cosine distance (Dehak et al., 2010; 2011a) and Probabilistic

Linear Discriminant Analysis (PLDA) (Prince and Elder, 2007; Kenny, 2010). PLDA scoring leads to a superior per-

formance but needs speaker-labeled background data which is costly and not accessible easily.
I This paper has been recommended for acceptance by Roger Moore.

* Corresponding author.

E-mail address: omid.ghahabi@upc.edu (O. Ghahabi).

http://dx.doi.org/10.1016/j.csl.2017.06.007

0885-2308/ 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license.

(http://creativecommons.org/licenses/by-nc-nd/4.0/)

https://core.ac.uk/display/87659466?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:omid.ghahabi@upc.edu
http://dx.doi.org/10.1016/j.csl.2017.06.007
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.sciencedirect.com
http://dx.doi.org/
http://www.elsevier.com/locate/csl
http://crossmark.crossref.org/dialog/?doi=10.1016/j.csl.2017.06.007&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.csl.2017.06.007&domain=pdf


O. Ghahabi and J. Hernando / Computer Speech & Language 47 (2017) 16�29 17
TaggedPMotivated by the success use of Deep Learning (DL) in other speech processing applications (e.g., Mohamed

et al., 2010; Dahl et al., 2012; Mohamed et al., 2012; Hinton et al., 2012; Senior et al., 2015), DL techniques have

also been used in speaker recognition for different purposes. For example, DL techniques have been applied as a

backend on i-vectors (Stafylakis et al., 2012b; Senoussaoui et al., 2012; Stafylakis et al., 2012a; Novoselov et al.,

2014; Ghahabi and Hernando, 2014a; 2014b; 2017), used in the i-vector extraction algorithm (Lei et al., 2014;

Kenny et al., 2014; Mclaren et al., 2015; Richardson et al., 2015; Liu et al., 2015; Campbell, 2014; Garcia-Romero

et al., 2014), and also employed for compact representation of speech signals (Vasilakakis et al., 2013; Variani et al.,

2014; Liu et al., 2015; Ghahabi and Hernando, 2015; Safari et al., 2016) and discriminative feature classification

(Safari et al., 2015).

TaggedPDL technology has been used in the i-vector extraction algorithm in two ways. First, a Deep Neural Network

(DNN) has been used for acoustic modeling rather than the typical Gaussian Mixture Model (GMM) (Lei et al.,

2014; Kenny et al., 2014; Campbell, 2014; Richardson et al., 2015; Garcia-Romero et al., 2014; Liu et al., 2015).

Second, conventional spectral features have been replaced or appended by the so-called DNN bottleneck features

and then a DNN or a GMM has been used as an acoustic model (Mclaren et al., 2015; Richardson et al., 2015; Liu

et al., 2015). It has been shown that the best results are obtained when spectral features are appended by bottleneck

features and a GMM is used as an acoustic model (Mclaren et al., 2015; Richardson et al., 2015; Lozano-Diez et al.,

2016). However, the main problem is that the use of DNN as either an acoustic model or bottleneck feature extractor

increases highly the computational cost of the i-vector extraction process. Moreover, in both cases phonetic labels

are required for DNN training, which are not always accessible.

TaggedPOn the other hand, only a few works have tried to make use of DL techniques to build a compact representa-

tion of speech signals without using the conventional i-vector algorithm. In Vasilakakis et al. (2013), Variani

et al. (2014), Liu et al. (2015), a deep architecture is trained using background feature vectors. Then the feature

vectors of a given utterance are forward-propagated and the mean of the posterior probabilities of a particular

hidden layer (Variani et al., 2014) or a PCA dimension reduced version of them (Liu et al., 2015), or a PCA

dimension reduced version of the mean vectors (Vasilakakis et al., 2013) are considered as a new compact

representation. In Safari et al. (2016), the parameters of the adapted networks are stacked to build a supervec-

tor. Then the dimension of the new supervectors are reduced by PCA. In Ghahabi and Hernando (2015), the

authors used the GMM supervectors, rather than the feature vectors, as the inputs to a Restricted Boltzmann

Machine (RBM). RBM has been used as a dimension reduction stage in that scenario. Although Liu et al.

