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Abstract

It has been well reported that the use of multidimensional constellation signals can help

to reduce the bit error rate in Additive Gaussian channels by using the hyperspace ge-

ometry more efficiently. Similarly, in fading channels, dimensionality provides an inherent

signal space diversity (distinct components between two constellations points), so the am-

plitude degradation of the signal are combated significantly better. Moreover, the set of N-

dimensional signals also provides great compatibility with various Trellis Coded modulation

schemes: N-dimensional signaling along with a convolutional encoder uses fewer redundant

bits for each 2D signaling interval, and increases intra-subset minimum squared Euclidean

distance (MSED) to approach the ultimate capacity limit predicted by Shannon’s theory.

The multidimensional signals perform better for the same complexity than two-dimensional

schemes. The inherent constellation expansion penalty factor paid for using classical mapping

structures can be decreased by enlarging the constellation’s dimension. In this thesis, a mul-

tidimensional signal set construction paradigm that completely eliminates the constellation

expansion penalty is used in standard AWGN band-limited channels and in fading chan-

nels. Theoretical work on performance analysis and computer simulations for Quadrature-

Quadrature Phase Shift Keying (Q2PSK), Constant Envelope (CE) Q2PSK, and trellis-coded

16D CEQ2PSK in ideal band-limited channels of various bandwidths is presented along with

a novel discussion on visualization techniques for 4D Quadrature-Quadrature Phase Shift

Keying (Q2PSK), Saha’s Constant Envelope (CE) Q2PSK, and Cartwright’s CEQ2PSK in

ideal band-limited channels. Furthermore, a metric designed to be used in fading channels,

with Hamming Distance (HD) as a primary concern and Euclidean distance (ED) as sec-

ondary is also introduced. Simulation results show that the 16D TCM CEQ2PSK system

performs well in channels with AWGN and fading, even with the simplest convolutional en-

coder tested; achievable coding gains using 16-D CEQ2PSK Expanded TCM schemes under

various conditions are reported.

Index Terms: Q2PSK, CEQ2PSK, bandlimited channel, constant envelope, signal trajec-

tory diagram, eye diagram, visualization, fading channel.
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Chapter 1 Introduction

Digital communication systems are limited in transmission power and in available spectrum;

various modulation schemes have been created to use these resources efficiently. Shannon sug-

gests in [1] that optimal schemes for band-limited Additive White Gaussian Noise (AWGN)

channels consist of a dense packing of signal points within a sphere in high-dimensions; as a

result, more points can be placed in the n-dimensional space to reduce the effect of Gaussian

noise without decreasing minimum distance (average signal energy is not increased) under

that of the equivalent lower dimensional set. The increment of transmission efficiency can

be accomplished by adding dimensions to a constituent signal space[2–4].

Although the bandwidth-limited AWGN channel is a good starting point to describe basic

additive disturbances in a communication system, the next step to model practical environ-

ments involves the study of fading effects and how to mitigate fading distortions. As wireless

signal travels from the transmitter to the receiver, fluctuations in the received waveform’s

amplitude and phase may arise due to multiple reflective paths, variations of the density

in the propagation medium, and other fading-type distortions that are well documented in

[5]. In this scenario, the use of uncorrelated rendition of the signal (signal-space diversity)

[3, 5] can help mitigate random amplitude distortion at the receiver end because the un-

correlated received waveform has the tendency to avoid consecutive distortions. Because

fading disturbances over different space dimensions can be made statistically independent

easily with the use of interleaving techniques and various waveform coding methods [3,5–9],

multidimensional signals offer an attractive means to mitigate amplitude distortions.

The efficient design of communication systems for a fading media which has a variety of

constraints is an active research area [6, 10–12], and the adequate implementation of mul-

tidimensional constellations aimed at optimality on fading channels has become a current

interesting topic in the digital communications field [13–18].

The objective of this dissertation is to further develop the state-of-the-art of multidimen-
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sional modulation systems by designing schemes based on a 4-D Quadrature-Quadrature

Phase Shift Keying (Q2PSK) [19] signal constellation. Work by Quinteros, Kaminsky and

Cartwright [20–22] where multidimensional constellations based on Q2PSK were used to

help improve the bit error rate performance over uncoded systems is advanced in here. Due

to the diversity of models, and uncountable fading parameters, the work presented in this

manuscript is limited to specific situations such as explicit cases of bandwidths and fading

situations as in [11]. Bandwidth-limited channels are simulated with ideal filters, and fading

perturbations are based on modeled channels proposed in [23]. Software implementation

using MatlabrSimulink, and methodologies such as Monte Carlo simulations are used to

obtain the probability of bit error.

In this introductory chapter, an exposition of the fundamental theory involved in the TCM

schemes is reviewed. The following sections briefly survey multidimensionality, expanded

constellation 16-D CEQ2PSK, a brief review of Trellis Coded Modulation (TCM), and soft-

ware simulation methodologies that shall be used in this dissertation. We end with a de-

scription of the papers included as Chapters in this dissertation.

1.1 Multidimensional Constellations

In [1], Shannon develops a methodology to geometrically represent any communication sys-

tem. It consists of a well-defined algebraic space with dimension 2TW , where T represents

the signal duration and W is the baseband bandwidth. In this way, Shannon defines a ca-

pacity based on a coordinate system, and acknowledges that the distortion of a signal can be

interpreted as a distortion of the signal’s Euclidean space coordinates. Heuristically, more

dimensions implies more space to place points farther apart than in equivalent lower dimen-

sions; therefore it is less likely to have a detection errors in each of the components. These

ideas have inspired several researchers to explore the hyperspace world to achieve significant

noise immunity [3, 20, 22,24–26].

Forney and Wei [25] define an N-dimensional constellation as a finite set of N tuples, or
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points in N-dimensional space, where the size of the constellation is the number of its points.

For instance, the linear combination of binary orthogonal signals such as sine and cosine can

be represented as points in the two-dimensional space.

A simple way to generate a multidimensional constellation is by time concatenation of signals

[27]; in other words, multidimensionality can be implemented as sequences of constituent

one-, two- or four-dimensional signal intervals [28]. For example, Gersho and Lawrence [4]

achieve four dimensions by concatenating two 16 Quadrature Amplitude Modulation (QAM)

signals; similarly, Kaminsky [29] achieved eight dimensions by transmitting four consecutive

QPSK. In the same fashion, Quinteros et al. [20] also use the time concatenation method to

generate 16 dimensional signals.

Another way to generate further dimensions is the use of two data shaping pulses in addition

to the two carriers, which are pairwise quadrature in phase, to create a four dimensional signal

space [24] which is called Quadrature-Quadrature Phase Shift Keying (Q2PSK). There are

other methods to achieve higher dimensions such as the use of consecutive frequency intervals

[30], the use of dual polarization as in Phase/Polarization, Phase/Frequency [31]. A good

summary of other methods can be found in[32] and the references therein.

In this manuscript, a four dimensional Q2PSK symbols are concatenated to yield a 16 dimen-

sional signal. The following subsections aim to give a brief review of the multidimensional

constellations used by the author.

1.1.1 4-D Q2PSK

Quadrature-Quadrature Phase Shift Keying (Q2PSK) is a four dimensional modulation

scheme proposed by Saha in [33]. It uses available signal space dimensions in a more ef-

ficient way than two dimensional schemes such as quadrature phase shift keying (QPSK)

and minimum shift keying (MSK). The definition of this constellation is covered in the

publications of the author (see [34] and references therein) in significantly different ways;

therefore, it is not covered in detail in this subsection.

3



1.1.2 4-D CEQ2PSK

In [24] and [20], respectively, two constant envelope constellations of 8 symbols were intro-

duced: Saha’s CEQ2PSK and Cartwright’s CEQ2PSK. Constant envelope is obtained at

the expense of reducing the transmission rate from 4 bits/sec/Hz to 3 bits/sec/Hz, assuming

Nyquist filtering. Each of these two sets of symbols have 8 4-D symbols, both have a mini-

mum squared Euclidean distance (MSED) of 8 for unit energy, and both sets have constant

envelope as proven in [20].

Constant envelope is achieved by using a simple rate 3/4 block encoder at the input of the

Q2PSK modulator which generates a 4-bit codeword for every 3 information bits, where the

fourth bit is an odd parity check bit [33]. The theoretical probability of symbol error for

CEQ2PSK in AWGN channels was originally given by Saha in [33], but later corrected in

[35].

The use of constant envelope is important [36] for nonlinear channels such as the satellite path

with transmitter power amplifiers. A signal with constant envelope allows to easy identify a

saturating phenomenon; this idea yields to make the constant envelope an attractive choice

to use in the design of the system in this thesis.

1.1.3 Unexpanded 16-D CEQ2PSK

In [20], 16-dimensional constellations were produced by concatenating four consecutive sym-

bols from Saha and Birdsall’s constant envelope constellation or four consecutive CEQ2PSK

from Cartwright’s constellation. Each of these 16-D signal sub sets contains 4096 constant

envelope points and retains an MSED of 8 between 16-D points. With all possible combi-

nations of 4 consecutive symbols (from either one or the other constellation, but not both),

we have the following two subsets:

{S16} = [Si Sj Sk Sl] , i, j, k, l = 1, 2, · · · , 8,

{C16} = [CiCj Ck Cl] , i, j, k, l = 1, 2, · · · , 8. (1.1)
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Table 1.1 shows the squared Euclidean distance (SED) distribution for either of these two

16D sets. Because each 16-dimensional set has 4096 signals, the distribution has a total of

(4096)2 distances because we show distances among all possible pairs.

Table 1.1: Squared Euclidean Distance distribution of the 16D CEQ2PSK constellations
{S16} or {C16}.

d2k N(dk)
0 4096
8 98304

16 901120
24 3833856
32 7102464
40 3833856
48 901120
56 98304
64 4096

Within each set {S16} or {C16} the MSED between any pair of different points is still 8, and

the peak energy is still equal to 2 per 2D, as they were in the 4D constituent constellations.

The error coefficient, N(dmin), is 24 (i.e., 98304/4096); this means that each of the points

has 24 neighbors signals at ED = 8 in 16D.

In Fading channels (to be discussed shortly), it is the Hamming Distance (HD) that is

the primary concern. For even values of the Hamming distance, points of Saha’s have a

certain number of neighbors at that distance while points of Cartwright’s points have more

neighbors. The HD distribution, then, is not as symmetric as the SED distribution. As

an example, Saha’s 16D point [1 1 1 -1 1 1 1 -1 1 1 1 -1 1 1 1 -1] has 4097 neighbors at

HD 16 (all of Cartwright’s 16D points and one additional point from Saha’s constellation),

while Cartwright’s points have all of Saha’s and also 256 of Cartwright’s, for a total of

4097+256=4353. This implies that Saha’s points will have a slightly smaller probability of

error in Fading channels than Cartwright’s.
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1.1.4 Expanded 16-D CEQ2PSK

Constellations without expansion penalty can be implemented by using a similar method to

that proposed in [31]. The union of two sets of 4096 16-D symbols each, S16 for Sahas or

C16 for Cartwright’s, can be formed as follows:

V = S16 ∪ C16. (1.2)

V has 8192 points. Notice that the expanded constellation has twice as many points as

either unexpanded 16-D CEQ2 PSK constellation, but still maintains an MSED of 8. Table

1.2 shows the distance distribution of the expanded constellation, with d2
k indicating the

SED and N(dk) listing the number of neighbors at that distance. The 24 points (i.e., an

error coefficient of 3 when normalized to 2-D) at MSED, as well as the second smallest

squared distance of 9.373, with an error coefficient of 16, degrade the performance over

the unexpanded constellation. This expanded constellation was used to allow for 1 bit of

Table 1.2: The Distance Distribution of Expanded 16-D CEQ2PSK.

d2k N(dk) d2k N(dk)

8.000 24 26.343 896

9.373 16 32.000 2854

15.029 128 37.657 896

16.000 220 40.000 936

20.686 448 43.314 448

24.000 936 48.000 220

redundancy per 16-D to be introduced through a convolutional encoder in a TCM system.

The improved probability of error performance in [21] is achieved while maintaining constant

envelope with a slight increase in the complexity of the decoder. In that paper, we discussed

the use of the expanded 8192-point 16-D CEQ2PSK constellation without coding, where the

additional bit is used to increase the throughput while slightly deteriorating the probability

of error performance. In the following section, the application of the expanded constellation
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is presented with an introductory survey about Trellis Coded Modulation.

1.2 Description of Trellis Coded Modulation

TCM is a joint coding and modulation technique for digital transmission that is especially

appropriate for band-limited channels, and has become very popular during recent years

because of the gains achieved without compromising bandwidth efficiency [28, 37, 38]. The

key idea in TCM schemes is that modulation and coding are combined in order to map the

information bits to a modulated constellation signal set. A functional diagram of a standard

TCM system is depicted in Figure 1.1
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The CEQ2PSK signal set is a fundamental part of the TCM system proposed in this 

thesis. Further details of CEQ2PSK are given in chapters 2 and 3, and the system designed and 

implemented in Matlab’s Simulink 2 is given in chapter 4.  

1.4 Description of Trellis Coded Modulation (TCM)  

TCM is a joint coding and modulation technique for digital transmission that is especially 

appropriated for band-limited channels, and it has become very popular during recent years 

because of the gains achieved without compromising bandwidth efficiency [6]. The key idea of 

TCM schemes is that modulation and coding are combined in order to map the information bits 

to a modulated constellation signal set; therefore, if the signal waveforms in the set that represent 

an information sequence are clearly separated in their Euclidian distances, then a lower error rate 

can be accomplished.  A functional diagram of a standard TCM system is depicted in Fig. 1.3. 

The TCM diagram shows that m bits are encoded to produce m+p coded bits (zm,…,zm+p) 

that select a subset from the partitioned signal constellation.  In addition, uncoded bits (b0,…,bk-

m+1) select a point within the selected subset, sሺtሻ,	which	is the final signal transmitted.  	

                                                 
2 Matlabtm is a registerd trademark  of the Math Works, Inc. 

… z0 Convolutional 

Encoder  R=m/m+p 

bk-m+1 

b0 

 zm+p-1 

bk-m 

bk 
Select Subset

Select	point

sሺtሻ…

…

Fig. 1.3: General structure of encoder/modulator for TCM
Figure 1.1: General structure of encoder/modulator for TCM

The TCM diagram shows that m bits are encoded to produce m+ p coded bits (z0,. . .,zm +

p − 1) that select a subset from the partitioned signal constellation. In addition, uncoded

bits (b0, . . . , bk−m+1) select a point within the selected subset, s(t), which is the final signal

transmitted. TCM systems require proper set partitioning of the constellation signal set;

this task can be accomplished very easily if we have few points and the dimensionality of the

signal is small. Ungerboeck [37] proposed certain rules for set partitioning 2-D signals, and

Wei expanded this for multidimensional signal sets [39]. Trellis coding uses dense signal sets

but restrict the sequences that can be used. This provides a gain in free distance and the

code imposes a time dependency on the allowed signal sequences that allows the receiver to

ride through noise bursts as it is estimating the transmitted sequence [28].
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1.2.1 TCM expansion penalty

TCM schemes require more signal points than uncoded constellations. For example, Unger-

boeck [28] went from a 4-PSK uncoded system that transmits 2 bits/sec to an expanded four

state Trellis Code 8-PSK modulation. These additional points may be obtained at the cost

of either increasing the energy in the system, or reducing the MSED of the constellation.

Kaminsky presented in [31] an X8 constellation that can be expanded without increasing the

energy of the system and without reducing the MSED of the uncoded constellations.

1.2.2 TCM decoding

Because TCM uses convolutional encoders, the Viterbi Algorithm (VA) is used to search

the most likely coded information sequence embedded in a path of the trellis. In [40], TCM

decoding is performed in two steps. The first step corresponds to the subset decoding which

finds the most likely point in each transition (the closest point in Euclidean distance), and

stores the point and the shortest Euclidean distance. The second step of the decoding

procedure is to use the previous Euclidean distances to find the most likely path through

the trellis by using the VA.

1.3 TCM with Expanded Constellation

Here, we briefly describe the system published in [21]. The transmitter and receiver use

13 coded bits to map onto the 8192 16D symbols. Figure 1.2 shows the block diagram

of the transmitter where 13 coded bits are used to transmit 12 information bits (b0, , b11).

At the transmitter, an information source generates bits at a fixed bit rate of 1/Tb. The

output of the convolutional encoder (z0, z1, z2) selects one of the eight subsets (Ak for Saha’s

constellation or Bk for Cartwright’s constellation) obtained in [21]. Two other uncoded bits

(b8, b9) select one of the Wij or Wijr Types from within the selected group. The rest of the

information bits (b0 through b7) select one of the 256 points from within the selected 16-D
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Wij or Wijr Types. The selected signal s(t) is transmitted. The generated waveforms are

transmitted through the channel, assumed here to be AWGN with two-sided power spectral

density No/2 in each component.

33 
 

Fig. 3.4 depicts the complete 16-D CEQ2PSK-TCM system. Two of the 12 bits of 

information, (b10, b11), arriving every four signaling intervals enter the convolutional encoder to 

produce three coded bits (z0, z1, z2). The output of the convolutional encoder selects one of the 

eight subsets obtained in Section III, Ak or Bk. Two other uncoded bits (b8, b9) select one of the 

Wij or Wijr types from within the selected group.  Fig. 3.2 shows the mapping of these five bits to 

some of the 16-D subsets. 

 

 

Table I:  The 4-D CEQ2PSK points 
	S1	∪	S2	 Saha’s	 S1r∪ S2r Cartwright’s

1	 ‐1		‐1		‐1			1 1r 0 ‐√2 ‐√2 0
2	 ‐1		‐1			1		‐1 2r 0 ‐√2 √2 0
4	 ‐1			1		‐1		‐1 4r ‐√2 0 0 ‐√2
8	 1		‐1		‐1		‐1 8r √2 0 0 ‐√2
14	 1			1				1		‐1 14r 0 √2 √2 0
13	 1			1		‐1				1 13r 0 √2 ‐√2 0
11	 1		‐1			1				1 11r √2 0 0 √2
7	 ‐1			1			1				1 7r ‐√2 0 0 √2

 

Table II: Grouping of the 4-D constituent points into sets of antipodal signals 
        Saha’s Q       Cartwright’s Qr 
	ܳଵ ൌ ሼ1; 14ሽ ܳଵ௥ ൌ ሼ1௥; 14௥ሽ
		ܳଶ ൌ ሼ2; 13ሽ ܳଶ௥ ൌ ሼ2௥; 13௥ሽ
		ܳଷ ൌ ሼ4; 11ሽ ܳଷ௥ ൌ ሼ4௥; 11௥ሽ
ܳସ ൌ ሼ8; 7ሽ ܳସ௥ ൌ ሼ8௥; 7௥ሽ 

z0 
Convolutional 

Encoder  R=2/3 

b9 

b0 

b1 

b8 

b2 

b3 

b4 
b5 

b6 

b7 

z1 
 z2 b11 

b10 

Wij ∈ Ak  or Wijr ∈ Bk, i,j=1,…,4 

Ak or Bk ,k = 1,…,4 

sሺtሻ ∈ Wij  or sሺtሻ ∈ Wijr 

sሺtሻ	

Fig. 3.4: Block diagram of the encoder/modulator for the proposed 16-DCEQ2PSK-TCM system.
Figure 1.2: Block diagram of the encoder/modulator for 16-DCEQ2PSK-TCM system

At the receiver, the noisy analog signals are correlated, every 2T, with the Q2PSK basis

vectors, with the use of multipliers followed by integrate-and-dump subsystems. Four con-

secutive signals are then concatenated with the aid of a buffer to generate a 16-D vector with

real components which is the input of a soft decision Viterbi Decoder. The implementation

of the decoder will be explained in Chapter 10.

1.4 Simulations

Software simulations complement the theoretical work. The author simulates particular

implementations of the theoretical developments with different parameters and in various

channels. We use Matlab1 R© and its Simulink toolbox for all our Monte Carlo simulations.

The use of Simulink blocks helps reduce the burden of myriad long lines of code; furthermore,

various channel scenarios are easily implemented using pre-defined channels with selectable

parameters. The most important measure of performance of Communication Systems is

the probability of error. In order to compute the error performance of the proposed sys-

1Matlab and Simulink are copyrighted trademark names from The Mathworks.
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tems, Monte Carlo simulations are performed. In AWGN channels, for each SNR value, the

simulation runs until twenty symbol errors are counted [41].

1.5 Description of submitted papers and funded project

Chapter 3 is an article published in the IEEEE GLOBECOM 2014 conference [34], where the

authors present theoretical analysis and simulation results for Q2PSK, CEQ2PSK [33] and

expanded 16D CEQ2PSK [21] systems in ideal bandlimited channels. The authors’ results

show that 6.8 dB of SNR is needed for expanded 16D CEQ2PSK system for a bit error

rate of 10−5 in a bandwidth of 0.6/T . In addition, a spectral analysis for 16D-CEQ2PSK

constellation [20] is introduced in this publication.

Chapter 4 is a manuscript submitted to the IEEE Wireless Communication and Networking

Conference (WCNC) 2015 that presents three visual performance indicators for multidi-

mensional signals. The diagrams use are: first, time-signal eye patterns for 4D passband

representation; second, 2-D complex trajectory diagrams for 4D baseband representation;

third, signal-time eye patterns at the matched filter receiver output.

Chapter 6 presents a modulation system that uses an expanded 16-Dimensional Constant

Envelope Quadrature-Quadrature Phase Shift Keying (CEQ2PSK) constellation to increase

the transmission information rate of unexpanded 16-D CEQ2PSK by one bit per 16-D, for a

bandwidth efficiency of 3.25 bits/dimension 2. The improvement in information transmission

rate is achieved with similar energy requirements and the same constant envelope properties

as for the unexpanded constellation. The increase in spectral efficiency over the unexpanded

system is confirmed through computer simulations.

Finally, Chapters 7, 8, and 9 correspond to work performed for a project entitled 16-

Dimensional Trellis Encoded CEQ2PSK for non-linear mobile communication channels, un-

der Task Order 17 of contract N69250-08-D-0302 between SPAWAR and UNO. These chap-

ters present the work performed over nine months by the UNO PI Dr. Edit J. Kaminsky

2Paper accepted and then withdraw by the authors.
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Bourgeiois and her graduate assistant Milton Quinteros on design and development of a

Simulink c©-based system that implements a complete trellis encoded communication system

using our 16-dimensional (16D) expanded CEQ2PSK constellation. The system consists of

the transmitter, the channel, and the receiver. The transmitter generates the random mes-

sage, encodes and modulates it using Trellis Coded Modulation (TCM) 16D CEQ2PSK, and

sends the encoded and modulated message through the channel. The channel simulated

fading Rician/Rayleigh and Additive White Gaussian Noise(AWGN).
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Chapter 2 Communication Channel Models

This chapter briefly discusses the Additive White Gaussian Noise (AWGN) standard channel

model, the Rayleigh Fading Channels, and the Rician Fading Channels. The author surveys

the UHF channels originally described in [11] for which simulations with many parameter

sets were run. These parameters are sampling rate, Doppler frequency, Rayleigh spectral

characteristics, etc.).

