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Abstract—In this paper, the problem of randomness attenua-
tion is investigated for a class of MIMO semi-linear stochastic
systems. To achieve this control objective, a m-block backstepping
controller is designed to stabilize the closed-loop systems in prob-
ability sense. In addition, the output randomness attenuation can
be achieved by optimising the design parameters using minimum
entropy criterion. The effectiveness of this presented control
algorithm can be verified by a given numerical example. In
summary, the main contributions of this paper are characterized
as follows: (1) an output feedback design method is adapted
to stabilise the dynamic multi-variable semi-linear stochastic
systems by block backstepping; (2) randomness of the system
output is attenuated by searching the optimal design parameter
based on the entropy criterion; (3) a framework of performance
enhancement for stochastic systems is developed.

I. INTRODUCTION

Backstepping design method [1] has been presented as an
effective approach for the controller design of SISO deter-
ministic nonlinear control systems. For MIMO deterministic
non-linear systems, [2][3] presented various controllers based
on backstepping design. Recently, block backstepping design
is investigated by Yaote Chang[4] and the extension of this
results has been given in [5]. For stochastic systems, most
of the results focus on the SISO systems[6]. However, very
few results exist for the MIMO stochastic systems with block
backstepping design.

For MIMO stochastic systems, the randomness of steady
outputs can be bounded once the stochastic systems are stabi-
lized. However, the randomness of the systems outputs would
affect the control performance subjected to the random noises
and couplings among the stochastic outputs[7]. Therefore, the
investigation of the randomness is significant to enhance the
performance of the MIMO stochastic systems. Notice that
the probability density functions of these outputs obey non-
Gaussian distributions; hence the analysis using variance and
covariance are not suitable to this problem. In this case, the
entropy criterion is introduced to characterise the randomness
of the system outputs. In other words, the purpose of this paper
is to stabilize the stochastic systems and minimize the entropy

of the system outputs due to the fact that there is no existing
solution to attenuate the randomness of a MIMO Semi-linear
stochastic system.

Motivated by the block backstepping design, the out-
put feedback stabilization for a class of MIMO semi-linear
stochastic systems are investigated in the paper due to the fact
that the semi-linear stochastic systems become a significant
research topic[8] . Based upon the system model and the
control objective, a novel observer-based output feedback
controller is design by m-block backstepping which can be
used to stabilized the MIMO stochastic systems. Furthermore,
the controller design parameters can be optimised by mini-
mizing the entropy criteria, where the entropy of the system
outputs can be estimated by multidimensional kernel density
estimation. Following this presented control algorithm, the
stability of the closed-loop systems can be guaranteed in
probability sense while the randomness of the system outputs
are attenuated by the parametric optimisation.

II. PRELIMINARIES

A. Problem Description

Consider the following MIMO semi-linear stochastic sys-
tems with m blocks which can be formulated as follows:

dx̄i = (Aix̄i + x̄i+1) dt+G1 (x̄1) dβt, i = 1, · · · ,m− 1

dx̄m = (Amx̄m + ū) dt+Gm (x̄1) dβt

ȳ = x̄1 (1)

where βt is the s-dimensional vector-valued Wiener process,
x̄i is the n-dimensional state vector for i-th block, Ai stands
for the coefficient matrices with appropriate dimension, Gi (·)
are n-dimensional nonlinear function. ȳ and ū are the system
output vector and the vector-valued control input, respectively.
The underlying probability space is triple (Ω,F ,P), where Ω
is the sample space of continuous functions, F is a filtration
adapted to the Wiener process βt, and P is the reference
probability measure on Ω
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Note that the system described above is in block strict-
feedback format where the system outputs and control inputs
are with the same dimension. As mentioned in Section I, the
control objective is to stabilize this stochastic system in proba-
bility sense and minimize the entropy of the stochastic outputs.
Before presenting the control algorithm, an assumption about
the nonlinear function Gi (·) is given as follows:

Assumption 1: The n× s nonlinear function Gi (·) for each
block of the semi-linear stochastic systems(1) satisfies

‖Gi (Xi)‖2 ≤ σi (2)

where ‖·‖2 denotes the induced Euclidean norm for matrices
and σi is one positive real constant.