(2015) and Variani et al. (2014) have shown some success in text-dependent speaker recognition, still no signif-

icant improvement is reported for text-independent tasks. Moreover, working with DL techniques in feature

vector domain is costly.

TaggedPThe aim of this work is to develop an efficient framework for vector representation of speech by keeping the

computational cost as low as possible and avoiding phonetic labels. In order to achieve this goal, a global RBM

referred to as Universal RBM (URBM) is trained given background GMM supervectors. The URBM tries to learn

the total session and speaker variability among background supervectors. It will then be used to transform unseen

supervectors to lower dimensional vectors which will be referred to as GMM�RBM vectors.

TaggedPCompared to the preliminary work presented in Ghahabi and Hernando (2015), whitening in the supervector

domain, which is computationally costly, is replaced by warping in the feature vector domain. This change makes

possible to obtain higher speaker recognition accuracy, specially in lower dimensional vectors. Moreover, the effect

of the type of the activation function for training the URBM and the type of the transformation function for

GMM�RBM vector extraction are investigated. At the end, a variation of Linear Rectified Units (ReLU), which

will be referred to as variable ReLU (VReLU), is proposed for training the URBM, and then a linear function is used

for transformation in the vector extraction stage.

TaggedPThe core condition of NIST SRE 2006 (NIST, 2006) is used for the development and the core condition 5 of NIST

SRE 2010 (NIST, 2010) with much bigger background data is used for the test and evaluation. The experiments on

the evaluation set shows that the proposed GMM�RBM vectors achieve comparable performance with conventional

i-vectors while lower computational cost is required for vector extraction. The conclusion is valid with both cosine

and PLDA scoring. Moreover, the combination of GMM�RBM vectors and i-vectors at the score level improves the

performance more.

TaggedPThe rest of the paper is organized as follows. Section 2 gives a brief background overview about conventional

i-vectors and PLDA. Section 3 describes the proposed GMM�RBM vectors. Section 4 investigate the effect of
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TaggedPactivation and transformation functions used, respectively, for URBM training and GMM�RBM vector extraction

and discusses the database, baseline systems, and the experimental results. Section 5 concludes the paper.
2. Conventional i-vectors

TaggedPAn i-vector (Dehak et al., 2011a) is a low rank vector representation of a speech utterance. Feature vectors of a

speech signal can be represented by a Gaussian Mixture Model (GMM) adapted from a Universal Background

Model (UBM). The mean vectors of the adapted GMM are stacked to build the supervector s. The supervector can
be further modeled as follows,

s ¼ subm þ Tn ð1Þ
where subm is the speaker- and session-independent mean supervector, typically from UBM, T is the total variability

matrix, and n is a vector of latent variables. The posterior distribution of n is conditioned on the Baum�Welch statis-

tics of the given speech utterance. The mean of this posterior distribution is referred to as i-vector v and computed as

follows,

v ¼ I þ T tS
�1N ðuÞT

� ��1

T tS
�1 eFðuÞ ð2Þ

where N ðuÞ is a diagonal matrix containing the zeroth order Baum�Welch statistics, eFðuÞ is a supervector of the

centralized first order statistics, S is a diagonal covariance matrix initialized by Subm and updated during the factor

analysis training, and t denotes the transpose operation. The Tmatrix is trained using the Expectation�Maximization

(EM) algorithm given the Baum�Welch statistics from background speech utterances. More details can be found in

Dehak et al. (2011a).

