6 research outputs found

    A Polynomial-time Bicriteria Approximation Scheme for Planar Bisection

    Full text link
    Given an undirected graph with edge costs and node weights, the minimum bisection problem asks for a partition of the nodes into two parts of equal weight such that the sum of edge costs between the parts is minimized. We give a polynomial time bicriteria approximation scheme for bisection on planar graphs. Specifically, let WW be the total weight of all nodes in a planar graph GG. For any constant ε>0\varepsilon > 0, our algorithm outputs a bipartition of the nodes such that each part weighs at most W/2+εW/2 + \varepsilon and the total cost of edges crossing the partition is at most (1+ε)(1+\varepsilon) times the total cost of the optimal bisection. The previously best known approximation for planar minimum bisection, even with unit node weights, was O(logn)O(\log n). Our algorithm actually solves a more general problem where the input may include a target weight for the smaller side of the bipartition.Comment: To appear in STOC 201

    Approximation algorithms for network design and cut problems in bounded-treewidth

    Get PDF
    This thesis explores two optimization problems, the group Steiner tree and firefighter problems, which are known to be NP-hard even on trees. We study the approximability of these problems on trees and bounded-treewidth graphs. In the group Steiner tree, the input is a graph and sets of vertices called groups; the goal is to choose one representative from each group and connect all the representatives with minimum cost. We show an O(log^2 n)-approximation algorithm for bounded-treewidth graphs, matching the known lower bound for trees, and improving the best possible result using previous techniques. We also show improved approximation results for group Steiner forest, directed Steiner forest, and a fault-tolerant version of group Steiner tree. In the firefighter problem, we are given a graph and a vertex which is burning. At each time step, we can protect one vertex that is not burning; fire then spreads to all unprotected neighbors of burning vertices. The goal is to maximize the number of vertices that the fire does not reach. On trees, a classic (1-1/e)-approximation algorithm is known via LP rounding. We prove that the integrality gap of the LP matches this approximation, and show significant evidence that additional constraints may improve its integrality gap. On bounded-treewidth graphs, we show that it is NP-hard to find a subpolynomial approximation even on graphs of treewidth 5. We complement this result with an O(1)-approximation on outerplanar graphs.Diese Arbeit untersucht zwei Optimierungsprobleme, von welchen wir wissen, dass sie selbst in Bäumen NP-schwer sind. Wir analysieren Approximationen für diese Probleme in Bäumen und Graphen mit begrenzter Baumweite. Im Gruppensteinerbaumproblem, sind ein Graph und Mengen von Knoten (Gruppen) gegeben; das Ziel ist es, einen Knoten von jeder Gruppe mit minimalen Kosten zu verbinden. Wir beschreiben einen O(log^2 n)-Approximationsalgorithmus für Graphen mit beschränkter Baumweite, dies entspricht der zuvor bekannten unteren Schranke für Bäume und ist zudem eine Verbesserung über die bestmöglichen Resultate die auf anderen Techniken beruhen. Darüber hinaus zeigen wir verbesserte Approximationsresultate für andere Gruppensteinerprobleme. Im Feuerwehrproblem sind ein Graph zusammen mit einem brennenden Knoten gegeben. In jedem Zeitschritt können wir einen Knoten der noch nicht brennt auswählen und diesen vor dem Feuer beschützen. Das Feuer breitet sich anschließend zu allen Nachbarn aus. Das Ziel ist es die Anzahl der Knoten die vom Feuer unberührt bleiben zu maximieren. In Bäumen existiert ein lang bekannter (1-1/e)-Approximationsalgorithmus der auf LP Rundung basiert. Wir zeigen, dass die Ganzzahligkeitslücke des LP tatsächlich dieser Approximation entspricht, und dass weitere Einschränkungen die Ganzzahligkeitslücke möglicherweise verbessern könnten. Für Graphen mit beschränkter Baumweite zeigen wir, dass es NP-schwer ist, eine sub-polynomielle Approximation zu finden

    Optimisation de l'architecture des réseaux de distribution d'énergie électrique

    Get PDF
    To cope with the changes in the energy landscape, electrical distribution networks are submitted to operational requirements in order to guarantee reliability indices. In the coming years, big investments are planned for the construction of flexible, consistent and effective electrical networks, based on the new architectures, innovative technical solutions and in response to the development of renewable energy. Taking into account the industrial needs of the development of future distribution networks, we propose in this thesis an approach based on the graph theory and combinatorial optimization for the design of new architectures for distribution networks. Our approach is to study the general problem of finding an optimal architecture which respects a set of topological (redundancy) and electrical (maximum current, voltage plan) constraints according to precise optimization criteria: minimization of operating cost (OPEX) and minimization of investment (CAPEX). Thus, the two families of combinatorial problems (and their relaxations) were explored to propose effective resolutions (exact or approximate) of the distribution network planning problem using an adapted formulation. We are particularly interested in 2-connected graphs and the arborescent flow problem with minimum quadratic losses. The comparative results of tests on the network instances (fictional and real) for the proposed methods were presented.Pour faire face aux mutations du paysage énergétique, les réseaux de distribution d'électricité sont soumis à des exigences de fonctionnement avec des indices de fiabilité à garantir. Dans les années à venir, de grands investissements sont prévus pour la construction des réseaux électriques flexibles, cohérents et efficaces, basés sur de nouvelles architectures et des solutions techniques innovantes, adaptatifs à l'essor des énergies renouvelables. En prenant en compte ces besoins industriels sur le développement des réseaux de distribution du futur, nous proposons, dans cette thèse, une approche reposant sur la théorie des graphes et l'optimisation combinatoire pour la conception de nouvelles architectures pour les réseaux de distribution. Notre démarche consiste à étudier le problème général de recherche d'une architecture optimale qui respecte l'ensemble de contraintes topologiques (redondance) et électrotechniques (courant maximal, plan de tension) selon des critères d'optimisation bien précis : minimisation du coût d'exploitation (OPEX) et minimisation de l'investissement (CAPEX). Ainsi donc, les deux familles des problèmes combinatoires (et leurs relaxations) ont été explorées pour proposer des résolutions efficaces (exactes ou approchées) du problème de planification des réseaux de distribution en utilisant une formulation adaptée. Nous nous sommes intéressés particulièrement aux graphes 2-connexes et au problème de flot arborescent avec pertes quadratiques minimales. Les résultats comparatifs de tests sur les instances de réseaux (fictifs et réels) pour les méthodes proposées ont été présentés
    corecore