3,860 research outputs found

    Optimal design of single-tuned passive filters using response surface methodology

    Get PDF
    This paper presents an approach based on Response Surface Methodology (RSM) to find the optimal parameters of the single-tuned passive filters for harmonic mitigation. The main advantages of RSM can be underlined as easy implementation and effective computation. Using RSM, the single-tuned harmonic filter is designed to minimize voltage total harmonic distortion (THDV) and current total harmonic distortion (THDI). Power factor (PF) is also incorporated in the design procedure as a constraint. To show the validity of the proposed approach, RSM and Classical Direct Search (Grid Search) methods are evaluated for a typical industrial power system

    Modern optimal controllers for hybrid active power filter to minimize harmonic distortion

    Get PDF
    Nowadays, AC distributed power networks are facing many challenges in guaranteeing and improving the required level of power quality indices in power networks with increasing nonlinear, time-variable and unbalanced loads. Power networks can benefit from avoiding and minimizing different AC problems, such as frequency fluctuation and Total Harmonic Distortions (THDs), by using power filters, such as Hybrid Active Power Filters (HAPFs). Therefore, attention towards responsible power quality indices, such as Total Harmonic Distortion (THD), Power Factor (P.F) and Harmonic Pollution (HP) has increased. THD and HP are important indices to show the level of power quality at the network. In this paper, modern optimization techniques have been employed to optimize HAPF parameters, and minimize HP, by using a nature-inspired optimization algorithm, namely, Whale Optimization Algorithm (WOA). The WOA algorithm is compared to the most competitive powerful metaheuristic optimization algorithms: Manta Ray Foraging Optimization (MRFO), Artificial Ecosystem-based Optimization (AEO) and Golden Ratio Optimization Method (GROM). In addition, the WOA, and the proposed modern optimization algorithms, are compared to the most competitive metaheuristic optimization algorithm for HAPF from the literature, called L-SHADE. The comparison results show that the WOA algorithm outperformed all other optimization algorithms, in terms of minimizing harmonic pollution, through optimizing parameters of HAPF; therefore, this paper aims to present the WOA as a powerful control model for HAPF

    Investigation of the Stochastic Harmonic Distortion Caused by Multiple Converters in Micro-Grid

    Get PDF
    The primary emphasis of this inquiry is on the influence of voltage-source converter harmonics on the power quality of a power system. The level of harmonic distortion produced by several VSCs may significantly vary in the presence of uncertainties, making it challenging to predict its behavior due to these fluctuations. These uncertainties may arise due to the selection of design parameters or the adjustment of system characteristics. Therefore, it is essential to use statistical techniques to quantify the levels of VSC harmonic distortion in the presence of uncertainty. The experimental assessment of the UDR's performance was conducted using a practical microgrid lab that included three VSCs. The MCS approach functioned as a benchmark for evaluating the precision of the anticipated UDR results. The UDR consistently achieved the expected results, saving a large amount of time compared to the MCS technique. Furthermore, the UDR findings closely aligned with the MCS strategy

    Design and Implementation of Hybrid Active Power Filter (HAPF) for UPS System

    Get PDF
    Hybrid Active Power Filter (HAPF) is designed and applied for Uninterrupted Power Supply (UPS) System to mitigate harmonic currents in UPS during the power conversion from rectifiers to inverters (AC-DC-AC Converters). Various UPS types and topologies are used for continuous power supply without delay and protection to connected loads. In spite of the fact that UPS is one of the power quality apparatus but it has also drawback of disturbing the power system quality of system by current harmonics and voltage distortion during conversion of power. Passive and EMI Filters could not eliminate harmonics effectively from UPS system therefore it requires modern, rapid filtering method as well combination of Active and Passive Filters. Proposed model of HAPF for UPS System could mitigate current harmonics for optimal power transfer and minimize losses, increase overall efficiency, reliability and life span of equipment. Higher harmonic current and higher voltage distortion leads to greater power loss. In this paper the (d-q) theorem is applied for the identification of harmonic currents. The d-q theorem and calculation creates the signal of reference compensation current and this produced signal of current is tracked by the yield current of the voltage source converter.. Hysteresis based controller for HAPF is applied to create the switching signals to regulate and maintain the voltage source converter output currents. Harmonics and efficiencies are analyzed at different loads and on charging and discharging of batteries of various UPS System in different industries and sectors on the basis of experimental investigation then HAPF is designed and implemented. In simulation results, it is observed that THD reduced from 46 to 10%, the harmonic currents were compensated and eliminated effectively which improved power quality of UPS System. Furthermore, addition of proposed HAPF could save the power up to 15 % which lost due to poor power quality of UPS System

    A Fully-Integrated Reconfigurable Dual-Band Transceiver for Short Range Wireless Communications in 180 nm CMOS