TaggedPTwo main scoring techniques for i-vectors are cosine (Dehak et al., 2010; 2011a) and Probabilistic Linear Dis-

criminant Analysis (PLDA) (Prince and Elder, 2007). PLDA is a more effective technique which performs scoring

along with session variability compensation. It assumes that each i-vector can be decomposed as,

v ¼ mþFz þ ɛ ð3Þ
where m is a global offset, the columns of F are eigenvoices, z is a latent vector having a standard normal prior, and

the residual vector e is normally distributed with zero mean and a full covariance matrix. The model parameters are

estimated from a large collection of speaker-labeled background data using an EM algorithm as in Prince and Elder

(2007). Within and between class i-vector covariance matrices which are depending only on the model parameters

are stored and used for scoring.
3. Proposed GMM�RBM vectors

TaggedPRecently, the advances in Deep Learning (DL) have improved the quality of i-vectors, but the DL techniques in

use are computationally expensive and need phonetic labels for the background data. We propose in this work an

alternative vector-based representation for speakers in a less computationally expensive manner with no use of any

phonetic or speaker labels.

TaggedPRBMs are good potentials for this purpose because they have good representational powers and they are unsuper-

vised and computationally low cost. In fact, RBMs are generative networks with two fully connected layers of visi-

ble and hidden stochastic units. In this work, it is assumed that the inputs or visible units are GMM supervectors and

the outputs or hidden units are the low dimensional vectors we are looking for. The RBM is trained given the back-

ground GMM supervectors and will be referred to as a Universal RBM (URBM). The role of the URBM is to learn

the total session and speaker variability among the background supervectors. Different types of units and activation

functions can be used for training the URBM which will be mentioned in Section 3.2 and evaluated in Section 4 for

this application. After training the URBM, the visible�hidden connection weight matrix is used to transform unseen

GMM supervectors to lower dimensional vectors which will be referred to as GMM�RBM vectors in this work.

TaggedPFig. 1 shows the block-diagram of the proposed framework. The whole process has been divided in three main

stages detailed in the following sections, which correspond to each block of Fig. 1. First, GMM supervectors are built

from the warped spectral features given the UBM, and then are normalized using the UBM parameters. Second, the



Fig. 1. Block-diagram of the proposed GMM�RBM vector framework. W and b are the parameters of the Universal RBM (URBM), m is the

global mean, andH is the whitening matrix obtained on the background GMM�RBM vectors.
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TaggedPbackground GMM supervectors are used to train the URBM and then it can optionally be normalized to provide an

appropriate transformation matrix from the supervectors to the proposed low dimensional vectors. Third, given the

unseen GMM supervectors and the parameters of the URBM, GMM�RBM vectors are extracted.

3.1. Feature warping and GMM supervectors

TaggedPAs it is shown in Block A of Fig. 1, input speech signals are first characterized by spectral feature vectors. After-

wards, feature warping is applied to map the distribution of each individual feature to a Gaussian distribution over a

time interval based on the Cumulative Distribution Function (CDF). The method assumes that the components of the

feature vector are independent and are processed individually as a separate stream. CDF matching is performed over

a sliding window of size N and only the central frame of the window is warped. The features in a given window are

sorted in ascending order. If the given component value x in the central frame has the rank r (1 � r � N), the warped

value bx should satisfy (Pelecanos and Sridharan, 2001; Xiang et al., 2002),

ðr � 1=2Þ=N ¼
Z bx
�1

f ðzÞdz ð4Þ

where the left side is the approximated CDF value of x, the right side is the CDF value of bx; and f (z) is the Probabil-

ity Density Function (PDF) of a standard normal distribution (Pelecanos and Sridharan, 2001; Xiang et al., 2002).

TaggedPIt is shown that feature warping helps to compensate undesired session variability in speech signals (Pelecanos

and Sridharan, 2001) as well as Gaussianizes the feature distributions. It will be shown in the experimental result

section that feature warping has a high impact on the performance of the proposed GMM�RBM vectors.

TaggedPWarped features are then modeled by a GMM adapted from the background model (UBM). The mean vectors of

each adapted GMM are stacked to build a supervector. In order to increase the discrimination power, supervectors

are model-normalized using the mean supervector and diagonal covariance matrix of the UBM (subm and Subm),

s0 ¼ S
�1=2
ubm ðs� submÞ: ð5Þ

TaggedPModel normalization helps also having zero mean and unit variance for supervectors which is a prior assumption

for the training of an RBM with real-valued inputs as it will be described in the next section.

