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Abstract—Probability density function (PDF) control strategy
investigates the controller design approaches in order to to
realise a desirable distributions shape control of the random
variables for the stochastic processes. Different from the existing
stochastic optimisation and control methods, the most important
problem of PDF control is to establish the evolution of the
PDF expressions of the system variables. Once the relationship
between the control input and the output PDF is formulated,
the control objective can be described as obtaining the control
input signals which would adjust the system output PDFs to
follow the pre-specified target PDFs. This paper summarises the
recent research results of the PDF control while the controller
design approaches can be categorised into three groups: 1)
system model-based direct evolution PDF control; 2) model-based
distribution-transformation PDF control methods and 3) data-
based PDF control. In addition, minimum entropy control, PDF-
based filter design, fault diagnosis and probabilistic decoupling
design are also introduced briefly as extended applications in
theory sense.

I. INTRODUCTION

Since the random noises widely exist in industrial processes,
relevant research has been performed to investigate modelling,
control and application of stochastic processes. To simplify the
system model, we can assume that all the system variables are
Gaussian noises. Based on this assumption, many theoretical
results and applications have been presented, for example, self-
turning control, minimum variance control, linear quadratic
Gaussian control and Markov jumping parameter system
stochastic control [1], [2]. The design objective of all the
mentioned methods only focus on the minimising mean and
variance of the system variables. As far as the linear stochastic
system with Gaussian random variables is concerned, the
shape of the system variable probability density function
(PDF) can be fully determined by its mean and variance.

In practice, the system noises in the most of the industrial
processes are not necessarily Gaussian; furthermore, the non-
linearity of the systems would also result in non-Gaussian
properties even if the investigated system subjected to Gaus-
sian noises. In particular, the mean value and the variance
of the system variable cannot be used as a sufficient charac-
terisation tool for the stochastic processes analysis. In other
words, the PDF shape of the system variable can be adopted
as the more suitable analysis tool to completely characterised
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the behaviour of a stochastic process. Therefore, a PDF-based
control method provides the accuracy and flexibility for the
control strategy design with various design requirements.

In the last 20 years, PDF control for stochastic system has
been a significant research topic while a lot of relevant results
have been presented. To date, PDF-shaping control strategies
can generally be classified into: 1) using the evolution of the
system PDF which can be described by the partial differential
equation (PDE) or inverse function; 2) transforming the PDF
by orthogonal decomposition or weight-based neural network;
3) approximating the PDF or joint PDF by data and kernel
density estimation (KDE) and 4) PDF optimisation leads to so-
called minimum entropy control and its extended applications.

In the following of this survey, we will recall these methods
in detail with some theoretical extensions, such as PDF-based
filtering, fault diagnosis and probabilistic decoupling, etc. It
has been shown that the PDF control methods are significant
to industrial process while the practical applications have been
introduced in [3], [4]. Therefore, this survey focuses on the
theoretical methodologies and omits the industrial background
for simplicity.

II. MODEL-BASED DIRECT EVOLUTION PDF CONTROL

PDF control can be restated as minimizing the distance
between target PDF and investigated PDF. Therefore, the
evolution of the investigated the PDF of the system variable
becomes a key task. In other words, we can transform the
PDF control to a target tracking description if the PDF can be
formulated for the given stochastic dynamic systems. Thus,
this section indicates the evolution of the PDF by direct
approach and the control strategy is shown by following block
diagram.
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Fig. 1. The block diagram of direct evolution PDF control



A. Partial differential equation approach

Generally, Fokker-Planck (FP) equation governs the evolu-
tion of the PDF expression for the stochastic process. The
continuous time stochastic process has been used to present
the stochastic system, which is described by following Ito’s
stochastic differential equation (SDE)

dX; = b(Xy, tiu) dt + o (X, t) dW, )

where X; = (214, ,xnt) € © C R™ is subjected to
the deterministic infinitesimal increments driven by the drift
function b, and random increments which is given by a
independent multi-dimensional Wiener process dW; € R™.

It is noticed that the variable of a stochastic process can
often be fully characterised by the distribution shape. Denote
~ (z,t) as the PDF for the stochastic process X; with respect
to time t. Thus, the purpose here is to design a control input
signal u € R! so that the process evolves towards the pre-
specified target PDF ~, (z, t) with any given initial distribution
v (z,tp). In next essential step, the evolution of the PDF of
X; subjected to the dynamics of the stochastic process X; can
be recognised and expressed by the following Fokker-Planck
(FP) equation [5]:

Oy (z,t) n z": Ob; (x,t,u)

n_ 9? ([o (x,t) ot (x, t)]ij v (z, t))

8x18xj =0

2

To approximate the target PDF ~4(x,t) as closely as
possible, the following cost function was adopted in [6]

J (rou) = / (o (1) — 7a (2,0))° de 3

Therefore, a consistent framework of formulating an optimal
control strategy for stochastic processes can be obtained using
the Fokker-Planck equation and the formulated objectives with
PDF.

