40 research outputs found

    Formation of optimal Boolean functions for analog-digital conversion

    Get PDF
    [EN] This paper describes a situation in which the function obtained from an analog-to-digital conversion is considered a partially-certain function. In this case it is possible to neglect the least significant bits and therefore redefine them arbitrarily. A realization of proposed method simplifies the further processing of the received signal, and saves hardware consumption at designing and usage of hardware and software systems that include analog-to-digital converters

    Combinational logic synthesis based on the dual form of Reed-Muller representation

    Get PDF
    In certain applications, AND/XOR (Reed-Muller), and ORlXNOR (Dual form of Reed-Muller) logic have shown some attractive advantages over the standard Sum of Products (SOP) and Product of Sums (POS). Bidirectional conversion algorithms between SOP and AND/XOR also between POS and ORlXNOR based on Sparse and partitioning techniques are presented for multiple output Boolean functions. The developed programs are tested for some benchmarks with up to 20 inputs and 40 outputs. A new direct method is presented to calculate the coefficients of the Fixed Polarity Dual Reed-Muller (FPDRM) from the truth vector of the POS. Any Boolean function can be expressed by FPDRM forms. There are 211 polarities for an n-variable function and the number of sum terms depends on these polarities. Finding the best polarity is costly interims of CPU time, in order to search for the best polarity which will lead to the minimum number of sums for a particular function. Therefore, an algorithm is developed to compute all the coefficients of the Fixed Polarity Dual Reed-Muller (FPDRM) with polarity p from any polarity q. This technique is used to find the best polarity of FPDRM among the 211 fixed polarities. The algorithm is based on the Dual- polarity property and the Gray code strategy. Therefore, there is no need to start from POS form to find FPDRM coefficients for all the polarities. The proposed methods are efficient in terms of memory size and CPU time. A fast algorithm is developed and implemented in C language which can convert between POSs and FPDRMs. The program was tested for up to 23 variables. A modified version of the same program was used to find the best polarity. For up to 13 variables the CPU time was less than 42 seconds. To search for the optimal polarity for large number of variables and to reduce the se arch time 0 ffinding the 0 ptimal polarity 0 fthe function, two new algorithms are developed and presented in this thesis. The first one is used to convert between P OS and Positive Polarity Dual Reed-Muller (PPDRM) forms. The second algorithm will find the optimal fixed polarity for the FPDRM among the 211 different polarities for large n-variable functions. The most popular minimization criterion of the FPDRM form is obtained by the exhaustive search of the entire polarity vector. A non-exhaustive method for FPDRM expansions is presented. The new algorithms are based on separation of the truth vector (T) of POSs around each variable Xi into two groups. Instead of generating all of the polarity sets and searching for the best polarity, this algorithm will find the optimal polarity using the separation and sparse techniques, which will lead to optimal polarity. Time efficiency and computing speed are thus achieved in this technique. The algorithms don't require a large size of memory and don't require a long CPU time. The two algorithms are implemented in C language and tested for some benchmark. The proposed methods are fast and efficient as shown in the experimental results and can be used for large number of variables.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Combinational logic synthesis based on the dual form of Reed-Muller representation.

    Get PDF
    In certain applications, AND/XOR (Reed-Muller), and ORlXNOR (Dualform of Reed-Muller) logic have shown some attractive advantages over thestandard Sum of Products (SOP) and Product of Sums (POS). Bidirectionalconversion algorithms between SOP and AND/XOR also between POS andORlXNOR based on Sparse and partitioning techniques are presented for multipleoutput Boolean functions. The developed programs are tested for somebenchmarks with up to 20 inputs and 40 outputs.A new direct method is presented to calculate the coefficients of the FixedPolarity Dual Reed-Muller (FPDRM) from the truth vector of the POS. AnyBoolean function can be expressed by FPDRM forms. There are 211 polarities foran n-variable function and the number of sum terms depends on these polarities.Finding the best polarity is costly interims of CPU time, in order to search for thebest polarity which will lead to the minimum number of sums for a particularfunction. Therefore, an algorithm is developed to compute all the coefficients ofthe Fixed Polarity Dual Reed-Muller (FPDRM) with polarity p from any polarity q.This technique is used to find the best polarity of FPDRM among the 211 fixedpolarities. The algorithm is based on the Dual- polarity property and the Gray codestrategy. Therefore, there is no need to start from POS form to find FPDRMcoefficients for all the polarities. The proposed methods are efficient in terms ofmemory size and CPU time. A fast algorithm is developed and implemented in Clanguage which can convert between POSs and FPDRMs. The program was testedfor up to 23 variables. A modified version of the same program was used to findthe best polarity. For up to 13 variables the CPU time was less than 42 seconds.To search for the optimal polarity for large number of variables and toreduce the se arch time 0 ffinding the 0 ptimal polarity 0 fthe function, two newalgorithms are developed and presented in this thesis. The first one is used toconvert between P OS and Positive Polarity Dual Reed-Muller (PPDRM) forms.The second algorithm will find the optimal fixed polarity for the FPDRM amongthe 211 different polarities for large n-variable functions. The most popularminimization criterion of the FPDRM form is obtained by the exhaustive search ofthe entire polarity vector. A non-exhaustive method for FPDRM expansions ispresented. The new algorithms are based on separation of the truth vector (T) ofPOSs around each variable Xi into two groups. Instead of generating all of thepolarity sets and searching for the best polarity, this algorithm will find the optimalpolarity using the separation and sparse techniques, which will lead to optimalpolarity. Time efficiency and computing speed are thus achieved in this technique.The algorithms don't require a large size of memory and don't require a long CPUtime. The two algorithms are implemented in C language and tested for somebenchmark. The proposed methods are fast and efficient as shown in theexperimental results and can be used for large number of variables

