2,480 research outputs found

    Minimum Cost Design of Cellular Networks in Rural Areas with UAVs, Optical Rings, Solar Panels and Batteries

    Get PDF
    Bringing the cellular connectivity in rural zones is a big challenge, due to the large installation costs that are incurred when a legacy cellular network based on fixed Base Stations (BSs) is deployed. To tackle this aspect, we consider an alternative architecture composed of UAV-based BSs to provide cellular coverage, ground sites to connect the UAVs with the rest of the network, Solar Panels (SPs) and batteries to recharge the UAVs and to power the ground sites, and a ring of optical fiber links to connect the installed sites. We then target the minimization of the installation costs for the considered UAV-based cellular architecture, by taking into account the constraints of UAVs coverage, SPs energy consumption, levels of the batteries and the deployment of the optical ring. After providing the problem formulation, we derive an innovative methodology to ensure that a single ring of installed optical fibers is deployed. Moreover, we propose a new algorithm, called DIARIZE, to practically tackle the problem. Our results, obtained over a set of representative rural scenarios, show that DIARIZE performs very close to the optimal solution, and in general outperforms a reference design based on fixed BSs

    Joint dimensioning of server and network infrastructure for resilient optical grids/clouds

    Get PDF
    We address the dimensioning of infrastructure, comprising both network and server resources, for large-scale decentralized distributed systems such as grids or clouds. We design the resulting grid/cloud to be resilient against network link or server failures. To this end, we exploit relocation: Under failure conditions, a grid job or cloud virtual machine may be served at an alternate destination (i.e., different from the one under failure-free conditions). We thus consider grid/cloud requests to have a known origin, but assume a degree of freedom as to where they end up being served, which is the case for grid applications of the bag-of-tasks (BoT) type or hosted virtual machines in the cloud case. We present a generic methodology based on integer linear programming (ILP) that: 1) chooses a given number of sites in a given network topology where to install server infrastructure; and 2) determines the amount of both network and server capacity to cater for both the failure-free scenario and failures of links or nodes. For the latter, we consider either failure-independent (FID) or failure-dependent (FD) recovery. Case studies on European-scale networks show that relocation allows considerable reduction of the total amount of network and server resources, especially in sparse topologies and for higher numbers of server sites. Adopting a failure-dependent backup routing strategy does lead to lower resource dimensions, but only when we adopt relocation (especially for a high number of server sites): Without exploiting relocation, potential savings of FD versus FID are not meaningful

    Power consumption evaluation of circuit-switched versus packet-switched optical backbone networks

    Get PDF
    While telecommunication networks have historically been dominated by a circuit-switched paradigm, the last decades have seen a clear trend towards packet-switched networks. In this paper we evaluate how both paradigms perform in optical backbone networks from a power consumption point of view, and whether the general agreement of circuit switching being more power-efficient holds. We consider artificially generated topologies of various sizes, mesh degrees and not yet previously explored in this context transport linerates. We cross-validate our findings with a number of realistic topologies. Our results show that, as a generalization, packet switching can become preferable when the traffic demands are lower than half the transport linerate. We find that an increase in the network node count does not consistently increase the energy savings of circuit switching over packet switching, but is heavily influenced by the mesh degree and (to a minor extent) by the average link length

    Minimization of the receiver cost in an all-optical ring with a limited number of wavelengths

    No full text
    A new all-optical node architecture, known as \emph{Packet Optical Add-Drop Multiplexer} (POADM), may lead to a considerable cost reduction for the infrastructure of the all-optical metropolitan rings if associated with proper dimensioning studies. We present a dimensioning problem which consists of minimizing the total number of receivers located in POADMs for a metropolitan all-optical ring with a fixed number of wavelengths and a given traffic matrix. We prove that this problem is NP-complete and provide a heuristic. The heuristic principle is to match and to group transmissions instead of considering them independently. We justify the transmission group matching approach by confronting the results of our algorithm with its simplified version. The results obtained allow us to recommend the heuristic in the planning of POADM configurations in all-optical rings with a limited number of wavelengths

    Investigation of the tolerance of wavelength-routed optical networks to traffic load variations.

    Get PDF
    This thesis focuses on the performance of circuit-switched wavelength-routed optical network with unpredictable traffic pattern variations. This characteristic of optical networks is termed traffic forecast tolerance. First, the increasing volume and heterogeneous nature of data and voice traffic is discussed. The challenges in designing robust optical networks to handle unpredictable traffic statistics are described. Other work relating to the same research issues are discussed. A general methodology to quantify the traffic forecast tolerance of optical networks is presented. A traffic model is proposed to simulate dynamic, non-uniform loads, and used to test wavelength-routed optical networks considering numerous network topologies. The number of wavelengths required and the effect of the routing and wavelength allocation algorithm are investigated. A new method of quantifying the network tolerance is proposed, based on the calculation of the increase in the standard deviation of the blocking probabilities with increasing traffic load non-uniformity. The performance of different networks are calculated and compared. The relationship between physical features of the network topology and traffic forecast tolerance is investigated. A large number of randomly connected networks with different sizes were assessed. It is shown that the average lightpath length and the number of wavelengths required for full interconnection of the nodes in static operation both exhibit a strong correlation with the network tolerance, regardless of the degree of load non-uniformity. Finally, the impact of wavelength conversion on network tolerance is investigated. Wavelength conversion significantly increases the robustness of optical networks to unpredictable traffic variations. In particular, two sparse wavelength conversion schemes are compared and discussed: distributed wavelength conversion and localized wavelength conversion. It is found that the distributed wavelength conversion scheme outperforms localized wavelength conversion scheme, both with uniform loading and in terms of the network tolerance. The results described in this thesis can be used for the analysis and design of reliable WDM optical networks that are robust to future traffic demand variations

    Optical Interconnection Architectures based on Microring Resonators

    Get PDF
    Abstract: Microring resonators are an interesting device to build integrated optical interconnects, but their asymmetric loss behavior could limit the scalability of classical optical interconnects. We present new interconnects able to increase scalability with limited complexity

    Genetic algorithm for the topological design of survivable optical transport networks

    Get PDF
    We develop a genetic algorithm for the topological design of survivable optical transport networks with minimum capital expenditure. Using the developed genetic algorithm we can obtain near-optimal topologies in a short time. The quality of the obtained solutions is assessed using an integer linear programming model. Two initial population generators, two selection methods, two crossover operators, and two population sizes are analyzed. Computational results obtained using real telecommunications networks show that by using an initial population that resembles real optical transport networks a good convergence is achieved
    • …
    corecore