3.2. Universal RBM training

TaggedPNormalized supervectors obtained on the background data are used to train the URBM (Block B of Fig. 1). The

role of the URBM is to learn all session and speaker variability among background supervectors. The URBM
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TaggedPparameters will then be used to transform unseen supervectors to lower dimensional GMM�RBM vectors. Different

visible and hidden units, and activation functions can be used for training an RBM (Hinton, 2012). Since the

inputs in this application are real-valued supervectors, the visible units will be Gaussian. However, sigmoid and

Rectified Linear Units (ReLU) can be used in the hidden layer during the training of the URBM. As it is men-

tioned in Hinton (2012) and proved by our experiments, training an RBM with both linear hidden and visible units

is highly unstable. Therefore, pure linear hidden units are discarded in this work. Given the URBM parameters,

any reasonable transformation function could be used to transform unseen supervectors. In this section, the prob-

lem of the use of the traditional sigmoid function for both activation and transformation is first addressed and a

potential solution is proposed. Then a variant of ReLU, which will be referred to as Variable ReLU (VReLU), is

proposed for this application. It will be shown in Section 4 that the proposed VReLU does not suffer from the

problems of sigmoid and ReLU.

TaggedPFig. 2 shows the histograms of the posterior probabilities of the first hidden unit of the URBM before and after

nonlinear transformations. The URBM is trained with traditional sigmoid activation function. The typical sigmoid

function and the log sigmoid function, which was used in Ghahabi and Hernando (2015), are employed for the trans-

formation. Other hidden units show also similar behaviors. As it can be seen in this figure, the posterior probability

distribution of hidden units after sigmoid transformation will be compressed around zero and far from a Gaussian

distribution which is ideal for the proposed GMM�RBM vectors. This fact degrades the performance significantly.
Fig. 2. Histograms of the first hidden unit values before (bottom) and after (left) transformation with sigmoid and log sigmoid functions. URBM

is trained with sigmoid hidden units.
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TaggedPThe behavior is better in case of log sigmoid function since the most part of the distribution is transformed with lin-

ear part of the function, but still there is the same problem for values around zero after transformation. Although the

whitening transformation on posterior probabilities afterwards corrects the distributions to some extent, still the per-

formance will be low specifically for sigmoid transformation.

TaggedPA potential solution can be changing the mean and variance of the posterior probability distributions, before

transformation, somehow they fall in the active nonlinear parts of the transformation functions. This can be easily

performed through URBM parameter normalization which we have proposed as follows,

cW ¼ a
W

max
i;j

jwijj ð6Þ

bbi ¼ bþ bi � b
� � ð7Þ

where W is the visible�hidden connection weights, b is the vector of hidden bias terms, a and b are two parameters

to control, respectively, the variance and the mean of the posterior probability distributions of hidden units before

nonlinear transformation, wij is the (i, j) element of W, and bi and b are the ith element and the mean value of b,
respectively.

TaggedPFig. 3 shows how changing a and b can move the distribution of the posterior probabilities of hidden units to a

desired interval. We will show in Section 4 that this movement will improve the quality of the GMM�RBM vectors

when the URBM is trained with sigmoid hidden units.

TaggedPAnother alternative unit is ReLU. ReLU is a kind of linear unit for which the negative values are zeroed out. If the

URBM is trained with ReLU and the inputs are transformed with linear function after training, none of the above

problems will occur. However, as we will show in Section 4, the problem will be that the distribution of posterior

probabilities of hidden units will be asymmetric around the mean value, which is not appropriate for PLDA scoring.

Therefore, we have proposed in this work a variant of ReLU, which is referred to as variable ReLU (VReLU). In

VReLU, the unit values less than the threshold t are zeroed out, rather than the fixed threshold zero in ReLU.

Threshold t is randomly selected from a normal distribution N(0, 1) for each hidden unit and for each input sample

in each training iteration. In fact, VReLU is defined as follows,

f ðxÞ ¼ x x> t

0 x� t
; t 2Nð0; 1Þ

�
ð8Þ

TaggedPFig. 4 compares ReLU and VReLU with both positive and negative values of t. It will be shown in Section 4 that

VReLU solves the asymmetric problem of the posterior probability distributions to a great extent and, therefore, it

works better than ReLU when PLDA scoring is used.