B. Stability in Probability Sense

Consider the general stochastic nonlinear system:

dx = f (x) dt+ g (x) dw (3)

where x ∈ Rn is the state, w is an r-dimensional independent
standard Wiener process, the underlying probability space is
the triple (Ω,F ,P), and f : Rn → Rn and g : Rn → Rn×r

are locally Lipschitzian and with the following initial values

f (0) = 0, g (0) = 0 (4)

Definition 1 ([9]): The solution process {x (t) , t ≥ 0} of
the stochastic system (3) is said to be bounded in probability
if lim

t→∞
sup

0≤c≤∞
P {|x (t)| > c} = 0

Definition 2 ([10]): For any given V (x) ∈ C 1,2, associated
with the stochastic differential equation (3), the differential
operator L can be defined as follows:

L V =
∂V

∂x
f (x) +

1

2
Tr

{
gT (x)

∂2V

∂x2
g (x)

}
(5)

We recall the following lemma [6] which gives the sufficient
conditions on the boundedness in probability sense.

Lemma 1 ([6]): Consider system (3) and suppose that
there exists a positive-define and radially unbounded function
V (x) ∈ C 1,2,µ1 (·) , µ2 (·) ∈ K∞, positive-define and radially
unbounded function W (x) and constant c > 0 such that

µ1 (|x|) ≤ V (x) ≤ µ2 (|x|)
L V (x) ≤ −W (x) + c (6)

then the solution process of the system (3) is bounded in
probability sense.

C. Entropy and Kernel Density Estimation

The information theory has been introduced by [11], where
entropy can be used as a measure of the uncertainty of the
random variables. For various purposes, a lot of different
definitions of the entropy have been presented such as Shannon
entropy, Min-entropy, Hartley entropy and Rényi’s entropy. In
this paper, the quadratic Rényi’s entropy is selected to use,
which has been introduced by [12] with the form

H2(ȳ) = − log

∫
γ2 (ȳ)dȳ (7)

where γ (·) stands for the joint probability density functions
(JPDF) of the system outputs. The data-based multidimen-
sional kernel density estimation (MKDE) [13] is used to
estimate the JPDF of the random variables. Note that entropy
is equivalent to variance for Gaussian variable [14].

For vector-valued continuous system outputs ȳ ∈ Rn, with
its sampled data points {ȳk : k = 1, . . . , N}, the probability
density function system output ȳ can be estimated as follows:

γ̂ (ȳ) =
1

N

N∑
k=1

GΣ (ȳ − ȳk) (8)

where GΣ (·) is the Gaussian function defined as follows:

GΣ (x) = (2π)
−n

2 (det Σ)
− 1

2 exp

(
−1

2
xT Σ−1x

)
(9)

Since the JPDF can be estimated by MKDE, Eq.(7) can be
rewritten as follows:

H2 (ȳ) = − log V (ȳ) (10)

where V (·) stands for information potential [11]. Furthermore,
it can be approximated by

V̂ (ȳ) =
1

N2

N∑
i,j=1

G√2Σ (ȳi − ȳj) (11)

III. CONTROL ALGORITHM

A. Linear estimator design

The estimator can be designed as follows.

dˆ̄xi =
(
Ai ˆ̄xi + ˆ̄xi+1 + Li

(
ȳ − ˆ̄x1

))
dt, i = 1, · · · ,m− 1

dˆ̄xm =
(
Am ˆ̄xm + ū+ Lm

(
ȳ − ˆ̄x1

))
dt (12)

where Li is the gain of estimator.
The error of the estimator can be introduced as ˜̄x = x̄− ˆ̄x

which satisfies

d˜̄x =


A1 − L1 I

−L2 A2
. . .

...
...

. . . I
−Lm 0 . . . Am

 ˜̄xdt+


G1 (ȳ)
G2 (ȳ)

...
Gm (ȳ)

 dβt
: = A0 ˜̄xdt+G0 (ȳ) dβt (13)

Using the linear observer design method, A0 should be
designed to be Hurwitz, then the semi-linear stochastic system
with estimator can be re-expressed as follows:

d˜̄x = A0 ˜̄xdt+G0 (ȳ) dβt

dx̄1 =
(
A1x̄1 + ˜̄x2 + ˆ̄x2

)
dt+G1 (ȳ) dβt

dˆ̄xi =
(
Fi + ˆ̄xi+1

)
dt, i = 2, · · · ,m− 1

dˆ̄xm = (Fm + ū) dt

ȳ = x̄1 (14)

where Fi = Ai ˆ̄xi + Li

(
ȳ − ˆ̄x1

)
, i = 2, · · · ,m



B. Block backstepping controller design

Since the semi-linear stochastic system with linear estimator
is in the strict feedback form, block backstepping can be
applied for this MIMO case.

