252 research outputs found

    Estudo do IPFS como protocolo de distribuição de conteúdos em redes veiculares

    Get PDF
    Over the last few years, vehicular ad-hoc networks (VANETs) have been the focus of great progress due to the interest in autonomous vehicles and in distributing content not only between vehicles, but also to the Cloud. Performing a download/upload to/from a vehicle typically requires the existence of a cellular connection, but the costs associated with mobile data transfers in hundreds or thousands of vehicles quickly become prohibitive. A VANET allows the costs to be several orders of magnitude lower - while keeping the same large volumes of data - because it is strongly based in the communication between vehicles (nodes of the network) and the infrastructure. The InterPlanetary File System (IPFS) is a protocol for storing and distributing content, where information is addressed by its content, instead of its location. It was created in 2014 and it seeks to connect all computing devices with the same system of files, comparable to a BitTorrent swarm exchanging Git objects. It has been tested and deployed in wired networks, but never in an environment where nodes have intermittent connectivity, such as a VANET. This work focuses on understanding IPFS, how/if it can be applied to the vehicular network context, and comparing it with other content distribution protocols. In this dissertation, IPFS has been tested in a small and controlled network to understand its working applicability to VANETs. Issues such as neighbor discoverability times and poor hashing performance have been addressed. To compare IPFS with other protocols (such as Veniam’s proprietary solution or BitTorrent) in a relevant way and in a large scale, an emulation platform was created. The tests in this emulator were performed in different times of the day, with a variable number of files and file sizes. Emulated results show that IPFS is on par with Veniam’s custom V2V protocol built specifically for V2V, and greatly outperforms BitTorrent regarding neighbor discoverability and data transfers. An analysis of IPFS’ performance in a real scenario was also conducted, using a subset of STCP’s vehicular network in Oporto, with the support of Veniam. Results from these tests show that IPFS can be used as a content dissemination protocol, showing it is up to the challenge provided by a constantly changing network topology, and achieving throughputs up to 2.8 MB/s, values similar or in some cases even better than Veniam’s proprietary solution.Nos últimos anos, as redes veiculares (VANETs) têm sido o foco de grandes avanços devido ao interesse em veículos autónomos e em distribuir conteúdos, não só entre veículos mas também para a "nuvem" (Cloud). Tipicamente, fazer um download/upload de/para um veículo exige a utilização de uma ligação celular (SIM), mas os custos associados a fazer transferências com dados móveis em centenas ou milhares de veículos rapidamente se tornam proibitivos. Uma VANET permite que estes custos sejam consideravelmente inferiores - mantendo o mesmo volume de dados - pois é fortemente baseada na comunicação entre veículos (nós da rede) e a infraestrutura. O InterPlanetary File System (IPFS - "sistema de ficheiros interplanetário") é um protocolo de armazenamento e distribuição de conteúdos, onde a informação é endereçada pelo conteúdo, em vez da sua localização. Foi criado em 2014 e tem como objetivo ligar todos os dispositivos de computação num só sistema de ficheiros, comparável a um swarm BitTorrent a trocar objetos Git. Já foi testado e usado em redes com fios, mas nunca num ambiente onde os nós têm conetividade intermitente, tal como numa VANET. Este trabalho tem como foco perceber o IPFS, como/se pode ser aplicado ao contexto de rede veicular e compará-lo a outros protocolos de distribuição de conteúdos. Numa primeira fase o IPFS foi testado numa pequena rede controlada, de forma a perceber a sua aplicabilidade às VANETs, e resolver os seus primeiros problemas como os tempos elevados de descoberta de vizinhos e o fraco desempenho de hashing. De modo a poder comparar o IPFS com outros protocolos (tais como a solução proprietária da Veniam ou o BitTorrent) de forma relevante e em grande escala, foi criada uma plataforma de emulação. Os testes neste emulador foram efetuados usando registos de mobilidade e conetividade veicular de alturas diferentes de um dia, com um número variável de ficheiros e tamanhos de ficheiros. Os resultados destes testes mostram que o IPFS está a par do protocolo V2V da Veniam (desenvolvido especificamente para V2V e VANETs), e que o IPFS é significativamente melhor que o BitTorrent no que toca ao tempo de descoberta de vizinhos e transferência de informação. Uma análise do desempenho do IPFS em cenário real também foi efetuada, usando um pequeno conjunto de nós da rede veicular da STCP no Porto, com o apoio da Veniam. Os resultados destes testes demonstram que o IPFS pode ser usado como protocolo de disseminação de conteúdos numa VANET, mostrando-se adequado a uma topologia constantemente sob alteração, e alcançando débitos até 2.8 MB/s, valores parecidos ou nalguns casos superiores aos do protocolo proprietário da Veniam.Mestrado em Engenharia de Computadores e Telemátic