    AN EXTENDED GREEN-SASAO HIERARCHY OF CANONICAL TERNARY GALOIS FORMS AND UNIVERSAL LOGIC MODULES

    Get PDF
    A new extended Green-Sasao hierarchy of families and forms with a new sub-family for many-valued Reed-Muller logic is introduced. Recently, two families of binary canonical Reed-Muller forms, called Inclusive Forms (IFs) and Generalized Inclusive Forms (GIFs) have been proposed, where the second family was the first to include all minimum Exclusive Sum-Of-Products (ESOPs). In this paper, we propose, analogously to the binary case, two general families of canonical ternary Reed-Muller forms, called Ternary Inclusive Forms (TIFs) and their generalization of Ternary Generalized Inclusive Forms (TGIFs), where the second family includes minimum Galois Field Sum-Of-Products (GFSOPs) over ternary Galois field GF(3). One of the basic motivations in this work is the application of these TIFs and TGIFs to find the minimum GFSOP for many-valued input-output functions within logic synthesis, where a GFSOP minimizer based on IF polarity can be used to minimize the many-valued GFSOP expression for any given function. The realization of the presented S/D trees using Universal Logic Modules (ULMs) is also introduced, whereULMs are complete systems that can implement all possible logic functions utilizing the corresponding S/D expansions of many-valuedShannon and Davio spectral transforms.   

    A technique for representing multiple-output binary functions with applications to verfication and simulation

    Get PDF
    This paper presents a technique for representing multiple output binary and word-level functions in GF(N) (N=pmN=p^m, p a prime number and m a nonzero positive integer) based on decision diagrams (DD). The presented DD is canonical and can be made minimal with respect to a given variable order. The DD has been tested on benchmarks including integer multiplier circuits and the results show that it can produce better node compression (more than an order of magnitude in some cases) compared to shared BDDs. The benchmark results also reflect the effect of varying the input and output field sizes on the number of nodes. Methods of graph-based representation of characteristic and encoded characteristic functions in GF(N) are also presented. Performance of the proposed representations has been studied in terms of average path lengths and the actual evaluation times with 50,000 randomly generated patterns on many benchmark circuits. All these results reflect that the proposed technique can out perform existing techniques

    Taylor Expansion Diagrams: A Canonical Representation for Verification of Data Flow Designs

    Full text link

    Logic synthesis and optimisation using Reed-Muller expansions

    Get PDF
    This thesis presents techniques and algorithms which may be employed to represent, generate and optimise particular categories of Exclusive-OR SumOf-Products (ESOP) forms. The work documented herein concentrates on two types of Reed-Muller (RM) expressions, namely, Fixed Polarity Reed-Muller (FPRM) expansions and KROnecker (KRO) expansions (a category of mixed polarity RM expansions). Initially, the theory of switching functions is comprehensively reviewed. This includes descriptions of various types of RM expansion and ESOP forms. The structure of Binary Decision Diagrams (BDDs) and Reed-Muller Universal Logic Module (RM-ULM) networks are also examined. Heuristic algorithms for deriving optimal (sub-optimal) FPRM expansions of Boolean functions are described. These algorithms are improved forms of an existing tabular technique [1]. Results are presented which illustrate the performance of these new minimisation methods when evaluated against selected existing techniques. An algorithm which may be employed to generate FPRM expansions from incompletely specified Boolean functions is also described. This technique introduces a means of determining the optimum allocation of the Boolean 'don't care' terms so as to derive equivalent minimal FPRM expansions. The tabular technique [1] is extended to allow the representation of KRO expansions. This new method may be employed to generate KRO expansions from either an initial incompletely specified Boolean function or a KRO expansion of different polarity. Additionally, it may be necessary to derive KRO expressions from Boolean Sum-Of-Products (SOP) forms where the product terms are not minterms. A technique is described which forms KRO expansions from disjoint SOP forms without first expanding the SOP expressions to minterm forms. Reed-Muller Binary Decision Diagrams (RMBDDs) are introduced as a graphical means of representing FPRM expansions. RMBDDs are analogous to the BDDs used to represent Boolean functions. Rules are detailed which allow the efficient representation of the initial FPRM expansions and an algorithm is presented which may be employed to determine an optimum (sub-optimum) variable ordering for the RMBDDs. The implementation of RMBDDs as RM-ULM networks is also examined. This thesis is concluded with a review of the algorithms and techniques developed during this research project. The value of these methods are discussed and suggestions are made as to how improved results could have been obtained. Additionally, areas for future work are proposed

