3,996 research outputs found

    Probabilistic Decoupling Control for Stochastic Non-Linear Systems Using EKF-Based Dynamic Set-Point Adjustment

    Get PDF
    In this paper, a novel decoupling control scheme is presented for a class of stochastic non-linear systems by estimation-based dynamic set-point adjustment. The loop control layer is designed using PID controller where the parameters are fixed once the design procedure is completed, which can be considered as an existing control loop. While the compensator is designed to achieve output decoupling in probability sense by a set-point adjustment approach based on the estimated states of the systems using extended Kalman filter. Based upon the mutual information of the system outputs, the parameters of the set-point adjustment compensator can be optimised. Using this presented control scheme, the analysis of stability is given where the tracking errors of the closed-loop systems are bounded in probability one. To illustrate the effectiveness of the presented control scheme, one numerical example is given and the results show that the systems are stable and the probabilistic decoupling is achieved simultaneously

    On the generalization of linear least mean squares estimation to quantum systems with non-commutative outputs

    Get PDF
    The purpose of this paper is to study the problem of generalizing the Belavkin-Kalman filter to the case where the classical measurement signal is replaced by a fully quantum non-commutative output signal. We formulate a least mean squares estimation problem that involves a non-commutative system as the filter processing the non-commutative output signal. We solve this estimation problem within the framework of non-commutative probability. Also, we find the necessary and sufficient conditions which make these non-commutative estimators physically realizable. These conditions are restrictive in practice.Comment: 31 page

    Output Feedback Stabilization for Dynamic MIMO Semi-linear Stochastic Systems with Output Randomness Attenuation

    Get PDF
    In this paper, the problem of randomness attenuation is investigated for a class of MIMO semi-linear stochastic systems. To achieve this control objective, a m-block backstepping controller is designed to stabilize the closed-loop systems in probability sense. In addition, the output randomness attenuation can be achieved by optimising the design parameters using minimum entropy criterion. The effectiveness of this presented control algorithm can be verified by a given numerical example. In summary, the main contributions of this paper are characterized as follows: (1) an output feedback design method is adapted to stabilise the dynamic multi-variable semi-linear stochastic systems by block backstepping; (2) randomness of the system output is attenuated by searching the optimal design parameter based on the entropy criterion; (3) a framework of performance enhancement for stochastic systems is developed

    A Survey of the Probability Density Function Control for Stochastic Dynamic Systems

    Get PDF
    Probability density function (PDF) control strategy investigates the controller design approaches in order to to realise a desirable distributions shape control of the random variables for the stochastic processes. Different from the existing stochastic optimisation and control methods, the most important problem of PDF control is to establish the evolution of the PDF expressions of the system variables. Once the relationship between the control input and the output PDF is formulated, the control objective can be described as obtaining the control input signals which would adjust the system output PDFs to follow the pre-specified target PDFs. This paper summarises the recent research results of the PDF control while the controller design approaches can be categorised into three groups: 1) system model-based direct evolution PDF control; 2) model-based distribution-transformation PDF control methods and 3) databased PDF control. In addition, minimum entropy control, PDF-based filter design, fault diagnosis and probabilistic decoupling design are also introduced briefly as extended applications in theory sense

    Minimum-Information LQG Control - Part I: Memoryless Controllers

    Full text link
    With the increased demand for power efficiency in feedback-control systems, communication is becoming a limiting factor, raising the need to trade off the external cost that they incur with the capacity of the controller's communication channels. With a proper design of the channels, this translates into a sequential rate-distortion problem, where we minimize the rate of information required for the controller's operation under a constraint on its external cost. Memoryless controllers are of particular interest both for the simplicity and frugality of their implementation and as a basis for studying more complex controllers. In this paper we present the optimality principle for memoryless linear controllers that utilize minimal information rates to achieve a guaranteed external-cost level. We also study the interesting and useful phenomenology of the optimal controller, such as the principled reduction of its order

    Modeling and computation of an integral operator Riccati equation for an infinite-dimensional stochastic differential equation governing streamflow discharge

    Full text link
    We propose a linear-quadratic (LQ) control problem of streamflow discharge by optimizing an infinite-dimensional jump-driven stochastic differential equation (SDE). Our SDE is a superposition of Ornstein-Uhlenbeck processes (supOU process), generating a sub-exponential autocorrelation function observed in actual data. The integral operator Riccati equation is heuristically derived to determine the optimal control of the infinite-dimensional system. In addition, its finite-dimensional version is derived with a discretized distribution of the reversion speed and computed by a finite difference scheme. The optimality of the Riccati equation is analyzed by a verification argument. The supOU process is parameterized based on the actual data of a perennial river. The convergence of the numerical scheme is analyzed through computational experiments. Finally, we demonstrate the application of the proposed model to realistic problems along with the Kolmogorov backward equation for the performance evaluation of controls
    corecore