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Abstract 

This thesis presents techniques and algorithms which may be employed to 

represent, generate and optimise particular categories of Exclusive-OR Sum- 

Of-Products (ESOP) forms. The work documented herein concentrates on two 

types of Reed-Muller (RM) expressions, namely, Fixed Polarity Reed-Muller 

(FPRM) expansions and KROnecker (KRO) expansions (a category of mixed 

polarity RM expansions). Initially, the theory of switching functions is 

comprehensively reviewed. This includes descriptions of various types of 
RM expansion and ESOP forms. The structure of Binary Decision Diagrams 

(BDDs) and Reed-Muller Universal Logic Module (RM-ULM) networks are also 

examined. 

Heuristic algorithms for deriving optimal (sub-optimal) FPRM expansions of 
Boolean functions are described. These algorithms are improved forms of 

an existing tabular technique [1]. Results are presented which illustrate the 

performance of these new minimisation methods when evaluated against 

selected existing techniques. An algorithm which may be employed to 

generate FPRM expansions from incompletely specified Boolean functions is 

also described. This technique introduces a means of determining the 

optimum allocation of the Boolean 'don't care' terms so as to derive 

equivalent minimal FPRM expansions. 

The tabular technique [1] is extended to allow the representation of KRO 

expansions. This new method may be employed to generate KRO expansions 
from either an initial incompletely specified Boolean function or a KRO 

expansion of different polarity. Additionally, it may be necessary to derive 
KRO expressions from Boolean Sum-Of-Products (SOP) forms where the 

product terms are not minterms. A technique is described which forms KRO 

expansions from disjoint SOP forms without first expanding the SOP 

expressions to minterm forms. 

Reed-Muller Binary Decision Diagrams (RMBDDs) are introduced as a 
graphical means of representing FPRM expansions. RMBDDs are analogous 
to the BDDs used to represent Boolean functions. Rules are detailed which 
allow the efficient representation of the initial FPRM expansions and an 
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algorithm is presented which may be employed to determine an optimum 
(sub-optimum) variable ordering for the RMBDDs. The implementation of 
RMBDDs as RM-ULM networks is also examined. 

This thesis is concluded with a review of the algorithms and techniques 
developed during this research project. The value of these methods are 
discussed and suggestions are made as to how improved results could have 

been obtained. Additionally, areas for future work are proposed. 
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Chapter 1 

Introduction 

The increasing complexity of electronic systems demands, high performance 
integrated circuits which can efficiently and reliably implement their 

required functions. This, in turn, necessitates the use of sophisticated 

synthesis tools which aid circuit designers to meet predefined goals, such 

as area utilisation, performance and testability. Logic synthesis may be 

considered as comprising of two distinct though not disjoint steps. The 

first step is to optimise the logic functions by transforming and minimising 
the representations, independent of the technology being used to realise 
the functions. The second step is to determine an optimum implementation 

of the logic functions with the objective of fully exploiting the advantages 

of the target technology. Generally, synthesis tools will reiterate these two 

optimisation steps in order to derive efficient implementations. 

The algorithms and techniques presented in this thesis may be used to 

optimise switching functions and, in general, operate without regard to the 

target technology. This introductory chapter briefly discusses Reed-Muller 
(RM) expansions and considers the advantages and disadvantages of these 
forms of representation. Additionally, the contents of subsequent chapters 
of the document are previewed. 

RM expansions provide an alternative means of representing switching 
functions. The RM expansion is based on the algebra of finite fields, or 
Galois fields. Galois fields are denoted GF(q) where q is the number of 
elements in the field, and for RM expansions, q=2. GF(2) is the smallest 
finite field whilst the set of real numbers is an example of a field with an 
infinite number of elements. The elements of GF(2) are 0 and 1, and the 

algebraic operations defined in this field are modulo-2 addition and modulo- 
2 multiplication. Modulo-2 addition is equivalent to the logical EXclusive-OR 

operation (EXOR) and modulo-2 multiplication corresponds to the logical AND 
operation. Hence, the RM representation of a switching function is an 
Exclusive-OR Sum-Of-Products (ESOP) of literals, where each literal may 
take the value 0 or 1 [2,3,4]. 