2.1 AWGN channel

The Gaussian channel model is used to study the performance and limits of the various

digital modulation systems. It is well known that Gaussian perturbation is present in all

practical telecommunications systems, so the importance of increasing the noise immunity

for this channel is paramount. The channel adds White Gaussian noise, AWGN, to the

transmitted analog signals. The AWGN is characterized completely by its mean, which is

zero, and its variance, which determines the SNR. The received signal therefore has the form

r(t) = h(t) ∗ s(t) + n(t) (2.1)

where ∗ denotes convolution, h(t) is the channel impulse response, s(t) is the sent signal,

and n(t) is the AWGN with one-sided power spectral density No/2 W/Hz. The probability

density function for n(t) is Gaussian with zero-mean and variance σ2 is:

fx(x) =
1√
2πσ

exp

{
−
(x
σ

)2}
. (2.2)

The power of the noise (σ2) is the determining factor in the quality of reception: the proba-

bility of error or bit error rate, BER.

Maximization of the MSED (i.e., the minimum possible Squared ED) is the design criterion
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for TCM systems in AWGN.

In chapter 3, the authors utilize an ideal filter for h(t) that has flat frequency response over

a particular one-sided frequency band B.

2.2 Fading Channels

Cellular land mobile channels are usually modeled as Rayleigh channels while land mobile

satellite channels exhibit a direct line-of-sight (LOS) component as well as multipath com-

ponents [42]. We discuss these in the next few Sub Sections.

Fading is a time-varying behavior in the received signal envelope, caused by multipath re-

flections. The envelope is affected (multiplied by) a Rayleigh or Rician process.

For fading channels with trellis coded modulation, the principal design criterion is to maxi-

mize the minimum Hamming distance of the trellis code. Secondary to this criterion, is the

product Euclidean distance (the product of the SED between sequences that diverge and

then converge) [43].

Remember, however, that our 16D CEQ2PSK constellation points have components that

may be 0, ±1, and ±
√

2. HD, then, should be slightly re-defined (because we no longer deal

with just 0 or 1 or -1 and 1). We are using the term Hamming Distance (HD) for the number

of coordinates that differ, regardless of how much they differ by. We then weigh this HD by

the ED to obtain what we call a “Weighted Distance”, WD.

To clarify this, let us consider a couple of pairs of possible points in an example: [1 1 1 1 ]

and [-1 -1 -1 -1] have a (true) HD of 4, the same as the HD between [1 1 1 1] and [0
√

2 0
√

2], because all coordinates differ. However, the weighted distance betwen the two former

points is larger than between the latter 2. These examples are shown in Table 2.1, where we

list the example 4D points, the HD, the SED, and the resulting WD obtained by using

WD = 4 · HD · SED
64

(2.3)
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because we are using 4 dimensions, and the maximum (normalizing) SED is 16.

Table 2.1: Example of Distances
P1 P2 HD SED WD

1 1 1 1 -1 -1 -1 -1 4 16 4

1 1 1 1 0
√

2 0
√

2 4 2.34 0.584

1 1 1 1 0 −
√

2 0 −
√

2 4 13.66 3.416

2.2.1 Rayleigh Fading Channel

In a simple Rayleigh fading channel, the transmitted signal’s envelope is multiplied by a

random process with a Rayleigh distribution. The phase disturbance is ignored (or assumed

known or estimated well). This multiplicative noise is caused by multipath. The parameter

that determines the characteristics of the Rayleigh distribution is b. The mean of the Rayleigh

pdf is b
√
π/2 and its variance is (2−π/2)b2. AWGN is also included in this model, to obtain

a received signal as in (2.4):

r(t) = d(t)s(t) + n(t), (2.4)

where d(t) is the multiplicative noise, whose amplitude has a Rayleigh pdf given by (2.5):

fd(d) =
d

b2
e

(
−x2
2b2

)
, (2.5)

where the Rayleigh pdf of the amplitude of d has parameter b.

Often, multipath is parameterized by the maximum Doppler frquency, fd, instead of the

Rayleigh parameter b. If 1/fd is large with respect to the symbol duration, we have slow

fading (i.e., a fading event affects many symbols). If fd is large so that a single symbol or

a part thereof are affected by a fading event, then the result is fast fading. Most of our

simulations, but not all, were done in slow fading channels.
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2.2.2 Rician Fading Channels

In Rician fading, there is a strong dominant component present and the mean value of (at

least) one component will be non-zero. The PDF of the signal amplitude, ρ is given by

fρ(ρ) =
ρ

σ2
exp

(
ρ2 + c2a

2σ2

)
I0

(caρ
σ2

)
(2.6)

where I0 is the Bessel function of the first kind and zero order, σ2 is the local mean scattered

power, and c2a/2 is the power of the dominant component.

Rician processes may be characterized by the Rician K-factor, K, the ratio of signal power

in the dominant component over the scattered power:

K =
c2a

2σ2
(2.7)

The total local-mean power is the sum of the power in the line-of-sight (LOS) and the power

of the scattered components:

p̄ =
1

2
c2a + σ2 (2.8)

The local-mean scattered power is

s2 =
p̄

K + 1
(2.9)

Moose, Roderick and North [11] detail three channels: the UHF LOS Channel #1 with one

Rician and one Rayleigh path, the UHF LOS Channel #2 with one Rician and two Rayleigh

paths, and the UHF LOS channel #3, again with one Rician and two Rayleigh paths. The

propagation loss in each case is 135 dB. The relative time delays, Ti−j, the relative losses,

Li−j, and maximum Doppler or fade rates, fd are given below.

• UHF LOS Channel #1

– Path 1: Rician, fd = 1 Hz,
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– Path 2: Rayleigh, T1−2 = 0.01µs, fd = 10 Hz, L1−2 = −6 dB.

• UHF LOS Channel #2

– Path 1: Rician, fd = 10 Hz,

– Path 2: Rayleigh, T1−2 = 0.07µs, fd = 10 Hz, L1−2 = −5 dB,

– Path 3: Rayleigh, T1−3 = 0.8µs, fd = 10 Hz, L1−3 = −15 dB.

• UHF LOS Channel #3

– Path 1: Rician, fd = 25 Hz,

– Path 2: Rayleigh, T1−2 = 0.9µs, fd = 25 Hz, L1−2 = −3 dB,

– Path 3: Rayleigh, T1−3 = 5.1µs, fd = 25 Hz, L1−3 = −9 dB.

In this dissertation, the UHF LOS Channel #1 discussed in [11] is implemented in software.
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Chapter 3 Performance and Spectral Analysis of Q2PSK and CEQ2PSK

Systems in Ideal Bandlimited Channels

3.1 Introduction

The search for appropriate classes of signals and methods to mitigate medium disturbances

has driven much of communications research. Researchers have investigated the performance

of different sets of signals on a variety of channels which are limited in transmission power and

available spectrum. In classical uncoded modulation systems, an increase in transmission

efficiency might be accomplished by increasing the dimensionality of the signal space (see [2]

and references therein).

Over the last few decades, authors have shown interest in a four-dimensional (4D) modulation

scheme proposed by Saha and Birdsall in [33]: Quadrature-Quadrature Phase Shift Keying

(Q2PSK). Because Q2PSK uses the space more efficiently than conventional QPSK and

Minimum Shift Keying (MSK), Q2PSK provides increased spectral efficiency [27, 44–46].

Indeed, Q2PSK and its variants have been considered by several authors because of the

attractive possibility of spectral and power efficiency [21,27,35,45–54].

Q2PSK is reported to achieve 4 bits per modulation interval but lacks constant envelope

which is a desired feature for nonlinear channels such as the satellite path [52]. If parity

check coding is imposed at the input of the Q2PSK modulator, 4D Constant Envelope

Quadrature-Quadrature Phase Shift keying ( CEQ2PSK ) is obtained [33],[44],[20] at the

cost of a reduction in the information rate to 3 bits per modulation interval.

Westra et al. reported multilevel forms of Q2PSK in [47] to increase the effective data

throughput. Saha and El-Ghandour introduced differential phase Q2PSK in [48], and Korn

and Wei analyzed the performance on mobile satellite channels in [50]. Offset Q2PSK, which

attains lower peak to average power ratio than Q2PSK, was presented in [53]. In [20], two 16D

constellations that use four consecutive signalling intervals of CEQ2PSK were introduced:
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an unexpanded 16D CEQ2PSK constellation of 4096 signal points and an expanded 16D

CEQ2PSK constellation of 8192 points. The unexpanded constellation has an information

rate of 12 bits per 16D interval while the expanded constellation may be used to transmit

13 bits per 16D interval or to incorporate error correction coding [21].

Various implementations of Q2PSK combined with bandwidth efficient coding techniques

such as Multidimensional Trellis Coded Modulation (MTCM) [39] have been presented

[52],[19]. In contrast to the conventional MTCM implementations, Quinteros et al. [21]

used a technique proposed by Kaminsky in [31],[22] to obtain a 16D TCM CEQ2PSK sys-

tem that suffers no loss due to constellation expansion. Most recently, [54] used the same

technique with a 32D CEQ2PSK constellation.

In this paper, we further analyze the performance of 4D Q2PSK in [44] and also present

analysis for 4D CEQ2PSK and a trellis encoded 16D CEQ2PSK system in the bandlimited

additive white Gaussian noise (AWGN) channel. In particular, we assume ideal filters of

baseband bandwidth 0.6
T

and 1
T

, where 2T is the 4D symbol interval (i.e., the bit interval, Tb

is T/2) with perfect knowledge of the phase. In our simulations, we implement a receiver

that assumes knowledge of the channel and one that doesn’t (i.e., the receiver uses reference

pulses which are not bandlimited). A discrete implementation of a finite-length maximum

likelihood detector is employed in all cases; this is equivalent to the hardware detector in

[35], optimum when no Inter-Symbol Interference (ISI) and no Cross-ISI (CISI) are present.

In addition, we briefly present spectral analysis of all these systems.

We show that for very narrow channels the use of channel estimation aids the 16D TCM

system more than the others and that knowledge of the channel is more important for

Q2PSK than for its 4D constant envelope counterpart at all bandwidths. Losses due to finite

channel bandwidth are most severe for Q2PSK. At the narrowest bandwidth considered

here, 0.6/T , the gain of the 16D TCM system is 2 dB at a probability of bit error of 10−5.

Furthermore, we show that the performance of Saha’s bit-by-bit suboptimum detector [44]

may be considerably improved upon with little increase in complexity.
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The rest of this paper is organized as follows: In Section 3.2, brief descriptions of Q2PSK,

CEQ2PSK, and 16D CEQ2PSK are presented. In Section 3.3 we describe the channel model,

followed in Section 3.4 by discussion of the receiver and the signals therein. Analysis of the

probability of error in bandlimited channels with finite ISI and CISI is given in Section 3.5,

along with presentation of the spectral analysis. Results are given in Section 3.6. Conclusions

and suggestions for further work are given in Section 3.7, followed by cited references.

3.2 Brief Review of Q2PSK

In this section, we briefly discuss the following constellations: 4D Q2PSK [33], Saha’s 4D

CEQ2PSK [44], Cartwright’s 4D CEQ2PSK [20], and both unexpanded and expanded 16D

CEQ2PSK [21].

3.2.1 4D Q2PSK

The 4D Q2PSK modulation technique was introduced in [33] and uses the following trans-

mitted signal:

Sq(t) =
4∑
i=1

bi(t)si(t), (3.1)

where bi(t), i = 1, . . . , 4, is the value of the original bit i of duration T/2 prior to the the

serial to parallel conversion and of duration 2T after [33], and the passband modulating

signal set {si(t)}, i = 1, . . . , 4, is:

s1(t) = p1(t) cos(2πfct), |t| ≤ T (3.2a)

s2(t) = p2(t) cos(2πfct), |t| ≤ T (3.2b)

s3(t) = p1(t) sin(2πfct), |t| ≤ T (3.2c)

s4(t) = p2(t) sin(2πfct), |t| ≤ T , (3.2d)

19



with orthogonal half-sinusoidal pulses p1(t) = cos(πt/2T ) and p2(t) = sin(πt/2T ), for |t| ≤ T ,

and 0 otherwise. The carrier frequency, fc, should be n
4T

with n ≥ 2, and T is the duration of

2 bits. There are 16 symbols that form this non-constant envelope signal set with efficiency

of 4 bits per modulation interval.

Using the baseband equivalent model for (3.1), the kth transmitted Q2PSK signal is repre-

sented as:

Sk(t) = b1,kp1(t− 2kT ) + b2,kp2(t− 2kT ) +

−j[b3,kp1(t− 2kT ) + b4,kp2(t− 2kT )]. (3.3)

3.2.2 4D CEQ2PSK

In [33] and [20], two constant envelope 4D constellations were introduced, each with an MSED

of 8 for unit energy: Saha’s CEQ2PSK and Cartwright’s CEQ2PSK, respectively. Constant

envelope is obtained by using a rate-3/4 block encoder at the input of the Q2PSK modulator,

where the fourth output bit is an odd parity check bit [33]. Three information input bits

{b1, b2, b3} generate code words {b1, b2, b3, b4} such that the eight possible transmitted signals

for Saha’s CEQ2PSK are S1 = [a, a, b,−b] and S2 = [a,−a, b, b]. For Cartwright’s CEQ2PSK,

we have S1r = [0,
√

2a,
√

2b, 0] and S2r = [
√

2a, 0, 0,
√

2b]. In both cases, a, b are either ±1.

In order for the envelope to be constant, b1b2 + b3b4 = 0.

3.2.3 16D CEQ2PSK

Unexpanded 16D CEQ2PSK

In [20], two 16D constellations were produced by concatenating either four consecutive

CEQ2PSK symbols from Saha’s constellation or four consecutive CEQ2PSK from Cartwright’s

constellation. Each of these 16D signal sets contains 4096 constant envelope points and has

an MSED of 8 for unit energy.
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Expanded 16D CEQ2PSK

The expanded 16D CEQ2PSK constellation is the union of the two 16D CEQ2PSK in sub-

section 1) above, and has 8192 points; the expanded constellation has twice as many points

as either unexpanded 16D CEQ2PSK constellation but still maintains an MSED of 8. There

are 16 points (i.e., an error coefficient of 2 when normalized to 2D) at the second smallest

squared distance of 9.373 which slightly degrades the performance over the unexpanded con-

stellation, particularly for low SNR [20]. In [21], this expanded constellation was used to

allow 1 bit of redundancy per 16D to be introduced through a convolutional encoder in a

TCM system. This 16D TCM CEQ2PSK system is also studied here. Improved probability

of error performance is achieved while maintaining constant envelope with a slight increase

in system complexity.

3.3 Channel Model

Most transmission media alter the transmitted signals in some way, especially when the

channel has limited bandwidth [55]. In this section, we define the simple ideal bandlimited

additive white Gaussian noise (AWGN) channel we use in our analysis and simulations, and

show the effects of bandlimiting on Q2PSK and CEQ2PSK.

Forney and Ungerboeck defined the ideal bandlimited channel with flat frequency response

within baseband bandwidth B in [2]. The signal s(t) passes through a dispersive channel

with impulse response h(t) and zero-mean AWGN n(t). The received signal is:

r(t) = s(t) ∗ h(t) + n(t), (3.4)

with h(t) given by:

h(t) =
sin(2πBt)

πt
. (3.5)
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Figure 3.1: Filtered (continuous line) and unfiltered (dashed line) cosine and sine pulses. a)
p1 and p1f (t), B1. b) p2 and p2f (t), B1. c) p1 and p1f (t), B2. d) p2 and p2f (t), B2 (with
B1 = 1/T , B2 = 0.6/T ).

We consider two channel bandwidths, defined in baseband (one-sided) as: B1 = 1
T

and

B2 = 0.6
T

, where 2T is the 4D signal interval. When the pulses p1(t) and p2(t) of (2)

pass through the channel in (3.4, 3.5), they suffer from the combined effects of intersymbol

interference (ISI), cross intersymbol interference (CISI) [46], and noise. If pi,k denotes pulse

pi at time 2kT , i.e., pi(t− 2kT ), ISI is caused by pi,j interfering with pi,k, j 6= k and i = 1, 2,

and CISI is caused by p1,j interfering with p2,k or p2,j interfering with p1,k, for any j, k. The

effects of filtering are shown in Fig. 3.1 for two bandwidths of interest, where the filtered

pulses are denoted with the subscript f , and are given by (A.23) and (A.24) in the Appendix

A.

In our performance analysis, we assume that only one past and one future symbol interfere

with the current symbol being detected. A total of 83 % of the energy in the half-sine pulse

and 99 % of the half-cosine pulse are within a bandwidth of 0.6/T ; of this energy, 99 % and

99.8 %, respectively, is within the interval from −3T and 3T (i.e., from k = −1 to 1).
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3.4 Coherent Receiver

At the receiver, the passband received signal is coherently detected in the correlation receiver

by multiplying it by the cosine and sine carriers and by the half-cosine and half-sine pulses

and then integrating and dumping. In baseband, the receiver ideally separates the real parts

from the imaginary parts, and the cosine pulses from the sine pulses by multiplying the

filtered signal sf (t) = Re{sf (t)} + j Im{sf (t)} by the original pulses p1(t) − jp2(t) if no

knowledge of the channel is available, or by the filtered pulses p1f (t)− jp2f (t) if the channel

is known. Due to ISI and CISI, the tails of the interfering past and future pulses affect

the pulses currently being detected. Considering only the truncated sequence [56] of length

equal to three signaling intervals (k = −1, 0, 1) and ignoring the noise for now, the signals

at the input of the receiver, corresponding to the current signaling interval being detected

(|t| ≤ T ) are:

sf (t) =
1∑

k=−1

[b1,kp1f (t− 2kT ) + b2,kp2f (t− 2kT )+

+ j (b3,kp1f (t− 2kT )− b4,kp2f (t− 2kT ))] ,

(3.6)

where p1f and p2f are the filtered pulses shown in Fig. 3.1 and defined in (A.23, A.24) in the

Appendix, and bi,k, i = 1, . . . , 4 represents bit i at time (t − 2kT ); for example, b2,−1 is the

value of the second component of the 4D vector [b1(t+ 2T ) b2(t+ 2T ) b3(t+ 2T ) b4(t+ 2T )],

i.e., the coefficient of the sine pulse p2 on the cosine carrier, from the previous 4D signaling

interval (the immediate past symbol).

We wish to show the output of the correlation receiver. To concisely write the expression for

these output values, we use the following notation: Let Pi,j(r, s) =
T∫
−T

pi(t − r)pj(t − s)dt.

We also let j = 2 − imod 2, l = i − (−1)i, and i = 1, . . . , 4. The coefficients at the output

of the receiver, including (finite) ISI and the CISI are given by (3.7):
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Table 3.1: Magnitude of the Coefficients in (3.7) for two channel bandwidths for Q2PSK and
Saha’s CEQ2PSK.

B1 = 1
T

B2 = 0.6
T

ĉ1 or ĉ3 ĉ2 or ĉ4 ĉ1 or ĉ3 ĉ2 or ĉ4 N1 N2

0.989543 0.778107 0.975659 0.687676 128 16

0.992196 0.783469 0.979426 0.699171 256 32

0.994848 0.788830 0.983194 0.710665 128 16

0.994905 0.887331 0.987154 0.820393 256 32

0.997557 0.892692 0.990921 0.831888 512 64

1.000209 0.898053 0.994688 0.843383 256 32

1.000266 0.996554 0.998648 0.953111 128 16

1.002918 1.001915 1.002416 0.964605 256 32

1.005571 1.007276 1.006183 0.976100 128 16

ĉi = bi,−1Pj,j(0,−2T ) + bi,0Pj,j(0, 0)+

+ bi,1Pj,j(0, 2T ) + bl,−1Pj,3−j(0,−2T )+

+ bl,1Pj,3−j(0, 2T ).

(3.7)

Given a single past, present, and future symbol, we can easily enumerate the resulting coeffi-

cients, which are ±1 for the unfiltered channel. For the receiver without channel information,

these are shown in Table 3.1 for the two channel bandwidths we use; the negative value for

each is also possible. The numbers listed under the last two columns, N1 and N2, indicate

the number of occurrences of each for Q2PSK and Saha’s CEQ2PSK, respectively; there are

a total of 4096 sequences of length 3 in the former, and 512 in the latter.

3.5 Performance Analysis

We describe performance of the Q2PSK systems based on probability of error versus SNR

and spectral efficiency. We discuss each separately.
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Table 3.2: Parameters of (3.8,3.9) for the Q2PSK systems of interest.
4D 4D unexpanded expanded

Q2PSK CEQ2PSK 16D CEQ2PSK 16D CEQ2PSK
d2
0 4 8 8 8

d2min 4 4 4 4
R 1 3/4 3/4 13/16
Rb 1 1 1 1
γc 1 3/2 3/2 13/8
Kd 2 3 3 3

3.5.1 Probability of Bit Error

We quickly derive the probability of error for the Q2PSK systems in this section. We assume

AWGN with (one sided) PSD N0 in each component. If no bandlimiting occurs, such that

there is no ISI/CISI, the probability of bit error may be written as [2]:

Pbe = KdQ

(√
γc

2Eb

No

)
, (3.8)

where Kd is the error coefficient normalized per two dimensions, and γc is the coding gain

given by (3.9):

γc =
d2o
d2min

R

Rb

, (3.9)

where d0 and dmin are the minimum distances between points in the coded and uncoded

constellations, respectively; Rb is the rate in information bits per dimension of the uncoded

system and R is the rate of the coded system, again in information bits per dimension [2].

The values of these are shown in Table 3.2 for the four systems we discuss here.

A bit error is committed when the interference and noise cause the transmitted bit to cross

the zero-threshold. The probability of bit error, Pbe, for filtered (finite length) Q2PSK and
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CEQ2PSK is given by (3.10):

Pbe =
9∑

n=1

P (r < 0 |ĉi)P (ĉi) =
9∑

n=1

P (n < −ĉi)P (ĉi)

=
9∑

n=1

P (ĉi)Q

(
ĉi
σ

)
=

9∑
n=1

P (ĉi)Q

(√
2

N0

ĉi

)
,

(3.10)

where r is the appropriate component of the received signal, the coefficients are those listed

in Table 3.1, and P (ĉi) is N1/2048 for Q2PSK and N2/256 for CE Q2PSK. Notice that the

probability of error is higher for the second and fourth components of the 4D vector than

for the first and third; this is due to the significantly wider bandwidth of the half-sine pulse,

p2(t), compared to the half-cosine pulse p1(t). Equations (3.8, 3.10) assume the received

components are independent; this is never true for the fourth bit of CEQ2PSK, and is not

strictly true for any of these systems due to ISI and CISI. Nonetheless, we show in Section

3.6 that (3.10) is accurate for all SNR of interest.

We define the SNR in dB as 10 log10

(
Eb
2σ2

)
, where Eb is the energy per bit and σ2 is the noise

power in each component, so that SNR=Eb/N0. We use unity bit energy here.

3.5.2 Spectral Performance

Van Wyk presented an expression for the baseband power spectral density (PSD) of coded

and uncoded Q2PSK in [57]. If the amplitudes of the waveforms are adjusted to unity, and

using the symbol period Ts = 4Tb = 2T , Van Wyk’s expression for Q2PSK becomes:

SQ2(f)

T 2
s

=
4 (1 + 64f 2T 2

b )

π2

(
cos (4πfTb)

1− 64f 2T 2
b

)2

. (3.11)

For CEQ2PSK, due to the introduction of the parity check bit, Ts = 3Tb = 2T , where the

the subscript b now indicates information bit; hence,

SCEQ2(f)

T 2
s

=
4 (1 + 36f 2T 2

b )

π2

(
cos (3πfTb)

1− 36f 2T 2
b

)2

, (3.12)
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Figure 3.2: PSD for systems of interest.

which applies to both Saha’s and Cartwright’s CEQ2PSK constellations.