For each block of the original system(1), consider ϕ̄i (ȳ, x̂i)
as the virtual input which can be rewritten as

ϕ̄i (ȳ, x̂i) = [ϕi1 (ȳ, x̂i) , . . . , ϕin (ȳ, x̂i)]
T (15)

where x̂i = [x̄1, ˆ̄x2, . . . , ˆ̄xi], i = 1, · · · ,m− 1.
Then the vector-valued error variables can be presented by

z̄i = ˆ̄xi+1 − ϕ̄i (ȳ, x̂i) (16)

where z̄i = [zi1, . . . , zin]
T ,i = 1, · · · ,m− 1.

Using Ito’s lemma, we have

dz̄i =

[(
Fi+1 + ˆ̄xi+2

)
− Φ1

(
F1 + ˆ̄x2

)
− 1

2
Π1

−
i∑

l=2

Φl

(
Fl + ˆ̄xl+1

)]
dt− Φ1G1 (ȳ) dβt

=
(
Ξi + ˆ̄xi+2

)
dt− Φ1G1 (ȳ) dβt (17)

where

Φ1 = [∇ȳϕ11 (ȳ) , . . . ,∇ȳϕ1n (ȳ)]
T

Φl =
[
∇ˆ̄xl

ϕl1 (ȳ, x̂l) , . . . ,∇ˆ̄xl
ϕln (ȳ, x̂l)

]T
Π1 =

 Tr
{
GT

1 (x̄) (Hx̄ϕ11 (x̄1))G1 (x̄1)
}

...
Tr
{
GT

1 (x̄) (Hx̄ϕ1n (x̄1))G1 (x̄1)
}
 (18)

Ξi = Fi+1 − Φ1

(
F1 + ˆ̄x2

)
− 1

2
Π1 −

i∑
l=2

Φl

(
Fl + ˆ̄xl+1

)
To stabilize the entire stochastic system, we employ a

Lyapunov function candidate which is presented as follows:

V =
1

2

n∑
k=1

ȳ2
k +

b

2

(
x̃TPx̃

)2
+

1

4

m−1∑
i=1

n∑
l=1

z̄4
il (19)

where P denotes the positive definite matrix which satisfies
A0

TP + PA0 < 0.
Now we start to analyze the property of L V for the

proposed Lypunov function candidate.

L V = ȳT
(
A1ȳ + ˜̄x2 + ˆ̄x2

)
+

1

2
Tr
{
GT

1 (ȳ)G1 (ȳ)
}

+

m−1∑
i=1

ηi
(
Ξi + ˆ̄xi+2

)
+

3

2
Tr
{

ΓiΦ1G1 (ȳ) (Φ1G1 (ȳ))
T
}

+ 2bTr
{
GT

0 (ȳ)
(
2Px̃x̃TP + x̃TPx̃P

)
G0 (ȳ)

}
− bx̃TPx̃‖x̃‖2 (20)

where

ηi =
[
z3
i1, . . . , z

3
in

]
Γi = diag

(
z2
i1, . . . , z

2
in

)
(21)

The trace terms of L V remain difficult to handle, thus a
useful lemma is given here which can be used repeatedly to
simplify the formulation.

Lemma 2: Consider that A1, A2, B ∈ Rn×n are n-
dimensional square matrices and D ∈ Rn×n is diagonal
matrix, where A1 = [ā11, . . . , ā1n]

T , A2 = [ā21, . . . , ā2n] and
D = diag {d1, . . . , dn}. Then the following inequality holds.

Tr {DA1BA2} ≤
n∑

i=1

‖di‖ ‖ā1i‖ ‖ā2i‖ ‖B‖ (22)

Proof: Using the structure of the matrices which has been
mentioned above, we can have

Tr {DA1BA2}

= Tr


 d1

. . .
dn


 a11

...
a1n

B [ a21 · · · a2n

]
= Tr


 d1

. . .
dn


 a11Ba21 . . . a11Ba2n

...
. . .