    Vehicular Networks with Infrastructure: Modeling, Simulation and Testbed

    Get PDF
    This thesis focuses on Vehicular Networks with Infrastructure. In the examined scenarios, vehicular nodes (e.g., cars, buses) can communicate with infrastructure roadside units (RSUs) providing continuous or intermittent coverage of an urban road topology. Different aspects related to the design of new applications for Vehicular Networks are investigated through modeling, simulation and testing on real field. In particular, the thesis: i) provides a feasible multi-hop routing solution for maintaining connectivity among RSUs, forming the wireless mesh infrastructure, and moving vehicles; ii) explains how to combine the UHF and the traditional 5-GHz bands to design and implement a new high-capacity high-efficiency Content Downloading using disjoint control and service channels; iii) studies new RSUs deployment strategies for Content Dissemination and Downloading in urban and suburban scenarios with different vehicles mobility models and traffic densities; iv) defines an optimization problem to minimize the average travel delay perceived by the drivers, spreading different traffic flows over the surface roads in a urban scenario; v) exploits the concept of Nash equilibrium in the game-theory approach to efficiently guide electric vehicles drivers' towards the charging stations. Moreover, the thesis emphasizes the importance of using realistic mobility models, as well as reasonable signal propagation models for vehicular networks. Simplistic assumptions drive to trivial mathematical analysis and shorter simulations, but they frequently produce misleading results. Thus, testing the proposed solutions in the real field and collecting measurements is a good way to double-check the correctness of our studie

    Named Data Networking in Vehicular Ad hoc Networks: State-of-the-Art and Challenges

    Get PDF
    International audienceInformation-Centric Networking (ICN) has been proposed as one of the future Internet architectures. It is poised to address the challenges faced by today's Internet that include, but not limited to, scalability, addressing, security, and privacy. Furthermore, it also aims at meeting the requirements for new emerging Internet applications. To realize ICN, Named Data Networking (NDN) is one of the recent implementations of ICN that provides a suitable communication approach due to its clean slate design and simple communication model. There are a plethora of applications realized through ICN in different domains where data is the focal point of communication. One such domain is Intelligent Transportation System (ITS) realized through Vehicular Ad hoc NETwork (VANET) where vehicles exchange information and content with each other and with the infrastructure. To date, excellent research results have been yielded in the VANET domain aiming at safe, reliable, and infotainment-rich driving experience. However, due to the dynamic topologies, host-centric model, and ephemeral nature of vehicular communication, various challenges are faced by VANET that hinder the realization of successful vehicular networks and adversely affect the data dissemination, content delivery, and user experiences. To fill these gaps, NDN has been extensively used as underlying communication paradigm for VANET. Inspired by the extensive research results in NDN-based VANET, in this paper, we provide a detailed and systematic review of NDN-driven VANET. More precisely, we investigate the role of NDN in VANET and discuss the feasibility of NDN architecture in VANET environment. Subsequently, we cover in detail, NDN-based naming, routing and forwarding, caching, mobility, and security mechanism for VANET. Furthermore, we discuss the existing standards, solutions, and simulation tools used in NDN-based VANET. Finally, we also identify open challenges and issues faced by NDN-driven VANET and highlight future research directions that should be addressed by the research community

    An Investigation into the Performance Evaluation of Connected Vehicle Applications: From Real-World Experiment to Parallel Simulation Paradigm

    Get PDF
    A novel system was developed that provides drivers lane merge advisories, using vehicle trajectories obtained through Dedicated Short Range Communication (DSRC). It was successfully tested on a freeway using three vehicles, then targeted for further testing, via simulation. The failure of contemporary simulators to effectively model large, complex urban transportation networks then motivated further research into distributed and parallel traffic simulation. An architecture for a closed-loop, parallel simulator was devised, using a new algorithm that accounts for boundary nodes, traffic signals, intersections, road lengths, traffic density, and counts of lanes; it partitions a sample, Tennessee road network more efficiently than tools like METIS, which increase interprocess communications (IPC) overhead by partitioning more transportation corridors. The simulator uses logarithmic accumulation to synchronize parallel simulations, further reducing IPC. Analyses suggest this eliminates up to one-third of IPC overhead incurred by a linear accumulation model