Finally, for expanded CEQ2PSK we have a 4D symbol period of Ts = 13Tb
4

= 2T and (3.12)

becomes

Sexp(f)

T 2
s

=
4 + 169f 2T 2

b

π2

(
cos (13πfTb/4)

1− 169f 2T 2
b /4

)2

. (3.13)

Fig. 3.2 shows the PSD for the systems of interest, in addition to MSK and OQPSK. Non-

parametrical spectral estimation was performed using the periodogram method, with 200

spectral averages and using Bartlett windows before performing the FFT. Simulation results

confirmed the derivation above (the plots of the simulated values are not shown as they

overlap the theoretical lines).

We note that the -3 dB bandwidth of expanded 16D CEQ2PSK is equal to that of MSK, and

is 125 % of Q2PSK’s. CEQ2PSK has the widest -3 dB bandwidth, and its PSD is similar to

that of Offset QPSK [33], in the sense that the first null also occurs at normalized frequency

of 0.5. The first null of the expanded constellation is 6
13Tb

= 0.4615
Tb

, 61 % of that of MSK,
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while it is 67 % for CEQ2PSK and 50 % for Q2PSK.

Q2PSK has the narrowest main lobe, but the first side lobe has the same peak energy as

those of both CEQ2PSK systems. MSK’s main lobe is the widest, with considerably lower

and wider sidelobes. The sidelobe peaks derease most slowly for CEQ2PSK (expanded and

unexpanded).

3.6 Results

We present simulation results for 4D Q2PSK, Saha’s 4D CEQ2PSK, and 16D TCM CEQ2PSK

for ideal bandlimited channels of baseband bandwidth 1/T and 0.6/T , along with theoreti-

cal performance curves, when available. Unfilled markers show simulations results obtained

counting at least 20 bit errors.

Fig. 3.3 shows a comparison of the bit error rates (BER) for filtered and unfiltered Q2PSK,

4D CEQ2PSK, and 16D TCM CEQ2PSK at the two bandwidths of interest using no channel

estimation. We see in Fig. 3.3 that the TCM system provides about 2 dB of gain over the

equivalent uncoded system for all channel bandwidths, requiring only 7.3 dB in SNR for a

probability of bit error of 10−5 when bandlimited to 0.6/T baseband bandwidth. We also

confirm that Q2PSK requires about 11.2 dB of SNR for a bit error rate (BER) of 10−5, as

stated by Saha in [44], for a filter of bandwidth 0.6/T ; we note, however, that Saha used a

sixth-order Butterworth filter. Losses due to finite channel bandwidth are most severe for

Q2PSK.

Figs. 3.4 and 3.5 allow us to compare the receivers with channel knowledge (receiver 2)

to those that do not assume any knowledge of the channel (receiver 1). Fig. 3.4 shows our

results for a channel bandlimited to 0.6/T while Fig. 3.5 shows the same curves for a channel

of bandwidth 1/T . The gains achieved by using channel estimation are clearly shown on the

plots.

Saha stated in [33] that MSK needs 9.6 dB of SNR to achieve Pbe = 10−5 when filtered at

0.6/T and, in [44], that CEQ2PSK requires 10.3 dB using a sub-optimum bit-by-bit detector.

28



5 6 7 8 9 10 11 12
10

-6

10
-5

10
-4

10
-3

10
-2

Eb/No

P
ro

ba
bi

lit
y 

of
 B

it 
E

rr
or

 

 

••
0.77

•
0.94

••

0.38

•
0.55

•
1.01

•
0.38

•
0.6

Theoretical Curve for Q2PSK
Theoretical Curve for CEQ2PSK
Theoretical curves for:

Q2PSK, 0.6/T
Q2PSK, 1/T
CEQ2PSK, 0.6/T
CEQ2PSK, 1/T
Exponential Fits for:

16D TCM CEQ2PSK, 0.6/T
16D TCM CEQ2PSK, 1/T
16D TCM CEQ2PSK

Figure 3.3: BER for Q2PSK, CEQ2PSK and 16D TCM CEQ2PSK systems, filtered and
unfiltered, when receiver has no knowledge of the channel.

We have shown in Fig. 3.4 that CEQ2PSK achieves Pbe = 10−5 at an SNR of 9.3 dB if a

sequence detector with no channel information is used instead, and only 8.8 dB if channel

estimation is performed so that the filtered pulses are used in the receiver. Cartwright

and Kaminsky [35] showed that an SNR of 8.3 dB is actually needed if the channel is not

bandlimited, which is confirmed in Fig. 3.3.

For channel bandwidth of 0.6/T , when TCM is used with the expanded 16D constellation,

we achieve a BER of 10−5 with 7.3 dB if no knowledge of the channel is assumed (receiver 1)

and with only 6.8 dB if knowledge of the channel (receiver 2) is assumed; the penalty paid

for this gain is increased complexity in the receiver. The same conclusions are drawn about

gains for channels with a bandwidth of 1/T , as shown on Fig. 3.5. Notice, however, that at

1/T Q2PSK gains less than the TCM system, while at 0.6/T the gain is larger. The gain

due to knowledge of the channel is always smallest for 4D CEQ2PSK.

Using channel estimation aids the 16D TCM system more than the 4D uncoded equivalent

and knowledge of the channel is more important for Q2PSK than for its constant envelope

counterpart.
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Figure 3.4: BER for Q2PSK, CEQ2PSK and 16D TCM CEQ2PSK systems filtered at 0.6/T
with receivers with and without channel knowledge (labeled receiver 2 and 1, respectively).

4 5 6 7 8 9 10 11 12
10

-6

10
-5

10
-4

10
-3

10
-2

Eb/No

P
ro

ba
bi

lit
y 

of
 B

it 
E

rr
or

 

 

••

0.62

••

0.4

••

0.52

Q2PSK receiver 1

CEQ2PSK receiver 1
Exponential Fits for:

Q2PSK receiver 2

CEQ2PSK receiver 2

16D TCM CEQ2PSK receiver 1

16D TCM CEQ2PSK receiver 2

Figure 3.5: BER for Q2PSK, CEQ2PSK and 16D TCM systems filtered at 1/T with receivers
with and without channel knowledge (labeled receiver 2 and 1, respectively).

3.7 Conclusions

We have presented the performance of Q2PSK and its variants CEQ2PSK and 16D TCM

CEQ2PSK in ideal bandlimited channels with and without channel knowledge at the receiver.
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We have noted that the effect of bandlimitation to 0.6/T , with T the 2D signaling interval,

results in a needed increase of between 1 dB and 1.7 dB in SNR for a BER of 10−5 if no

channel estimation is used and around 0.5 dB if knowledge of the channel is assumed. The

best performance among the systems studied is that of the 16 TCM CEQ2PSK system which

requires less than 6.8 dB of SNR for that BER in the most severe bandlimitation, but requires

a more complex receiver.

Future work will include simulations of the contant envelope 4D and 16D systems in fading

channels and in the nonlinear satellite channel, where use of constant envelope systems

becomes most important. Use of pulses that have narrower bandwidth such as those in [46]

should also be evaluated in bandlimited channels. Phase estimation algorithms along with

actual causal bandlimited channel models should be incorporated. We will also perform the

analysis of ISI/CISI for Cartwright’s CEQ2PSK constellation, which is expected to be less

affected by interference than Saha’s.
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Chapter 4 Visualization of Q2PSK and CEQ2PSK in ideal Bandlimited

Channels

4.1 Introduction

Shannon proposed geometrical representations of signals in [1], where he discussed the as-

sociation of information signals with Euclidean spaces, resulting in an understanding of

the relationship between visual indicators and the performance of digital communications

systems. Since then, effort has been devoted by other researchers to connect the multidi-

mensional geometric representations to communication systems’ waveforms and to visually

represent these high-dimensional constellations in lower-dimensional spaces.

In [48, Fig.1], Saha and El-Ghandour present a 4D Q2PSK signal space diagram where the

four dimensions are decoupled into two 2D sub spaces associated with the half cosine and the

half sine pulses; the diagram shows the decoupled phase points of Q2PSK around each pulse

axis. Similarly, in [58, Fig. 2.5] Cilliers describes a visualization of Q2PSK where the signal

constellations points are plotted around a frequency axis. Cilliers also discusses two graphical

representations of the projection of the 4D Q2PSK hypercube onto 3D cubes ([58, Figs. 2.10,

2.11]). These latter four representations aid in visualizing 4D systems, but provide no insight

or information about the transmitted or received signals. Drakul and Biglieri [59, Figs. 2, 3]

portray all pulses vs. time for one signaling interval and also eye patterns (see [59, Figs. 5,

7]) for an 8D Constant Envelope modulation Scheme (8D-CEMS). Malan shows in [60, Fig.

6.2] a complex 2D baseband envelope diagram of a 4D Direct Sequence Spread Spectrum

(DSSS) signal to portray amplitude and phase distortions caused by a bandlimited channel.

In this paper, we discuss visualization methods for 4D Q2PSK systems; in particular, we

analyze Q2PSK [33] and CEQ2PSK [44, 20] systems with no channel bandlimitation as well

as with ideal channel filters of baseband bandwidth 0.6
T

and 1
T

, where 2T is the 4D symbol

interval. Our first method, the time-signal eye pattern, consists of portraying the set of

all possible 4D passband filtered signals versus time; we choose to display times from −T
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to T , to show the entire 4D signaling interval, using the minimum carrier frequency. The

second method is a 2D complex trajectory diagram in which the baseband in-phase and

in-quadrature signals are plotted versus each other with time as a parameter. The third

method represents the output of the matched filter (before the sample and hold operation)

for each of the 4 components, versus time, for times between 0 and 2T , to show the decision

time in the middle.

The rest of this paper is organized as follows: The first section is a brief review of Q2PSK

and Saha’s and Cartwright’s CEQ2PSK. Next, in Section 4.3, we present the visualization

methods used. Results are presented and discussed in Section 4.4. Concluding remarks and

proposals for future work are given in Section 4.5, followed by cited references.

4.2 Review of 4D Q2PSK

In this section, we summarize Q2PSK, Saha’s CEQ2PSK, and Cartwright’s CEQ2PSK.

4.2.1 Q2PSK

Q2PSK [33] is a 4D modulation scheme defined by:

S(t) = a1p1(t) cos(ωct) + a2p2(t) cos(ωct)+

+ a3p1(t) sin(ωct) + a4p2(t) sin(ωct),

(4.1)

where {ai}, i = 1, ... , 4, are ±1, the half-cosine and half-sine pulses, p1(t) and p2(t), are given

by (4.2), the carrier angular frequency, ωc, is nπ/2T , with n ≥2, and T is the duration of 2

bits.

pj(t) = cos

(
πt

2T
− (j − 1)π

2

)
, |t| ≤ T, j = 1, 2. (4.2)

Eq. (4.1) may also be represented as

S(t) =A(t) cos (ωct+ θ(t)) , (4.3)
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where the amplitude and phase are given, respectively, by (4.4) and (4.5):

A(t) = (2 + (a1a2 + a3a4) sin(πt/T ))1/2 , (4.4)

θ(t) = tan−1
(
a3 cos(πt/2T ) + a4 sin(πt/2T )

a1 cos(πt/2T ) + a2 sin(πt/2T )

)
. (4.5)

Equivalently, we could use a baseband model for (4.1) in which the kth transmitted Q2PSK

signal is:

Sk(t) = a1,kp1(t− 2kT ) + a2,kp2(t− 2kT ) +

−j[a3,kp1(t− 2kT ) + a4,kp2(t− 2kT )]. (4.6)

The real part of (4.6) is the in-phase component, I, and the imaginary part corresponds to

the quadrature-phase, Q. There are 16 4D symbols that form this non-constant envelope

Q2PSK signal set. Saha’s Q2PSK points are listed on the left side of Table 4.1; we have

separated the eight points that have constant envelope (listed in the bottom) from the other

eight. The fourth component of the top eight Q2PSK vectors is a4 = a1a2/a3 while for the

bottom eight, this component is a4 = −a1a2/a3. For the top 8 points the phase is piecewise-

constant with values θ(t) ∈ {±45◦, ±135◦}; the bottom 8 points have phase that increases

or decreases piece-wise linearly.

4.2.2 CEQ2PSK

In [44] and [20], respectively, two 4D constant envelope constellations were introduced:

Saha’s CEQ2PSK and Cartwright’s CEQ2PSK. Constant envelope is obtained at the ex-

pense of a reduction in the transmission rate, by ensuring that a4 = −a1a2/a3. Each set has

eight 4D symbols and makes A(t) in (4.4) a constant value equal to
√

2 [20]. The original two

CEQ2PSK constelations are those listed on the bottom half of Table 4.1 as having magni-

tude
√

2. Notice that there are two constellations of Cartwright-type symbols: Cartwright’s

original constellation presented in [20], listed on the bottom right corner of Table 4.1, and
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Table 4.1: 4D Q2PSK points.

Saha’s Cartwright’s

a1 a2 a3 a4 a1 a2 a3 a4

M
ag

n
it

u
d
e:

va
ri

ab
le

P
h
as

e:
±

45
◦
±

13
5◦

−1 −1 −1 −1 0 −
√

2 0 −
√

2

M
agn

itu
d
e:
√

2
P

h
ase:

±
45
◦
±

135
◦

−1 −1 1 1 0 −
√

2 0
√

2

−1 1 −1 1 −
√

2 0 −
√

2 0

−1 1 1 −1 −
√

2 0
√

2 0

1 −1 −1 1
√

2 0 −
√

2 0

1 −1 1 −1
√

2 0
√

2 0

1 1 −1 −1 0
√

2 0 −
√

2

1 1 1 1 0
√

2 0
√

2

M
ag

n
it

u
d
e:
√

2
P

h
as

e:
p
ie

ce
w

is
e

li
n
ea

r

−1 −1 −1 1 0 −
√

2 −
√

2 0

M
agn

itu
d
e:
√

2
P

h
ase:

p
iecew

ise
lin

ear

−1 −1 1 −1 0 −
√

2
√

2 0

−1 1 −1 −1 −
√

2 0 0 −
√

2

1 −1 −1 −1
√

2 0 0 −
√

2

1 1 1 −1 0
√

2
√

2 0

1 1 −1 1 0
√

2 −
√

2 0

1 −1 1 1
√

2 0 0
√

2

−1 1 1 1 −
√

2 0 0
√

2

another we are presenting here for the first time, listed on the top right corner of this same

table. This constellation also has constant envelope with A(t) =
√

2, for all t, but has piece-

wise constant phase, while Cartwright’s original CEQ2PSK constellation has piecewise-linear

phase.

4.3 Visualization Methods

In this section we explain the graphical representations used to visualize the signals of inter-

est.
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4.3.1 Time-signal eye patterns for 4D passband signals

The time-signal eye pattern is obtained by plotting (4.1) or (4.3) with ωc = π/T , or the

channel-filtered version of these, for all combinations of possible 4D signals, versus time. Any

other allowed carrier frequency may be chosen, but no further insight about the modulated

signals is obtained by doing this. These signals are presented on the same graph over a

period of 2T –the length of one 4D symbol– showing a complete 4D signaling interval from

−T to T . Notice that (4.1) and (4.3) depend on [a1 a2 a3 a4] which for CEQ2PSK is a subset

of the possible Q2PSK vectors (see Table 4.1). By using this method, the amplitude and

phase of the passband signal are shown graphically for all times.

4.3.2 2D complex trajectory diagrams for 4D baseband signals

With this method we look at the baseband version of the 4D modulated signal in the complex

plane by showing parametric plots of the trajectories of the in-phase component versus the

quadrature-phase component of the signal in (4.6), or a filtered version of it as shown in (6)

of [34]. Effectively, the 2D complex trajectories are polar diagrams of the magnitude in (4.4)

and the phase in (4.5) –or, again, filtered versions of these– with time as a parameter. The

trajectory diagram clearly shows distortions caused by the ISI created by the bandlimited

channel.

4.3.3 Time-signal eye pattern for the 1D outputs of the baseband matched filter

The baseband receiver, consisting of a bank of two pairs of matched filters, separates the real

parts (in-phase) from the imaginary parts (quadrature-phase) and also the half-cosine pulses

from the half-sine pulses. We also use time-signal eye diagrams to show each component

of the baseband signals at the output of the matched filter. All possible signals for each

component are superimposed, for a single signaling interval. The four signals at the output
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of the matched filter, if the channel has infinite bandwidth, are:

yk(t) = akp1(t) ∗ h1(t) + ak+1p2(t) ∗ h1(t)

= aky
′
11(t− T ) + ak+1y

′
12(t− T ), (4.7a)

ym(t) = am−1p1(t) ∗ h2(t) + amp2(t) ∗ h2(t)

= −am−1y′12(t− T )− amy′22(t− T ), (4.7b)

for k = 1, 3, m = 2, 4, and y′ij given in (4.8). The matched-filter impulse responses are

h1(t) = p1(T − t) and h2(t) = p2(T − t), with pj(t) given in (4.2).

y′ij(t) =
(−1)

2

(i−1)(j−1)

cos

[
π

2

(
t

T
− |i− j|

)]
(2T − |t|) +

+
T

π
sin

(
π|t|
2T

)
|3− i− j|, |t| ≤ 2T, (4.8)

for i, j = 1, 2.

The open parts of the time-signal eye patterns occur around decision time T . For Saha’s

signals there is a single eye, while for Cartwrights’ there are two, as three levels are possible.

The horizontal eye opening relates to the phase and shows the sensitivity to sampling instant

shifts (i.e., synchronization). In addition, the amplitude distortion at the sampling time –

which relates directly to the modified geometry of the 4D signals with ISI– also becomes

obvious.

4.4 Visualization Results

In this section we present and discuss the results of our visualization analysis of Q2PSK

signals.
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Figure 4.1: Time-signal eye patterns for 4D passband signals. Q2PSK: a) unfiltered, b)
filtered at B1, c) filtered at B2. Saha’s CEQ2PSK: d) unfiltered, e) filtered at B1, f) filtered
at B2. Cartwright’s CEQ2PSK: g) unfiltered, h) filtered at B1, i) filtered at B2. B1 =
1/T,B2 = 0.6/T .

4.4.1 Time-signal eye patterns for 4D passband Q2PSK

Figure 4.1 portrays the time-signal eye patterns for the three 4D passband systems of inter-

est. The columns correspond, respectively, to Q2PSK, Saha’s CEQ2PSK, and Cartwright’s

original CEQ2PSK. The rows represent the bandwidth limitation: for the plots on the top

row there is no channel filter, while the second and third rows have channels bandlimited

to 1
T

and 0.6
T

, respectively, where 2T is the 4D symbol interval. We see in a) the 16 traces

of all possible Q2PSK 4D symbols, with symbol transitions occurring at time 0 and 2T and

possible phase changes of 0, ±90◦ and ±180◦, as stated in [33]. For the filtered Q2PSK

signals there are 4096 traces on the 4D passband time-signal eye patters because one past,

one present, and one future symbol affect the current symbol, and each one of these has 16
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possible values. If one compares a) to b) and c), it becomes clear that amplitude distortion

is introduced by the bandlimited channels. The possible values of the signal with ISI are no

longer just ±1, and many new phase changes occur.

Results for Saha’s and Cartwright’s original CEQ2PSK are portrayed in the second and third

columns of Fig. 4.1, respectively. Because d) and g) show the signals without bandlimitation,

there are 8 traces displayed. The symbol transitions again occur at time 0 and 2T and we

also have possible abrupt changes in phase at those times. The possible phase shifts are still

0, ±90◦ and ±180◦, as they were for Q2PSK. Because e), f), h) and i) depict signals with ISI,

there are 512 traces when the memory is truncated to three symbols. When Cartwright’s

original CEQ2PSK is used, the possible values of the unfiltered 4D signal at time T are 0 and

±
√

2; clearly, the 4D Euclidean distances at that time are equal for Saha’s and Cartwright’s

constellations, but at time T the minimum distance has been reduced from 2 to
√

2 while

the maximum distance has been increased from 2 to 2
√

2.

4.4.2 2D complex trajectory diagrams for Q2PSK signals

Figure 4.2 shows the complex trajectory diagrams for the systems of interest. Notice that

both the amplitude and phase information of the 4D signals are shown with time as a

parameter, by plotting the in-phase component vs. the quadrature-phase. Because time is

not shown, the abrupt phase changes of the unfiltered signals are only easily seen in Fig. 4.2

a), i.e., for Q2PSK. On the other hand, the constant envelope is obvious for the CEQ2PSK

untilftered systems shown in d) and g). It is also clear that the complex trajectory diagram

for Cartwright’s CEQ2PSK is a 45◦ rotation of the diagram for Saha’s CEQ2PSK; as noted

in [20], Cartwright’s constellation is obtained by performing two 2D rotations of 45◦ on

Saha’s 4D points. Notice that the ISI-distorted CEQ2PSK signals are no longer of constant

envelope and may even be zero at certain instants.
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Figure 4.2: 2D complex trajectory diagrams. Q2PSK: a) unfiltered, b) filtered at B1, c) fil-
tered at B2. Saha’s CEQ2PSK: d) unfiltered, e) filtered at B1, f) filtered at B2. Cartwright’s
CEQ2PSK: g) unfiltered, h) filtered at B1, i) filtered at B2. B1 = 1/T,B2 = 0.6/T .

4.4.3 Time-signal eye patterns of the 1D baseband matched filter outputs for

Q2PSK

The time-signal eye pattern at the output of the matched filter helps visualize the signal

geometry because the new coefficients ĉi that arise from the signal with ISI become clear at

time T , the sampling time of the sample and hold device at the receiver. The possible values

of (4.7a) and (4.7b) are plotted on the first row of Fig. 4.3; a) and d) correspond to Q2PSK

and Saha’s CEQ2PSK, while g) and j) are for Cartwright’s original CEQ2PSK. The computed
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values of these coefficients are given in Table 4.2 for Cartwright’s original constellation at

the two bandwidths of interest to us, and on Table I of [34] for Saha’s constellation. These

coefficients are the possible values at t = T when the ISI is truncated to three signaling

intervals. The numbers listed in the last column, N , indicate the number of occurrences of

each coefficient in the new geometry; there are a total of 512 signal points.

Table 4.2: Magnitude of the Coefficients for two channel bandwidths for Cartwright’s
CEQ2PSK.

B1 = 1
T

B2 = 0.6
T

ĉ1 or ĉ3 ĉ2 or ĉ4 ĉ1 or ĉ3 ĉ2 or ĉ4 N

0 0 0 0 64

0.001915 0.007582 0.005313 0.016256 32

0.003751 0.073442 0.005448 0.085718 64

0.005666 0.081023 0.010759 0.101973 64

0.007582 0.154465 0.016207 0.187691 32

1.403177 1.107992 1.380991 0.988777 16

1.405092 1.181434 1.386439 1.074494 32

1.407008 1.189016 1.391751 1.160212 16

1.408843 1.254875 1.391887 1.090750 32

1.410759 1.262457 1.397199 1.176467 64

1.414509 1.270039 1.402510 1.192723 16

1.412674 1.335899 1.402646 1.262185 32

1.416425 1.343481 1.407958 1.278441 32

1.418340 1.416922 1.413406 1.364158 16

The vertical (amplitude) and horizontal (time) eye openings at the output of the matched

filter are listed in Table 4.3 for the systems of interest, both filtered and unfiltered; we also

show the percentage decrease in the length of the eye opening in each direction, as it is this

decrease in the size of the eye that helps us visualize the likelihood of detection errors. We

define the vertical aperture, VA, as the minimum 1D distance between possible amplitudes

at sampling time T . The horizontal aperture, HA, for unfiltered signals is defined as the

length of time between signal crossings (excluding those with 0-amplitude crossing). When

the signals are filtered, we measure the corresponding minimum distance. Both VA and
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Figure 4.3: Time-signal eye patterns of the 1D output of the baseband matched filter. Q2PSK
and Saha’s CEQ2PSK: a) unfiltered a1 and a3, b) a1 and a3 filtered at B1, c) a1 and a3
filtered at B2, d) unfiltered a2 and a4, e) a2 and a4 filtered at B1, f) a2 and a4 filtered at
B2. Cartwright’s CEQ2PSK: g) unfiltered a1 and a3, h) a1 and a3 filtered at B1, i) a1 and
a3 filtered at B2, j) unfiltered a2 and a4, k) a2 and a4 filtered at B1, l) a2 and a4 filtered at
B2. B1 = 1/T, B2 = 0.6/T .