...
a1nBa21 . . . a1nBa2n




=

n∑
i=1

dia1iBa2i

≤
n∑

i=1

‖dia1iBa2i‖ (23)

Following the property of the norm operation, we have

n∑
i=1

‖dia1iBa2i‖ ≤
n∑

i=1

‖di‖ ‖a1i‖ ‖a2i‖ ‖B‖ (24)

which ends the proof of Lemma 2
Based upon Lemma 2, we can obtain the following inequal-

ities in order to deal with the trace terms in Eq.(20) separately
using Young’s inequality.

At firstly, we have

Tr
{

ΓΦ1G1 (ȳ)GT
1 (ȳ) ΦT

1

}
≤

n∑
i=1

z2
1i

∥∥∇x̄ϕ
T
1i (ȳ)

∥∥
2
‖∇x̄ϕ1i (ȳ)‖2‖G1 (ȳ)‖2

∥∥GT
1 (ȳ)

∥∥
2

≤
n∑

i=1

ε2
1i

2
z4

1i

∥∥∇x̄ϕ
T
1i (ȳ)

∥∥2
+

n∑
i=1

1

2ε2
1i

‖G1 (ȳ)‖42

=

n∑
i=1

ε2
1i

2
z4

1i

∥∥∇x̄ϕ
T
1i (x̄1)

∥∥2
+

n∑
i=1

1

2ε2
1i

σ4
1 (25)

Next, we further obtain

Tr
{
GT

1 (ȳ)G1 (ȳ)
}
≤ n‖G1 (ȳ)‖2 = nσ2

1 (26)



and

2bTr
{
GT

0 (ȳ)
(
2Px̃x̃TP + x̃TPx̃P

)
G0 (ȳ)

}
= 4b

∥∥GT
0 (ȳ)Px̃

∥∥2

F
+ 2bx̃TPx̃Tr

{
PG0 (ȳ)GT

0 (ȳ)
}

≤ 4b
√
s
∥∥GT

0 (ȳ)
∥∥2‖P‖2‖x̃‖2

+ 2b
∥∥Tr {PG0 (ȳ)GT

0 (ȳ)
}∥∥ ‖P‖ ‖x̃‖2

≤
(
ε̃2

1 + ε̃2
2

2

)
‖x̃‖4 +

8b2s

ε̃2
1

∥∥GT
0 (ȳ)

∥∥4‖P‖4

+
2b2

ε̃2
2

‖P‖2
(

nm∑
i=1

|pi|
∥∥GT

0 (ȳ)
∥∥2

)2

=

(
ε̃2

1 + ε̃2
2

2

)
‖x̃‖4 + c̃ (27)

where ε̃1, ε̃2, ε1i are any real positive numbers. ‖·‖F stands
for Frobenius norm.

Moreover, notice that c̃ ≥ 0,

c̃ =
8b2s

ε̃2
1

∥∥GT
0 (ȳ)

∥∥4‖P‖4 +
2b2

ε̃2
2

‖P‖2
(

nm∑
i=1

|pi|
∥∥GT

0 (ȳ)
∥∥2

)2

(28)

and the following inequality always holds

−bx̃TPx̃‖x̃‖2 ≤ −bλmin {P} ‖x̃‖4 (29)

Substituting these inequalities Eq. (23)-Eq. (26) to L V , as
a result, Eq. (20) can be rewritten as the following inequality
which can be used to evaluate the controller for stabilization.

L V ≤ ȳT
(
A1ȳ + ˜̄x2 + ˆ̄x2

)
+

1

2
nσ2

1 +

m−1∑
i=1

ηi
(
Ξi + ˆ̄xi+2

)
+

3

2

(
n∑

i=1

ε2
1i

2
z4

1i

∥∥∇x̄ϕ
T
1i (x̄1)

∥∥2
+

n∑
i=1

1

2ε2
1i

σ4
1

)

− bλmin {P} ‖x̃‖4 +

(
ε̃2

1 + ε̃2
2

2

)
‖x̃‖4 + c̃

= ȳT
(
A1ȳ + ˜̄x2 + ˆ̄x2

)
+

m−1∑
i=2

ηi (Ξi + z̄i+1 + ϕ̄i+1 (ȳ, x̂i+1))

+ η1

Ξ1 + z̄2 + ϕ̄2

(
ȳ,̂̄ x2

)
+


ε211
2 z11

∥∥∇x̄ϕ
T
11 (ȳ)

