1,578 research outputs found

    Improving the Spectral Efficiency of Nonlinear Satellite Systems through Time-Frequency Packing and Advanced Processing

    Full text link
    We consider realistic satellite communications systems for broadband and broadcasting applications, based on frequency-division-multiplexed linear modulations, where spectral efficiency is one of the main figures of merit. For these systems, we investigate their ultimate performance limits by using a framework to compute the spectral efficiency when suboptimal receivers are adopted and evaluating the performance improvements that can be obtained through the adoption of the time-frequency packing technique. Our analysis reveals that introducing controlled interference can significantly increase the efficiency of these systems. Moreover, if a receiver which is able to account for the interference and the nonlinear impairments is adopted, rather than a classical predistorter at the transmitter coupled with a simpler receiver, the benefits in terms of spectral efficiency can be even larger. Finally, we consider practical coded schemes and show the potential advantages of the optimized signaling formats when combined with iterative detection/decoding.Comment: 8 pages, 8 figure

    Automatic Trellis Generation for Demodulation of Faster Than Nyquist Signals

    Get PDF
    Mobile communication has become one of the most important and fast developing technology in the past couple of decades. Future of telecommunication raises a high demand for higher data rate and system capacity. There are plenty of researches taking place across the world to provide a better service. One such research is Faster than Nyquist signaling and it has grabbed the attention of many researchers in the recent past. In digital communication implemented using Nyquist pulses, the pulse rate is upper-bounded by twice the channel bandwidth. Signaling above this rate results in the loss of pulse orthogonality and introduces ISI. However, under certain conditions, it is possible to lose orthogonality and still maintain the same error probability, as Nyquist signaling. This allows time-compression of the transmitted symbols, resulting in a larger data rate than predicted by classic information theory results. The ISI caused by FTN signaling has a trellis structure and the transmitted symbols can be decoded using the Viterbi or BCJR algorithms. In this thesis, we introduce an algorithm that can automatically generate the trellis for any pulse shape, constellation and time-compression factor. we have simulated the FTN system, processed and decoded by the Viterbi decoder using the trellis generated by the proposed algorithm for BPSK and PAM 4 constellations with raised cosine pulses. The simulation results are promising and encourage more research in this direction. We have discussed possible directions this research can be pursued in future work. Overall, the results would indicate that the FTN technology has a significant potential for the next generation wireless communication

    Simulator for the Performance Analysis of CPM Schemes in an Indoor Wireless Environment

    Get PDF
    A software simulator for characterising Continuous Phase Modulation (CPM) schemes in an indoor multipath environment has been developed using SIMULINK and MATLAB. The simulator is capable of simulating a wide range of CPM schemes to determine bandwidth efficiency and robustness to additive white Gaussian noise (AWGN) and Rician fading. Initial trials of the simulator indicate that the simulator is functioning correctly. Eventually, the simulator will be used to determine the most suitable modulation scheme for the development of an actual indoor wireless system

    Modulation techniques

    Get PDF
    Bandwidth efficient digital modulation techniques, proposed for use on and/or applied to satellite channels, are reviewed. In a survey of recent works on digital modulation techniques, the performance of several schemes operating in various environments are compared. Topics covered include: (1) quadrature phase shift keying; (2) offset - QPSK and MSK; (3) combined modulation and coding; and (4) spectrally efficient modulation techniques

    Design and Software Validation of Coded Communication Schemes using Multidimensional Signal Sets without Constellation Expansion Penalty in Band-Limited Gaussian and Fading Channels

    Get PDF
    It has been well reported that the use of multidimensional constellation signals can help to reduce the bit error rate in Additive Gaussian channels by using the hyperspace geometry more efficiently. Similarly, in fading channels, dimensionality provides an inherent signal space diversity (distinct components between two constellations points), so the amplitude degradation of the signal are combated significantly better. Moreover, the set of n-dimensional signals also provides great compatibility with various Trellis Coded modulation schemes: N-dimensional signaling joined with a convolutional encoder uses fewer redundant bits for each 2D signaling interval, and increases intra-subset minimum squared Euclidean distance (MSED) to approach the ultimate capacity limit predicted by Shannon\u27s theory. The multidimensional signals perform better for the same complexity than two-dimensional schemes. The inherent constellation expansion penalty factor paid for using classical mapping structures can be decreased by enlarging the constellation\u27s dimension. In this thesis, a multidimensional signal set construction paradigm that completely avoids the constellation expansion penalty is used in Band-limited channels and in fading channels. As such, theoretical work on performance analysis and computer simulations for Quadrature-Quadrature Phase Shift Keying (Q2PSK), Constant Envelope (CE) Q2PSK, and trellis-coded 16D CEQ2PSK in ideal band-limited channels of various bandwidths is presented along with a novel discussion on visualization techniques for 4D Quadrature-Quadrature Phase Shift Keying (Q2PSK), Saha\u27s Constant Envelope (CE) Q2PSK, and Cartwright\u27s CEQ2PSK in ideal band-limited channels. Furthermore, a metric designed to be used in fading channels, with Hamming Distance (HD) as a primary concern and Euclidean distance (ED) as secondary is also introduced. Simulation results show that the 16D TCM CEQ2PSK system performs well in channels with AWGN and fading, even with the simplest convolutional encoder tested; achievable coding gains using 16-D CEQ2PSK Expanded TCM schemes under various conditions are finally reported

    Constellation Shaping in Optical Communication Systems

    Get PDF
    Exploiting the full-dimensional capacity of coherent optical communication systems is needed to overcome the increasing bandwidth demands of the future Internet. To achieve capacity, both coding and shaping gains are required, and they are, in principle, independent. Therefore it makes sense to study shaping and how it can be achieved in various dimensions and how various shaping schemes affect the whole performance in real systems. This thesis investigates the performance of constellation shaping methods including geometric shaping (GS) and probabilistic shaping (PS) in coherent fiber-optic systems. To study GS, instead of considering machine learning approaches or optimization of irregular constellations in two dimensions, we have explored multidimensional lattice-based constellations. These constellations provide a regular structure with a fast and low-complexity encoding and decoding. In simulations, we show the possibility of transmitting and detecting constellation with a size of more than 10^{28} points which can be done without a look-up table to store the constellation points. Moreover, improved performance in terms of bit error rate, symbol error rate, and transmission reach are demonstrated over the linear additive white Gaussian noise as well as the nonlinear fiber channel compared to QAM formats.Furthermore, we investigate the performance of PS in two separate scenarios, i.e., transmitter impairments and transmission over hybrid systems with on-off keying channels. In both cases, we find that while PS-QAM outperforms the uniform QAM in the linear regime, uniform QAM can achieve better performance at the optimum power in the presence of transmitter or channel nonlinearities
    corecore