ý 
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There are certain advantages in representing switching functions as ESOP 

forms. Firstly, ESOP forms may provide more efficient representations than 

the traditional Boolean Sum-Of-Products (SOP) expressions [5,6]. Arithmetic 

functions, which contain a substantial quantity of EXOR operations, are one 

type of function for which the ESOP representation may prove to be 

economical [7,8]. The second advantage is that circuits which are 

implemented using AND and EXOR logic elements exhibit properties which 

are desirable in terms of testability [9,10,11]. These properties include 

reducing the size of the test sets which are required when testing for 

stuck-at faults and bridging faults. The inherent complexity of testing 

combinational circuits makes this advantage particularly interesting. As 

previously stated, the RM representation of a switching function is defined 

over GF(2), a special case of GF(q) or a finite field. Hence, an additional 

advantage lies in the possibility of extending techniques developed for RM 

expansions to operate in the other finite fields, in which multiple-valued 

switching functions are defined [6,12,13]. 

The disadvantages associated with the physical implementation of switching 
functions represented as ESOP forms are the main weaknesses in the case 
for promoting the use of synthesis tools based on ESOP forms. The EXOR 

gate is considered to be a complex gate and contains a greater number of 
transistors than the AND (NAND) and OR (NOR) gates normally employed to 

construct circuits. Although utilising pass-transistors can reduce the 

transistor count in an EXOR gate [14,15], it is generally found that unless 
the ESOP representation comprises of significantly fewer product terms 

than the equivalent SOP form then the implementation of the ESOP form will 
be larger than the Boolean implementation [16]. The switching speed of an 
EXOR gate is longer than that of the basic Boolean logic gates. This factor 

also contributes to the case against using ESOP forms as a means of 
representing switching functions. However, developments in field 

programmable gate array (FPGA) technology, where the basic logic elements 

are blocks which can be programmed to perform simple logic functions, 

make it possible to realise EXOR gates which are comparable, in size and 
speed, to the basic logic gates [17,18,19]. These developments have to 

some extent overcome the practical problems which arise when implementing 
ESOP forms. 
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Following the initial definition of the RM expansion, interest in this 

particular means of representing switching functions has led to many 

diverse optimisation techniques and algorithms. These include various 

methods of presenting RM expansions and ESOP forms, each with inherent 

advantages and disadvantages. Additionally, techniques have been 

developed which generate canonical RM expansions from Boolean SOP forms. 

Exact and heuristic minimisation algorithms have evolved and may be 

utilised according to the types of ESOP forms which they optimise. That is, 

some techniques are suited to optimising only fixed polarity RM expansions 

whilst others optimise mixed polarity RM expansions, or the more general, 

unstructured ESOP forms. 

It is interesting to note that developments in synthesis tools which utilise 

RM expansions and ESOP forms have to some extent followed the 

evolutionary route previously undertaken during the development of 

Boolean logic synthesis systems. Early Boolean logic synthesis tools were 

designed to realise efficient SOP forms. The optimised functions could then 

be implemented as two-level circuits using, for example, programmable logic 

arrays. Whilst this form of representation and implementation remains 

valuable, the increasing demands placed on the performance of logic 

systems means that two-level implementations are often unsatisfactory. This 

has led to the development of multi-level synthesis tools which rely on 

optimisation techniques such as factoring and decomposition. The resulting 

expansions, which may be represented as factored forms, can then be 

implemented using devices such as FPGAs. Following this trend, synthesis 

tools have been developed which derive multi-level implementations of RM 

expansions and ESOP forms. An approach which is currently generating 

considerable interest, and which may prove to be rewarding, is the 

development of 'mixed' synthesis systems. Here switching functions are 

partitioned and each subfunction represented either as an ESOP form or 

as a Boolean SOP form, thus exploiting the advantages of both types of 

representation [201. 