∥∥2

...
ε21n
2 z1n

∥∥∇x̄ϕ
T
1n (ȳ)

∥∥2




+
3

2

n∑
i=1

1

2ε2
1i

σ4
1 + c̃−

(
bλmin {P} −

ε̃2
1 + ε̃2

2

2

)
‖x̃‖4 (30)

Based upon Lemma 1, the control input and virtual inputs
can be chosen as

ϕ̄1 (ȳ) = (−W −A1) ȳ − ˜̄x2

ϕ̄2

(
ȳ, ˆ̄x2

)
= −Ξ1 − z̄2 −Θ− C1z̄1

ϕ̄i+1 (ȳ, x̂i+1) = −Ξi − z̄i+1 − Ciz̄i

u = ϕ̄m (ȳ, x̂m) = −Ξm−1 − z̄m − Cm−1z̄m−1 (31)

where W denotes the positive definite matrix.

Θ =


ε211
2 z11

∥∥∇x̄ϕ
T
11 (ȳ)

∥∥2

...
ε21n
2 z1n

∥∥∇x̄ϕ
T
1n (ȳ)

∥∥2


Ci = diag [ci1, . . . , cin] , cij > 0 (32)

Furthermore, L V can be rewritten as

L V = −ȳTWȳ − p̃‖x̃‖4 −
m−1∑
i=1

n∑
l=1

cilz̄
4
il + c̄ (33)

where

p̃ = bλmin {P} −
ε̃2

1 + ε̃2
2

2
, c̄ =

3

2

n∑
i=1

1

2ε2
1i

σ4
1 + c̃ (34)

Thus, the stabilisation of the closed-loop semi-linear
stochastic system is analysed by the following theorem in
which the structure of the controller that can stabilise the
presented closed-loop stochastic system.

Theorem 1: The semi-linear stochastic system (1) with linear
estimator (12) and control law (31) are guaranteed to be
bounded in probability sense if there exists a positive definite
matrix P which makes p̃ > 0 and A0

TP + PA0 < 0.
Proof: Since A0, P and p̃ are defined in Equations

(13),(19) and (34), the proof is showed above.

C. Output Randomness Optimization

As mentioned in Section II, the performance criterion can
be given as follows:

Jk = − log V̂ (ȳ,W0) (35)

where W0 denotes the set of design parameters, W0 =
{W, ε̃1, ε̃2, ε1i, Ci} , i = 1, . . . , n. k stands for the sampling
instant. Since the log (·)function is with the monotonic in-
creasing property, minimizing of the entropy is equivalent to
maximizing the information potential, thus the performance
criterion can be further simplified only using V̂ (ȳ,W0).

In addition, the following theorem is given to claim that this
performance criterion is a globally convex function based on
another assumption.

Assumption 2: The closed-loop stochastic system output
vector ȳ satisfies the following inequality:

∂ȳ

∂W0
≤M (36)

where the real positive matrix M denotes the upper bound.
Theorem 2: For the presneted control algorithm, there exists

a real positive number δ0 > 0, such that the information po-
tential is globally concave with respect to the design parameter
W0 for all λmin (Σ) > δ0. Thus the equivalent performance
criterion (35) is convex with a global optimum.



Proof: Denote εij,k = ȳi,k − ȳj,k, then we have

∂2V̂k (W0)

∂W 2
0

=
1

N2

∂

∂W0

N∑
i,j=1

∂

∂W0
G√2Σ (εij,k)

=
1

N2

∂

∂W0

N∑
i,j=1

∂G√2Σ (εij,k)

∂εij,k

∂εij,k
∂W0

≤ − 1

N2

(√
2Σ
)−1 ∂

∂W0

N∑
i,j=1

G√2Σ (εij,k)× εij,kM

= −M
N2

(√
2Σ
)−1 N∑

i,j=1

G√2Σ (εij,k)

×
(
εTij,k

(
M −

(√
2Σ
)−1

)
εij,k

)
(37)

As a result, ∂2Vk(ε)
∂W 2

0
≤ 0 if M ≥

(√
2Σ
)−1

. It is shown

that the eigenvalues of ∂2Vk(ε)
∂W 2

0
approach 0− as λmin (Σ) goes

to infinity. Based on the Lemma 3 in [15], V̂k (ȳ,W0) will
be concave since λmin (Σ) is sufficiently large. Moreover,
the performance criterion (35) is convex which results in the
global optimum. It shows that the proof is completed.