Using the proposed framework, many results of non-linear
systems that have exact steady state PDF solutions were
obtained in [7], [8]. In particular, optimal control laws can
be obtained based upon a receding-horizon model predictive
control framework. These control laws minimise the objectives
subjected to the given constraint which is governed by the
Fokker-Planck equation. PDF-shaping control problems for
single dimensional and multidimensional stochastic processes
were presented in [9] and [10], respectively. A numerical
optimal control was obtained such as Hamiltonian approach
[11], minimum principle for infinite dimensional systems [12],
etc. Due to restrictions on stability, [13] presented a switching
linear controller design while an analytical solution of the
PDF was given by the Fokker-Planck-Kolmogorov equation.
The FPK-equation-based PDF-shaping control method was
also applied to the non-linear filter design [14] and quantum
systems [15]. Derived from Kolmogorovs forward equation,

[16] obtained the time evolution of the state PDF with a finite
dimensional control input.

The exact transient solutions of Fokker-Plank equations
have been obtained only for very special one-dimensional non-
linear stochastic systems.

For some special single dimensional stochastic non-linear
systems, the exact transient solutions and exact stationary solu-
tions to Fokker-Plank equations can be obtained. Particularlly,
the exact stationary solutions for dissipated multi-degree-of-
freedom (MDOF) Hamiltonian systems can be divided into
5 classes and all of these solutions can be used to design
feedback controller for tracking a pre-specified stationary PDF.
Notice that only the stationary solution has been adopted
for single dimensional stochastic non-linear system in [17].
Furthermore, [18] proposed an innovative procedure of feed-
back control design for MDPF stochastic non-linear system
using the exact stationary solutions of the dissipated MDOF
Hamiltonian systems.

In the above results, the stochastic disturbances are assumed
to be Gaussian distribution. However, this assumption is not
always the case in practice. Therefore, the generalized FPK
(GFPK) equation was used in [19] to deal with the multi-
dimensional non-linear systems with random excitation which
is non-Gaussian wide-band stationary. In [20], non-linear
systems with Poisson-white-noise are targeted a specified
stationary PDF based on the GFPK equation. The procedures
to design tracking controllers were summarised.

B. Inverse formula approach

Since the PDE and SDE are difficult to obtain the analytic
solutions, the controller design procedure would be simplified
if the evolution of the PDF can be derived without solving
PDE and SDE. In order to describe the problem, a general
discrete-time input/output model has been given as follows:

Uk = (Yk—1:Yk—2," " s Yk—ns Uk—ds Uk—d—1," "+ Uk—m W)

“)
where wuy is the control input, y; stands for the system
output, wy is a random noise with known PDF ~, (x) and
the dynamics of the system is characterised by f. Then, by
using the knowledge of the probability theory, the regeneration
model between the input/output PDF of the stochastic system
output can be formulated as

Y (y,ur) =Y (f 7 (dn, up, (5)

) ’dfl (¢k,uk7y)‘
dy

where @ = [Yk—1,VUk—2, "+ ,Uk—1,Uk_2, - - | denotes all the

historical inputs and outputs of the system which is represented

by Equation (4).The numerical solution for the closed-loop

control system can be obtained by optimising the following

performance index (6).

k
J=3 / (v (your) — g () dy + ulRug  (6)
k=0

where ¢ (y), ur and R are target PDF, the control input and
the weighting matrix, respectively.



The above control methods can be summarized in [21],
where a recursive formula of the conditional output probability
density functions evolution was established. However, the
stability analysis was not given for the closed-loop system.
This resulted in some further developments for the general
systems 4. [22] formulated a predictive form for the output
PDFE. A novel identification method was presented for the
stochastic systems with random parameters. In particular, the
control input and the system output have been measured to
online estimate the unknown PDF of the system parameters
while the control input and system output have been used and
the output PDF was transformed into a simple algebraic form
by the generating functions. this method led to the following
development of the scanning least squares algorithm [23].
In addition, the approach has been extended to formulate
Joint PDF in [24]. Once the unknown parameters’ PDFs
were approximated, the control design for output PDF-shaping
control could be developed [25].

