104 research outputs found

    Об индексе палитры треугольника Серпинского и графа Серпинского

    Get PDF
    The palette of a vertex v of a graph G in a proper edge coloring is the set of colors assigned to the edges which are incident to v. The palette index of G is the minimum number of palettes occurring among all proper edge colorings of G. In this paper, we consider the palette index of Sierpinski graphs S” and Sierpinski triangle graphs S” . In particular, we determine the exact value of the palette index of Sierpinski triangle graphs. We also determine the palette index of Sierpinski graphs S” where p is even, p = 3, or n = 2 and p = 41 + 3

    Edge-colorings of 4-regular graphs with the minimum number of palettes

    Get PDF
    A proper edge-coloring of a graph G is an assignment of colors to the edges of G such that adjacent edges receive distinct colors. A proper edge-coloring defines at each vertex the set of colors of its incident edges. Following the terminology introduced by Hor\u148\ue1k, Kalinowski, Meszka and Wo\u17aniak, we call such a set of colors the palette of the vertex. What is the minimum number of distinct palettes taken over all proper edge-colorings of G? A complete answer is known for complete graphs and cubic graphs. We study in some detail the problem for 4-regular graphs

    Some results on the palette index of graphs

    Full text link
    Given a proper edge coloring φ\varphi of a graph GG, we define the palette SG(v,φ)S_{G}(v,\varphi) of a vertex vV(G)v \in V(G) as the set of all colors appearing on edges incident with vv. The palette index sˇ(G)\check s(G) of GG is the minimum number of distinct palettes occurring in a proper edge coloring of GG. In this paper we give various upper and lower bounds on the palette index of GG in terms of the vertex degrees of GG, particularly for the case when GG is a bipartite graph with small vertex degrees. Some of our results concern (a,b)(a,b)-biregular graphs; that is, bipartite graphs where all vertices in one part have degree aa and all vertices in the other part have degree bb. We conjecture that if GG is (a,b)(a,b)-biregular, then sˇ(G)1+max{a,b}\check{s}(G)\leq 1+\max\{a,b\}, and we prove that this conjecture holds for several families of (a,b)(a,b)-biregular graphs. Additionally, we characterize the graphs whose palette index equals the number of vertices

    Graphs with large palette index

    Full text link
    Given an edge-coloring of a graph, the palette of a vertex is defined as the set of colors of the edges which are incident with it. We define the palette index of a graph as the minimum number of distinct palettes, taken over all edge-colorings, occurring among the vertices of the graph. Several results about the palette index of some specific classes of graphs are known. In this paper we propose a different approach that leads to new and more general results on the palette index. Our main theorem gives a sufficient condition for a graph to have palette index larger than its minimum degree. In the second part of the paper, by using such a result, we answer to two open problems on this topic. First, for every rr odd, we construct a family of rr-regular graphs with palette index reaching the maximum admissible value. After that, we construct the first known family of simple graphs whose palette index grows quadratically with respect to their maximum degree.Comment: 7 pages, 1 figur

    A note on one-sided interval edge colorings of bipartite graphs

    Full text link
    For a bipartite graph GG with parts XX and YY, an XX-interval coloring is a proper edge coloring of GG by integers such that the colors on the edges incident to any vertex in XX form an interval. Denote by χint(G,X)\chi'_{int}(G,X) the minimum kk such that GG has an XX-interval coloring with kk colors. The author and Toft conjectured [Discrete Mathematics 339 (2016), 2628--2639] that there is a polynomial P(x)P(x) such that if GG has maximum degree at most Δ\Delta, then χint(G,X)P(Δ)\chi'_{int}(G,X) \leq P(\Delta). In this short note, we prove this conjecture; in fact, we prove that a cubic polynomial suffices. We also deduce some improved upper bounds on χint(G,X)\chi'_{int}(G,X) for bipartite graphs with small maximum degree

    A Characterization of Graphs with Small Palette Index

    Get PDF
    Given an edge-coloring of a graph G, we associate to every vertex v of G the set of colors appearing on the edges incident with v. The palette index of G is defined as the minimum number of such distinct sets, taken over all possible edge-colorings of G. A graph with a small palette index admits an edge-coloring which can be locally considered to be almost symmetric, since few different sets of colors appear around its vertices. Graphs with palette index 1 are r-regular graphs admitting an r-edge-coloring, while regular graphs with palette index 2 do not exist. Here, we characterize all graphs with palette index either 2 or 3 in terms of the existence of suitable decompositions in regular subgraphs. As a corollary, we obtain a complete characterization of regular graphs with palette index 3

    Color-blind index in graphs of very low degree

    Get PDF
    Let c:E(G)[k]c:E(G)\to [k] be an edge-coloring of a graph GG, not necessarily proper. For each vertex vv, let cˉ(v)=(a1,,ak)\bar{c}(v)=(a_1,\ldots,a_k), where aia_i is the number of edges incident to vv with color ii. Reorder cˉ(v)\bar{c}(v) for every vv in GG in nonincreasing order to obtain c(v)c^*(v), the color-blind partition of vv. When cc^* induces a proper vertex coloring, that is, c(u)c(v)c^*(u)\neq c^*(v) for every edge uvuv in GG, we say that cc is color-blind distinguishing. The minimum kk for which there exists a color-blind distinguishing edge coloring c:E(G)[k]c:E(G)\to [k] is the color-blind index of GG, denoted dal(G)\operatorname{dal}(G). We demonstrate that determining the color-blind index is more subtle than previously thought. In particular, determining if dal(G)2\operatorname{dal}(G) \leq 2 is NP-complete. We also connect the color-blind index of a regular bipartite graph to 2-colorable regular hypergraphs and characterize when dal(G)\operatorname{dal}(G) is finite for a class of 3-regular graphs.Comment: 10 pages, 3 figures, and a 4 page appendi
    corecore