Synthesis tools which exploit the advantages of ESOP representations of 

switching functions are becoming increasingly powerful. However, a 
significant amount of development work is required if the efficiency of the 

optimisation algorithms is to rival that of traditional Boolean logic synthesis 
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techniques. 

4 

This thesis presents logic synthesis and optimisation techniques which 

employ the RM representation. The research work undertaken and now 

detailed includes the development of several techniques and algorithms 

which may be employed to minimise switching functions. A basic logic 

synthesis system which incorporates both established techniques and these 

newly developed algorithms has been constructed. This fully- automated 

package served as an aid in evaluating the efficiency of the algorithms and 

techniques developed throughout the duration of the project. 

The theory presented in the second chapter commences with a basic review 

of the algebra of Galois fields and proceeds to detail RM expansions relative 

to Boolean SOP forms. The structure of fixed polarity and mixed polarity 
RM expansions and general ESOP forms are also described. The multi-level 

representation of switching functions using Binary Decision Diagrams (BDDs) 

is reviewed as a precursor to the research work presented in chapter 7. 

This is followed by a concise description of Reed-Muller Universal Logic 

Modules (RM-ULMs). 

Chapter 3 commences with a review of the existing methods used to 

represent and generate fixed polarity RM expansions. Heuristic and exact 

minimisation techniques are also discussed. The chapter proceeds with the 

description of a heuristic algorithm for deriving optimal (sub-optimal) fixed 

polarity RM expansions. This technique employs a tabular means of 

representing both the switching functions and the fixed polarity Reed- 

Muller expansions [1] and is an extension of a technique developed by 

Marinkovic and Tosic [21]. Results are presented which indicate the quality 

of the solutions produced by the new algorithm, taking into account the 

number of product terms in the final FPRM representation. Additionally, 

modified forms of the basic algorithm are suggested and results are 

presented which illustrate the effects of these modifications. The techniques 

are evaluated against established methods, using both randomly generated 

switching functions and a small set of benchmark functions. 

Chapter 4 Is dedicated to describing a method which has been developed 
to determine the optimum allocation of 'don't care' terms when deriving a 
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minimal RM expansion of predetermined fixed polarity from an initial 

incompletely specified Boolean function. The use of this technique in 

conjunction with the algorithm for determining 'good' fixed polarity RM 

expansions is also discussed, and results are presented which illustrate the 

most profitable use of the techniques. 

The fifth chapter of this thesis reviews techniques for representing and 

generating mixed polarity RM expansions and the more general ESOP forms. 

Additionally, established optimisation methods are briefly discussed. An 

existing technique which is used to represent and generate fixed polarity 
RM forms is extended to enable the construction of KROnecker (KRO) 

expansions. This chapter is concluded with a description of an adapted 
form of this technique which allows the formation of KRO expansions from 

incompletely specified Boolean functions. 

Although the derivation of RM expansions from Boolean functions expressed 
in minterm form is, in essence, a trivial task, the operation can consume 

substantial quantities of computer memory and processor time. The 

generation of RM representations from disjoint and non-disjoint Boolean 

SOP forms is reviewed in chapter 6. The tabular representation and 

conversion technique [1], reviewed in chapter 3, normally operates on an 
initial Boolean minterm representation of a switching function. The 

adaptation of this technique to allow the generation of RM forms from 

reduced Boolean SOP forms is discussed in the remainder of this chapter. 

It has been previously stated in this thesis that two-level circuits do not 
always offer efficient means of implementing combinational logic functions. 

A practical solution may require a multi-level implementation which is 
derived using multi-level synthesis tools. Chapter 7 briefly reviews Boolean 

multi-level optimisation techniques and, in particular, considers the uses 
of Binary Decision Diagrams. A Reed-Muller Binary Decision Diagram (RMBDD) 
is introduced and the use of this form to represent fixed polarity RM 

expansions is demonstrated. Techniques for deriving minimal RMBDDs are 
also presented. The implementation of RMBDDs as both RM-ULM networks 
and multi-level circuits comprised of discrete logic gates is discussed in 
the latter part of this chapter. 
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Chapter 8 summarises the work detailed in this thesis and draws 

conclusions as to the advantages of performing logic synthesis using RM 

representations and ESOP forms. Additionally, areas suitable for future 

research are suggested. 



