459 research outputs found

    Minimizing the electricity cost of coordinating houses on microgrids

    Get PDF
    This manuscript presents a comprehensive mathematical model for multi-objective optimization problem of the microgrid. The microgrid consists of houses and local plants, each seen as independent agents with their specific goals. We, also, propose a heuristic algorithm for optimizing the electricity cost by using the concept of load shifting and renewable power sharing among houses in the microgrid for a particular price. Also, the algorithm minimizes the loss of energy by prioritizing power exchange between close houses and minimize discomfort factor. The findings have shown that houses and micro plants working in microgrid setting can make a significant saving. The results have illustrated that our algorithm guarantee nobody will lose in the microgrid

    Energy Optimization and Coordination Frameworks for Smart Homes Considering Incentives From Discomfort and Market Analysis

    Get PDF
    The electricity demand is increasing with the growing use of electricity-based appliances in today’s world. The residential sector’s electricity consumption share is also increasing. Demand response (DR) is a typical way to schedule consumers’ energy consumption and help utility to reduce the peak load demand. Residential demand management can contribute to reduce peak electric demand, decrease electricity costs, and maintain grid reliability. Though the demand management has benefits to the utility and the consumers, controlling the consumers electricity consumption provides inconvenience to the consumers. The challenge here is to properly address the customers’ inconvenience to encourage them to participate and meanwhile satisfy the required demand reduction efficiently. In this work, new incentive-based demand management schemes for residential houses are designed and implemented. This work investigates two separate DR frameworks designed with different demand reduction coordination strategies. The first framework design constitutes a utility, several aggregators, and residential houses participating in DR program. Demand response potential (DRP), an indicator of whether an appliance can contribute to the DR, guides the strategic allocation of the demand limit to the aggregators. Each aggregator aggregates the DRP of all the controllable appliances under it and sends to the utility. The utility allocates different demand limits to the aggregators based on their respective DRP ratios. Participating residential customers are benefited with financial compensation with consideration of their inconvenience. Two scenarios are discussed in this approach with DRP. One where the thermostatically controlled loads (TCLs) are controlled. The thermal comfort of residents and rewards are used to evaluate the demand response performance. The other scenario includes the time-shiftable appliances control with the same framework. The second framework is a three-level hierarchical control framework for large-scale residential DR with a novel bidding scheme and market-level analysis. It comprises of several residential communities, local controllers (LCs), a central controller (CC), and the electricity market. A demand reduction bidding strategy is introduced for the coordination among several LCs under a CC in this framework. Incentives are provided to the participating residential consumers, while considering their preferences, using a continuous reward structure. A simulation study on the 6-bus Roy Billinton Test System with 1;200 residential consumers demonstrates the financial benefits to both the electric utility and consumers

    Coordinated Smart Home Thermal and Energy Management System Using a Co-simulation Framework

    Get PDF
    The increasing demand for electricity especially during the peak hours threaten the grid reliability. Demand response (DR), changing the load pattern of the consumer in response to system conditions, can decrease energy consumption during periods of high wholesale market price and also maintain system reliability. Residential homes consume 38% of the total electric energy in the U.S., making them promising for DR participation. Consumers can be motivated to participate in DR programs by providing incentives (incentive-based DR), or by introducing a time-varying tariff for electricity consumption (price-based DR). A home energy management system (HEMS), an automated system which can alter the residential consumer’s energy consumption pattern based on the price of electricity or financial incentives, enables the consumers to participate in such DR programs. HEMS also should consider consumer comfort during the scheduling of the heating, ventilation, and air conditioning (HVAC) and other appliances. As internal heat gain of appliances and people have a significant effect in the HVAC energy consumption, an integrated HVAC and appliance scheduling are necessary to properly evaluate potential benefits of HEMS. This work presents the formulation of HEMS considering combined scheduling of HVAC and appliances in time-varying tariff. The HEMS also considers the consumer comfort for the HVAC and appliances while minimizing the total electricity cost. Similarly, the HEMS also considers the detailed building model in EnergyPlus, a building energy analysis tool, to evaluate the effectiveness of the HEMS. HEMS+, a communication interface to EnergyPlus, is designed to couple HEMS and EnergyPlus in this work. Furthermore, a co-simulation framework coupling EnergyPlus and GridLAB-D, a distribution system simulation tool, is developed. This framework enables incorporation of the controllers such as HEMS and aggregator, allowing controllers to be tested in detail in both building and power system domains. Lack of coordination among a large number of HEMS responding to same price signal results in peak more severe than the normal operating condition. This work presents an incentive-based hierarchical control framework for coordinating and controlling a large number of residential consumers’ thermostatically controlled loads (TCLs) such as HVAC and electric water heater (EWH). The potential market-level economic benefits of the residential demand reduction are also quantified

    Mas Roig Mini-Grid:A Renewable-Energy-Based Rural Islanded Microgrid

    Get PDF

    Design and implementation of multiprotocol framework for residential prosumer incorporation in flexibility markets