HA are indicated with arrows on Fig. 4.3. The amplitude distortions that correspond to

the cosine pulses is always small, while it is considerably larger for the sine pulses. The

sine components are also more prone to timing errors, as seen by the eye narrowing in the

horizontal direction. The probability of error performance in Additive White Gaussian Noise

(AWGN) channels depends on the minimum Euclidean distance between 4D points. One

must remember that for Cartwright’s constellation, if the amplitude of one half-cosine pulse

is not 0, the other one is and that the same applies to the half-sine pulses. This means

that, without error correction, the apertures may be minimum in all components of Saha’s

constellation, while this is not possible in Cartwright’s.
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Table 4.3: Amplitude and time apertures at matched filter output.

Bo =∞ B1 = 1
T

B2 = 0.6
T

Aperture Aperture % decrease Aperture % decrease

S
a
h
a
’s

Q
2
P
S
K

&
C
E
Q

2
P
S
K y
1
(t

) VA 2.00 1.98 1.00 1.95 2.50

HA 1.4T 1.0T 28.57 1.0T 28.57

y
2
(t

) VA 2.00 1.56 22.00 1.37 31.50

HA 0.8T 0.6T 25.00 0.6T 25.00

C
a
rt
w
ri
g
h
t’
s

C
E
Q

2
P
S
K y
1
(t

) VA
√

2 1.40 1.00 1.36 3.83

HA 1.4T 0.8T 42.85 0.8T 42.85

y
2
(t

) VA
√

2 0.95 32.83 0.80 43.43

HA 0.8T 0.4T 50.00 0.4T 50.00

4.5 Conclusions and Further Work

We have presented visualization aids for 4D Q2PSK, both constant and non-constant enve-

lope, as well as filtered and unfiltered. This is an effort to gain insight into the behaviour of

these signals in bandlimitted channels. The diagrams shown help to visualize the causes of

the degradation in probability of error performance when the channel is bandlimitted and

therefore ISI is introduced.

Future work will include a thorough evaluation of the performance of both of Cartwright’s

CEQ2PSK constellations in bandlimitted channels and a comparison to Saha’s. Better mod-

els of bandlimitted and fading channels will be used.

We will also apply a continuous Morlet wavelet transform to Q2PSK systems, which shall

be used to visualize, simultaneously, the time-frequency behavior of the bandlimited signals

and used to develop a wavelet-based receiver that estimates the phase-shift, ISI, and noise-

type of actual channels. The performance of such receiver is expected to be superior to the

standard matched filter –optimum in AWGN– when other deleterious effects are introduced

by the channel, particularly in the presence of impulsive and colored noise.
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Chapter 5 Spectral Analysis and Eye Diagrams for 16D CEQ2PSK data rate

This Chapter discuss in more detail of some simulations performed for Chapter 4. Discussions

about some work on the spectral efficiency issues are presented. The more compact the

spectrum of the transmitted signals, the better, as less energy will be removed by filtering

or less aliasing will be caused by sidelobes if not filtered fully. The size of the sidelobes –or

the rate at which they decrease– is of much interest as well. Our spectral analysis is based

on the Power Spectral Density (PSD) derivation and plots.

Eye diagrams or signal trajectory plots for the 16D system provide quite a bit of infor-

mation regarding system performance. Information about distortion (e.e., by inter-symbol

interference (ISI) or noise), synchronization, appropriateness of sampling times, and zero

crossings, among others, may be derived or seen directly by analyzing signal trajectories and

eye diagrams.

5.1 Power Spectral Density

The theoretical PSD, in dB, versus normalized frequency (fTb), for the 16D original (non-

constant envelope) Q2PSK, the unexpanded 16D CEQ2PSK (it is the same whether Saha’s

or Cartwright’s points are used), and the expanded 16D CEQ2PSK (where both Saha and

Cartwright points are present), are shown in Fig. 5.1. This Figure, then, shows theoretial

PSD. The PSDs obtained during simulation, averaged over 500 traces are shown in Fig. 5.2.

Fig. 5.2, then, shows the experimental PSD of the systems and includes the PSD of our TCM

16D CEQ2PSK system. We do not have a theoretical derivation of the PSD for the encoded

system, but we have derived (and shown in Fig. 5.1) the theoretical values for the uncoded

expanded and unexpanded systems. The 16D non-constant envelope Q2PSK system, shown

with large dashes is clearly the most compact of those evaluated. The first lobe is 0.375 wide

in terms of normalized frequency. The expanded CEQ2PSK system, without coding, may

be used to transmit at higher bandwidth efficiency and still retain constant envelope. The
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Figure 5.1: Theoretical PSD vs. normalized frequency for various 16D Q2PSK schemes.
Expanded and unexpanded constant envelope (CE Q2PSK) systems and Saha’s original
(non CE) Q2PSK are shown.

first lobe of the expanded constellation, compared to that of the unexpanded constellation’s

first lobe is narrower by about .12.

5.2 Eye Diagrams

This section briefly studied the signal constellation point trajectories and eye diagrams of

our 16-D CEQ2PSK system and similar ones. For CEQ2PSK, the transitions versus time

may start and end at 0, ±1, and ±
√

2. The diagram in time-series form is shown in Fig.

5.3. Our system does have four transitions which cross zero, but has many others which do

not. Sensitivity to timing errors is elevated in 4 for CEQ2PSK . Remember, though, that

our expanded constellation allows for redundancy to be introduced.
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Q2PSK are shown. Plots are averages of 500 simulations.

Figure 5.3: Signal transitions for CEQ2PSK system for Tsym = 1 s.
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Figure 5.4: Signal trajectories (in 2D) for the CEQ2PSK system.
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Chapter 6 Information rate for 16-D CEQ2PSK

In [21], the expanded constellation was used to allow for 1 bit of redundancy per 16-D to

be introduced through a convolutional encoder in a TCM system. The improved probability

of error performance in [21] is achieved while maintaining constant envelope with a slight

increase in the complexity of the decoder. In this chapter, we discuss the use of the expanded

8192-point 16-D CEQ2PSK constellation without coding, where the additional bit is used

to increase the bandwidth efficiency while only slightly deteriorating the probability of error

performance. The TCM system transmits 12 information bits per 16-D symbol while the

current system transmits 13 information bits over the same 8T interval.

6.1 System Description

We briefly describe the implemented system in this Section; the transmitter and receiver use

look-up tables to map 13 bits to the 8192 symbols, or 8192 symbols to 13 bits, respectively.

Fig. 6.1 shows a block diagram of the proposed communication system.

6.1.1 Expanded 16-D CEQ2PSK Transmitter

An information source generates bits at a fixed bit rate of 1/Tb, with Tb = 8T/13. During

each 16-D signaling interval (8T), the source passes, through a buffer, 13 bits to a bit-to-

integer converter which outputs an integer number between 0 and 8191. The transmitter

look-up table receives one symbol index every 13Tb. The look-up table consists of 8192 16-D

points; the top 4096 signal points are the 16-D CEQ2PSK points from Saha’s constellation

and the other 4096 points are Cartwright’s. The second buffer is used to effectively split

the 16-D symbol into four consecutive 4-D symbols of the same type; each of these goes to

the standard 4-D CEQ2PSK modulators (which produce analog signals of duration 2T).

The generated analog waveforms are transmitted through the channel, assumed here to be
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Figure 6.1: Functional block diagram of the increased-rate expanded 16-D CEQ2PSK sys-
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AWGN with two-sided power spectral density No/2 in each component.

6.1.2 Expanded 16-D CEQ2PSK Receiver

At the receiver, the noisy analog signals are correlated, every 2T, with the Q2PSK basis

vectors, with the use of multipliers followed by integrate-and-dump subsystems. Four con-

secutive signals are then concatenated with the aid of a buffer to generate a 16-D vector with

real components. The Point Selector takes this vector and finds the entry in the receiver’s

look-up table which is closest in Euclidean distance to the received vector, and outputs an

integer number between 0 and 8191. This integer is then converted to 13 output bits which

are the estimates of the transmitted information bits.

The scheme implemented does not take advantage of knowing that the four consecutive 4-

D signals in the 16-D symbol must come from either Saha’s or Cartwright’s constellations

and is therefore sub-optimum (i.e., a correction is possible but not performed here). The

optimum hardware detectors of [21] and [35] may be used to implement the receiver in an

optimum manner.

6.2 Results

We analyze our system in terms of its probability of error versus SNR performance. In

order to determine the performance of our system, Monte Carlo simulations were performed.

For each SNR value, the simulations ran until twenty errors were counted [41]. Fig. 6.2

shows the results of these simulations as probability of bit error and probability of 16-D

symbol error. The broken lines are the best exponential fits to the Monte Carlo results using

expanded 16-D CEQ2PSK at 3.25 bits/s/Hz. The continuous lines are the theoretical curves

for the unexpanded (3 bits/s/Hz) CEQ2PSK system (the bit error rate assumes 1.5 bits in

error per 4-D CEQ2PSK symbol error.) It is clear that the symbol (bit) performance of

the expanded, higher-rate system is degraded by about 0.5 dB (.23 dB) at low SNR, when

compared to the lower-rate, unexpanded 16-D CEQ2PSK; however, at useful moderate SNR
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values, the symbol loss is less than 0.15 dB, as shown for Ps(E) = 10−5 in Fig. 6.2. Notice

that, effectively, we have traded about 0.15 dB of SNR for 0.25 bits/s/Hz in bandwidth

efficiency by using the expanded constellation. The curves that show the probability of bit

error tend to merge early because at high SNR the probability of the second nearest neighbor

of the expanded constellation being selected as the transmitted signal approaches zero; i.e.,

the first approximation for expanded and unexpanded Pb(E) are identical (because both

have the same MSED and same number of nearest neighbors at this minimum distance.)

Figure 6.2: Symbol and bit error probabilities as functions of SNR, Eb/No, for expanded and
unexpanded 16-D CEQ2PSK.

6.3 Conclusions and Suggestions for Further Work

In this chapter we used the expanded 8192-point 16-D CEQ2PSK constellation introduced

in [20] to increase the information transmission rate over that of standard CEQ2PSK from

3 bits/s/Hz to 3.25 bits/s/Hz. This increase is achieved at the cost of about half a dB for

low SNR, and less than .15 dB for moderate to high SNR in AWGN. The system presented
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may be optimally implemented in hardware.
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Chapter 7 TCM and Constellation Partitions for Fading Channel

Trellis-coded modulation schemes with multidimensional signals allow for improvement in

performance over classical TCM with 2D constellations (see, for example, [32, 39]). These

multidimensional schemes, however, all suffer from constellation expansion penalty as they

increase the modulation level in order to introduce redundancy.

Acha and Carrasco [52] and Saha [19] utilize Saha’s standard 4D Q2PSK constellation for

their TCM systems along with convolutional encoders of different rates. These schemes

achieve some gains at the cost of reduced data rate. In addition, some of the Q2PSK trellis

codes proposed by Saha, Acha and Carrasco do not have constant envelope. Their constant

envelope TCM systems are obtained by further reducing the data rate by half. The work

on this thesis, based on Kaminsky’s previous work reported in [22, 31] allows TCM to be

implemented without constellation expansion penalty, i.e., without increasing the modulation

level for a given MSED, an without reducing the data rate when using CEQ2PSK.

For this dissertation, the expanded constellation discussed in Section 1.1.4 is used to im-

plement simple multidimensional TCM systems that use low-rate convolutional encoders to

achieve moderate gains over uncoded CEQ2PSK in fading non-linear and AWGN channels.

Because nonlinear channels require constant envelope signals, this 16D CEQ2PSK TCM

system is a good option in channels that require non-linear power amplifiers or that are in-

herently non-linear in themselves. Larger coding gains than those presented here are easily

achieved with this constellation by using higher-rate encoders along with the appropriate

partitions.

Hardware detectors for the constituent 4D CEQ2PSK constellation were presented by Kamin-

sky and Cartwrigth and by Quinteros et al., respectively, in [35] and [21]. Although it is

certainly possible and advantageous to use these hardware detectors in the actual implemen-

tation of the systems we present and evaluate here, we base all our current work on Matlab

Simulink c© models which don’t implement these directly. Future work, however (see Sec-
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tion 11), should be done to develop an FPGA-based prototype of our 16D-TCM CEQ2PSK

systems.

7.1 Set Partitioning

TCM schemes require a proper set-partitioning [37] of the constellation in order to increment

the free distance, df , of the code1. Details of the partition of the expanded 16D CEQ2PSK

constellation into 8 subsets optimum for AWGN –namely, Partition A or 1– are presented

in [21]. This partition, along with two others (which are briefly presented in what follows)

are used in the work reported here. We therefore have used three different partitions of our

expanded constellation for this dissertation:

• The original 8-subset partition of [21], optimum for AWGN.

• A second 8-subset partition which is not optimum in AWGN channels, expected to per-

form better in Fading channels when the appropriate branch metric is used. Hamming

Distance is used as the primary partition factor.

• A new 16-subset partition for Fading channels, to be used with a convolutional encoder

of rate 3/4 and ν = 4. No simulations have ben run with this partition.

7.2 Original Partition into 8 Subsets (Partition 1 or A)

As mentioned earlier, this partition –optimal in AWGN– was detailed in [21] and will not be

described in detail here. Following Ungerboeck’s [37] partitioning rules, with necessary mo-

difications for multi-dimensional constellations which are not Cartesian products of the con-

stituent 2D constellations [31], the 8192-point 16D CEQ2PSK points, {Vi}, i = 1, · · · , 8192,

are partitioned into 8 subsets, denoted {Ai} and {Bi}, i = 1, · · · , 4. Each subset contains

8192/8=1024 points. The MSED within each partition subset is 16, twice as large as the

MSED of the unpartitioned constellation. This allows us to achieve an asymptotic gain of

1All our codes have df determined by the parallel transitions.
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3 dB with just 8 subsets and a simple 8-state convolutional encoder of rate 2/3. To achieve

larger gains, further partitioning is needed, along with a trellis with more states. Refer to

the Appendix D for code that generates the 8 subsets (denoted by E0-E7 in the code).

7.3 Partition into 8 Subsets for Fadig Channels (Partition 2 or B)

The original subset partition mentioned in the previous Subsection and detailed in [21] is

optimum in AWGN where only the Euclidean Distance (or MSED) is of interest. When

dealing with fading channels, the ED becomes a secondary parameter and the Hamming

Distance is the primary concern. Using a criterion which first ensures that there are as many

coordinates that differ as possible within each subset and then maximizes the ED between

signals within each subset, we have arrived at a second partition into 8 subsets. Each of the

8 subsets contains 1024 points. We name these sets {Gi}, i = 0, · · · , 7.

Intuitively, one knows that multiplicative Rayleigh noise cannot, on its own, change the

sign of the transmitted signal; therfore, if only this impairment is present in the channel,

the received version of a signal in a subset cannot be received with a change of sign in any

coordinate. So, for example, [1 1 1 -1] cannot be corrupted by multiplicative noise alone

into [-1 -1 -1 1] or any other point with -1’s in the coordinates where 1’s were present in the

transmitted signal or 1 where -1’s were transmitted. The same applies to −
√

2 vs. 1 and
√

2. In high SNR (Gaussian noise) situations, then, it is fine to have signals inside a subset

even if they are close in ED, as long as they are far in HD (large number of coordinates that

differ). The weighted measure shown in (2.3) can be used to obtain appropriate partitions.

The lower the SNR, the higher the ED should be weighted, and vice-versa.

7.4 Partition into 16 Subsets

The partition into 16 subsets achieves an intra-subset symbol Hamming distance of 4 (i.e,

four coordinates differ between any two points in the same subset. Within the subsets,

unfortunately, the squared Euclidean distance remains at 8, as it is before the partition.
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The partition process starts with the four dimensional constituent constellations (Saha’s

{Si} and Cartwright’s {Ci}). A total of 8 groups of two 4D points each, four from each, are

formed so as to mazimimeze the Hamming distance between the points inside each group.

We denote the 4 groups from Saha’s {Qi} and the 4 from Cartwright’s {QRi} , i = 1, · · · , 4

(using R for ‘rotated’). All these 8 groups have HD of 4 but the SED in Saha’s is 16 while

the SED in Cartwright’s is 8. Next, we generate the 8D types by performing the cartesian

products Qi ×Qj and QRi ×QRj, i, j = 1, · · · , 4, yielding 16 types Qij and 16 types QRij

with 8 points in each 8D type.

Now, we create 8D groups named Wi, i = 1, · · · , 4, each with 16 8D points inside and

WRj, i = 1, · · · , 8, each with only 8 points inside. We do this by grouping four Qij together

or two QRij together while ensuring we keep the HD at 4 in each case.

We now generate groups of 16D signals by performing the cartesian product of Wi ×Wk,

for i, k = 1, · · · , 4 for a total of 16 groups of 256 16D points (of Saha’s type); we will

refer to these sets as Wik, i, k = 1, · · · , 4. For the rotated points, we do the cartesian

product of WRj × WRm for j,m = 1, · · · , 8 for a total of 64 groups of 64 16D points,

WRjm, j,m = 1, · · · , 8. The minimum HD in 16D is still 4 for all these subsets. We now join,

through union, four of these 64 together, and we do this 4 times ensuring that the minimum

HD is still 4. We denote these 16 groups of Cartwright’s type of points by Gp, p = 1, · · · , 16.

Finally, to arrive at the final 16 subsets to be assigned to the trellis partitions for the rate

3/4 convolutional encoder, we join, again through the union operation, one subset from

Saha’s Wik and one from Cartwright’s Gp. Each of the final 16 subsets, which we denote

Fp, p = 1, · · · , 16, has 512 16D points (half of them have coordinates ±1 and half of them

have coordinates of the type 0,±
√

2 or ±
√

2, 0). The subsets are generated by the code in

Appendix G.

Remember that the minimum HD within the partitioned sets is 4, four times as large as the

minimum HD of the expanded CEQ2PSK constellation. However, this is 2 times the HD of

Saha’s 16D constellation and 4 times that of Cartwright’s 16D constellation.
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7.5 Other Partitions

In [43], the authors propose a partitioning method based on Wei’s [39] original AWGN

method. They construct 4D and 6D trellis codes with rectangular constellations, by par-

titioning the constituent 2D constellations. Partition is both into subsets with enlarged

MSED and also subrings with equal energy points. The minimum HD of their signal points

equals N for the 2N-D constellations. This might be a better way to attempt to partition

our constellation; we leave this for future research.
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Chapter 8 Trellis Coded Modulated 16D CEQ2PSK for Fading Channel

8.1 TCM encoder

Our multidimensional TCM systems use feedback convolutional encoders from [37] and [39].

The first has rate 2/3 and constraint length ν = 3 and is shown in Fig. 8.1; this is used with

either of the two partitions into 8 subsets (i.e., partitions 1 or 2). The second convolutional

encoder is of rate 3/4, constraint length ν = 4, and is shown in Fig. 8.2. The corresponding

trellis diagrams are shown in Figs. 8.3 and 8.4, respectively. Remember that our TCM

system has a CEQ2PSK modulator over four consecutive modulation time intervals, each of

duration 2T, for a total symbol duration of 8T. This is indicated in the memory boxes of

the convolutional encoders depicted. For the subset assignment to the trellis, we only show

the assignment for Partition A shown in Fig. 8.3. The assignment for Partition B is similar,

with A1 through A4 replaced by F0 through F3 and B1 through B4 replaced by F4 through

F7.

Fig. 8.5 depicts the complete 16-D CEQ2PSK-TCM system for the encoder with 8 states.

Referring to Fig 8.5, we see that two of the 12 bits of information, (b10, b11), arriving every four

signaling intervals enter the convolutional encoder to produce three coded bits (z0, z1, z2).

The output of the convolutional encoder selects one of the eight subsets {Ai} and {Bi}, i =

1, · · · , 4 or one of the subsets {Gi}, i = 1, · · · , 8. Two other uncoded bits (b8, b9) select

 

Figure 8.1: Convolutional Encoder of rate 2/3 and ν = 3 to be used with an 8-subset
partition.
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Figure 8.2: Convolutional Encoder of rate 3/4 and ν = 4 used with the 16-subset partition.

Figure 8.3: Trellis diagram for the rate 2/3 covolutional encoder.
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Figure 8.4: Trellis diagram for the rate 3/4 covolutional encoder.
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Figure 8.5: Complete TCM encoder system using a convolutional encoder of rate 2/3.

one of the types (Wij or WRij) from within the selected group [21]. Finally, the rest of the

information bits (b0 through b7) select one of the 256 points from within the selected 16-D

Types. The signal s(t) corresponding to the 16D point selected is transmitted.

8.2 TCM Decoder

In our TCM system, the received signals corrupted by noise are decoded by using a soft-

decision maximum-likelihood sequence decoder [28, 38], although we also tested the sub-

optimum hard detector where each coordinate of the received signal is hard limitted before

being used in the decoder (i.e., before computing the branch metric).

We use the Viterbi decoding algorithm [61, 62] to search the trellis and find the most likely

path, given the received sequence of subsets. The trellis is shown in Fig. 8.3 with the subset

assignment given in the usual top-down fashion. Because the first convolutional encoder has

a constraint length of 3 and rate 2/3, and the second has ν = 4 and rate 3/4, a decoding

depth of 24 (i.e., 8ν or 6ν, respectively, for the rate-2/3 and rate 3/4 encoders was used

in the decoder implementation [62]. According to Forney [26], about 5.4 ν is sufficient as

decoding depth.
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The mapping from input symbols to output bits is performed as follows: First, the VA

estimates the most likely of the state transitions and the corresponding subset for that

transition after 24 16D intervals of modulation; therefore, by using the state transitions and

the subset, the two information bits (b10, b11) can be decoded. Finally, the other 10 bits are

obtained by using a look-up table of 1024 rows, corresponding to the 1024 symbols in the

estimated subset.
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Chapter 9 Results: Probability of Error for Fading Channel

We divide this Chapter into several parts, all detailing results of our 16D CEQ2PSK TCM

system performance in various scenarions, in several different channels, and with different

quantities as parameters. Discussion in this Chapter relates to probability of error (or bit

error rate, BER) vs. signal-to-noise ratio (SNR) simulation results.

The simulation parameters for all cases discussed and presented in this Report are given in

Table 9.1. It details the channel parameters, the number of errors counted, and the number

of simulations per point.

Table 9.1: Simulation Parameters

Channel
No. Simulations

per point

No. Errors

per point
Comments

AWGN 1 20 Standard AWGN deter-
mined by Eb/No

Rayleigh Slow Fading 500 20
Doppler of 10 flat fading

Sampling at 1/512 Hz

Raleigh Fast Fading 1 20
80 KHz

Jakes and flat fading

UHF LOS # 1 500 100
Detailed in [11]

Sampling at 1/512 Hz

9.1 Distance Properties and Expected Coding Gains

Table 9.2 lists the smallest 12 squared Euclidian distances (SED) of the expanded CEQ2PSK

constellation. The column labeled d2k represents the SED, and the values in the column

named N(dk) are the number of points at SED d2k. The MSED for the uncoded constellation

(CEQ2PSK) is d2u = 8, and has Nu = 24 points at that distance. The free distance of our

simple TCM system is given by the parallel transitions in the trellis. For Parition 1, the
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coded squared Euclidean distance is d2c = 16 with an error coefficient (in 16D) of Nc = 76.