Chapter 2 

Theory and Definitions 

Traditionally. switching circuits have been represented using operations 
defined in Boolean algebra. The Reed-Muller description of a switching 
function provides an alternative form of representation and is based on the 

algebraic operations defined over Galois Field(2) [2,3,4,22]. The theory 

presented in this chapter briefly revises the algebraic operations defined 

over GF(2) and the relationships with Boolean algebra. The basic RM 

expansion is defined and derived from an initial Boolean sum-of-products 
form. Additionally, various types of RM expansions and exclusive-OR sum- 
of-products forms are reviewed. This includes detailed descriptions of fixed 

polarity Reed-Muller expansions, Kronecker expansions and Pseudo 
Kronecker expansions. The remainder of this chapter is dedicated to 
describing the structure of Binary Decision Diagrams and Reed-Muller 
Universal Logic Module networks. 

2.1 Logic Functions 

A logic function is a mapping 
f : {O, 1,...,. L1}A {O, 1,..., r1} 

where n is the number of function variables, and r is the cardinality of 
the set. Hence, each function variable may take r different values. 

A logic function is a switching function when r=2 
i. e. f : {0,1}" {0,1} 

where n is the number of function variables and each function variable 
may take the value 0 or 1. 

An incompletely specified switching function is a function where, for one 
or more input conditions, the corresponding output states are undefined. 
This may be represented by the mapping 

f : {0,1}n {0,1, D} 

where DE {0,1}, denoting an undefined output state. 

The functions which have been defined denote single-output logic and 

7 
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switching functions. A multiple-output switching function may be 

represented by the mapping 
f : {0,1}A -" {0,1, D}° 

where n is the number of function variables and m is the number of output 

functions. 

In order to clarify the terminology used in this thesis, it is necessary to 

state that reference to a function will imply a completely specified Boolean 

function. Other types of switching functions will be referred to explicitly. 

2.2 Algebra of GF(2) 

The operations defined over GF(2) are modulo-2 addition and modulo-2 

multiplication, and the elements defined in this field are the binary 

integers 0 and 1. Modulo-2 addition and modulo-2 multiplication are 

identical to the logical EXOR and logical AND operations, respectively. 

Hence, the operations defined for GF(2) algebra may be readily implemented 

using logic components. This is illustrated in Figure 2.1, which was 

presented by Green [3). 

Throughout this thesis the symbol e denotes modulo-2 addition and the 

EXOR operation. The symbol + denotes logical addition and the Boolean 

inclusive-OR (OR) operation. The symbols o and . denote modulo-2 

multiplication and logical multiplication respectively. These two operations 

are equivalent to the Boolean AND operation and henceforth will be deemed 

to be identical. This operator may be omitted from all equations i. e. x. y = 

X0 y= xy 

In Figure 2.1 and the following equations, x and y are elements defined 

over GF(2) and may take the binary values 0 and 1. 

The algebra of GF(2) obeys the law of closure, in addition to the 

associative, distributive and commutative laws. The identities x$0=x and 
xo1=x are also satisfied. 
Some additional properties exist due to the nature of GF(2) algebra [2,231 

x®x= 0 x= -x 
hence, each element of GF(2) is its own additive inverse. 
Further, xox=x 



McKenzie, L. M. 1995 Chapter 29 

GF(2) algebra may be related to Boolean algebra, 

xo y= xy 

x®Y=x, Y + x. Y 

If y=1, then x®1=x. (0) + x. (1) 

Additionally, employing De Morgans' theorem 

x+y=x. y = ((x ® 1) o (Y ® 1)) ®1 

=xoyox ®y ®1 ®1 

= xoy®x®Y 
Thus, xy=xoy 

X+ y =xoy®xis Y 
x=x®1 

Modulo-2 addition Modulo-2 multiplication 

9 

0 
x 

1 

Y 

01 

01 
10 

x®y xy 

Y 
01 

00 
01 

Exclusive-OR operation AND operation 

xy 

00 

01 
10 

11 

000 

1 Y ýý® Y 

0 
0 x 
1 

01 

110 

011 

x. y 

0 

0 
0 
1 

x x. y 
Y 

Figure 2.1: Basic connectives of GF(2) algebra and the equivalent logical 
operators. 