Note that these direct evolution approaches need to analyt-
ically formulate the PDFs of the stochastic dynamic systems,
where the initial PDFs are supposed to be known. Also, the
computational complexity cannot be ignored.

III. MODEL-BASED TRANSFORMED EVOLUTION PDF
CONTROL

Without loss of generality, the PDFs of the dynamic stochas-
tic system can be restated in other formats while the control
design should be simplified by the equivalent transformation.
Based upon the equivalent performance index, the control
strategy can be demonstrated by the following block diagram.
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A. Orthogonal decomposition approach

Iwan and Jensen used the orthogonal decomposition of
stochastic functions to deal with some engineering problems
with stochastic disturbances in [26], [27], it has been wildly
applied to stochastic systems with random parameters [28].
Using this method, the stochastic control problem for systems
with randomness can be equivalent to a deterministic one. In
order to introduce orthogonal decomposition into PDF-shaping
control problem, the following discrete-time stochastic non-
linear process model should be considered:

)

where x; and u; stand for the process state and the manipu-
lated variable, respectively. The function f is analytic in terms
of the arguments. The independent and identically random

Tpp1 = [ (@4, ur) + wy

sequence is given as the additive disturbance term w,; while
t stands for integer-valued sampling index. Here, the Gram-
Charlier parametrisation is used to approximate the PDF since
it has a close relationship with the moments while the basis
functions can be given as follows:

i O @ le 1,0 (LU)

where N, » (z) denotes a Gaussian distribution with standard
deviation. The coefficients can be calculated by evaluating the
following integrals

o= [ oot = 2

Thus, the PDF can be approximated by following finite series
of GC functions

p(x) =Y cihi (2) Ny (@)
i=1

®)

)

(10)

The parameters of the controller can be obtained by minimiz-
ing the following objective function:
n
min Jgo = Z (Ci - Ci,ta'r‘get)2
i=1

Based on the above framework, the problem of targeting
a desired stationary PDF was investigated in [13], [29],
[30]. Based on Gram-Charlier PDFs, [31] investigated the
PDF-shaping control for 1st-order stochastic processes. In
[32], the dynamic PDF approximation applications for higher-
order processes was presented using the linear control law
parametrisations and Gram-Charlier PDF parametrisations.
Based upon the parametrisation of the closed-loop stochastic
process dynamics and the the corresponding stationary PDF
approximation by multivariate Gram-Charlier basis functions,
the optimal control design was investigated for discrete-time
stochastic processes subjected to a non-quadratic cost function
[33].

In the above proposed approaches , by using the Gram-
Charlie expansions as the PDF basis functions, a static feed-
back control design is presented, then the distribution of
the process variable tracks a reference stationary PDF. This
technique focused on the stationary state PDF. However it is
not a time-evolving PDF. For the non-linear oscillator with
random excitation, [29] extended the orthogonal decomposi-
tion technique to the stationary response.

The PDF of random variable is re-expressed by a stan-
dardized multi-variable orthogonal polynomial set. Using
the Galerkin scheme, solving he Fokker-Planck-Kolmogorov
(FPK) equation was replaced by a 1st order linear ODE
with unknown time-dependent coefficients. Then, uncertainty
responses can be obtained with stationary and non-stationary
PDFs.

By using the Fokker-Planck forward equation governing the
PDF evolution of the process variables, feedback control laws
can be developed for continuous-time stochastic non-linear
systems so that the closed-loop stochastic system is stationary
with the chosen PDF.

Y



B. Weight-based neural network approach

The main problem of orthogonal decomposition approach
is that the time evolution of the state PDF has not been
considered sufficiently. It shows that the implementation of
the output PDF control for stochastic system subjected to non-
Gaussian noise is a challenge topic in the stochastic control
filed. In [30], the system output was expressed by a PDF and
the control input is formulated with respect to this PDF form.
Therefore, obtaining the control input to change the shape of
the output PDF following its desired PDF become the purpose
of the control design. Notice that the control input is only time-
related. Motivated by the practical problems of paper-making
processes, a practically implementable control strategy was
originally developed in 1996 [30], which aims at adjusting
the output PDF for a class of the stochastic systems with non-
Gaussian noises.

In [30], B-spline neural network was firstly investigated to
approximate the measurable and instantaneous PDFs of the
system outputs and the neural networks parameters, such as
weights and biases, are dynamically linked to the control input.
Thus, the PDF control was converted into the control of the
NN parameters.