    Get PDF
    The growth of distributed renewable energy in the electrical grid presents challenges to its stability and quality. To address this at the local level, flexibility energy strategies emerge as an innovative technique. However, managing these strategies in residential areas becomes complex due to the unique characteristics of each prosumer. A major challenge lies in managing communication among diverse devices with different protocols. To address these issues, a comprehensive framework is designed and implemented to facilitate prosumers' integration in flexibility strategies, addressing communication at various levels. The effectiveness of the proposed framework is demonstrated through its implementation in a real smart home environment with diverse devices. The framework enables seamless integration and communication between IoT devices and IEC 61,850-compliant power devices. This research presents a novel approach to address the challenges of managing flexibility strategies in residential areas, providing a practical solution for prosumers to actively participate in optimizing energy consumption and enhancing the stability and quality of the electricity system amidst the growing integration of distributed renewable energy.</p

    Energy management in microgrids with renewable energy sources: A literature review

    Get PDF
    Renewable energy sources have emerged as an alternative to meet the growing demand for energy, mitigate climate change, and contribute to sustainable development. The integration of these systems is carried out in a distributed manner via microgrid systems; this provides a set of technological solutions that allows information exchange between the consumers and the distributed generation centers, which implies that they need to be managed optimally. Energy management in microgrids is defined as an information and control system that provides the necessary functionality, which ensures that both the generation and distribution systems supply energy at minimal operational costs. This paper presents a literature review of energy management in microgrid systems using renewable energies, along with a comparative analysis of the different optimization objectives, constraints, solution approaches, and simulation tools applied to both the interconnected and isolated microgrids. To manage the intermittent nature of renewable energy, energy storage technology is considered to be an attractive option due to increased technological maturity, energy density, and capability of providing grid services such as frequency response. Finally, future directions on predictive modeling mainly for energy storage systems are also proposed

    Application Of Formal Specification Technique To Microgrid Representation

    Get PDF
    This thesis uses formal specification techniques to analyze and model a microgrid. A microgrid is a small, local electrical grid, often supplied by a single generator, that can connect to the larger electrical grid, but can also disconnect from it, going into “island mode.” Thanks to the growth in renewable energy, microgrids represent a growing segment of the electrical power generation domain. And like any member of the domain they are safety-critical systems, meaning that even a small mistake in their implementation risks damage to life and property.Formal specification is a way to abrogate the risks of safety critical systems by ensuring that the system under consideration is fully described, modeled, and analyzed prior to implementation, and the description and model are robust and error-free. However, at present there is no established approach to the use of formal specification techniques of microgrid systems. This thesis proposes a specification that can serve as a foundation for future work in the microgrid domain as well as an aid to communication about microgrids. The work uses Unified Modeling Language (UML) graphical notation and an accompanying Object Constraint Language (OCL) formal specification. The model transformation accomplished through the use of Iterative Development techniques is outlined in detail to serve as a guide to future researchers

    Towards transactive energy systems: An analysis on current trends

    Get PDF
    This paper presents a comprehensive analysis on the latest advances in transactive energy systems. The main contribution of this work is centered on the definition of transactive energy concepts and how such systems can be implemented in the smart grid paradigm. The analyzed works have been categorized into three lines of research: (i) transactive network management; (ii) transactive control; and (iii) peer-to-peer markets. It has been found that most of the current approaches for transactive energy are available as a model, lacking the real implementation to have a complete validation. For that purpose, both scientific and practical aspects of transactive energy should be studied in parallel, implementing adequate simulation platforms and tools to scrutiny the results.This work has received funding from the European Union's Horizon 2020 research and innovation programme under project DOMINOES (grant agreement No. 771066) and from FEDER Funds through COMPETE program and from National Funds through FCT under the project UID/EEA/00760/2019.info:eu-repo/semantics/publishedVersio

    Enhancing PV Self-consumption within an Energy Community using MILP-based P2P Trading

    Get PDF
    The high penetration of Distributed Energy Resources (DERs) into the demand side has led to an increase in the number of consumers becoming prosumers. Recently, Peer-to-Peer (P2P) energy trading has gained increased popularity as it is considered an effective approach for managing DERs and offering local market solutions. This paper presents a P2P Energy Management System (EMS) that aims to reduce the absolute net energy exchange with the utility by exploiting two days-ahead energy forecast and allowing the exchange of the surplus energy among prosumers. Mixed-Integer Linear Programming (MILP) is used to schedule the day-ahead household battery energy exchange with the utility and other prosumers. The proposed system is tested using the measured data for a community of six houses located in London, UK. The proposed P2P EMS enhanced the energy independency of the community by reducing the exchanged energy with the utility. The results show that the proposed P2P EMS reduced the household operating costs by up to 18.8% when it is operated as part of the community over four months compared to operating individually. In addition, it reduced the community’s total absolute net energy exchange with the utility by nearly 25.4% compared to a previous state-of-the-art energy management method
    • …
    corecore