TaggedPThe full training algorithm for RBM with sigmoid hidden units can be found in Ghahabi and Hernando (2015). In

the following, we only explain the RBM training algorithm with the proposed VReLU. Fig. 5 shows the training

steps. The connection weights W are first randomly initialized from N(0, 0.01) and the visible and hidden bias terms

(a and b, respectively) are set to zero. Given the normalized supervectors s0, the posterior probability of the lower
Fig. 3. The histograms of the posterior probabilities of the first hidden unit of URBM and normalized URBM (with two different pairs of a and b)

before nonlinear transformation. The histograms are obtained on the background dataset used for development.



Fig. 4. Comparison of ReLU and proposed VReLU. In each epoch, per each hidden unit and per each input sample, t is randomly

selected from a normal distribution with zero mean and unit variance. (b) and (c) show the two examples of VReLU when t is positive

and negative, respectively.

22 O. Ghahabi and J. Hernando / Computer Speech & Language 47 (2017) 16�29
TaggedPdimensional hidden vector h is calculated using Eq. (8). Afterwards, supervectors are reconstructed given the hidden

unit values. Then the reconstructed supervectors s0r are used to recalculate the posterior probabilities of hidden units.

These three steps, marked in Fig. 5, provide enough information to update the parameters of the network. Actually,

the training process is based on a maximum likelihood criterion using the stochastic gradient descent algorithm

(Hinton and Salakhutdinov, 2006; Hinton et al., 2006), in which the gradient is estimated by an approximated

version of the Contrastive Divergence (CD) algorithm called CD1 (Hinton et al., 2006; Hinton, 2012).

TaggedPThe training process is summarized as follows,

TaggedP� Initialize Network Parameters (W, b, a)

TaggedP�
 CD1 Steps

TaggedP1. h ¼ f bþWs0ð Þ ð9Þ
TaggedP2. s0r ¼ aþW th ð10Þ
TaggedP3. hr ¼ f bþWs0r

� � ð11Þ
TaggedP�
 Update Network Parameters

TaggedP1. DW ¼ h� s0ht � s0rh
t
r

� �t ð12Þ
TaggedP2. Da ¼ h� s0 � s0r

� � ð13Þ
TaggedP3. Db ¼ h� h� hrð Þ ð14Þ
TaggedPwhere h is the learning rate and f (.) is the VReLU function calculated as in Eq. (8).

TaggedPAdditionally, a momentum factor is used to smooth out the updates, and the weight decay regularization is used to

penalize large weights. The parameters are updated after processing each minibatch and the updating procedure is

repeated when all the minibatches are processed.
Fig. 5. Training of the Universal RBM (URBM) given background GMM supervectors.
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3.3. GMM�RBM vector extraction

TaggedPGiven the GMM supervectors from Block A and the URBM parameters from Block B of Fig. 1, the GMM�RBM

vectors are extracted in Block C as follows,

vr ¼ WS
�1=2
ubm ðs� submÞ ð15Þ

TaggedPAs a linear transformation function is used, the hidden unit bias terms b can be easily discarded and only the

visible�hidden connection weights W are used for transformation. If we reformulate Eq. (15) based on zeroth and

first order Baum�Welch statistics, we will have,

vr ¼ WS
�1=2
ubm N�1ðuÞeFðuÞ ð16Þ

where the relevance factor in map adaptation can also be added toN ðuÞ.
TaggedPLike in case of i-vectors, resulting GMM�RBM vectors are mean normalized and whitened using a mean vector

and a whitening matrix obtained on the background data,

H ¼ V Dþ �ð Þ�1=2
V t ð17Þ

where H is the whitening matrix, V is the matrix of eigenvectors, D is the diagonal matrix of the corresponding

eigenvalues, and � is a small constant regularization factor added to avoid large values in practice.
3.4. Computational load compared to i-vector

TaggedPThe comparison of Eqs. (2) and (16) implies clearly that GMM�RBM vector extraction needs much less

computational load. We compare the computational load in terms of the number of product operations

required for extracting an i-vector and a GMM�RBM vector with the same size based on Eqs. (2) and (16).