Suppose that the uniformly bounded random variable 7 (t) €
[a,b] is subjected to the stochastic dynamic system output;
uy, € R™ denotes the control input, which is designed to adjust
the distribution shape of the system output y (¢); v (v, ux) is
the PDF of y (t). There are three types of B-spline neural
networks to approximate v (y, ug) [3]:

1) Linear B-spline model (see e.g. [34], [35]):

n

v (Y, uk) = ZBi (y) w; (ur) + e,y € [a, b]
i=1

12)

where w; (uy) stand for the weights of the estimation to the
output PDF ~ (y,ux) while B; (y) denote the pre-specified
basis functions. The main problem of B-spline approximation
of PDF is that the trained weights can sometimes be partly
negative. It is obvious that this is unacceptable since PDF
must be positive.

2) Square root B-spline model(see e.g. [30], [36], [37]): To
overcome the disadvantage of this B-spline model, instead of
approximating the PDF directly, the square root of the output
PDF should be estimated using the following approach.

VA (s u) = ZBi (y) wi (ur) + €0,y € [a,0]  (13)

3) Rational B-spline model: In order to consider the con-
dition [~y (y,ur)dy = 1, the weights of the B-spline NN are
constrained. Therefore, the modified model is used as follows:

Yy Bi(y) wi (ug)
) = S )

where b; = ff B, (y)dy > 0.

Since the integration of ~y (y, uy) over its definition domain
[a,b] must be 1, it has been shown that only n — 1 weights
are independent. We can further denote V), as the vector of

+eo,y € [ab]  (14)

independent weights, then the dynamic of the system can be
rewritten as

Virr = f (Va, ug)

where f (Vj, uy) is a vector function representing the dynam-
ics of the vector-valued NN weights and the control input.
Therefore, Equations (12)-(15) supply the general structure
of modelling the stochastic distribution systems, where the
control input is time-varying and the model output is the
output PDF. Then, the optimal control algorithm should be
obtained by searching the optimum of the performance index
(6) minimum.

In the above framework, a lot of controller designs have
been obtained to adjust the shape of the output PDF. [30]
established a linear feedback controller where the control law
was presented using the measured output PDFs and the input
signal with linear dynamics. After that, this method was ex-
tended for the stochastic non-linear systems [38]. In addition,
[30] analysed the robustness of the closed-loop systems. In
[30], a novel scanning, recursive parameter approximation
algorithm was presented to estimate the linear parameters in
model (15) using the unknown f (Vj,uy). Based upon the
system dimensions, the multi-layer perceptions (MLPs) [39],
[40] and radial basis functions (RBFs) [41]-[43] can also be
used to estimate the output PDFs.

Although the PDF-shaping problem can be well solved
by using the above neural networks model, there are several
problems of this method, such as 1) For the dynamics of the
weighting vector, the shape of the PDFs cannot be changed if
only linear models are established; 2) the high computational
load is the key problem of the numerical solution and the
performance is difficult to meet the requirements including
the stability and the robustness of the closed-loop realization.
For the practical system implementation, the fixed-structure
controller has been developed to overcome the mentioned
shortcomings. In particular, PID controller has been presented
in [44]-[46], where the parameters of the controller can
be obtained using linear matrix inequalities (LMIs). Using
the fixed-structure controller design, the total dimension of
the parameters can be minimised and off-line design would
simplify the algorithm with stability analysis which can be
considered as the advantages. Notice that a synthesis and
integrated analysis framework can be built up with LMI
techniques.

Although different types of neural networks can be used
to replace B-spline NN as theoretical extensions, the main
problem with the described B-spline approach is that the
direct physical meaning of the controller design model is not
convincing. Meanwhile, the complicated shape of the output
PDF leads to a complex neural networks which also results in
the high dimensional dynamics between the control input and
the weighting vector (see model (15)).

5)

IV. DATA-BASED PDF CONTROL

In practice, it is difficult to establish system dynamic
models represented practical industrial processes with non-



Gaussian noises, therefore, it dose not make sense to use the
mentioned model-based approach for these processes which
leads to model-free stochastic distribution control strategy.
The block diagram is shown below where the indirect data-
based approach is given if the model identification procedure
is included otherwise the PDF can be approximated by data
directly using KDE which called direct data-based approach
or data-driven approach.
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Fig. 3. The block diagram of data-based PDF control

As mentioned in previous section, neural networks were
established for both modelling and control of the stochastic
non-linear non-Gaussian systems in [45], [47], [48]. Using the
square-root B-spline NN estimation to the measured output
PDF, the problem has been converted as the dynamic weights
tracking. Fix-structure NN with unknown parameters were
employed to describe the dynamics between the weighting
vector and the control input. [49] presented a dynamic neural
network for modelling and control the investigated plant where
the randomness of the system output has been attenuated by
minimum entropy control scheme with an iterative learning
control (ILC) basis. The above control strategy is usually
called data-driven SDC or model-free SDC. In fact, we note
that these control algorithms were designed on the basis of the
hidden or implicit system modelling. In other words, they are
not actually model-free.