Since the performance criterion is convex then the standard
convex optimization approach can be applied to this issue
directly. Without loss of generality, the gradient descent opti-
mization is given as follows:

W0,k+1 = W0,k − γ
∂V̂k (W0)

∂W0

∣∣∣∣∣
W0=W0,k

(38)

where γ > 0 denotes the pre-specified step.

IV. AN NUMERICAL EXAMPLE

To demonstrate the presented algorithm procedure, a multi-
variable semi-linear stochastic system is shown as follows:

dx̄1 =

([
−1 0.5
0 −2

]
x̄1 + x̄2

)
dt+ sin (x̄1)dβt

dx̄2 =

([
−1.5 0
−0.5 −1

]
x̄2 + ū

)
dt+ cos (x̄1)dβt

ȳ = x̄1 (39)

where A1, A2, G1 and G2 are given as coefficient matrices.
In addition, the linear estimator can be obtained with the

feedback gain matrices L1 = L2 = diag {15, 15}. Thus, the
closed-loop system with estimator can be rewritten by

dȳ =

([
−1 0.5
0 −2

]
ȳ + ˜̄x2 + ˆ̄x2

)
dt+ sin (ȳ) dβt

dˆ̄x2 =

([
−1.5 0
−0.5 −1

]
ˆ̄x2 +

[
2 0
0 3

]
˜̄x1 + ū

)
dt

d

[
˜̄x1

˜̄x2

]
=


−3 0.5 1 0
0 −5 0 1
−2 0 −1.5 0
0 −3 −0.5 −1

[ ˜̄x1

˜̄x2

]
dt

+

[
sin (ȳ)
cos (ȳ)

]
dβt (40)

where A0 and G0 are obtained with A0 being Hurwitz.
As we mentioned in section III, the first virtual control

input and the control input can be designed using Eq.(31). It
has been shown that the design parameters W0 will affect the
performance of the controller, then the optimisation is essential
while W = diag {−20, 25} can be pre-selected and other
parameters can be initialized by positive random numbers.

In this simulation, the sampling time k is selected as 0.01s,
and the control performance of the closed-loop stochastic
system are given by curves in Figs. 1-3. The output trajectories
are indicated by Fig.1. In particular, the stochastic outputs
have been stabilized rapidly. The control input is depicted
by Fig.2. In Fig.3, the performance criterion are given using
KDE which results in a smooth curve. It shows that the
value of J descends when the presented optimisation method
searches of the optimal design parameters. Simultaneously, the
randomness of the system outputs has been minimised. Notice
that G2 (0) 6= 0, thus the output trajectories are just bounded in
probability sense. If we change the model as G2 (ȳ) = sin(ȳ),
then the output will convergent to 0 in probability sense and
the performance can be shown by Fig. 4

Fig. 1. Output trajectories of the closed-loop stochastic system

Fig. 2. The control input signal

V. FURTHER DISCUSSION

The presented control algorithm is very convenient to extend
to bilinear stochastic systems [10] which implies that Assump-
tion 1 in this paper can be released to the Lipschitz condition.



Fig. 3. The value of performance criteria J

Fig. 4. Output trajectories of the control stochastic system with G2 (0) = 0

Then the outputs of the stochastic systems can be stabilized
using block backstepping design while the performance of the
systems can be enhanced by optimizing the design parameters.
Naturally, not only the randomness attenuation problem can be
investigated but also other control objectives can be considered
following various performance criteria. Therefore, we can
extend this control algorithm as a framework of performance
enhancement for a class of dynamic stochastic systems.

Particularly, the couplings among the system outputs can
also be investigated using this presented framework. Based
on the concept of probabilistic decoupling, the performance
criterion can be described using probability density functions
of the system outputs as follows.

Jk = min
W0

‖γ (ȳ)− γi (yi)‖ (41)

where γi (·) stands for the probability density function (PDF)
of each system outputs which can also be approximated by
kernel density estimation (KDE).