Considering the computational cost for multiplication of two matrices n £ m and m £ k of order OðnmkÞ and
for a matrix inversion of size n £ n of order Oðn3Þ; and this fact that N ðuÞ is diagonal and WS

�1=2
ubm in Eq. (16) or

T tS
�1

in Eq. (2) are computed offline, the minimum computational load of i-vector and GMM�RBM vector

extraction will be Oðn3 þ ð2n2 þ 2nÞmÞ and Oððnþ 1ÞmÞ; respectively, in which n is the dimension of i-vector/

GMM�RBM vector and m is the size of supervector.

TaggedPFig. 6 compares the minimum computational load for extracting an i-vector and a GMM�RBM vector for

different values of n and m. The figure implies that the number of operations required for extracting a

GMM�RBM vector is about 10�6 � 10�8 compared to an i-vector which requires about 10�8 � 10�11 operations.

The computational load is of higher importance for online applications in which the frequency of vector extraction

is high.
Fig. 6. Comparison of the number of product operations required for extracting an i-vector and a GMM�RBM vector in terms of (a) the size of

i-vector/GMM�RBM vector n and (b) the size of supervector m.
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4. Experimental results

TaggedPThe details of the database, the setup of the baseline and the proposed approaches, and the experimental results

are given in this section. Baseline systems will be based on conventional i-vectors which are scored using either

cosine or PLDA techniques. Proposed GMM�RBM vectors are build according to the block-diagrams of Fig. 1. The

effect of feature warping, URBM normalization, the type of the activation and transformation functions, as well as

the score combination for both cosine and PLDA techniques are shown in this section.

4.1. Setup, baseline, and database

TaggedPTwo sets of database are used for the experiments. For development, the core test condition of the NIST 2006

SRE evaluation (NIST, 2006) is used. It includes 816 target models and 51,068 trials. In both the training and testing

phases, the duration of speech in signals is approximately two minutes. The background data includes 6063 speech

files collected from NIST 2004 and 2005 SRE corpora. The same background data is used to train UBM, URBM,

PLDA, T and whitening matrices.

TaggedPFor evaluation, the NIST 2010 SRE (NIST, 2010), core test-common condition 5, which includes different num-

ber of trials involving normal vocal effort conversational telephone speech in training and test, is used. The back-

ground data is collected form NIST SRE 2004�2008 and includes 37,600 speech utterances from which 18,140

signals are labeled which are used for PLDA training.

TaggedPFrequency Filtering (FF) features (Nadeu et al., 2001) are used in the experiments. Like Mel-Frequency Cepstral

Coefficients (MFCC), FFs are decorrelated version of log Filter Bank Energies (FBE) (Nadeu et al., 2001). It has

been shown that FF features achieve a performance equal to or better than MFCCs (Nadeu et al., 2001). Features are

extracted every 10 ms using a 30 ms Hamming window. The number of static FF features is 16 and along with delta

FF and delta log energy, 33-dimensional feature vectors are built. Before feature extraction, speech signals are sub-

ject to an energy-based silence removal process. After feature extraction, a 3-second sliding window is used for fea-

ture warping.

TaggedPALIZE open source software (Larcher et al., 2013) is used to build the i-vector baseline systems in which cosine

and PLDA scoring techniques are employed. The dimension of i-vectors is 400 and PLDA size for development data

is 250 and for evaluation 400. A gender-independent UBM is represented as a diagonal-covariance 512-component

GMM.

TaggedPIn the proposed GMM�RBM vector framework, GMMs are adapted from the UBM by a relevance factor of 16.

