1,201 research outputs found

    Distributed Algorithms for Spectrum Allocation, Power Control, Routing, and Congestion Control in Wireless Networks

    Full text link
    We develop distributed algorithms to allocate resources in multi-hop wireless networks with the aim of minimizing total cost. In order to observe the fundamental duplexing constraint that co-located transmitters and receivers cannot operate simultaneously on the same frequency band, we first devise a spectrum allocation scheme that divides the whole spectrum into multiple sub-bands and activates conflict-free links on each sub-band. We show that the minimum number of required sub-bands grows asymptotically at a logarithmic rate with the chromatic number of network connectivity graph. A simple distributed and asynchronous algorithm is developed to feasibly activate links on the available sub-bands. Given a feasible spectrum allocation, we then design node-based distributed algorithms for optimally controlling the transmission powers on active links for each sub-band, jointly with traffic routes and user input rates in response to channel states and traffic demands. We show that under specified conditions, the algorithms asymptotically converge to the optimal operating point.Comment: 14 pages, 5 figures, submitted to IEEE/ACM Transactions on Networkin

    A Survey on Energy Efficient Network Coding for Multi-hop Routing in Wireless Sensor Networks

    Get PDF
    AbstractNetwork coding consists of intelligently aggregating data packets by means of binary or linear combinations. Recently, network coding has been proposed as a complementary solution for energy efficient multi-hop routing in Wireless Sensor Networks (WSNs). This is because network coding, through the aggregation of packets, considerably reduces the number of transmissions throughout the network. Although numerous network coding techniques for energy efficient routing have been developed in the literature, not much is known about a single survey article reporting on such energy efficient network coding within multi-hop WSNs. As a result, this paper addresses this gap by first classifying and discussing the recent developed energy efficient network coding techniques. The paper then identifies and explains open research opportunities based on analysis of merits of such techniques. This survey aims at providing the reader with a brief and concise idea on the current state-of-art research on network coding mainly focusing on its applications for energy efficient WSNs

    Performance Modelling and Optimisation of Multi-hop Networks

    Get PDF
    A major challenge in the design of large-scale networks is to predict and optimise the total time and energy consumption required to deliver a packet from a source node to a destination node. Examples of such complex networks include wireless ad hoc and sensor networks which need to deal with the effects of node mobility, routing inaccuracies, higher packet loss rates, limited or time-varying effective bandwidth, energy constraints, and the computational limitations of the nodes. They also include more reliable communication environments, such as wired networks, that are susceptible to random failures, security threats and malicious behaviours which compromise their quality of service (QoS) guarantees. In such networks, packets traverse a number of hops that cannot be determined in advance and encounter non-homogeneous network conditions that have been largely ignored in the literature. This thesis examines analytical properties of packet travel in large networks and investigates the implications of some packet coding techniques on both QoS and resource utilisation. Specifically, we use a mixed jump and diffusion model to represent packet traversal through large networks. The model accounts for network non-homogeneity regarding routing and the loss rate that a packet experiences as it passes successive segments of a source to destination route. A mixed analytical-numerical method is developed to compute the average packet travel time and the energy it consumes. The model is able to capture the effects of increased loss rate in areas remote from the source and destination, variable rate of advancement towards destination over the route, as well as of defending against malicious packets within a certain distance from the destination. We then consider sending multiple coded packets that follow independent paths to the destination node so as to mitigate the effects of losses and routing inaccuracies. We study a homogeneous medium and obtain the time-dependent properties of the packet’s travel process, allowing us to compare the merits and limitations of coding, both in terms of delivery times and energy efficiency. Finally, we propose models that can assist in the analysis and optimisation of the performance of inter-flow network coding (NC). We analyse two queueing models for a router that carries out NC, in addition to its standard packet routing function. The approach is extended to the study of multiple hops, which leads to an optimisation problem that characterises the optimal time that packets should be held back in a router, waiting for coding opportunities to arise, so that the total packet end-to-end delay is minimised

    Spectrum Allocation Algorithms for Cognitive Radio Mesh Networks

    Get PDF
    Empowered by the cognitive radio technology, and motivated by the sporadic channel utilization, both spatially and temporally, dynamic spectrum access networks (also referred to as cognitive radio networks and next generation wireless networks) have emerged as a solution to improve spectrum utilization and provide more flexibility to wireless communication. A cognitive radio network is composed of wireless users, referred to as secondary users, which are allowed to use licensed spectrum bands as long as their are no primary, licensed, users occupying the channel in their vicinity. This restricted spectrum access strategy leads to heterogeneity in channel availability among secondary users. This heterogeneity forms a significant source of performance degradation for cognitive radio networks, and poses a great challenge on protocol design. In this dissertation, we propose spectrum allocation algorithms that take into consideration the heterogeneity property and its effect on the network performance. The spectrum allocation solutions proposed in this dissertation address three major objectives in cognitive radio mesh networks. The first objective is maximizing the network coverage, in terms of the total number of served clients, and at the same time simplifying the communication coordination function. To address this objective, we proposed a received based channel allocation strategy that alleviates the need for a common control channel, thus simplifying the coordination function, and at the same time maximizes the number of clients served with link reliability guarantees. We show the superiority of the proposed allocation strategy over other existing strategies. The second objective is improving the multicast throughput to compensate for the performance degradation caused by channel heterogeneity. We proposed a scheduling algorithm that schedules multicast transmissions over both time and frequency and integrates that with the use of network coding. This algorithm achieves a significant gain, measured as the reduction in the total multicast time, as the simulation results prove. We also proposed a failure recovery algorithm that can adaptively adjust the schedule in response to temporary changes in channel availability. The last objective is minimizing the effect of channel switching on the end-to-end delay and network throughput. Channel switching can be a significant source of delay and bandwidth wastage, especially if the secondary users are utilizing a wide spectrum band. To address this issue, we proposed an on-demand multicast routing algorithm for cognitive radio mesh networks based on dynamic programming. The algorithm finds the best available route in terms of end-to-end delay, taking into consideration the switching latency at individual nodes and the transmission time on different channels. We also presented the extensibility of the proposed algorithm to different routing metric. Furthermore, a route recovery algorithm that takes into consideration the overhead of rerouting and the route cost was also proposed. The gain of these algorithms was proved by simulation
    • …
    corecore