Based on the MEE criterion, an optimal control method has
been obtained for the semiconductor processes subjected to
non-Gaussian noise in [50]. Parzen window technique [51] was
introduced to estimate the PDF and quadratic Rényi entropy of
the tracking error, and the optimised control input was directly
designed based on the sample data of the tracking error without
approximating the dynamic system. Motivated by information
theory, [52] investigated the adaptive control problem for non-
Gaussian stochastic systems using single neuron. The control
algorithm was developed with the neuron weights training
under the generalized MEE principle while the cost function
can be estimated by the Parzen windowing technique. The
joint PDF can also be controlled by data-driven approach [53].
Moreover, [54], [55] proposed the nueral PID controller for a
class of non-linear non-Gaussian system by minimising the
entropy of the system error. The advantage of this date-based
method is that the control algorithms are developed in the data-
based framework, while the accuracy of the system model is
not essential since the accurate model is difficult to obtain.
However, the model is still needed when analysing stochastic
systems.

V. EXTENSIONS: MINIMUM ENTROPY CONTROL,
FILTERING, FAULT DIAGNOSIS AND PROBABILISTIC
DECOUPLING

In the previous sections, the control algorithms have been
presented where we suppose to the known target PDF. How-
ever, the target PDF sometimes is not available. In this case,
the performance criterion can be selected as the minimum
entropy, such as [56]-[58]. In particular, the performance
criterion is defined as follows:

k
== [1utog (s (run) dy + ol R (16
k=0
or defining e = r — y with r is the set point, we have

J = /’y(e,uk)log (v (e,ux)) de—i—u{Ruk 17

while the first term denotes the entropy of the system output
in (16) and tracking error in (17), respectively.

For measurable output PDFs, the B-spline approach is used
to re-express the measured output PDF and the system dynam-
ics is described by a set of differential or difference equations
which link the B-spline weighting vector to the control input
(see e.g. [59]) and Equation (5) should be considered to further
formulate the relationship of the system output PDF and the
control input even if the PDF is unmensurable. [60] presented
a recursive optimization solution based on MEE control which
guaranteed the local stability for the closed-loop system. The
result in [60] was extended to the a stochastic system model
with two inputs and two outputs [61]. As a summary, the MEE
principle has been widely used for control and optimisation of
the stochastic non-Gaussian systems (see e.g. [62], [63]).

Filtering design and fault diagnosis are two important prob-
lems in non-linear and non-Gaussian systems. Recently, the
SDC concept has been applied to investigate these problems
[42], [48], [62], [64]-[67].

Moreover, a novel decoupling control strategy entitled prob-
abilistic decoupling was presented for stochastic dynamic
systems [68], [69] while the couplings among the system
outputs have been quantized in terms of the output PDFs.
In order to minimise the couplings in probability sense, the
distance between the joint PDF and the product of output
marginal PDFs has been considered as performance index.
Furthermore, the mutual information criterion can be used as
an extended minimum entropy performance index to achieve
the probabilistic decoupling [70]. Based on the similar struc-
ture, the performance enhancement of the stochastic dynamic
system is also investigated in [71] using PDF optimisation.

VI. CONCLUSION

This survey reports the developments of the PDF control
in four aspects: direct evolution, transformed evolution, data-
based approximation and PDF control applications. All the
methods in this category can be included as stochastic dis-
tribution control with the similar structure [13], basically,
(i) briefing the non-linearity, parametrisation for stochastic
processes, (ii) formulating an approximate or parametrised



PDF expression and (iii) minimising an appropriate criterion
to characterise the distance between output PDFs and desired
PDFs.

All the mentioned methods have their own benefits and
shortcomings, in particular, the direct evolution approach
needs to derive the complex analytical formula and the stability
of the data-driven framework should be further analysed.
Meanwhile, the orthogonal decomposition technique dose not
take time evolution of PDF into account and neural network
modelling does not indicate the physical meaning of the PDF
evolution. Since the extended applications have also been
discussed in this paper, the PDF control would affect other
research fields in the future. In other words, there are still
many challenges for this research topic.
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