These values determine the asymptotic gain of the coded system [28,37,38]:

Ga = 10 log10

(
d2c
d2u

)
, (9.1)

which yields 3.01 dB because the squared free distance is doubled without increasing the

energy over that of the uncoded system. However, we also have to take into consideration

the loss caused by the number of neighbors at MSED [22,26]; this loss normalized to 2D, λ,

is [35]:

λ =
log10 (Nc/Nu)

log10(32)
, (9.2)

which gives a loss of 0.33 dB for our simplest code (i.e., the system of rate 12/13 with a

convolutional encoder of rate 2/3). The effective gain is therefore

γeff = Ga − λ = 2.67 dB. (9.3)

Higher gains are possible with encoders of higher rate; the achievable asymptotic gains are

also listed in Table 9.2. The boldface line shows the achieved SED and gain achieved by the

8-subset partition Partition 1.

The Hamming Distance distribution becomes the primary concern in Fading Channels. This

distribution is shown in Table 9.3. The boldface row shows the achieved HD obtained with

the 16-subset partition.

It is known that the minimum Euclidean distance is the primary parameter (i.e., that which

should be maximized) in AWGN channels. However, in fading channels, the MSED becomes

less important. Divsalar and Simon proposed rules for designing TCM codes in fading situ-

ations [63]. The first optimization objective in fading channels is to maximize the diversity

parameter of the code; this is really the Hamming distance of the code in terms of 2D signals.

A secondary objective is to maximize the squared product of branch distances (SPD) along

the paths with minimum diversity, and is therefore determined by the Euclidean distances.
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Table 9.2: SED and asymptotic gains achievable in AWGN for the expanded 16D CEQ2PSK
TCM system.

d2k N(dk) Ga (dB)

8.000 24 0

9.373 16 0.69

15.029 128 2.74

16.000 220 3.01

20.686 448 4.13

24.000 936 4.77

26.343 896 5.17

32.000 2854 6.02

37.657 896 6.73

40.000 936 6.99

43.314 448 7.34

48.000 220 7.78
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Table 9.3: Hamming distance distribution of our expanded 16D CEQ2PSK constellation.

HD Number of neighbors at HD

1 8

2 24 or 28

3 56

4 86 or 220

5 152

6 268 or 938

7 328

8 337 or 1734

9 480

10 592 or 936

11 384

12 220 or 352

13 512

14 24 or 256

15 0

16 4097 or 4352
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Figure 9.1: Baseband in-phase and quadrature-phase CEQ2PSK signals at the transmitter
and receiver when AWGN is present.

The effective diversity order for a two-sequence test is equivalent to the symbol Hamming

distance. Diversity order is the effective number of independent propagation channels ob-

tained in time, frequency, or space diversity transmission systems and this number represents

the slope of the error probability versus SNR on a log-log display [64].

9.2 TCM System Simulation Results in AWGN

We first show plots of the baseband versions of the in-phase (I) and Quadrature-phase (Q)

components of the CEQ2PSK signals at the transmitter and at the receiver, after WGN has

been added. These are shown in Fig. 9.1 where the first and third plot represent the In-phase

transmitted and received signals, respectively, while the second and bottom plot shows the

quadrature phase components. The horizontal scale is in seconds, and the symbol rate is

0.5 s. The SNR for the noisy plots shown is 25 dB. The corresponding passband signals are

depicted in Fig. 9.2.

The performance of our implementation of our multidimensional TCM CEQ2PSK system was

corroborated by using Monte Carlo Simulations in the simplest channel first: Additive White
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Figure 9.2: Passband CEQ2PSK signal at the transmitter and receiver when AWGN is
present.

Gaussian Noise (AWGN). A total of at least 20 errors are counted before the simulation stops,

at which time the probability of error is computed. We first made sure that our receiver

works for both Saha’s and Carwright’s 4D constellations (Saha’s with coordinates ±1 and

Cartwright’s with coordinates (0,±
√

2) or (±
√

2, 0)). These results are shown in Fig. 9.3

and were obtained with the implementation of the optimum hardware detectors for each

of the two constellations. We re-ran the simulations with the newer implementation of the

detectors (which do not directly implement the hardware detectors) and obtained the same

results.

The two almost overlapping plots in Fig. 9.3 corrobarate that the receiver functions as ex-

pected. In Fig. 9.3 we show the BER of the system in AWGN alone. The small discrepancies,

barely visible, are due to the randomness and could be further decreased by counting more

than 20 errors before stopping the simulation and computing the BER.

Fig. 9.4 shows the results in terms of bit and symbol error probabilities versus signal to noise

ratio (SNR) for the reference uncoded 16D CEQ2PSK and the trellis-coded 16D system that

uses the expanded CEQ2PSK constellation and decoding depth of 24. Comparison of the
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Figure 9.3: Probability of bit error vs. SNR in AWGN channels for the 4D CEQ2PSK
constellations {Si} and {Ci}.

curves corresponding to the coded and uncoded probabilities of symbol error indicates that

the effective gain of 2.67 is not yet achieved at a SNR of slightly over 8 dB; the gain, however,

increases with increasing SNR, and also with increasing decoding depth. The gain in bit error

rate (BER) is slightly less because it cannot be guaranteed that a single bit is in error if a

symbol is in error; as SNR increases, the likelihood of a single bit error per symbol error

increases, so the bit and symbol probability of error curves tend to merge at large SNR.

We tested the (sub-optimum) hard decoding Viterbi Decoder as well as the soft-decision VA

implementations. Results for the 4D and 16D systems are shown in Fig. 9.5. We see that the

performance using the hard decision detector is considerably worse than when soft decisions

are made. The soft decision encoded system’s performance shows a gain for all SNRs, and

the gain increases with increasing SNR. The achieved gain at 6.5 dB is about 1.4 dB while at

7.5 dB the gain is about 1.9 dB and at slightly over 8dB the gain has increased to about 2.7

dB. The hard-decision detector tested, however, was not implemented correctly because in

addition to hard-limitting each of the 16 coordinates received, a decision was actually made

as to the transmitted point for that particular branch and when the cummulative metric

was computed this erroneous partial branch metric was used. The actual performance of a
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Figure 9.4: Probability of symbol and bit error vs. SNR in AWGN channels for the 16D
CEQ2PSK systems with and without trellis encoding.
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Figure 9.5: Probability of error vs. SNR in AWGN channels using Hard- and Soft-decisions
in the Viterbi decoder.

correctly implemented hard-decision decoder would not be so poor. We abandoned pursuing

this avenue of investigation until we work on a hardware implementation of the receiver at

which time hard decisions will be likely. For software simulations, there is no real advantage

in using a hard detector. We have included these results only for completeness.

We also evaluated the effect of sampling rate on the performance. Ideally, any rate above the

Nyquist rate will perform well; we know that in reality this isn’t the case due to the various

filtering operations that are performed directly (the integrator in the correlator receiver, a

first order LPF) or indirectly (such as Matlab’s own filtering to twice the sampling frequency

whenever sampling is performed). These results are shown in Fig. 9.6 for a few of the

baseband sampling rates tested.

As expected, the higher sampling rate produces somewhat better results at the expense

of longer simulation times and increased storage requirements (because more samples per

symbol must be stored and processed). The difference, however, is not significant.
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Figure 9.6: Probability of error vs. SNR in AWGN channels using different (baseband)
sampling rates for a symbol length of 0.5 s.
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9.3 TCM System Simulation Results in simple Rayleigh Fading Channel

In Rayleigh fading channels, the envelope of the transmitted signal is multiplied by a sample

from a random process with a Rayleigh distribution. Clearly, when this random quantity

multiplies the signal, it may reduce (or increase) it drastically, but it may never on its own

change the plarity of any coordinate. In the worst case, a coordinate may become 0. We

performed simulations on Rayleigh Fading for both Saha’s and Cartwright’s constellations

and we have the same performance with the sub-optimum (in fading channels) distance

measure used (SED). When a better metric, i.e., one that first detects change in coordinates

(as Hamming distance does), followed by SED, the performance of Saha’s constellation is

expected to be superior to the performance of Cartwright’s constellation. We leave this for

another phase of this reasearch.

To see the effect of fading, we present some graphical depictions in Fig. 9.7. The top two

plots in Fig. 9.7 show the I and Q components of the transmitted signal; the two waveforms

in the middle are these I & Q components after the signals go through the UHF LOS#1

channel. We chose the horizontal axis of the display to clearly show a severe fading event

affecting the amplitude of the signals. The signals at the baseband receiver are the latter

two with the addition of AWGN and are shown in the bottom two plots.

We note that no interleaver was used in our simulations; this means that fading events

affect many bits (and many symbols) consecutively. furthermore, the fading in the I and

Q components are not uncorrelated. Decorrelation may be performed through the use of

interleavers as well.

Finally, we also evaluated the effect of various models (the spectrum filter or spectral shape)

of the Rayleigh fading. We show results with flat and Jakes Rayleigh fading channels for

both 8-point partitions. Partition 1 (or A) is optimum in AWGN while partition 2 (or

B) should perform better in fading channels when the appropriate branch metric is used.

The performance in AWGN without fading is also shown as a baseline. The sampling rate

(baseband) is 1/512 Hz. These results are shown in Fig. 9.8.
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Figure 9.7: Waveforms for our CEQ2PSK system in Rician fading channel UHF LOS #1.
The waveform on the top are the clean I and Q components of the CEQ2PSK baseband
signal; the middle waveforms are the faded I/Q waveforms, and the bottom signals are the
received I/Q signals (faded with AWGN)

.
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Figure 9.8: Probability of error vs. SNR in flat and Jakes Rayleigh fading channels using
two different 8-subset partitions for fast and slow fading.

 

Figure 9.9: Probability of error vs. SNR with flat fading of two different rates.
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9.4 TCM System Simulation Results in UHF LOS Channel # 1

Simulation results for the fading channel #1, a single line-of-sight Rician channel with a single

Rayleigh diffuse component are shown on Fig. 9.10. Generation of this figure (or similar) is

very time consuming. With Rician and Rayleigh rays we have enormous randomness in the

resulting probability of error. In order to try to obtain meaninful results, we averaged over

500 realizations of the fading for each realization of SNR; for each of the latter, we counted

100 errors.

For the UHF LOS #1 channel, in order to achieve a BER of 10−3, the SNR must be about

25dB, on the average, but there is large variability.

To see the wide range of results obtained for a given fading channel, refer to Fig. 9.11 where

the 455 values of the BER (counting 100 errors each time) are shown for a SNR of 31 dB.

To obtain the average BER for these, we do not average the BER over the 500; instead, we

add the total number of errors (which is not necessarily exactly 100 because we only stop

with integer number of symbols or 13 transmitted encoded bits) and divide that sum by the

sum of of the number of transmitted bits. This average used is also shown (as the red line)

in Fig. 9.11, while simply averaging the obtained PE for each realization is shown in green.

We also show, in Fig. 9.12, the histogram of the 455 values of probability of error obtained

for SNR = 31 dB. Notice that the BER axis is given in logarithmic scale. The statistics for

thes 455 realizations are shown in Table 9.4. Clearly, ther is a wide range of values among

realizaitons for the BER obtained.

The results presented in Fig. 9.10 are expected to improve if an interleaver/deinterleaver

pair are used in the transmitter/receiver. These results were obtained without interleaving

and therefore fading events are likely to cause many consecutive errors.
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Table 9.4: Statistics of BER obtained for 455 realizations of the channel UHF LOS #1.

BER Statistic Value

Average of BERs 4.284E−4

BER average 2.795E−4

Variance 4.091E−7

Mode 1.612E−4

Median 3.055E−4

Minimum 7.842E−5

Maximum 9.000E−3
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Figure 9.10: BER simulation results in the fading Rician channel UHF LOS # 1.
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Figure 9.11: Results for 500 realizations of the Rician channel UHF LOS # 1. We show the
individual 500 BER, the average of the individual BER, and the average BER as the total
number of errors over all realizations over the total number of bits transmitted for SNR =
31 dB.
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Figure 9.13: Waveforms for our CEQ2PSK system in Rayleigh Fading. The waveform on
the top is the clean CEQ2PSK signal; the middle waveform is the faded waveform, and the
bottom signal is the received signal (faded with AWGN).
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9.5 BER Performance Summary and Comparisons

Evaluation and comparison of different schemes in AWGN is always easy. The AWGN

performance is very often given as a baseline, and all researchers use identical or very similar

definitions of signal-to-noise ratio (SNR), and provide similar plots. The Gaussian pdf is

completely determined by the mean, µ (zero in all our simulations), and the variance per

channel, σ2 or, equivalently, the PSD No/2 (single sided). Furthermore, there are excellent

approximations (usually through the union bound) for theoretical evaluation of performance

of communication systems in AWGN.

Unfortunately, when it comes to Fading channels, different researchers or authors use a

wide range of parameter values, or descriptors for the relevant quantities depending on the

physical conditions they are simulating. In the simplest fading case, where Rayleigh fading

is assumed, often the Rayleigh parameter (e.g., the parameter b in (2.5) which describes the

distribution of the amplitude envelope of the process) is provided and used as a parameter,

and then the AWGN SNR is used to obtain the performance plots. Other authors, however,

state the maximum Doppler frequency instead. The maximum Doppler frequency, fd, must

be compared to the actual bit or symbol rate, so that 100 Hz, for example, may be fast for a

given system while slow for others. Some authors unfortunately do not list any parameters

or give incomplete lists so the actual situation is really undetermined.

In the cases of practical fading where both Rician and Rayleigh components are present,

the variety of parameters, values, and presentations varies even more. In many instances,

it is completely unclear what cases are depicted in plots given; this makes performance

comparisons among systems very difficult. To add to the problem, encoders of various types,

rates, and memory, as well as different decoding depths are used, and no single combined

measure is available or in common use to simply characterize coded systems [31].

Nonetheless, we have compiled just a few of the many results available in the open literature,

to compare to our system in Rician fading channels. We have developed two tables which

are used together to summarize the systems: Tables 9.5 and 9.6. The former shows, when
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available, the system and its characteristics, along with the bibliographic reference where

the material appears. Table 9.6 lists, for each of the entries in Table 9.5, the probability of

error for 6 values of SNR between 10 and 35 dB,if available. We use the first author’s last

name and a letter if several systems or modes are presented by that author. For our systems,

we only list the rate 2/3 encoder with Partition A (or partition 1 into 8 subsets), namely

Kaminsky A.

Table 9.5: Description of various schemes to be used for comparison.

System Label System Description Parameters Reference

Ravi D R=3/4 N/A, Rician [42]

8-state, 16PSK

ν = 3, 2D

Ravi A R=2/3 N/A, Rician [42]

4-state, 8PSK

ν = 2, 2D

Moose C Diversity =1 UHF LOS #1 [11]

RS(225,205), ν = 7

R=1/2, DQPSK

Kaminsky A R=2/3 UHF LOS #1 Here

8-state

16D CEQ2PSK, ν = 3

Refering to Table 9.6, we see that for very low SNRs our system, Kaminsky A, is only worse

than Ravi’s A system, and versy similar –if somewhat better– than the others. For medium

SNRs, around 20 dB, the performance of our system is worse as expected because, as stated

before, our metric is still solely based on Euclidean distance and not Hamming distance.

For large SNR ther are very few results presented, but Ravi D’s continues being better.

Our system, however, is more spectrally efficient than the others. The system most similar

to ours, for comparison purposes, is the system labeled Moose C;however, the constraint

length of Moose C is 7 and ours is only 3. Furthermore, Moose’s system also uses a Reed

82



Table 9.6: BER comparison of various schemes in fading channels.

SNR

System Label 10 dB 15 dB 20 dB 25 dB 30 dB 35 dB

Ravi D 1.8E-2 2.4E-3 5.5E-4 1.9E-4 5.0E-5 2.0E-5

Ravi A 8.0E-3 1.8E-3 3.0E-4 8.0E-5 2.0E-5 –

Moose C 2.0E-2 1.0E-2 1.5E-3 – – –

Kaminsky A 1.7E-2 7.1E-3 2.4E-3 9.7E-4 3.1E-4 1.2E-4

Solomon encoder along with the rate-1/2 convolutional encoder, making it a more powerful

error correcting system. Moose’s plot for system C shows a very limited range of SNR, so to

compare our system to theirs a bit more accurately, we show the performance of these two,

side-by-side, in Table 9.7.

Table 9.7: BER Comparison of Moose’s C and our (Kaminsky A) systems in UHF LOS #1

SNR(dB) Moose C Kaminsky A

10 4.0E-2 1.6E-2

12 2.0E-2 1.5E-2

14 1.5E-2 9.0E-3

16 7.0E-3 6.0E-3

18 3.0E-3 5.0E-3

20 2.0E-3 2.4E-3

For lower values of SNR (between 10 and 16), our system performs slightly better than

Moose’s C. As SNR increases, Moose C starts performing better. However, we remind the

reader that for high SNR our systen is expected to become worse as currently implemented

because we are still using SED as the sole branch metric. When a compound or weighted

metric, which uses HD as primary criterion and SED as secondary is incorporated into our

simulator, the performance of the Kaminsky A system will improve when fading is the main

channel imperfection (i.e. for higher values of SNR such that ED becomes less important).
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Chapter 10 Computer Simulation Description

In this chapter a survey of the implemented systems using Matlab and Simulink software is

presented.

10.1 Soft Decision Viterbi Decoder

The Soft Decision Viterbi Decodes consist of: Path Metric Unit (PMU), Add Compare

Select Unit (ACSU), Traceback Unit. The receiver also needs the following matrices: Subset

Matrix, Output Table State, Next State Matrix, and Index Past States. Each of the matrix

are utilized in the units, and their purpose will be explained in the following subsections.

10.2 Subset Matrix

This matrix is defined as follows:

C =



c11 c21 · · · cn1

c12 c22 · · · cn2

...
...

. . .
...

c1m c2m · · · cnm


, (10.1)

where the subscript represents the number of points in the signal set, and the superscript

is the dimensionality of the constellation. The order of the signal points are located in

the subset matrix has to be similar to the subset partition. For our system, we have eight

subset matrices A1,A2,A3,A4 for Saha’s and B1,B2,B3,B4 for Cartwright. In simulink the

constellation matrix are concatenated into a three dimensional matrix through the use of

the command:
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Figure 10.1: Viterbi Decoder Implementation.
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Table 10.1: Subset Mapping for 16-D CEQ2PSK TCM

z2 z1 z0 Decimal 16-D Subset Assigned

0 0 0 0 A1

0 0 1 1 B1

0 1 0 2 A2

0 1 1 3 B2

1 0 0 4 A3

1 0 1 5 B3

1 1 0 6 A4

1 1 1 7 B4

cat(3,A1,B1,A2,B2,A3,B3,A4,B4).

Notice that the arrangement of the matrices has to follow the subset partition of the TCM

system. Table 10.1 shows the partition used in the TCM and how the order match the code

above.

10.3 Output Table Matrix

In order to obtain the information of the trellis, three matrices are defined: Output Table

Matrix, Index Next State and Index Past State. The output table matrix is defined as

follows:

OT =



O1
1 O2

1 · · · On
1

O1
2 O2

2 · · · On
2

...
...

. . .
...

O1
m O2

m · · · On
m


, (10.2)
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where n represent the number of possible input bits in the encoder, and m represents the

number of states of the encoder. The On
m element is the output corresponding to the n

input from the m current state. The simple convolutional encoder for 16-D CEQ2PSK TCM

system uses two bit input encoder with three bit output, and has memory of eight possible

states. The following matrix represents the output matrix used in the simulations.

OT =



0 2 4 6

1 3 5 7

0 2 4 6

1 3 5 7

0 2 4 6

1 3 5 7

0 2 4 6

1 3 5 7



, (10.3)

10.4 Next State Matrix

The next state matrix is a matrix where the rows represent the current state, the columns

the current input, and the elements inside the matrix are all the combinations of the current

state and the current input. For the encoder used in the simulation, we have the following
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matrix:

NXTA =



1 3 5 7

3 1 7 5

5 7 1 3

7 5 3 1

2 4 6 8

4 2 8 6

6 8 2 4

8 6 4 2



, (10.4)

10.5 Path Metric Unit

The Path metric unit block compute distance of the received point to all the 8192 points of

the subset matrix. It determines the minimum distance to the point, and the corresponding

subset that the point belongs. Figure 10.2 shows the PMU subsystem implemented in

Simulink.

Figure 10.2: Simulink Path Metric Unit subsystem.
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10.6 Add compare and select Unit

This subsystem is a sequential algorithm that accumulates the survivors of the path metric

unit. This system needs the Output Table matrix, and the Next State matrix to generate

three possible inputs. A weight matrix that contains the accumulated weight of the survivors,

the current and possible future state input that consist of the decimal representation of the

state. Figure 10.3 shows a block diagram of the implementation.

10.7 Trace Back Unit

The Trace Back Unit has two main branches of data one receives the weight matrix from the

ADCSU, and the other receives possible bit vectors stores into memory block with size of the

constraint length. For our simulation, we use 24 symbols in memory. After the memory is

full, then shift out the first element stored to give space to the new element by the delay line

block in Simulink. The Trace Back Unit block also has a Matlab function which is described

below:

function y= TBA(Idx,path)

%#eml

%This function performs a trace back using the State transition Table call

%path.

p1=path(Idx,1); %starting path

%This is a traceback function that follows the state path

for i=2:size(path,2)

p2=path(p1,i);

p1=p2;

end

y=p2-1; %Past State
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Figure 10.3: Simulink Path Metric Unit subsystem.

The function ”TBA” is a for loop that traverses back to the trellis path vector to obtain the

past state. The output is stored in the variable ”y”.
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Figure 10.4: Simulink Trace Back Unit subsystem.
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Chapter 11 Conclusions and Suggestions for Further Work

The main contribution of this thesis was to show the design and performance of a TCM

system using the expanded 16D CEQ2PSK constellation that allows the introduction of 1

bit of redundancy every 12 bits without constellation expansion penalty. We used two simple

convolutional encoders of rates 2/3 and 3/4 to achieve moderate coding gains while main-

taining constant envelope and without reducing the bandwidth efficiency over the uncoded

CEQ2PSK reference system. Considerably higher gains may be obtained with the same con-

stellation by using more complex encoders. The system was simulated first in AWGN and

then in Fading channels. Spectral analysis was performed.

Future work will include an analysis of the actual bandwidth efficiency of the system by

simulating band-limited channels. This may be accomplished by placing bandlimiting filters

in our Simulink model. The effects of non-linearities in the channel will be incorporated into

the study, and the performance in fading channels will also be evaluated.

For fading channels, it is important to use an Interleaver in the transmitter and the corre-

sponding de-interleaver at the receiver. This should be done and simulations should then

be run. Interleaving needs to be performed prior to transmission of the encoded bits. This

way, when error bursts or fading events occur, the event will not affect more than a bit

of a given symbol or several consecutive symbols as is the case with slow fading without

interleaving. Instead, the effect of fading is split into many different non-consecutive bits of

different symbols and therefore errors will be spread and easier to correct.

Indeed, for the fading environment, much longer simulations are needed; the author shall

investigate the best way to accurately and efficiently evaluate performance in fading channels.