VI. CONCLUSIONS

For a class of MIMO semi-linear stochastic systems, a
output feedback control algorithm is presented for the prob-
lem of transient randomness attenuation. Based on the linear
estimator and the m-block backstepping design, the struc-
ture of the controller is obtained to stabilize the closed-

loop stochastic system. Since the design parameters of the
controller affect the performance of the system outputs, the
minimum entropy performance criterion is given to attenuate
the output randomness of the closed-loop system. Furthermore,
the performance criterion can be restated using information
potential equivalently. Based upon the multidimensional kernel
density estimation, the convexity of the presented performance
criteria can be guaranteed and standard convex optimization
can be used to search the optimal parameters in this case. To
verify the presented control algorithm, a numerical example
is given while the simulation results show the effectiveness.
In addition, this control algorithm can be considered as a
framework because it can be extended to bilinear or even
Lipschitz non-linear stochastic system and other performance
criteria can also be considered by the similar approach, such
as probabilistic decoupling, etc.

VII. ACKNOWLEDGEMENTS

This work is partly supported by HEIF project 2018 at De
Montfort University, this is acknowledged.

REFERENCES

[1] M. Krstic, I. Kanellakopoulos, and P. V. Kokotovic, Nonlinear and
adaptive control design. Wiley, 1995.

[2] C. Wang and Y. Lin, “Multivariable adaptive backstepping control: a
norm estimation approach,” IEEE Transactions on Automatic Control,
vol. 57, no. 4, pp. 989–995, 2012.

[3] S. S. Ge and Z. Li, “Robust adaptive control for a class of mimo
nonlinear systems by state and output feedback,” IEEE Transactions
on Automatic Control, vol. 59, no. 6, pp. 1624–1629, 2014.

[4] Y. Chang, “Block backstepping control of mimo systems,” IEEE Trans-
actions on Automatic Control, vol. 56, no. 5, pp. 1191–1197, 2011.

[5] C. Cheng, G. Su, and C. Chien, “Block backstepping controllers design
for a class of perturbed non-linear systems with m blocks,” IET Control
Theory & Applications, vol. 6, no. 13, pp. 2021–2030, 2012.

[6] S.-J. Liu, J.-F. Zhang, and Z.-P. Jiang, “Decentralized adaptive output-
feedback stabilization for large-scale stochastic nonlinear systems,”
Automatica, vol. 43, no. 2, pp. 238–251, 2007.

[7] Q. Zhang, J. Zhou, H. Wang, and T. Chai, “Minimized coupling in
probability sense for a class of multivariate dynamic stochastic control
systems,” in 2015 54th IEEE Conference on Decision and Control
(CDC). IEEE, 2015, pp. 1846–1851.

[8] M. Yang and A. Armaou, “Feedback control of semi-linear distributed
parameter systems using advanced pod method,” in Decision and Control
(CDC), 2015 IEEE 54th Annual Conference on. IEEE, 2015, pp. 4680–
4687.

[9] R. Khasminskii, Stochastic stability of differential equations. Springer
Science & Business Media, 2011, vol. 66.

[10] Q. Zhang, J. Zhou, H. Wang, and T. Chai, “Output feedback stabilization
for a class of multi-variable bilinear stochastic systems with stochastic
coupling attenuation,” IEEE Transactions on Automatic Control, vol. 62,
no. 6, pp. 2936–2942, 2017.

[11] T. M. Cover and J. A. Thomas, Elements of information theory. John
Wiley & Sons, 2012.

[12] Y. Zhou, Q. Zhang, H. Wang, P. Zhou, and T. Chai, “Ekf-based enhanced
performance controller design for nonlinear stochastic systems,” IEEE
Transactions on Automatic Control, vol. 63, no. 4, pp. 1155–1162, 2018.

[13] Q. Zhang and A. Wang, “Decoupling control in statistical sense:
minimised mutual information algorithm,” International Journal of
Advanced Mechatronic Systems, vol. 7, no. 2, pp. 61–70, 2016.

[14] Y. Zhou, Q. Zhang, and H. Wang, “Enhanced performance controller
design for stochastic systems by adding extra state estimation onto the
existing closed loop control,” in Control (CONTROL), 2016 UKACC
11th International Conference on. IEEE, 2016, pp. 1–6.

[15] Y. Liu, H. Wang, and C. Hou, “Ukf based nonlinear filtering using
minimum entropy criterion,” IEEE Transactions on Signal Processing,
vol. 61, no. 20, pp. 4988–4999, 2013.