    Get PDF
    © 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.A fully-integrated reconfigurable dual-band (760-960 MHz and 2.4-2.5 GHz) transceiver (TRX) for short range wireless communications is presented. The TRX consists of two individually-optimized RF front-ends for each band and one shared power-scalable analog baseband. The sub-GHz receiver has achieved the maximum 75 dBc 3rd-order harmonic rejection ratio (HRR3) by inserting a Q-enhanced notch filtering RF amplifier (RFA). In 2.4 GHz band, a single-ended-to-differential RFA with gain/phase imbalance compensation is proposed in the receiver. A ΣΔ fractional-N PLL frequency synthesizer with two switchable Class-C VCOs is employed to provide the LOs. Moreover, the integrated multi-mode PAs achieve the output P1dB (OP1dB) of 16.3 dBm and 14.1 dBm with both 25% PAE for sub-GHz and 2.4 GHz bands, respectively. A power-control loop is proposed to detect the input signal PAPR in real-time and flexibly reconfigure the PA's operation modes to enhance the back-off efficiency. With this proposed technique, the PAE of the sub-GHz PA is improved by x3.24 and x1.41 at 9 dB and 3 dB back-off powers, respectively, and the PAE of the 2.4 GHz PA is improved by x2.17 at 6 dB back-off power. The presented transceiver has achieved comparable or even better performance in terms of noise figure, HRR, OP1dB and power efficiency compared with the state-of-the-art.Peer reviewe

    Minimizing harmonic distortion impact cause by CS using meta heuristic technique

    Get PDF
    Non-linear load in the distribution system has caused negative impact to its power quality especially on harmonic distortion. Charging Station (CS) is a non-linear load that widely promoted with the aim to support the continuous usage of Electric Vehicle (EV). This research is focusing on optimal placement and sizing of multiple passive filter to mitigate harmonic distortion due to CS usage at distribution system. There are 6 units of CS which being placed in low voltage buses which indirectly will inject harmonic to the system during charging. Power system harmonic flow, passive filter, CS, battery and the analysis will be model in MATLAB. Multi-objective function which are weight summation approach (WSA) and Pareto Front are used to assist meta heuristic technique which is Modified Lightning Search Algorithm (MLSA) to identify optimum location and sizing of passive filter based on improvement on propose five parameters. From the result, the optimal placements and sizing of passive filter able to reduce the maximum Total Harmonic Distortion (THD) for voltage, current and apparent losses respectively. Therefore, the propose method is suitable to reduce harmonic distortion as well as apparent losses at distribution system with present of CS

    Approach of Passive Filters using NSGA II in industrial installations: Part I

    Full text link
    The optimization of passive filters in industrial systems has been presented by different computational methods. The objective of this paper is to develop a computational algorithm with NSGA II to select the configuration and design parameters of a set of passive filters for industrial installations. As a methodology, the optimization problem was addressed using three independent objective functions of innovative character for compensation of harmonics through passive filters as a multiobjective problem. The results were the computational solution to this problem that determines a set of Pareto optimal solutions (Frontier). In addition, the computational tool has several new features such as: calculates the parameters that characterize the filters, but also selects the type of configuration and the number of branches of the filter in each candidate bar according to a set of pre-established configurations according to PRODIST-M8 (Brazilian Standard) and IEEE 519-2014. Also determine solutions with good power quality indicators (THD, TDD and NPV) for several characteristic and non-characteristic scenarios of the system that allow to represent: daily variations of the load, and variations of system parameters and filters. It evaluates the cost of energy bills in an industrial power grid that has different operating conditions (characteristic scenarios) and evaluates the economic effect of harmonic filters as reactive power compensators

    Optimized Weight Point ADF using SOS Algorithm

    Get PDF
    Active dc filter (ADF) has become the most viable alternatives for the compensation of the harmonics in the power system analysis. These filters are capable enough to minimize the total harmonic distortion (THD) and provide compensation towards the power quality issues appearing in the transmission system. A simulated model of a HVDC system is designed in MATLAB and the disturbance is injected in the form of load change and the controller efficacy is checked. This paper basically deals with the operational characteristics of the active filter for specific voltage rating irrespective of load and used to reduce harmonics present in the output voltage of the HVDC converter when cascaded with the inverter. The gains of the ADF are optimized with Symbiotic Organism Search Optimization (SOS) with THD as a constraint

    Advanced and Innovative Optimization Techniques in Controllers: A Comprehensive Review

    Get PDF
    New commercial power electronic controllers come to the market almost every day to help improve electronic circuit and system performance and efficiency. In DC–DC switching-mode converters, a simple and elegant hysteretic controller is used to regulate the basic buck, boost and buck–boost converters under slightly different configurations. In AC–DC converters, the input current shaping for power factor correction posts a constraint. But, several brilliant commercial controllers are demonstrated for boost and fly back converters to achieve almost perfect power factor correction. In this paper a comprehensive review of the various advanced optimization techniques used in power electronic controllers is presented
    • …
    corecore