Only mean vectors are adapted. The dimension of supervectors is, therefore, 512 £ 33 = 16,896. Two URBMs with

the hidden layer sizes of 400 and 8000 are trained to create GMM�RBM vectors. The bigger one is trained only

with sigmoid activation function and is used just for comparing the results with those reported in Ghahabi and Her-

nando (2015). URBMs with hidden layer size of 400 are trained with sigmoid, ReLU, and the proposed VReLU.

The learning rate, the number of epochs, the minibatch size, the weight decay, and the momentum for the URBM,

trained with VReLU, are set to 0.0014, 40, 50, 2� 10�3; and 0.9, respectively.
TaggedPPerformance is evaluated using the Equal Error Rate (EER), and the minimum of the Decision Cost Function

(minDCF) calculated using CM ¼ 10;CFA ¼ 1;PT ¼ 0:01 for the development experiments (NIST, 2006) and

CM ¼ 1;CFA ¼ 1;PT ¼ 0:001 for the evaluation experiments (NIST, 2010).

4.2. Results

TaggedPAs it was mentioned in Section 1, one of the main differences between this work and our prior work in Ghahabi

and Hernando (2015) is discarding whitening in the supervector level and making use of feature warping instead.

The results reported in Table 1 imply that when no feature warping is used, whitening in the supervector level helps.

This is exactly what we did in Ghahabi and Hernando (2015). However, if feature vectors are warped, the whitening

of supervectors is not effective anymore. Moreover, it is time and memory consuming. The best results are obtained

when only feature warping is used.

TaggedPFig. 7 shows the histograms of the first component of the GMM�RBM vectors obtained with a URBM, which is

trained with sigmoid activation function. However, sigmoid, log sigmoid, and linear transformation functions are

used for vector extraction. The histograms of other components show similar behaviors. For sigmoid and log sigmoid



Table 1

The effect of feature warping and whitening of input GMM supervectors in the proposed GMM�RBM

framework. The numbers in the parentheses indicate the dimensions of GMM�RBM vectors. Results are

obtained on the development database with cosine scoring.

Input to RBM Output of RBM Raw features Warped features

EER minDCF EER minDCF

Whitened supervectors GMM�RBM vector (8000) 7.58 0.0346 6.90 0.0331

Raw supervectors GMM�RBM vector (8000) 7.92 0.0379 6.89 0.0323

Raw supervectors GMM�RBM vector (400) 10.45 0.0475 8.08 0.0383
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TaggedPtransformations, the histograms are presented for both URBM and normalized URBM parameters. The normaliza-

tion parameters a and b in Eqs. (6) and (7) are set to 0.05 and �0.5, respectively. This is to move approximately the

posterior distributions into the interval �2 and 2 (Fig. 3) corresponding to the active nonlinear parts of the sigmoid

and log sigmoid transformation functions. For both sigmoid and log sigmoid, URBM normalization helps having

more Gaussian-like histograms. As it will be shown later, this will increase the performance of GMM�RBM vectors

when URBM is trained with sigmoid hidden units.

TaggedPFig. 8 shows the same histograms for GMM�RBM vectors for which URBM is trained with ReLU and VReLU

and linear transformation is used in both cases. The figure implies that the histograms are asymmetric in case of
Fig. 7. Comparison of the histograms of the first component of the background GMM�RBM vectors obtained with sigmoid activation function

and transformation functions of (a) sigmoid, (b) log sigmoid, and (c) linear.



Fig. 8. Comparison of the histograms of the first component of the background GMM�RBM vectors obtained with (a) ReLU and (b) the proposed

VReLU activation functions and linear transformation function.
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TaggedPReLU which is due to the training process in which the hidden units are encouraged having positive values. On the

other hand, the random threshold t proposed in VReLU makes it possible having both positive and negative hidden

values during the training process. This improves the histograms as shown in Fig. 8.

TaggedPTable 2 compares the performance of GMM�RBM vectors extracted by different URBMs and transformation

functions. The comparison is based on both cosine and PLDA scoring. As it was expected, the worse results are

for sigmoid hidden units and transformation function. The URBM normalization improves significantly the perfor-

mance of these vectors. The use of log sigmoid itself performs better than sigmoid as discussed for Figs. 2 and 7.