2.3 Fixed Polarity Reed-Muller Expansions 

The operations of GF(2) algebra have been defined in the preceding 
section. The structure of the Reed-Muller expansion, which employs the 

operations defined over GF(2), is now reviewed. 
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Any n variable switching function may be represented in Boolean SOP form. 

r-t 
f(x., x. -i+-"", x>) `E din, 

i-0 

= doz. x. 
-l ýxzxl 

+ dlxýxý_l. »xýxl 
+ 41�1. 

-1 ... 
x2xl + .... ý + di'-lxýx, 

-l... x2xl 
(2.1) 

E denotes logical addition 

mi denotes a minterm of the function 
di c {0,1} is an operational domain coefficient 
i=0,1,..., 2A-1 

xf and xJ are literals of the function, in true and complemented forms 

respectively. 
j=1,2,..., n 

A minterm mi is defined as a product of function variables and each 

minterm comprises of every function variable in either true or 

complemented form. 

.ý ý . Mý 
j. l 

xl 

where ß is the decimal representation of the binary n-tuple <inin_l"""I2I1>, 
1j c {0,1} and xf = xf, xi = xx 

e. g. for n=3, 
100 m4 - m<100> - X3 X2 X1 = X3X23F1 

The Boolean SOP form, in which each and every product term is a minterm, 
is described as the canonical disjunctive form (Equation (2.1)). It is 

possible to construct all 22n possible Boolean functions of n variables from 
this basic expansion by altering the values of the coefficients d09... 9d2n_1. 
Any Boolean function of n variables may comprise of up to 2n minterms. 
e. g. for n=3 

f(x3, x2, xl) - 473SZ7, + dýiAx, + d2sxsxl + dx3xZxs 

+ d4x3x2x1 + dsx3xA + dax3xzxi + d, x3x2xi 
(2.2) 

The coefficients' do,..., d2n_1 of the canonic Boolean SOP form correspond 
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directly to the output of the truth table representation and hence, to the 

operation of the function. The forms of representation illustrated in 

Equations (2.1) and (2.2) can, therefore, be termed operational domain 

descriptions of switching functions. 

The minterms of a Boolean function are mutually exclusive (or disjoint), i. e. 

mimk =0 for all iýk, i, k = 0,1,..., 2'-1. This property may be exploited 

making it possible to replace the inclusive-OR operator with the exclusive- 
OR operator without altering the operation of the expansion. This forms an 

exclusive-OR (or ring) sum-of-products expansion of the function [24,25]. 

(a�sz�-i""'1x1) = ®E dann 

1-0 

° doxýx. 
-1'"x2x1 

® dýz. x. 
-l... 

x2x1 ® d2xmxn-1�. x2x1 ® ...... ® d2. 
-lx. 

x. 
_i... 

x2x1 

(2.3) 

®E denotes the ring sum (modulo-2 addition), 
mi, di, i, xx, xj and j are as defined for Equation (2.1). 

The expansion of Equation (2.3) is the ESOP representation of the Boolean 
function described by Equation (2.1). 

The Reed-Muller expansion is defined as the complement-free ring sum-of- 
products expression of a switching function. This may be derived from the 

expression detailed in Equation (2.3) by employing the substitution 
xi = xf ®1 for j=1,2,.., n. 
Hence, from Equation (2.3) 

f(x,, x, -1,..., xl) - do(x, ®1)(x�-1 ® 1)... (x2 a 1)(x1 o 1) ® dl(xR a 1Xx, 
-1 e 1)... (x2 ® 1)x1 

o d2(x,, o 1)(x1-1 a 1)... x2(xl 0 1) ® ...... ®d2. -lx. 
x. 