    Spectral Methods for Boolean and Multiple-Valued Input Logic Functions

    Get PDF
    Spectral techniques in digital logic design have been known for more than thirty years. They have been used for Boolean function classification, disjoint decomposition, parallel and serial linear decomposition, spectral translation synthesis (extraction of linear pre- and post-filters), multiplexer synthesis, prime implicant extraction by spectral summation, threshold logic synthesis, estimation of logic complexity, testing, and state assignment. This dissertation resolves many important issues concerning the efficient application of spectral methods used in the computer-aided design of digital circuits. The main obstacles in these applications were, up to now, memory requirements for computer systems and lack of the possibility of calculating spectra directly from Boolean equations. By using the algorithms presented here these obstacles have been overcome. Moreover, the methods presented in this dissertation can be regarded as representatives of a whole family of methods and the approach presented can be easily adapted to other orthogonal transforms used in digital logic design. Algorithms are shown for Adding, Arithmetic, and Reed-Muller transforms. However, the main focus of this dissertation is on the efficient computer calculation of Rademacher-Walsh spectra of Boolean functions, since this particular ordering of Walsh transforms is most frequently used in digital logic design. A theory has been developed to calculate the Rademacher-Walsh transform from a cube array specification of incompletely specified Boolean functions. The importance of representing Boolean functions as arrays of disjoint ON- and DC- cubes has been pointed out, and an efficient new algorithm to generate disjoint cubes from non-disjoint ones has been designed. The transform algorithm makes use of the properties of an array of disjoint cubes and allows the determination of the spectral coefficients in an independent way. By such an approach each spectral coefficient can be calculated separately or all the coefficients can be calculated in parallel. These advantages are absent in the existing methods. The possibility of calculating only some coefficients is very important since there are many spectral methods in digital logic design for which the values of only a few selected coefficients are needed. Most of the current methods used in the spectral domain deal only with completely specified Boolean functions. On the other hand, all of the algorithms introduced here are valid, not only for completely specified Boolean functions, but for functions with don\u27t cares. Don\u27t care minterms are simply represented in the form of disjoint cubes. The links between spectral and classical methods used for designing digital circuits are described. The real meaning of spectral coefficients from Walsh and other orthogonal spectra in classical logic terms is shown. The relations presented here can be used for the calculation of different transforms. The methods are based on direct manipulations on Karnaugh maps. The conversion start with Karnaugh maps and generate the spectral coefficients. The spectral representation of multiple-valued input binary functions is proposed here for the first time. Such a representation is composed of a vector of Walsh transforms each vector is defined for one pair of the input variables of the function. The new representation has the advantage of being real-valued, thus having an easy interpretation. Since two types of codings of values of binary functions are used, two different spectra are introduced. The meaning of each spectral coefficient in classical logic terms is discussed. The mathematical relationships between the number of true, false, and don\u27t care minterms and spectral coefficients are stated. These relationships can be used to calculate the spectral coefficients directly from the graphical representations of binary functions. Similarly to the spectral methods in classical logic design, the new spectral representation of binary functions can find applications in many problems of analysis, synthesis, and testing of circuits described by such functions. A new algorithm is shown that converts the disjoint cube representation of Boolean functions into fixed-polarity Generalized Reed-Muller Expansions (GRME). Since the known fast algorithm that generates the GRME, based on the factorization of the Reed-Muller transform matrix, always starts from the truth table (minterms) of a Boolean function, then the described method has advantages due to a smaller required computer memory. Moreover, for Boolean functions, described by only a few disjoint cubes, the method is much more efficient than the fast algorithm. By investigating a family of elementary second order matrices, new transforms of real vectors are introduced. When used for Boolean function transformations, these transforms are one-to-one mappings in a binary or ternary vector space. The concept of different polarities of the Arithmetic and Adding transforms has been introduced. New operations on matrices: horizontal, vertical, and vertical-horizontal joints (concatenations) are introduced. All previously known transforms, and those introduced in this dissertation can be characterized by two features: ordering and polarity . When a transform exists for all possible polarities then it is said to be generalized . For all of the transforms discussed, procedures are given for generalizing and defining for different orderings. The meaning of each spectral coefficient for a given transform is also presented in terms of standard logic gates. There exist six commonly used orderings of Walsh transforms: Hadamard, Rademacher, Kaczmarz, Paley, Cal-Sal, and X. By investigating the ways in which these known orderings are generated the author noticed that the same operations can be used to create some new orderings. The generation of two new Walsh transforms in Gray code orderings, from the straight binary code is shown. A recursive algorithm for the Gray code ordered Walsh transform is based on the new operator introduced in this presentation under the name of the bi-symmetrical pseudo Kronecker product . The recursive algorithm is the basis for the flow diagram of a constant geometry fast Walsh transform in Gray code ordering. The algorithm is fast (N 10g2N additions/subtractions), computer efficient, and is implemente
    corecore