In our simulations we assumed that the phase out of the fading channels was removed or, more

accurately, was assumed known. Phase estimators should be developed and implemented and

then simulations run to determine how the probability of bit error deteriorates with imperfect

phase knowledge.
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Additional analysis using a Morlet wavelet transform can be implemented to mitigate and

find local disturbances such as the impulse noise or changes from slow fading to fast fading.

Finally, a longer-term project would be to implement the system in hardware by using, for

example, FPGAs. Field trials could then be performed.
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Appendix A General Equation for filtered signals

The expressions for the filtered half-cosine and half-sine pulses, p1f and p2f are presented

here. The low pass filter with support band from [0,ωb], where ωb = 2πB is the radians/sec

bandwidth and B is the bandwidth in Hz which is defined as follows:

H(ω) =


1 if |ω| ≤ ωb

0 if |ω| > ωb.

The impulse response is defined as follows:

h(t) =
1

2π

∫ ∞
−∞

H(ω)ejωtdω

=
1

2π

∫ ωb

−ωb
H(ω)ejωtdω

=
1

tπ

[ejωbt − ejωbt]
j2

=
ωb
π
× sin(ωbt)

ωbt
, (A.1)

where the sinc function is:

Sinc(x) =
sin(x)

x
. (A.2)

Now replacing (A.2) in (A.1), we have the following:
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h(t) =
ωb
π
× Sinc(ωbt). (A.3)

Now, lets defined the unit step function as:

µ(t) =


1 if t ≥ 0

0 if t < 0

,

and the unitbox function is defined as:

UB(
t

2T
) = µ(t+ T )− µ(t− T )

UB(
t

2T
) =


1 if |t| ≤ T

0 if |t| > T

,

where 2T is the symbol interval for a Q2PSK signal.

P1(t) = A× cos(
π

2T
t)× UB(

t

2T
)

= A× cos(ωαt)× UB(
t

2T
), (A.4a)

where ωα = π
2T
. and A for simplicity is equal to 1.

To filter P1(t) we convolve with h(t) and the band-limited version is defined as P1b(t)
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p1f (t) = P1(t) ~ h(t) (A.5)

=

∫ ∞
−∞

P1(τ)× h(t− τ)× dτ,

=

∫ ∞
−∞

P1(t− τ)× h(τ)× dτ.

In (A.5) place (A.4a), and (A.3) and the value is as follows:

p1f (t) =

∫ ∞
−∞

P1(t− τ)× h(τ)× dτ

=

∫ ∞
−∞

A× cos(ωα(t− τ))× UB(
t− τ
2T

)× ωb
π
× Sinc(ωbτ)× dτ

=

∫ ∞
−∞

A× cos(ωαt− ωατ)× UB(
t− τ
2T

)× ωb
π
× sin(ωbt)

ωbt
× dτ

= A× ωb
π
×
∫ ∞
−∞

cos(ωαt− ωατ)× sin(ωbτ)

ωbτ
× UB(

t− τ
2T

)× dτ. (A.6)

In this derivation, we are going to use the following trigonometric identities:

cos(a− b) = cos(a) cos(b) + sin(b) sin(a) (A.7)

cos(a)× sin(b) =
sin(a+ b)− sin(a− b)

2
(A.8)

sin(a)× sin(b) =
cos(a− b)− cos(a+ b)

2
. (A.9)
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Use (A.7) in (A.6)

p1f (t) = A× ωb
π
×
∫ ∞
−∞

(cos(ωαt)× cos(ωατ) + sin(ωατ)×

× sin(ωαt))×
sin(ωbτ)

ωbτ
× UB(

t− τ
2T

)× dτ (A.10a)

The above equation can be simplified:

p1f (t) = A× ωb
π
×
∫ ∞
−∞

(cos(ωαt)× cos(ωατ)× sin(ωbτ)

ωbτ
× UB(

t− τ
2T

)× dτ+

+ A× ωb
π
×
∫ ∞
−∞

sin(ωαt)× sin(ωατ)× sin(ωbτ)

ωbτ
× UB(

t− τ
2T

)× dτ

= A× ωb
π
× cos(ωαt)

∫ ∞
−∞

cos(ωατ)× sin(ωbτ)

ωbτ
× UB(

t− τ
2T

)× dτ+

+ A× ωb
π
× sin(ωαt)

∫ ∞
−∞

sin(ωατ)× sin(ωbτ)

ωbτ
× UB(

t− τ
2T

)× dτ

= A× ωb
π
× cos(ωαt)

∫ ∞
−∞

sin([ωα + ωb]τ)− sin([ωα − ωb]τ)

2ωbτ
× UB(

t− τ
2T

)× dτ+

+ A× ωb
π
× sin(ωαt)

∫ ∞
−∞

cos([ωα − ωb]τ)− cos([ωα + ωb]τ)

2ωbτ
× UB(

t− τ
2T

)× dτ

= A× 1

2π
× cos(ωαt)

∫ ∞
−∞

sin([ωα + ωb]τ)

τ
× UB(

t− τ
2T

)× dτ+

− A× 1

2π
× cos(ωαt)

∫ ∞
−∞

sin([ωα − ωb]τ)

τ
× UB(

t− τ
2T

)× dτ+

+ A× 1

2π
× sin(ωαt)

∫ ∞
−∞

cos([ωα − ωb]τ)

τ
× UB(

t− τ
2T

)× dτ+

− A× 1

2π
× sin(ωαt)

∫ ∞
−∞

cos([ωα + ωb]τ)

τ
× UB(

t− τ
2T

)× dτ (A.11)

Before to continue with the mathematical manipulation let’s define two functions:

Si(x) =

∫ x

0

sin(t)

t
dt (A.12)
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Ci(x) = −
∫ ∞
x

cos(t)

t
dt (A.13)

Let’s also define the following integral

∫ τ=t+T

τ=t−T

sin(Aτ)

τ
× dτ =

∫ τ=t+T

τ=0

sin(Aτ)

τ
× dτ +

∫ τ=0

τ=t−T

sin(Aτ)

τ
× dτ

=

∫ τ=t+T

τ=0

A sin(Aτ)

Aτ
× dτ +

∫ τ=0

τ=t−T

A sin(Aτ)

Aτ
× dτ

=

∫ u=A(t+T )

u=0

sin(Aτ)

Aτ
× Adτ −

∫ u=(t−T )A

u=0

sin(Aτ)

Aτ
× Adτ

= Si(A(t+ T )))− Si(A(t− T ))). (A.14)

Now for the integral with the cosine, we have the following:

∫ τ=t+T

τ=t−T

cos(Aτ)

τ
× dτ =

∫ τ=∞

τ=t−T

cos(Aτ)

τ
× dτ −

∫ τ=∞

τ=t+T

cos(Aτ)

τ
× dτ

= −
[
−
∫ τ=∞

τ=t−T

A cos(Aτ)

Aτ
× dτ

]
−
∫ τ=∞

τ=t+T

A cos(Aτ)

Aτ
× dτ

= −
[
−
∫ u=∞

u=A(t−T )

cos(Aτ)

Aτ
× Adτ

]
−
[∫ u=∞

u=A(t+T )

cos(Aτ)

Aτ
× Adτ

]
= Ci(A(t+ T ))− Ci(A(t− T )). (A.15)
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In(A.11) use (A.14) and (A.15) the final expression for the cosine pulse filtered:

p1f (t) = A× 1

2π
× cos(ωαt)

[∫ τ=t+T

τ=t−T

sin([ωα + ωb]τ)

τ
× dτ

]
+

− A× 1

2π
× cos(ωαt)

[∫ τ=t+T

τ=t−T

sin([ωα − ωb]τ)

τ
× dτ

]
+

+ A× 1

2π
× sin(ωαt)

[∫ τ=t+T

τ=t−T

cos([ωα − ωb]τ)

τ
× dτ

]
+

− A× 1

2π
× sin(ωαt)

[∫ τ=t+T

τ=t−T

cos([ωα + ωb]τ)

τ
× dτ

]
= A× 1

2π
× cos(ωαt) [Si((t+ T )(ωα + ωb))]− A×

1

2π
× cos(ωαt) [Si((t− T )(ωα + ωb))] +

− A× 1

2π
× cos(ωαt) [Si((t+ T )(ωα − ωb))− Si((t− T )(ωα − ωb))] +

+ A× 1

2π
× sin(ωαt) [Ci((t+ T )(ωα − ωb))− Ci((t− T )(ωα − ωb))] +

− A× 1

2π
× sin(ωαt) [Ci((t+ T )(ωα + ωb))− Ci((t− T )(ωα + ωb))] .

Finally the expression for p1f (t) is:

p1f (t) =
1

2π
sin(ωαt) [Ci ((t− T ) (ωα + ωβ)) +

−Ci ((t+ T ) (ωα + ωβ)) + Ci ((t+ T ) (ωβ − ωα)) +

− Ci((t− T )(ωβ − ωα))] +

+
1

2π
cos(ωαt) [Si((t+ T )(ωβ − ωα)) +

− Si((t− T )(ωβ − ωα)) + Si((t+ T )(ωα + ωβ))+

− Si((t− T )(ωα + ωβ))] .

(A.16)

Finally, P2(t) which is defined in equation A.17 is convolved with h(t). The bandlimited
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version of P2(t) is defined as p2f (t).

P2(t) = A× sin(
π

2T
t)× UB(

t

2T
)

= A× sin(ωαt)× UB(
t

2T
), (A.17)

p2f (t) = P2(t) ~ h(t)

=

∫ ∞
−∞

P2(τ)× h(t− τ)× dτ

=

∫ ∞
−∞

P2(t− τ)× h(τ)× dτ (A.18)

In (A.18) place (A.17), and (A.3) and the value is as follows:

p2f (t) =

∫ ∞
−∞

A× sin(ωα(t− τ))× UB(
t− τ
2T

)× ωb
π
× Sinc(ωbτ)× dτ

=

∫ ∞
−∞

A× sin(ωαt− ωατ)× UB(
t− τ
2T

)× ωb
π
× sin(ωbt)

ωbt
× dτ

= A× ωb
π
×
∫ ∞
−∞

sin(ωαt− ωατ)× sin(ωbτ)

ωbτ
× UB(

t− τ
2T

)× dτ (A.19)

Use (A.9) in (A.19)

p2f (t) = A× ωb
π
×
∫ ∞
−∞

(sin(ωαt)× cos(ωατ)− sin(ωατ)× cos(ωαt))×

×sin(ωbτ)

ωbτ
× UB(

t− τ
2T

)× dτ (A.20a)
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The equation (A.20a) can be simplified:

p2f (t) = A× ωb
π
×
∫ ∞
−∞

(sin(ωαt)× cos(ωατ)× sin(ωbτ)

ωbτ
× UB(

t− τ
2T

)× dτ+

− ωb
π
×
∫ ∞
−∞

cos(ωαt)× sin(ωατ)× sin(ωbτ)

ωbτ
× UB(

t− τ
2T

)× dτ

= A× ωb
π
× sin(ωαt)

∫ ∞
−∞

cos(ωατ)× sin(ωbτ)

ωbτ
× UB(

t− τ
2T

)× dτ+

− ωb
π
× cos(ωαt)

∫ ∞
−∞

sin(ωατ)× sin(ωbτ)

ωbτ
× UB(

t− τ
2T

)× dτ

= A× ωb
π
× sin(ωαt)

∫ ∞
−∞

sin([ωα + ωb]τ)− sin([ωα − ωb]τ)

2ωbτ
× UB(

t− τ
2T

)× dτ+

− ωb
π
× cos(ωαt)

∫ ∞
−∞

cos([ωα − ωb]τ)− cos([ωα + ωb]τ)

2ωbτ
× UB(

t− τ
2T

)× dτ

= A× 1

2π
× sin(ωαt)

∫ ∞
−∞

sin([ωα + ωb]τ)

τ
× UB(

t− τ
2T

)× dτ+

− 1

2π
× sin(ωαt)

∫ ∞
−∞

sin([ωα − ωb]τ)

τ
× UB(

t− τ
2T

)× dτ+

− 1

2π
× cos(ωαt)

∫ ∞
−∞

cos([ωα − ωb]τ)

τ
× UB(

t− τ
2T

)× dτ+

+
1

2π
× cos(ωαt)

∫ ∞
−∞

cos([ωα + ωb]τ)

τ
× UB(

t− τ
2T

)× dτ (A.21)

In(A.21) use (A.14) and (A.15) the final expression for the sine pulse filtered:
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p2f (t) = A× 1

2π
× sin(ωαt)

[∫ τ=t+T

τ=t−T

sin([ωα + ωb]τ)

τ
× dτ

]
+

− A× 1

2π
× sin(ωαt)

[∫ τ=t+T

τ=t−T

sin([ωα − ωb]τ)

τ
× dτ

]
+

− A× 1

2π
× cos(ωαt)

[∫ τ=t+T

τ=t−T

cos([ωα − ωb]τ)

τ
× dτ

]
+

+ A× 1

2π
× cos(ωαt)

[∫ τ=t+T

τ=t−T

cos([ωα + ωb]τ)

τ
× dτ

]
= A× 1

2π
× sin(ωαt) [Si((t+ T )(ωα + ωb))]− A×

1

2π
× sin(ωαt) [Si((t− T )(ωα + ωb))] +

− A× 1

2π
× sin(ωαt) [Si((t+ T )(ωα − ωb))− Si((t− T )(ωα − ωb))] +

− A× 1

2π
× cos(ωαt) [Ci((t+ T )(ωα − ωb))− Ci((t− T )(ωα − ωb))] +

+ A× 1

2π
× cos(ωαt) [Ci((t+ T )(ωα + ωb))− Ci((t− T )(ωα + ωb))] .

Finally the expression for p2f (t) is:

p2f (t) =
1

2π
sin(ωαt) [Si((t+ T )(ωα + ωβ))+

− Si((t− T )(ωα + ωβ)) + Si((t+ T )(ωβ − ωα))+

− Si((t− T )(ωβ − ωα))]+

+
1

2π
cos(ωαt) [Ci((t+ T )(ωα + ωβ))+

−Ci((t− T )(ωα + ωβ))− Ci((t+ T )(ωβ − ωα))+

+ Ci((t− T )(ωβ − ωα))] .

(A.22)
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Convolution of the channel impulse response h(t) with the Q2PSK pulses yields:

p1f (t) =
1

2π
sin(ωαt) [Ci ((t− T ) (ωα + ωβ))+

−Ci ((t+ T ) (ωα + ωβ)) + Ci ((t+ T ) (ωβ − ωα))+

− Ci((t− T )(ωβ − ωα))] +

+
1

2π
cos(ωαt) [Si((t+ T )(ωβ − ωα)) +

−Si((t− T )(ωβ − ωα)) + Si((t+ T )(ωα + ωβ))+

− Si((t− T )(ωα + ωβ))] .

(A.23)

p2f (t) =
1

2π
sin(ωαt) [Si((t+ T )(ωα + ωβ))+

−Si((t− T )(ωα + ωβ)) + Si((t+ T )(ωβ − ωα))+

−Si((t− T )(ωβ − ωα))]+

+
1

2π
cos(ωαt) [Ci((t+ T )(ωα + ωβ))+

−Ci((t− T )(ωα + ωβ))− Ci((t+ T )(ωβ − ωα))+

+ Ci((t− T )(ωβ − ωα))] .

(A.24)

where ωα = π
2T

and ωβ = 2πB, and the cosine and sine integrals, Ci and Si, are defined in

(A.12) and (A.10a) respectively.
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Appendix B General Equation for received signals without filter

p1(t) = cos(ωαt), |t| ≤ T (B.1a)

p2(t) = sin(ωαt), |t| ≤ T (B.1b)

where ωα = π
2T

.

In this derivation, we use the following trigonometric identities:

cos(a) cos(b) =
cos(a− b) + cos(a+ b)

2
, (B.1c)

sin(a) sin(b) =
cos(a− b)− cos(a+ b)

2
, (B.1d)

cos(a) sin(b) =
sin(a+ b)− sin(a− b)

2
. (B.1e)

Convolution of p1 with p1.

y′11(t) = p1(t) ∗ p1(t) (B.2)

=

∫ ∞
−∞

p1(τ)p1(t− τ)dτ,

where

p1(t− τ) = cos(ωα(t− τ)), |t− τ | ≤ T

= cos(ωαt− ωατ), |t− τ | ≤ T.
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Now, we use trigonometric identities (B.1c) in (B.2) to simplify.

y′11(t) =

∫ ∞
−∞

cos(ωατ) cos(ωα(t− τ))dτ,

(|t− τ | ≤ T ) ∩ (|τ | ≤ T ).

=

∫ ∞
−∞

cos(ωατ − ωαt+ ωατ) + cos(ωατ + ωαt− ωατ)

2
dτ,

(|t− τ | ≤ T ) ∩ (|τ | ≤ T ).

=

∫ ∞
−∞

cos(ωαt)

2
dτ +

∫ ∞
−∞

cos(2ωατ − ωαt)
2

dτ, (B.4a)

(|t− τ | ≤ T ) ∩ (|τ | ≤ T ).

The non-trivial regions of t in (B.4a) are: −2T ≤ t ≤ 0 and 0 ≤ t ≤ 2T.
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y′11(t) =



∫ t+T
−T

cos(ωαt)
2

dτ +
∫ t+T
−T

cos(2ωατ−ωαt)
2

dτ, −2T ≤ t ≤ 0

∫ T
t−T

cos(ωαt)
2

dτ +
∫ T
t−T

cos(2ωατ−ωαt)
2

dτ, 0 ≤ t ≤ 2T

0, Otherwise

=



cos(ωαt)
2

∫ t+T
−T dτ +

∫ t+T
−T

cos(2ωατ−ωαt)
2

dτ, −2T ≤ t ≤ 0

cos(ωαt)
2

∫ T
t−T dτ +

∫ T
t−T

cos(2ωατ−ωαt)
2

dτ, 0 ≤ t ≤ 2T

0, Otherwise

=



cos(ωαt)
2

τ
∣∣∣t+T
−T

+ sin(2ωατ−ωαt)
4ωα

∣∣∣t+T
−T

, −2T ≤ t ≤ 0

cos(ωαt)
2

τ
∣∣∣T
t−T

+ sin(2ωατ−ωαt)
4ωα

∣∣∣T
t−T

, 0 ≤ t ≤ 2T

0, Otherwise

=



cos(ωαt)
2

(t+ T + T ) + sin(2ωαt+2ωαT−ωαt)−sin(−2ωαT−ωαt)
4ωα

, −2T ≤ t ≤ 0

cos(ωαt)
2

(T − t+ T ) + sin(2ωαT−ωαt)−sin(2ωαt−2ωαT−ωαt)
4ωα

, 0 ≤ t ≤ 2T

0, Otherwise
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=



cos(ωαt)
2

(t+ 2T ) +
sin(ωαt+

π
2T

2T )−sin(−ωαt− π
2T

2T )

4ωα
, −2T ≤ t ≤ 0

cos(ωαt)
2

(−t+ 2T ) +
sin( π

2T
2T−ωαt)−sin(ωαt− π

2T
2T )

4ωα
, 0 ≤ t ≤ 2T

0, Otherwise

=



cos(ωαt)
2

(t+ 2T ) + sin(ωαt+π)+sin(ωαt+π)
4ωα

, −2T ≤ t ≤ 0

cos(ωαt)
2

(−t+ 2T ) + sin(π−ωαt)+sin(π−ωαt)
4ωα

, 0 ≤ t ≤ 2T

0, Otherwise

=



cos(ωαt)
2

(t+ 2T )− sin(ωαt)
2ωα

, −2T ≤ t ≤ 0

cos(ωαt)
2

(−t+ 2T ) + sin(ωαt)
2ωα

, 0 ≤ t ≤ 2T

0, Otherwise

=

{
cos(ωαt)

2
(2T − |t|) + sin(ωα|t|)

2ωα
, |t| ≤ 2T. (B.6)

Convolution of p2 with p2.

y′22(t) = p2(t) ∗ p2(t) (B.7)

=

∫ ∞
−∞

p2(τ)p2(t− τ)dτ,

where

p2(t− τ) = sin(ωα(t− τ)), |t− τ | ≤ T

= sin(ωαt− ωατ), |t− τ | ≤ T.
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We use trigonometric identities (B.1d) in (B.7) to simplify.

y′22(t) =

∫ ∞
−∞

sin(ωατ) sin(ωα(t− τ))dτ,

(|t− τ | ≤ T ) ∩ (|τ | ≤ T ).

=

∫ ∞
−∞

cos(ωατ − ωαt+ ωατ)− cos(ωατ − ωαt+ ωατ)

2
dτ,

(|t− τ | ≤ T ) ∩ (|τ | ≤ T ).

= −
∫ ∞
−∞

cos(ωαt)

2
dτ +

∫ ∞
−∞

cos(2ωατ − ωαt)
2

dτ (B.9a)

(|t− τ | ≤ T ) ∩ (|τ | ≤ T ).

The non-trivial regions of t in (B.9a) are: −2T ≤ t ≤ 0 and 0 ≤ t ≤ 2T.
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y′22(t) =



−
∫ t+T
−T

cos(ωαt)
2

dτ +
∫ t+T
−T

cos(2ωατ−ωαt)
2

dτ, −2T ≤ t ≤ 0

−
∫ T
t−T

cos(ωαt)
2

dτ +
∫ T
t−T

cos(2ωατ−ωαt)
2

dτ, 0 ≤ t ≤ 2T

0, Otherwise

=



− cos(ωαt)
2

∫ t+T
−T dτ +

∫ t+T
−T

cos(2ωατ−ωαt)
2

dτ, −2T ≤ t ≤ 0

− cos(ωαt)
2

∫ T
t−T dτ +

∫ T
t−T

cos(2ωατ−ωαt)
2

dτ, 0 ≤ t ≤ 2T

0, Otherwise

=



− cos(ωαt)
2

τ
∣∣∣t+T
−T

+ sin(2ωατ−ωαt)
4ωα

∣∣∣t+T
−T

, −2T ≤ t ≤ 0

− cos(ωαt)
2

τ
∣∣∣T
t−T

+ sin(2ωατ−ωαt)
4ωα

∣∣∣T
t−T

, 0 ≤ t ≤ 2T

0, Otherwise

=



− cos(ωαt)
2

(t+ T + T ) + sin(2ωαt+2ωαT−ωαt)−sin(−2ωαT−ωαt)
4ωα

, −2T ≤ t ≤ 0

− cos(ωαt)
2

(T − t+ T ) + sin(2ωαT−ωαt)−sin(2ωαt−2ωαT−ωαt)
4ωα

, 0 ≤ t ≤ 2T

0, Otherwise
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=



− cos(ωαt)
2

(t+ 2T ) +
sin(ωαt+

π
2T

2T )−sin(−ωαt− π
2T

2T )

4ωα
, −2T ≤ t ≤ 0

− cos(ωαt)
2

(−t+ 2T ) +
sin( π

2T
2T−ωαt)−sin(ωαt− π

2T
2T )

4ωα
, 0 ≤ t ≤ 2T

0, Otherwise

=



− cos(ωαt)
2

(t+ 2T ) + sin(ωαt+π)+sin(ωαt+π)
4ωα

, −2T ≤ t ≤ 0

− cos(ωαt)
2

(−t+ 2T ) + sin(π−ωαt)+sin(π−ωαt)
4ωα

, 0 ≤ t ≤ 2T

0, Otherwise

=



− cos(ωαt)
2

(t+ 2T )− sin(ωαt)
2ωα

, −2T ≤ t ≤ 0

− cos(ωαt)
2

(−t+ 2T ) + sin(ωαt)
2ωα

, 0 ≤ t ≤ 2T

0, Otherwise

=

{
− cos(ωαt)

2
(2T − |t|) + sin(ωα|t|)

2ωα
, |t| ≤ 2T. (B.11)

Third Part Convolution between p1 and p2.

y′12(t) =

∫ ∞
−∞

p1(τ)p2(t− τ)dτ (B.12)

y′21(t) =

∫ ∞
−∞

p2(τ)p1(t− τ)dτ. (B.13)

Notice that equation (B.12) is equal to (B.13) becuase of convolution properties.

y′21(t) = y′12(t). (B.14)
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Now, we use trigonometric identities (B.1e) in (B.12) to simplify.

y′12(t) =

∫ ∞
−∞

cos(ωατ) sin(ωα(t− τ))dτ,

(|t− τ | ≤ T ) ∩ (|τ | ≤ T ).