-1. -x2xl 

sdo®(do 0 dl)xl®(do®d2)x2®(do®dl®d2®d)x2x1 

® (do ® Qxj ® . »... 0 (do ® dl " d2 ® ». ® d2. 
-1)x. x. _l... x2x1 

The equivalent RM expansion is defined as 

r-i 
f(x. ýx"-1,..., xl) _®ý aýaý 

00 

s ao ® a, xl ® a2x2 ® a; x2x1 ® .... 
® a2. 

_ix. x. _l... 
x2x1 

(2.4) 
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n1 is a piterm of the expansion 

a1 a {0,1} is a functional domain coefficient 
f=0,1,..., 21-1 

Xi is a literal of the RM expansion (and of the equivalent Boolean function) 

and is present only in true form. 
j=1,2,..., n 

A piterm, its, of a RM expansion is defined as a product of expansion 

variables, 
 i 

a1 - ýxj 

where i is the decimal representation of the binary n-tuple <inin-1"""i2i1>, 
1J E{0.1} and x' = 1, xý = xj 

e. g. for n=3, 
- 1- 114 = Tiý100> =X13X0ZX0 x3 

The RM expansion of Equation (2.4) Is a canonic form which uniquely 

represents the initial Boolean function. It is possible to derive all 22n RM 

expansions of n variables from this basic expression simply by altering the 

values of the coefficients a0,..., a2n_1. A RM expansion of n variables may 

comprise of up to 2n piterms. 

e. g. for n=3 
f(x3, x2, x1) - ao s a1x1 9 a2x2 ® a3x2x1 e a4x3 ® a5x3x1 ® a6x3x2 e a7x3x2x1 

The coefficients di (I = 0,1,..., 2"-1) of a Boolean function are termed the 

operational domain coefficients and correspond to the output of the truth 
table representation. They directly represent the operation of the function. 
The transformation from the Boolean domain to the Reed-Muller domain 

alters the significance of these coefficients. Hence, the coefficients of the 
RM expansion, ai (I = 0,1,..., 21-1), are termed the functional domain 

coefficients and no longer directly correspond to the output of the truth 
table representation of the Boolean function. The relationship between the 

operational domain and functional domain coefficients is illustrated for the 

particular case of n=3, i. e. a switching function of 3 variables. However, 
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this relationship can be extended to switching functions of any number of 

variables. 

Boolean function (n = 3) 

f(x3, x2, x1) - dox3x2x1 + d1x3x2x1 + d2x3x2z1 + d3x3x2x1 

+ dax3xix1 + dsx3x2xl + daxjx2si + d7x3x2x1 

As the minterms are disjoint the OR operator may be directly replaced by 
the EXOR operator, 

j(x3, zZ, x1) - dax3x2x1 ® dlx3xixl ® d2x3x2x1 ® d3x3xzxl 

® d4x3x2x1 ® dsx3x2x1 9 d6x3xzxl ® djx3x2xl 

Employ the substitution xj = xj ®1 (j = 1,2,..., n) 

f(x3x2, x1) - do(x3 " 1)(x2 " 1)(x1 " 1) " di (x3 " 1)(x2 " 1)x1 

" d2(x3 " 1)x2(x1 " 1) " d3(x3 " 1)x2x1 " d4x3(x2 " 1)(x1 " 1) 

" d3x3(x2 " 1)x1 " d6x3x2(x1 " 1) " d7x3x2x1 

= do(x3x2x1 40£3x2 ® x3x1 40 x3 40 x2x1 40 x2 40 xl 40 1) 

40 dl(x3x2x1 40 x3x1 40 x2x1 40 xl) 40 dz(x3x2x1 40 x3x2 40x2x1 40 x2) 

40 d; (x3x2x1 40 x2x1) 40 d4(x3x2x1 40 x3x2 40 x3x1 40£3) 