URBM normalization improves also the performance in this case but the amount of improvement is not as much

as for sigmoid transformation. If the URBM is trained with sigmoid hidden units and then the parameters are used

for linear transformation of input supervectors, the performance will be worse than log sigmoid with cosine scor-

ing but better with PLDA scoring. The use of ReLU for training the URBM and linear function for transformation,

keeps the performance as good as log sigmoid with cosine scoring and improves the PLDA results obtained with

sigmoid URBM and linear transformation. URBM trained with VReLU improves the PLDA results slightly more.

We will show later that VReLU works better than ReLU on unseen evaluation set with both cosine and PLDA

scoring.

TaggedPTable 3 compares the performance of GMM�RBM vectors, which are obtained with URBMs trained with ReLU

and VReLU, with traditional i-vectors on the evaluation set. The use of proposed VReLU shows better performance

than the use of ReLU in both cosine and PLDA scoring. This fact implies that the variable threshold t in VReLU has

increased the generalization power of URBM in addition to the correction of the histograms. As in this table, the per-

formance of the best GMM�RBM vectors is comparable to that of i-vectors for both cosine and PLDA scoring. This

is a significant achievement since the computational load of GMM�RBM vector extraction is much less than the tra-

ditional i-vector extraction as discussed in Section 3.4. At the end, the best results are achieved with score fusion of

i-vectors and GMM�RBM vectors which shows about 7�7.5% and 4�6.5% relative improvements in terms of

EER and minDCF, respectively, compared to i-vectors. For score fusion, BOSARIS toolkit (Brummer and Villiers,

2011) is used. The fusion weights are trained on the development set.
Table 2

The effect of the type of the hidden units during training the URBM and the transformation function for the

extraction of GMM�RBM vectors. Results are obtained on the development database with vectors of

dimension 400. VReLU refers to the proposed variable ReLU.

Hidden units Transformation Cosine PLDA

EER (%) minDCF EER (%) minDCF

Sigmoid Sigmoid 13.55 0.0570 11.05 0.0517

Sigmoid (normalized URBM) 8.67 0.0407 6.08 0.0338

Log sigmoid 8.08 0.0383 6.51 0.0316

Log sigmoid (normalized URBM) 7.85 0.0366 6.28 0.0317

Linear 8.24 0.0382 5.86 0.0317

ReLU Linear 7.82 0.0372 5.58 0.0305

VReLU Linear 7.82 0.0373 5.52 0.0297



Table 3

Performance comparison of proposed GMM�RBM vectors and conventional i-vectors on the evaluation

set core test condition-common 5 of NIST 2010 SRE. GMM�RBM vectors and i-vectors are of a same

size of 400.

Cosine PLDA

EER (%) minDCF EER (%) minDCF

[1] i-Vector 6.270 0.05450 4.096 0.04993

[2] GMM�RBM vector (trained with ReLU) 6.638 0.06228 4.517 0.05085

[3] GMM�RBM vector (trained with VReLU) 6.497 0.06099 3.907 0.05184

Fusion [1] and [3] 5.791 0.05238 3.814 0.04673
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5. Conclusion

TaggedPWe have presented in this work a new vector representation of speech for text-independent speaker recognition.

GMM supervectors have been transformed by a Universal RBM (URBM) to lower dimensional vectors, referred to

as GMM�RBM vectors. The role of URBM has been to learn the total speaker and session variability among back-

ground GMM supervectors. The use of different hidden units for training of URBM and different transformation

functions for vector extraction are investigated. A variant of linear rectified units (ReLU), which is referred to as var-

iable ReLU (VReLU), is proposed. The variable threshold defined in these units corrects the histograms of

GMM�RBM vectors and leads to higher generalization power of URBM. The experimental results on the core test-

common condition 5 of NIST 2010 SRE show that the performance of GMM�RBM vectors is comparable with that

of traditional i-vectors with both cosine and PLDA scoring but with much less computational load. Moreover, the

best results are obtained by score fusion of GMM�RBM vectors and i-vectors.
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