=

∫ ∞
−∞

sin(ωατ + ωαt− ωατ)− sin(ωατ − ωαt+ ωατ)

2
dτ,

(|t− τ | ≤ T ) ∩ (|τ | ≤ T ).

=

∫ ∞
−∞

sin(ωαt)

2
dτ −

∫ ∞
−∞

sin(2ωατ − ωαt)
2

dτ (B.15a)

(|t− τ | ≤ T ) ∩ (|τ | ≤ T ).

Equation(B.15a) is a simplified version of (B.12).

The non-trivial regions of t are: −2T ≤ t ≤ 0 and 0 ≤ t ≤ 2T .
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y′12(t) =



∫ t+T
−T

sin(ωαt)
2

dτ −
∫ t+T
−T

sin(2ωατ−ωαt)
2

dτ, −2T ≤ t ≤ 0

∫ T
t−T

sin(ωαt)
2

dτ −
∫ T
t−T

sin(2ωατ−ωαt)
2

dτ, 0 ≤ t ≤ 2T

0, Otherwise

=



sin(ωαt)
2

∫ t+T
−T dτ −

∫ t+T
−T

sin(2ωατ−ωαt)
2

dτ, −2T ≤ t ≤ 0

sin(ωαt)
2

∫ T
t−T dτ −

∫ T
t−T

sin(2ωατ−ωαt)
2

dτ, 0 ≤ t ≤ 2T

0, Otherwise

=



sin(ωαt)
2

τ
∣∣∣t+T
−T

+ cos(2ωατ−ωαt)
4ωα

∣∣∣t+T
−T

, −2T ≤ t ≤ 0

sin(ωαt)
2

τ
∣∣∣T
t−T

+ cos(2ωατ−ωαt)
4ωα

∣∣∣T
t−T

, 0 ≤ t ≤ 2T

0, Otherwise

=



sin(ωαt)
2

(t+ T + T ) + cos(2ωαt+2ωαT−ωαt)−cos(−2ωαT−ωαt)
4ωα

, −2T ≤ t ≤ 0

sin(ωαt)
2

(T − t+ T ) + cos(2ωαT−ωαt)−cos(2ωαt−2ωαT−ωαt)
4ωα

, 0 ≤ t ≤ 2T

0, Otherwise
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=



sin(ωαt)
2

(t+ 2T ) +
cos(ωαt+

π
2T

2T )−cos(−ωαt− π
2T

2T )

4ωα
, −2T ≤ t ≤ 0

sin(ωαt)
2

(−t+ 2T ) +
cos( π

2T
2T−ωαt)−cos(ωαt− π

2T
2T )

4ωα
, 0 ≤ t ≤ 2T

0, Otherwise

=



sin(ωαt)
2

(t+ 2T ) + cos(ωαt+π)−cos(ωαt+π)
4ωα

, −2T ≤ t ≤ 0

sin(ωαt)
2

(−t+ 2T ) + cos(π−ωαt)−cos(π−ωαt)
4ωα

, 0 ≤ t ≤ 2T

0, Otherwise

=



sin(ωαt)
2

(t+ 2T ), −2T ≤ t ≤ 0

sin(ωαt)
2

(−t+ 2T ), 0 ≤ t ≤ 2T

0, Otherwise

=

{
− sin(ωαt)

2
(|t| − 2T ), |t| ≤ 2T. (B.17)

The output of the matched filter is proportional to a time-shifted correlation function. In-

stead of using a bank of 4 correlators to generate the coefficients of the geometry of the

signal, we use a bank of 4 linear filters hk(t) = pk(to − t), k = 1, 2, 3, 4 and observe the

output at the instant T . As pulse shape signals for cosine carrier and sine carrier are similar,

we can use: h1(t) = h3(t) = p1(to − t) and h2(t) = h4(t) = p2(to − t).

The matched filter use in this manuscript forces the output signal to be proportional to the

coefficients of the signal’s geometry more obvious at the instant T .

Notice that pulse 1 is an even function p1(−t) = p1(t) and the pulse 2 is an odd function

−p2(−t) = p2(t), and consider δ(t) is an impulse function where δ(t) = δ(−t).
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Fourier Transform properties use in this procedure are:

F [p1(t)] = P1(f) (B.18a)

F [p2(t)] = P2(f) (B.18b)

F [p1(−t)] = P1(f) (B.18c)

F [p2(−t)] = −P2(f) (B.18d)

F [p1(to − t)] = P1(f)e−j2πfto (B.18e)

F [p2(to − t)] = −P2(f)e−j2πfto . (B.18f)

We defined the following properties given that ∗ is the convolution operation :

p1(t) ∗ p2(t) = p1(−t) ∗ p2(t) = −p1(t) ∗ p2(−t) (B.19a)

F−1[P1(f)P2(f)] = p1(t) ∗ p2(t) = p2(t) ∗ p1(t) (B.19b)

F−1[P1(f)P1(f)] = p1(t) ∗ p1(t) (B.19c)

p1(t) ∗ δ(t− to) = p1(t− to) (B.19d)

p2(t) ∗ δ(t− to) = p2(t− to) (B.19e)

p1(t) ∗ p1(t) = p1(−t) ∗ p1(−t) (B.19f)

p2(t) ∗ p2(t) = p2(−t) ∗ p2(−t) (B.19g)

F−1[P2(f)P2(f)] = p2(t) ∗ p2(t). (B.19h)

The equations derive below are used to derive the general equation used to plot the output

of the matched filter.

y11(t) = p1(t) ∗ h1(t)

y11(t) = p1(t) ∗ p1(to − t) (B.20a)
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Taking the Fourier transform of (B.20a) and using properties (B.18e), (B.18e)

F [y11(t)] = F [p1(t)]F [p1(to − t)] (B.21a)

= P1(f)F [p1(to − t)] (B.21b)

= P1(f)P1(f)e−j2πfto . (B.21c)

Taking the inverse Fourier transform of (B.21c) and using properties (B.19c), (B.19d), we

make (B.20a) function of (B.6) delayed

F−1[F [y11(t)]] = F−1[P1(f)P1(f)ej2πfto ]

y11(t) = F−1[P1(f)P1(f)ej2πfto ]

= p1(t) ∗ p1(t) ∗ ∂(t− to)

= y′11(t) ∗ δ(t− to)

= y′11(t− to). (B.22)

Now for the sine pulse

y22(t) = p2(t) ∗ h2(t)

y22(t) = p2(t) ∗ p2(to − t). (B.23a)

Taking the Fourier transform of (B.23a) and using properties (B.18b), (B.18f).

F [y22(t)] = F [p2(t)]F [p2(to − t)] (B.24a)

= P2(f)F [p2(to − t)] (B.24b)

= P2(f)(−P2(f)e−j2πfto). (B.24c)

Taking the inverse Fourier transform of (B.24c) and using properties (B.19h), (B.19e), we
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make (B.23a) function of (B.11) delayed.

F−1[F [y22(t)]] = −F−1[P2(f)P2(f)e−j2πfto ] (B.25)

y22(t) = −F−1[P2(f)P2(f)]F−1[e−j2πfto ] (B.26)

y22(t) = −p2(t) ∗ p2(t) ∗ δ(t− to) (B.27)

y22(t) = −y′22(t) ∗ δ(t− to) (B.28)

y22(t) = −y′22(t− to). (B.29)

Now for the cosine pulse with the sine pulse

y12(t) = p1(t) ∗ h2(t) (B.30a)

y12(t) = p1(t) ∗ p2(to − t). (B.30b)

Taking the Fourier transform of (B.30b) and using properties (B.18b), (B.18f)

F [y12(t)] = F [p1(t)]F [p2(to − t)] (B.31a)

= P1(f)F [p2(to − t)] (B.31b)

= −P1(f)P2(f)e−j2πfto . (B.31c)

Taking the inverse Fourier transform of (B.31c) and using properties (B.19b), (B.19e), we

make (B.30b) function of (B.17) delayed

F−1[F [y12(t)]] = −F−1[P1(f)P2(f)e−j2πfto ] (B.32)

y12(t) = −F−1[P1(f)P2(f)]F−1[e−j2πfto ] (B.33)

= −p1(t) ∗ p2(t) ∗ δ(t− to) (B.34)

= −y′12(t) ∗ δ(t− to) (B.35)

= −y′12(t− to). (B.36)
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Now for the sine pulse with the cosine pulse

y21(t) = p2(t) ∗ h1(t) (B.37a)

y21(t) = p2(t) ∗ p1(to − t). (B.37b)

Taking the Fourier transform of (B.37b) and using properties (B.18b), (B.18e)

F [y21(t)] = F [p2(t)]F [p1(to − t)] (B.38a)

= P2(f)F [p1(to − t)] (B.38b)

= P2(f)P1(f)e−j2πfto . (B.38c)

Taking the inverse Fourier transform of (B.38c) and using properties (B.19b), (B.19e), we

make (B.37b) function of (B.17) delayed

F−1[F [y21(t)]] = F−1[P2(f)P1(f)e−j2πfto ] (B.39)

y21(t) = F−1[P2(f)P1(f)]F−1[e−j2πfto ] (B.40)

= p2(t) ∗ p1(t) ∗ δ(t− to) (B.41)

= y′21(t) ∗ δ(t− to) (B.42)

= y′21(t− to) (B.43)

= y′12(t− to). (B.44)

Before we proceed to delay y′11(t), y
′
22(t), y

′
12(t), y

′
21(t) functions, we are going summarize the

prime functions in a more simple expression using i, j = 1, 2.

y′11(t) =

{
cos(ωαt)

2
(2T − |t|) + sin(ωα|t|)

2ωα
, |t| ≤ 2T

y′22(t) =

{
− cos(ωαt)

2
(2T − |t|) + sin(ωα|t|)

2ωα
, |t| ≤ 2T

y′12(t) =

{
− sin(ωαt)

2
(|t| − 2T ), |t| ≤ 2T

121



y′21(t) =

{
− sin(ωαt)

2
(|t| − 2T ), |t| ≤ 2T

By finding some similarities and using some phase shifts we can simplify the four equations

above. The final expression is:

y′ij(t) =

{
(−1)(i−1)(j−1)

cos(ωαt−π2 |i−j|)
2

(2T − |t|) + sin(ωα|t|)
2ωα

|3− i− j| , |t| ≤ 2T ) (B.45a)

Finally,

y1(t) = p1(t) ∗ h1(t) + p2(t) ∗ h1(t)

= y′11(t− T ) + y′12(t− T ) (B.46a)

y2(t) = p1(t) ∗ h2(t) + p2(t) ∗ h2(t)

= −y′12(t− T )− y′22(t− T ) (B.46b)
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Appendix C Matlab Code for received signals without filter

%% Initialization of variables

clc

clear

T=1;

dt=.01;

%------------------------------------

wa=pi/(2*T); %Pulse Low frequency

%----------------------------------

t=-T:dt:T-dt; %Time interval

n=2;

fc=(n/4*T); %Carrier Frequency

%----Pulses without Filtering----------

block=rectangularPulse(-T,T,t);

block(t==1)=1;

block(t==-1)=1;

p1=cos(wa*t).*block;

p2=sin(wa*t).*block;

%% Convolution

figure(1)

tx1=linspace(-1*T,1*T,length(p1)+length(p1)-1);

plot(tx1,conv(p2,p2)/100,tx1,conv(p1,p1)/100,t,p2)

grid

%% Sine Cosine

123



%Y12 prime which is the convolution of p1 and p2 without shift

t1=-2*T:dt:0;

t2=0:dt:2*T;

y12t1=sin(wa*t1).*(t1+2*T)*0.5;

y12t2=(2*T-t2).*sin(wa*t2)*0.5;

y12=[y12t1 y12t2];

t12=[t1 t2];

figure

plot(conv(p1,p2))

figure

plot(t12,y12)

tx12=-2*T:0.01:2*T;

y12db=-0.5*sin(wa*(tx12)).*(abs(tx12)-2*T);

figure;

plot(tx12,y12db);

%% cosine cosine

%Y11 prime which is the convolution of p1 and p2 without shift

t1=-2*T:dt:0;

t2=0:dt:2*T;

y11t1=cos(wa*t1).*(t1+2*T)*0.5-(sin(wa*t1)/(2*wa));

y11t2=cos(wa*t2).*(2*T-t2)*0.5-(sin(wa*t1)/(2*wa));

y11=[y11t1 y11t2];

t11=[t1 t2];

figure
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plot(conv(p1,p1)/100)

figure

plot(t11,y11)

%% sine sine

%Y22 prime which is the convolution of p1 and p2 without shift

t1=-2*T:dt:0;

t2=0:dt:2*T;

y22t1=-cos(wa*t1).*(t1+2*T)*0.5-(sin(wa*t1)/(2*wa));

y22t2=-cos(wa*t2).*(2*T-t2)*0.5+(sin(wa*t2)/(2*wa));

y22=[y22t1 y22t2];

t22=[t1 t2];

figure

plot(conv(p2,p2)/100)

figure

plot(t22,y22)

%%

%Dr. B simplifaction

tx12=-2*T:0.01:2*T; %time for theoretical

tx1=linspace(-2*T,2*T,length(p1)+length(p1)-1); %time for convolution

y12db=-0.5*sin(wa*(tx12)).*(abs(tx12)-2*T);

y11db=(0.5*cos(wa*tx12).*(2*T-abs(tx12)))+(sin(wa*abs(tx12))/(2*wa));

y22db=-(0.5*cos(wa*tx12).*(2*T-abs(tx12)))+(sin(wa*abs(tx12))/(2*wa));

figure(1);
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subplot(3,1,1)

plot(tx12,y11db);

subplot(3,1,2)

plot(tx12,y22db);

subplot(3,1,3)

plot(tx12,y12db)

%% Matlab convolution

figure(1);

subplot(3,1,1)

plot(tx1,conv(p1,p1)/100);

ylim([0 1]);

subplot(3,1,2)

plot(tx1,conv(p2,p2)/100);

subplot(3,1,3)

plot(tx1,conv(p1,p2)/100)

%% General formula

t=-2*T:0.01:2*T; %time for theoretical

figure(2)

i=1;j=1;

y=(-1)^(i+j-(i*j)+3)*cos(wa*t-(pi/2)*abs(i-j)).*(1*T-0.5*abs(t))...

+(sin(wa*abs(t))/(2*wa))*(abs(3-(i+j)));

subplot(3,1,1)

plot(t,y)

i=2;j=2;

y=(-1)^(i+j-(i*j)+3).*cos(wa*t-(pi/2)*abs(i-j)).*(1*T-0.5*abs(t))...

+(sin(wa*abs(t))/(2*wa))*(abs(3-(i+j)));
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subplot(3,1,2)

plot(t,y)

i=1;j=2;

y=(-1)^(i+j-(i*j)+3).*cos(wa*t-(pi/2)*abs(i-j)).*(1*T-0.5*abs(t))...

+(sin(wa*abs(t))/(2*wa))*(abs(3-(i+j)));

subplot(3,1,3)

plot(t,y)

%% General formula Dr B

t=-2*T:0.01:2*T; %time for theoretical

figure(2)

i=1;j=1;

y=(-1)^((i-1)*(j-1))*cos(wa*t-(pi/2)*abs(i-j)).*(1*T-0.5*abs(t))...

+(sin(wa*abs(t))/(2*wa))*(abs(3-(i+j)));

subplot(3,1,1)

plot(t,y)

i=2;j=2;

y=(-1)^((i-1)*(j-1)).*cos(wa*t-(pi/2)*abs(i-j)).*(1*T-0.5*abs(t))...

+(sin(wa*abs(t))/(2*wa))*(abs(3-(i+j)));

subplot(3,1,2)

plot(t,y)

i=1;j=2;

y=(-1)^((i-1)*(j-1)).*cos(wa*t-(pi/2)*abs(i-j)).*(1*T-0.5*abs(t))...

+(sin(wa*abs(t))/(2*wa))*(abs(3-(i+j)));

subplot(3,1,3)

plot(t,y)

%% General formula shifted by T

t=-1*T:0.01:3*T; %time for theoretical
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figure(3)

i=1;j=1;

y=(-1)^((i-1)*(j-1))*cos(wa*(t-T)-(pi/2)*abs(i-j)).*(1*T-0.5*abs(t-T))...

+(sin(wa*abs(t-T))/(2*wa))*(abs(3-(i+j)));

y11=y;

subplot(3,1,1)

plot(t,y)

xlim([-1 3])

ylim([-1 1])

i=2;j=2;

y=(-1)^((i-1)*(j-1)).*cos(wa*(t-T)-(pi/2)*abs(i-j)).*(1*T-0.5*abs(t-T))...

+(sin(wa*abs(t-T))/(2*wa))*(abs(3-(i+j)));

subplot(3,1,2)

y22=y;

plot(t,y)

xlim([-1 3])

ylim([-1 1])

i=1;j=2;

y=(-1)^((i-1)*(j-1)).*cos(wa*(t-T)-(pi/2)*abs(i-j)).*(1*T-0.5*abs(t-T))...

+(sin(wa*abs(t-T))/(2*wa))*(abs(3-(i+j)));

y12=y;

subplot(3,1,3)

plot(t,y)

xlim([-1 3])

ylim([-1 1])

figure(4)

plot(t,y11+y12)

grid
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figure(5)

plot(t,-y22-y12)

grid

%%

figure(4)

%match filter matlab

t1=-3*T:dt:4*T-dt;

block=rectangularPulse(-T,T,1*T-t1);

dummy1=1*T-t1;

block(dummy1==1)=1;

block(dummy1==-1)=1;

p1matchf=cos(wa*(1*T-t1)).*block;

p2matchf=sin(wa*(1*T-t1)).*block;

tmatch=linspace(-4*T,5*T,length(p1matchf)+length(p1)-1);

subplot(3,1,1)

plot(tmatch,conv(p1matchf,p1)/100)

xlim([-1 3])

ylim([-1 1])

subplot(3,1,2)

plot(tmatch,conv(p2matchf,p2)/100)

xlim([-1 3])

ylim([-1 1])

subplot(3,1,3)

plot(tmatch,conv(p1matchf,p2)/100)

xlim([-1 3])

ylim([-1 1])
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%% Maltab convolution and comparison between values

plot(tx12,y12db,tx1,conv(p1,p2)/100);

figure(2)

plot(tx12,y22db,tx1,conv(p2,p2)/100);

figure(3)

plot(tx12,y11db,tx1,conv(p1,p1)/100)
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Appendix D Constellation generation

% CEQQ16constellation

% Edit Bourgeois

% January 2011

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% 4D CEQQPSK-Saha

S=[ 1 1 1 -1;

1 1 -1 1;

1 -1 1 1;

1 -1 -1 -1;

-1 -1 -1 1;

-1 -1 1 -1;

-1 1 -1 -1;

-1 1 1 1];

C=[ 0 sqrt(2) sqrt(2) 0;

0 sqrt(2) -sqrt(2) 0;

sqrt(2) 0 0 sqrt(2);

sqrt(2) 0 0 -sqrt(2);

0 -sqrt(2) -sqrt(2) 0;

0 -sqrt(2) sqrt(2) 0;

-sqrt(2) 0 0 -sqrt(2);

-sqrt(2) 0 0 sqrt(2)];

% Generate not-quite-cartesian product (i.e., all possible 16D points, not

% including mixed ones. This is 16D-CEQQPSK constellation.

%initialize S16 and C16

S16=zeros(8*8*8*8,16);

C16=S16;
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for i=1:8

for j=1:8

for k=1:8

for l=1:8

S16(l+(k-1)*8+(j-1)*64+(i-1)*64*8,1:16)=...

[S(i,1:4) S(j,1:4) S(k,1:4) S(l,1:4)];

C16(l+(k-1)*8+(j-1)*64+(i-1)*64*8,1:16)=...

[C(i,1:4) C(j,1:4) C(k,1:4) C(l,1:4)];

end

end

end

end

clear i j k l

% compute Hamming Distances (all possible)

S16dist=pdist(S16,’Hamming’)*16;

C16dist=pdist(round(C16*100),’Hamming’)*16;

SC16dist=pdist2(S16,round(C16*100),’Hamming’)*16;

% Sort and count how many of each possible distance (H dist distribution)

S16distu = unique(S16dist);

S16distu=sort(S16distu);

C16distu = unique(C16dist);

C16distu=sort(C16distu);

SC16distu = unique(SC16dist);

SC16distu=sort(SC16distu);

% Comments of importance:

% 1) For Rayleigh Channels, it is the Hamming distance that matters

% 2) The HD among Saha’s CEQQPSK points is twice as big (2) than for

% Carthwright’s CEQQPSK points (due to the 0’s). This means that standard

% CEQQPSK with Saha’s will perform better in Rayleigh fading thant
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% Cartwright’s CEQQPSK. BAD NEWS.

% 3) When implementing TCM, we kept, on purpose, Saha’s 16D and

% Cartwright’s 16 D separately (i.e., different subsets) to avoid reducing

% the Euclidean distance (because Saha to Saha or Cart to Cart EDs are

% better than Saha to Cartwright’s.

% 4) However, for fading, ED is not of primary concern, HD is. So...

% it would be better to mix Saha’s and Cartwright’s 16 D points into the

% same subset, because the HD across the two CEQQPSK is better (much

% better, 16 actually) than within either Saha’s or Cartwright’s alone.

% 5) if a partition with mixed Saha/Cart points is possible, we should be

% able to achieve considerably better performance with mixed than with

% non-mixed.

% Partition MIXED

%

% Here is the entire 8192-point Expanded 16D QQPSK Constellation and HDs

E=[S16;C16];

[hd,ind] = pdist2(E,E,’hamming’,’smallest’,2);
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Appendix E Partition into 8 subsets - optimum in AWGN

The code that generates the 8 subsets E0 through E7 is given below.

% split16QQPSK.m

% By Dr. Kaminsky

% 19 July 2011

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Splits the 8192 16D points into several groups trying to keep

% MSED as large as possible.