40 ds(x3x2x1 0 £3x1) 0 d6(x3x2x1 0 x3x2) 40 d7x3x2x1 

do®(do ®di)xl®(do ®dz)z=®(do®dl®d2®d, )x2x, 

® (do ® d4)xj ® (do ® d, ® d4 ® ds)x3z1 ® (do ® dz ® d4 ® d6)x3x2 

9 (do®d, 9 d2®d3®d4®d, ®d6®d7)x, x2x1 

- ao ® a, x, ® a2x2 ® a3x2x, ® a4x3 ® asx, x, ® a6x3xz ® a7x3x2x, 

Reed-Muller expansion (n = 3) 

f(x3, x2, x1) = ap ® alxl a a2x2 ® a3x2x1 e a4X3 9 aJx3x1 ® a6x3x2 ® a7x3x2x1 

The functional domain coefficients may be related to the operational domain 

coefficients in the following manner. 

ao = do 

al = do ® di 

a2 = do®d2 
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a3 = do ® di ® d2 ® d3 

a4 = do ® d4 

a3 = do ® dl ® d4 ® ds 

a6 = da ® d2 ® d4 ® d6 

a7 = do ® dl ® d2 ® d3 ® d4 ® d5 ® d6 ® d7 

Alternatively, 

do = ao 
dl = ao ® al 
d2 = ao ® a2 
d3=ao®al®a2®a3 

d4 = ao ® a4 
d3=ao®al®a4®as 

d6=ao®a2®a4®a6 

d7 = ao ® al 9 a2 ® a3 ® a4 ® as ® a6 ® a7 

The RM expansion (Equation (2.4)) is the basic canonical ESOP expression 

and all expansion variables are present in true form throughout the 

expression. It is possible to derive a further 21-1 canonical ESOP 

expansions from this basic form where each new expansion has some 

combination of variables present in complemented form throughout the 

expression. This is realised by utilising the substitution xi = xi ® 1. The 
21 canonical forms (including the original RM expansion) are termed fixed 

polarity Reed-Muller (FPRM) expansions and have the general form 

2'-1 1 

f(x,,, x, ý-1,..., x1) -oE bb p'i' 
ý-o 

= bo ® blzl ® b2x2 ® b3z, iz1 9 

r, ý, iýf.. 

p, is a product term of the expansion 
bi c {0,1} is a functional, domain coefficient 
1=0,1,..., 2n-1 

I 

(2.5) 

Xj = x. or x 
f, that is, a FPRM expansion may contain x., or x, but not both. 

j= 

The product terms of the 
r 

FPRM expansion may be, defined; in a manner 
similar to that used to define the piterms of the original RM expansion..,, 

p 
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ýý 

Pi=IIz1' 
1 I 

15 

where i is the decimal representation of the binary n-tuple """i211> 
ii a {0,1} and xj = 1, xJ = ii 

xj = xj or xj 

The coefficients, bi, of each FPRM expansion are related to the coefficients, 

ai (I = 0,1,..., 2n-1), of the RM expansion (Equation (2.4)). The FPRM 

expansion where all variables are present in true form is equivalent to the 
RM expansion. Hence, the coefficients of each expression may be directly 

equated with one another, i. e. ai = bi and bi = ai for all i. However, in 

order to relate the bi coefficients of the remaining FPRM expansions to the 

ai coefficients of the RM expansion it is necessary to expand each FPRM 

expansion, employing the substitution x. = xj ®1 (j a {1,2,..., n}). 
The relationship is illustrated for the particular case of the FPRM 

expansion of 3 variables, where x3 and xl are present in complemented form 

and x2 is present in true form. 

FPRM expansion (n = 3) 

f(x3, xz, x1) = bo s blxl 9 b2x2 ® b3x2s1 ® b4x3 ® bsz3xl co b6x3xz ® b773x2x1 

Employ the substitutions X3 = x3 ®1 and xl = x, ® 1, 
f(x3, x;, x1) - b0 e b1(x1 is 1) is b2xz ® b, x2(x1 a 1) ® b4(x, a 1) 

®b, (x3 0 1)(x1 ®1) ®b6(x3 ® 1)x2 e b, (x3 ®1)x2(x1 ®1) 