    Reliability and Efficiency of Vehicular Network Applications

    Get PDF
    The DSRC/WAVE initiative is forecast to enable a plethora of applications, classified in two broad types of safety and non-safety applications. In the former type, the reliability performance is of tremendous prominence while, in the latter case, the efficiency of information dissemination is the key driving factor. For safety applications, we adopt a systematic approach to analytically investigate the reliability of the communication system in a symbiotic relationship with the host system comprising a vehicular traffic system and radio propagation environment. To this aim, the¬ interference factor is identified as the central element of the symbiotic relationship. Our approach to the investigation of interference and its impacts on the communication reliability departs from previous studies by the degree of realism incorporated in the host system model. In one dimension, realistic traffic models are developed to describe the vehicular traffic behaviour. In a second dimension, a realistic radio propagation model is employed to capture the unique signal propagation aspects of the host system. We address the case of non-safety applications by proposing a generic framework as a capstone architecture for the development of new applications and the efficiency evaluation of existing ones. This framework, while being independent from networking technology, enables accurate characterization of the various information dissemination tasks that a node performs in cooperation with others. As the central element of the framework, we propose a game theoretic model to describe the interaction of meeting nodes aiming to exchange information of mutual or social interests. An adaptive mechanism is designed to enable a mobile node to measure the social significance of various information topics, which is then used by the node to prioritize the forwarding of information objects

    Dynamic services in mobile ad hoc networks

    Get PDF
    The increasing diffusion of wireless-enabled portable devices is pushing toward the design of novel service scenarios, promoting temporary and opportunistic interactions in infrastructure-less environments. Mobile Ad Hoc Networks (MANET) are the general model of these higly dynamic networks that can be specialized, depending on application cases, in more specific and refined models such as Vehicular Ad Hoc Networks and Wireless Sensor Networks. Two interesting deployment cases are of increasing relevance: resource diffusion among users equipped with portable devices, such as laptops, smart phones or PDAs in crowded areas (termed dense MANET) and dissemination/indexing of monitoring information collected in Vehicular Sensor Networks. The extreme dynamicity of these scenarios calls for novel distributed protocols and services facilitating application development. To this aim we have designed middleware solutions supporting these challenging tasks. REDMAN manages, retrieves, and disseminates replicas of software resources in dense MANET; it implements novel lightweight protocols to maintain a desired replication degree despite participants mobility, and efficiently perform resource retrieval. REDMAN exploits the high-density assumption to achieve scalability and limited network overhead. Sensed data gathering and distributed indexing in Vehicular Networks raise similar issues: we propose a specific middleware support, called MobEyes, exploiting node mobility to opportunistically diffuse data summaries among neighbor vehicles. MobEyes creates a low-cost opportunistic distributed index to query the distributed storage and to determine the location of needed information. Extensive validation and testing of REDMAN and MobEyes prove the effectiveness of our original solutions in limiting communication overhead while maintaining the required accuracy of replication degree and indexing completeness, and demonstrates the feasibility of the middleware approach

    Vehicular Networks and Outdoor Pedestrian Localization

    Get PDF
    This thesis focuses on vehicular networks and outdoor pedestrian localization. In particular, it targets secure positioning in vehicular networks and pedestrian localization for safety services in outdoor environments. The former research topic must cope with three major challenges, concerning users’ privacy, computational costs of security and the system trust on user correctness. This thesis addresses those issues by proposing a new lightweight privacy-preserving framework for continuous tracking of vehicles. The proposed solution is evaluated in both dense and sparse vehicular settings through simulation and experiments in real-world testbeds. In addition, this thesis explores the benefit given by the use of low frequency bands for the transmission of control messages in vehicular networks. The latter topic is motivated by a significant number of traffic accidents with pedestrians distracted by their smartphones. This thesis proposes two different localization solutions specifically for pedestrian safety: a GPS-based approach and a shoe-mounted inertial sensor method. The GPS-based solution is more suitable for rural and suburban areas while it is not applicable in dense urban environments, due to large positioning errors. Instead the inertial sensor approach overcomes the limitations of previous technique in urban environments. Indeed, by exploiting accelerometer data, this architecture is able to precisely detect the transitions from safe to potentially unsafe walking locations without the need of any absolute positioning systems
    • …
    corecore