% Case 1: 128 groups, 4 points in each, rate 6/7 encoder

% Case 2: 64 groups, 8 points in each, rate 5/6 encoder

% Case 3: 32 groups, 16 points in each, rate 4/5 encoder

% Case 4: 16 groups, 32 points in each, rate 3/4 encoder

% Case 5: 8 groups, 64 points in each, rate 2/3 encoder

% Case 6: 4 groups, 128 points in each, rate 1/2 encoder

% Case 7: 2 groups, 256 points in each, no encoder

% First create the 16D points, then group, and/or split

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clear

s2=sqrt(2);

% 4D sublattices: 8 for each subset, of 1 point each

A=[1 1 1 -1];C=[1 1 -1 1];E=[1 -1 1 1];G=[1 -1 -1 -1];

B=[-1 -1 -1 1];D=[-1 -1 1 -1];F=[-1 1 -1 -1];H=[-1 1 1 1];

Ar=[0 s2 s2 0];Cr=[0 -s2 -s2 0];Er=[0 -s2 s2 0];Gr=[0 s2 -s2 0];

Br=[s2 0 0 s2];Dr=[s2 0 0 -s2];Fr=[-s2 0 0 s2];Hr=[-s2 0 0 -s2];

% 8D types: 64 types of 1 point each for each subset

T0=[A A]; T1= [A B]; T2 =[A C]; T3 = [A D];

T0r=[Ar Ar]; T1r= [Ar Br]; T2r =[Ar Cr]; T3r= [Ar Dr];
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T4=[A E]; T5= [A F]; T6 =[A G]; T7 = [A H];

T4r=[Ar Er]; T5r= [Ar Fr]; T6r =[Ar Gr]; T7r = [Ar Hr];

T8=[B A]; T9= [B B]; T10 =[B C]; T11 = [B D];

T8r=[Br Ar]; T9r= [Br Br]; T10r =[Br Cr]; T11r= [Br Dr];

T12=[B E]; T13= [B F]; T14 =[B G]; T15 = [B H];

T12r=[Br Er]; T13r= [Br Fr]; T14r =[Br Gr]; T15r = [Br Hr];

T16=[C A]; T17= [C B]; T18 =[C C]; T19 = [C D];

T16r=[Cr Ar]; T17r= [Cr Br]; T18r =[Cr Cr]; T19r= [Cr Dr];

T20=[C E]; T21= [C F]; T22 =[C G]; T23 = [C H];

T20r=[Cr Er]; T21r= [Cr Fr]; T22r =[Cr Gr]; T23r = [Cr Hr];

T24=[D A]; T25= [D B]; T26 =[D C]; T27 = [D D];

T24r=[Dr Ar]; T25r= [Dr Br]; T26r =[Dr Cr]; T27r = [Dr Dr];

T28=[D E]; T29= [D F]; T30 =[D G]; T31 = [D H];

T28r=[Dr Er]; T29r= [Dr Fr]; T30r =[Dr Gr]; T31r = [Dr Hr];

T32=[E A]; T33= [E B]; T34 =[E C]; T35 = [E D];

T32r=[Er Ar]; T33r= [Er Br]; T34r =[Er Cr]; T35r = [Er Dr];

T36=[E E]; T37= [E F]; T38 =[E G]; T39 = [E H];

T36r=[Er Er]; T37r= [Er Fr]; T38r =[Er Gr]; T39r = [Er Hr];

T40=[F A]; T41= [F B]; T42 =[F C]; T43 = [F D];

T40r=[Fr Ar]; T41r= [Fr Br]; T42r =[Fr Cr]; T43r = [Fr Dr];

T44=[F E]; T45= [F F]; T46 =[F G]; T47 = [F H];

T44r=[Fr Er]; T45r= [Fr Fr]; T46r =[Fr Gr]; T47r = [Fr Hr];

T48=[G A]; T49= [G B]; T50 =[G C]; T51 = [G D];

T48r=[Gr Ar]; T49r= [Gr Br]; T50r =[Gr Cr]; T51r = [Gr Dr];

T52=[G E]; T53= [G F]; T54 =[G G]; T55 = [G H];

T52r=[Gr Er]; T53r= [Gr Fr]; T54r =[Gr Gr]; T55r = [Gr Hr];

T56=[H A]; T57= [H B]; T58 =[H C]; T59 = [H D];

T56r=[Hr Ar]; T57r= [Hr Br]; T58r =[Hr Cr]; T59r = [Hr Dr];

T60=[H E]; T61= [H F]; T62 =[H G]; T63 = [H H];

135



T60r=[Hr Er]; T61r= [Hr Fr]; T62r =[Hr Gr]; T63r = [Hr Hr];

% 8D sublattices: 32 sublattices of 2 points each, for each subset

s0=[T0; T9]; s1=[T18; T27]; s2=[T1; T8]; s3=[T19; T26];

s4=[T2 ;T11]; s5=[T17; T24]; s6=[T3; T10]; s7=[T16; T25];

s8=[T36; T45]; s9=[T54; T63]; s10=[T37; T44]; s11=[T55; T62];

s12=[T38 ;T47]; s13=[T53; T60]; s14=[T39; T46]; s15=[T52; T61];

s16=[T0; T45]; s17=[T18; T63]; s18=[T1; T44]; s19=[T19; T62];

s20=[T2 ;T47]; s21=[T17; T60]; s22=[T3; T46]; s23=[T16; T61];

s24=[T36; T9]; s25=[T54; T27]; s26=[T37; T8]; s27=[T55; T26];

s28=[T38 ;T11]; s29=[T53; T24]; s30=[T39; T10]; s31=[T52; T25];

s0r=[T0r; T9r]; s1r=[T18r; T27r]; s2r=[T1r; T8r]; s3r=[T19r; T26r];

s4r=[T2r ;T11r]; s5r=[T17r; T24r]; s6r=[T3r; T10r]; s7r=[T16r; T25r];

s8r=[T36r; T45r]; s9r=[T54r; T63r]; s10r=[T37r; T44r]; s11r=[T55r; T62r];

s12r=[T38r ;T47r]; s13r=[T53r; T60r]; s14r=[T39r; T46r]; s15r=[T52r; T61r];

s16r=[T0r; T45r]; s17r=[T18r; T63r]; s18r=[T1r; T44r]; s19r=[T19r; T62r];

s20r=[T2r ;T47r]; s21r=[T17r; T60r]; s22r=[T3r; T46r]; s23r=[T16r; T61r];

s24r=[T36r; T9r]; s25r=[T54r; T27r]; s26r=[T37r; T8r]; s27r=[T55r; T26r];

s28r=[T38r ;T11r]; s29r=[T53r; T24r]; s30r=[T39r; T10r]; s31r=[T52r; T25r];

% Case I

% 16D types: 1024 types for each subset, each with 4 points.

% This gives a total of 1024 subsets.

% These are the 1024 subsets of 4 points each for

% the encoder of rate 9/10. The MSED is 16.

for k=0:31

for m=0:31

for i=1:2

for j=1:2

eval([’t’ num2str(k) ’_’ num2str(m) ’(j+(i-1)*2,:)’ ’ =...

[s’ num2str(k) ’(i,:)’ ’ ’ ’s’ num2str(m) ’(j,:)];’]);

136



eval([’t’ num2str(k) ’_’ num2str(m) ’r’ ’(j+(i-1)*2,:)’ ’ =...

[s’ num2str(k) ’r’ ’(i,:)’ ’ ’ ’s’ num2str(m) ’r’ ’(j,:)];’]);

end

end

end

end

% Check MSED for the 1024 subsets of 4 points each

% and count how many are at that distance:

% There are 2, i.e. N(dfree=16) = 2

smallest1=100;smallest2=100;

for i=0:31

for j=0:31

eval([’temp1=sort(dist(t’ num2str(i) ’_’...

num2str(j) ’,transpose(t’ num2str(i) ’_’ num2str(j) ’)));’]);

eval([’temp2=sort(dist(t’ num2str(i) ’_’...

num2str(j) ’r,transpose(t’ num2str(i) ’_’ num2str(j) ’r)));’]);

temp1=temp1(:,1).*temp1(:,1);

temp2=temp2(:,1).*temp2(:,1);

eval([’nt’ num2str(i) ’_’ num2str(j) ’=sum(temp1>15.9 & temp1<16.1);’])

eval([’ntr’ num2str(i) ’_’ num2str(j) ’=sum(temp2>15.9 & temp2<16.1);’])

end

end

% Case III:

% 16D sub-lattices: 256 for reach subset

% 256 sets for rate 7/8 encoder. MSED = 16.

% for all these, the ED’s are:

% 0 4 (14 times) 5.6569, so the MSED is still 16

%

S0=[t00;t11;t22;t33]; S0r=[t00r;t11r;t22r;t33r];
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S1=[t01;t10;t23;t32];S1r=[t01r;t10r;t23r;t32r];

S2=[t02;t13;t20;t31];S2r=[t02r;t13r;t20r;t31r];

S3=[t03;t12;t21;t30];S3r=[t03r;t12r;t21r;t30r];

S4=[t44;t55;t66;t77];S4r=[t44r;t55r;t66r;t77r];

S5=[t45;t54;t67;t76];S5r=[t45r;t54r;t67r;t76r];

S6=[t46;t57;t64;t75];S6r=[t46r;t57r;t64r;t75r];

S7=[t47;t56;t65;t74];S7r=[t47r;t56r;t65r;t74r];

S8=[t04;t15;t26;t37];S8r=[t04r;t15r;t26r;t37r];

S9=[t05;t14;t27;t36];S9r=[t05r;t14r;t27r;t36r];

S10=[t06;t17;t24;t35];S10r=[t06r;t17r;t24r;t35r];

S11=[t07;t16;t25;t34];S11r=[t07r;t16r;t25r;t34r];

S12=[t40;t51;t62;t73];S12r=[t40r;t51r;t62r;t73r];

S13=[t41;t50;t63;t72];S13r=[t41r;t50r;t63r;t72r];

S14=[t42;t53;t60;t71];S14r=[t42r;t53r;t60r;t71r];

S15=[t43;t52;t61;t70];S15r=[t43r;t52r;t61r;t70r];

for i=0:15

eval([’temp1=sort(dist(S’ num2str(i) ’,transpose(S’ num2str(i) ’)));’]);

eval([’temp2=sort(dist(S’ num2str(i) ’r,transpose(S’ num2str(i) ’r)));’]);

temp1=temp1(:,1).*temp1(:,1);

temp2=temp2(:,1).*temp2(:,1);

eval([’ns’ num2str(i) ’=sum(temp1>15.9 & temp1<16.1);’])

eval([’nsr’ num2str(i) ’=sum(temp2>15.9 & temp2<16.1);’])

end

% There are 14 neighbours in each set at MSED=16

%

% Case II: Need 64 subsets (32 from each group)

% to be used with the rate 5/6 encoder. Each subset has

% 8 8D points.

% For this we gather split the above into two so that the

138



% MSED is still 16.

for k=0:15

eval([’u1’ num2str(k) ’(:,:)’ ’ = [S’ num2str(k) ’(1:8,:)];’]);

eval([’u2’ num2str(k) ’(:,:)’ ’ = [S’ num2str(k) ’(9:16,:)];’]);

eval([’u1’ num2str(k) ’r(:,:)’ ’ = [S’ num2str(k) ’r(1:8,:)];’]);

eval([’u2’ num2str(k) ’r(:,:)’ ’ = [S’ num2str(k) ’r(9:16,:)];’]);

end

% Check the MSED and the N(dfree)

% The ED’s are 0 4.0000 (6 times) and 5.6569 (1 time)

% There are 6 neighbours (for each point) at MSED=16.

for i=0:15

eval([’temp1=sort(dist(u1’ num2str(i) ’,transpose(u1’ num2str(i) ’)));’]);

temp1=temp1(:,1).*temp1(:,1);

eval([’nu1’ num2str(i) ’=sum(temp1>16-.1 & temp1<16+.1);’]);

eval([’temp2=sort(dist(u2’ num2str(i) ’,transpose(u2’ num2str(i) ’)));’]);

temp2=temp2(:,1).*temp2(:,1);

eval([’nu2’ num2str(i) ’=sum(temp2>16-.1 & temp2<16+.1);’]);

eval([’temp3=sort(dist(u1’ num2str(i) ’r,transpose(u1’ num2str(i) ’r)));’]);

temp3=temp3(:,1).*temp3(:,1);

eval([’nu1r’ num2str(i) ’=sum(temp3>16-.1 & temp3<16+.1);’]);

eval([’temp4=sort(dist(u2’ num2str(i) ’r,transpose(u2’ num2str(i) ’r)));’]);

temp4=temp4(:,1).*temp4(:,1);

eval([’nu2r’ num2str(i) ’=sum(temp4>16-.1 & temp4<16+.1);’]);

end

% Now make only 16 subsets for rate 3/4 encoder

% MSED is now reduced to 10.34

% the ED’s are:

% 3.2161 (8 times), 4.6537 (8 times); ie. the MSED is 10.3431.

% Finally 16 subsets are:
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FS0=[S0;S5r];FS1=[S1;S4r];FS2=[S2;S0r];FS3=[S3;S1r];

FS4=[S4;S6r];FS5=[S5;S7r];FS6=[S6;S3r];FS7=[S7;S2r];

FS8=[S8;S10r];FS9=[S9;S11r];FS10=[S10;S8r];FS11=[S11;S9r];

FS12=[S12;S14r];FS13=[S13;S15r];FS14=[S14;S12r];FS15=[S15;S13r];

for i=0:15

eval([’temp=sort(dist(FS’ num2str(i) ’,transpose(FS’ num2str(i) ’)));’]);

temp=temp(:,1).*temp(:,1);

eval([’nf’ num2str(i) ’=sum(temp>10.3 & temp<10.4);’]);

end

% There are 8 neighbours at MSED=10.3431 in each of the 16 subsets

%

% Case 5: Make 8 subsets, each made up of 64 points.

% This is used for an encoder with rate 2/3.

% For only 8 subsets, MSED becomes 8:

E0=[FS0;FS6]; E1=[FS1;FS7]; E2=[FS2;FS5]; E3=[FS3; FS4];

E4=[FS8;FS13];E5=[FS9;FS12]; E6=[FS10;FS15]; E7=[FS11;FS14];

for i=0:7

eval([’temp=sort(dist(E’ num2str(i) ’,transpose(E’ num2str(i) ’)));’]);

temp=temp(:,1).*temp(:,1);

eval([’ne’ num2str(i) ’=sum(temp>7.9 & temp<8.01);’]);

end

% there are 4 neighbours at MSED=8 in each of the 8 subsets

% (note this is 12 for the subset in my paper, 4, is of course, better.

%

% Case 6:

% For a rate 1/2 encoder we need 4 subsets; each subset

% has 128 points. To do this, we recreate the above somewhat

% differently; to obtain a total of 4, still with MSED=8.

% the new N(dfree) is now
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e0=[S0;S1;S2;S3]; e1=[S4;S5;S6;S7];e2=[S8;S9;S10;S11];

e3=[S12;S13;S14;S15];

e4=[S0r;S1r;S2r;S3r]; e5=[S4r;S5r;S6r;S7r];

e6=[S8r;S9r;S10r;S11r];e7=[S12r;S13r;S14r;S15r];

for i=0:7

eval([’temp=sort(dist(e’ num2str(i) ’,transpose(e’ num2str(i) ’)));’]);

temp=temp(:,1).*temp(:,1);

eval([’ne’ num2str(i) ’=sum(temp>7.9 & temp<8.01);’]);

end

e01 = [e0;e1]; e23=[e2;e3]; e45=[e4;e5]; e67=[e6;e7];

% Check’d that MSED = 8 and N(dfree)= 28.

% Group above to have only 2 groups, if can keep MSED at 8, great.

e0167=[e01;e67];

e2345=[e23;e45];
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Appendix F Partition into 8 subsets - Fading channels

The file QQ16Dgroups.mat contains the eight groups G1 through G8. This file is being sent

along with the Matlab code in a separate package.
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Appendix G Partition into 16 subsets

% Partion code to maximize the symbol distance,

% Author: Milton I Quinteros

% Date: 02/16/11

% Updated: 02/20/11

%% Genration of points

clc

clear

%--------------------------------------------------------------------------

%Saha’s Constant Envelope Q2PSK Constellation

%These eight symbols are stored

%inside the variable S1

Sa1(:,1)=[1 1 1 -1];

Sa1(:,2)=[1 1 -1 1];

Sa1(:,3)=[1 -1 1 1];

Sa1(:,4)=[1 -1 -1 -1];

Sa1(:,5)=[-1 -1 -1 1];

Sa1(:,6)=[-1 -1 1 -1];

Sa1(:,7)=[-1 1 -1 -1];

Sa1(:,8)=[-1 1 1 1];

Sa1=Sa1’;

% Maximum E distances sets Sahas and Maximum Hamming Distance

Q1=[Sa1(1,1:4); Sa1(5,1:4)];

Q2=[Sa1(2,1:4); Sa1(6,1:4)];

Q3=[Sa1(7,1:4); Sa1(3,1:4)];

Q4=[Sa1(4,1:4); Sa1(8,1:4)];
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c=sqrt(2);

Sb2(:,1)=[0 c c 0];

Sb2(:,2)=[0 c -c 0];

Sb2(:,3)=[c 0 0 c];

Sb2(:,4)=[c 0 0 -c];

Sb2(:,5)=[0 -c -c 0];

Sb2(:,6)=[0 -c c 0];

Sb2(:,7)=[-c 0 0 -c];

Sb2(:,8)=[-c 0 0 c];

Sb2=Sb2’;

% Minimu E distances sets Cartwright and Maximum Hamming Distance

QR1=[Sb2(1,:); Sb2(3,:)];

QR2=[Sb2(2,:); Sb2(4,:)];

QR3=[Sb2(5,:); Sb2(7,:)];

QR4=[Sb2(6,:); Sb2(8,:)];

%% 8-D Saha’s and Cartwright’s constellations

%Saha’s 8-D

% Q1 and Q1r

Q11=cartp(Q1,Q1);

Q12=cartp(Q1,Q2);

Q13=cartp(Q1,Q3);

Q14=cartp(Q1,Q4);

QR11=cartp(QR1,QR1);

QR12=cartp(QR1,QR2);

QR13=cartp(QR1,QR3);

QR14=cartp(QR1,QR4);
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% Q2 and Q2r

Q21=cartp(Q2,Q1);

Q22=cartp(Q2,Q2);

Q23=cartp(Q2,Q3);

Q24=cartp(Q2,Q4);

QR21=cartp(QR2,QR1);

QR22=cartp(QR2,QR2);

QR23=cartp(QR2,QR3);

QR24=cartp(QR2,QR4);

% Q3 and Q3r

Q31=cartp(Q3,Q1);

Q32=cartp(Q3,Q2);

Q33=cartp(Q3,Q3);

Q34=cartp(Q3,Q4);

QR31=cartp(QR3,QR1);

QR32=cartp(QR3,QR2);

QR33=cartp(QR3,QR3);

QR34=cartp(QR3,QR4);

% Q4 and Q4r

Q41=cartp(Q4,Q1);

Q42=cartp(Q4,Q2);

Q43=cartp(Q4,Q3);

Q44=cartp(Q4,Q4);

QR41=cartp(QR4,QR1);

QR42=cartp(QR4,QR2);

QR43=cartp(QR4,QR3);

QR44=cartp(QR4,QR4);
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% Grouping W

W1=[Q11; Q22; Q33; Q44];

W2=[Q12; Q23; Q34; Q41];

W3=[Q13; Q24; Q31; Q42];

W4=[Q14; Q21; Q32; Q43];

% Grouping WR

WR1=[QR11;QR33];

WR2=[QR22;QR44];

WR3=[QR12;QR34];

WR4=[QR23; QR41];

WR5=[QR13; QR31];

WR6=[QR24; QR42];

WR7=[QR14;QR32];

WR8=[QR21;QR43];

%% 16-D Saha’s and Cartwright combination

%Sahas 16-D

W11=cartp(W1,W1);

W12=cartp(W1,W2);

W13=cartp(W1,W3);

W14=cartp(W1,W4);

W21=cartp(W2,W1);

W22=cartp(W2,W2);

W23=cartp(W2,W3);

W24=cartp(W2,W4);
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W31=cartp(W3,W1);

W32=cartp(W3,W2);

W33=cartp(W3,W3);

W34=cartp(W3,W4);

W41=cartp(W4,W1);

W42=cartp(W4,W2);

W43=cartp(W4,W3);

W44=cartp(W4,W4);

%Carwrights 16-D

WR11=cartp(WR1,WR1);

WR12=cartp(WR1,WR2);

WR13=cartp(WR1,WR3);

WR14=cartp(WR1,WR4);

WR15=cartp(WR1,WR5);

WR16=cartp(WR1,WR6);

WR17=cartp(WR1,WR7);

WR18=cartp(WR1,WR8);

WR21=cartp(WR2,WR1);

WR22=cartp(WR2,WR2);

WR23=cartp(WR2,WR3);

WR24=cartp(WR2,WR4);

WR25=cartp(WR2,WR5);

WR26=cartp(WR2,WR6);

WR27=cartp(WR2,WR7);

WR28=cartp(WR2,WR8);
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WR31=cartp(WR3,WR1);

WR32=cartp(WR3,WR2);

WR33=cartp(WR3,WR3);

WR34=cartp(WR3,WR4);

WR35=cartp(WR3,WR5);

WR36=cartp(WR3,WR6);

WR37=cartp(WR3,WR7);

WR38=cartp(WR3,WR8);

WR41=cartp(WR4,WR1);

WR42=cartp(WR4,WR2);

WR43=cartp(WR4,WR3);

WR44=cartp(WR4,WR4);

WR45=cartp(WR4,WR5);

WR46=cartp(WR4,WR6);

WR47=cartp(WR4,WR7);

WR48=cartp(WR4,WR8);

WR51=cartp(WR5,WR1);

WR52=cartp(WR5,WR2);

WR53=cartp(WR5,WR3);

WR54=cartp(WR5,WR4);

WR55=cartp(WR5,WR5);

WR56=cartp(WR5,WR6);

WR57=cartp(WR5,WR7);

WR58=cartp(WR5,WR8);
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WR61=cartp(WR6,WR1);

WR62=cartp(WR6,WR2);

WR63=cartp(WR6,WR3);

WR64=cartp(WR6,WR4);

WR65=cartp(WR6,WR5);

WR66=cartp(WR6,WR6);

WR67=cartp(WR6,WR7);

WR68=cartp(WR6,WR8);

WR71=cartp(WR7,WR1);

WR72=cartp(WR7,WR2);

WR73=cartp(WR7,WR3);

WR74=cartp(WR7,WR4);

WR75=cartp(WR7,WR5);

WR76=cartp(WR7,WR6);

WR77=cartp(WR7,WR7);

WR78=cartp(WR7,WR8);

WR81=cartp(WR8,WR1);

WR82=cartp(WR8,WR2);

WR83=cartp(WR8,WR3);

WR84=cartp(WR8,WR4);

WR85=cartp(WR8,WR5);

WR86=cartp(WR8,WR6);

WR87=cartp(WR8,WR7);

WR88=cartp(WR8,WR8);

%--------------------------Grouping 16D Types------------------------------
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G1=[WR11;WR22; WR55; WR66];

G2=[WR12;WR21; WR56; WR65];

G3=[WR13;WR24; WR57; WR68];

G4=[WR14;WR23; WR58; WR67];

G5=[WR15;WR26; WR51; WR62];

G6=[WR16;WR25; WR52; WR61];

G7=[WR17;WR28; WR53; WR64];

G8=[WR18;WR27; WR54; WR63];

G9=[WR31;WR42; WR75; WR86];

G10=[WR32;WR41; WR76; WR85];

G11=[WR33;WR44; WR77; WR88];

G12=[WR34;WR43; WR78; WR87];

G13=[WR35;WR46; WR71; WR82];

G14=[WR36;WR45; WR72; WR81];

G15=[WR37;WR48; WR73; WR84];

G16=[WR38;WR47; WR74; WR83];

%--------------------------------------------------------------------------

%% Grouping for mapping with msd of 8 and mhd of 4 called C-group

% 16 Groups of 512 points each with Minimum Hamming distance of 4.

F1=[G1;W11];

F2=[G2;W12];

F3=[G3;W13];

F4=[G4;W14];

F5=[G5;W21];

F6=[G6;W22];
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F7=[G7;W23];

F8=[G8;W24];

F9=[G9;W31];

F10=[G10;W32];

F11=[G11;W33];

F12=[G12;W34];

F13=[G13;W41];

F14=[G14;W42];

F15=[G15;W43];

F16=[G16;W44];
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