- bQ 6 b1x1 0 b1 a b2x2 " b3x2x1 ®b3x2 ®b4x3 ®b4 0 b5x3x1 e 65x3 

® bsxl ® bs ® b6x3x2 ® b6x2 ® b7x3x2x1 ® b, x3x2 6 b7x2xi ® b7x2 

=(bo®b1®b4®bs)®(b1(p bs)x1®(b2®b3®b6®b7)x2 

® (b3 ® b7)x2x1 ® (b4 ® bs)x3 ® bsx3xl ® (b6 ® b, )x3x2 

® b7x3x2x1 

RM expansion (n = 3) 
f(x3, z2, zl) ° ao ® a1X1 & aýx2 ® a3xixl "D aVx3 ® asx3. x1 0 a6z3x2 0 a. x3x2x1 

(2.6) 

(2.7) 

(2.8) 
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if the expansions of Equations (2.7) and (2.8) are compared then the 

coefficients of the RM expansion (Equation (2.8)) may be related to the 

coefficients of the FPRM expansion (Equation (2.6)) In the following manner. 

ao = bo ® bl ® b4 a b5 

a1 = bl ® bs 

a2 = b2 ® b3 ® bG ® b7 

a3 = b3 ® b7 

a4 = b4 ® bs 

a. = b. 
JJ 

a. = be ® b7 

a7 = b7 

Alternatively, 

bo = ao a a1 " a4 ® a.. 

bl = al ® a.. 
b2 = a2 ® a3 ® a. ® a7 
b3 = a3 ® a7 
b4 = a4 a a:; 

b. = a- JJ 

b6 = a6 ® a7 
b7 = a7 

As the coefficients b1 are related to the coefficients a1 it is also possible 
to relate the b1 coefficients to the operational domain coefficients d, of the 

Boolean SOP expansion (Equation (2.1) ). 

A FPRM expansion fjxn, Ä-1, """, x1) may be identified by means of a polarity 

number p, 0sps 2n-1. Hence, the polarity p FPRM expansion may be 

denoted fp(xA, xn_11..., x1). This number, p, indicates the state of each 

expansion variable throughout the expression, that is, which variables are 

present in true form and which in complemented form. The polarity number, 

p, is the decimal equivalent of the binary n-tuple <pnpn-1... p1>, where pj 
is replaced by 0 if xj is present throughout the FPRM expansion. If xf is 

present throughout the FPRM expansion then pj is replaced by 1. If this 

notation is applied to the basic RM expansion, where all variables are 
present in true form then pf =0 for j=1,2,..., n, hence, p=0 and this 

expression is the polarity 0 FPRM expansion. This is also known as the 
positive polarity RM (PPRM) expansion. The polarity of the FPRM expansion 
where all variables are present in complemented form can be determined by 
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setting pi =1 for j=1,2,..., n, resulting in p= 2A-1. The polarity 2n-1 

FPRM expansion is also called the negative polarity RM expansion. 

The following expressions further illustrate the use of polarity numbers to 
identify FPRM expansions. 

e. g. for n=3, 
p=0=<000> p3=0 x3 

p2=0 x2 

p1=0 xl 
Polarity 0 FPRM expansion (also termed the positive polarity RM expansion). 

fO(x3, x2, x1) = ao ® aix1 e a2x2 ® a3x2x1 ® a4x3 e a5x3x1 ® a6x3x2 ® a7x3x2x1 

(2.9) 

p=3= <011> p3 

p2=1 
... x3 

X2 

X1 

-0 

p1 =1 
Polarity 3 FPRM expansion. 

f3(x3, x2sxl) - (ap e a1 ® a2 e a3) e (a1 ® a3)xl ® (a2 ® a3)x2 ® a3x2xl 

® (a4 ® as ® ab ® a7)x3 ® (a1 ® a7)x3x1 ® (a6 9 a7)x37C2 

® a7x3x2x1 

(2.10) 

p=7=<111> p3= 1 ". X3 

p2 =1.. 2 
P, =1 X1 

Polarity 7 FPRM expansion (also termed the negative polarity RM expansion). 
f7(x3, x2, x1) -(a. sa1®a2®a3®a4eas®a6®a7) 

e(al®a3aas ®a7)71a(a2®a3ea6ea7)x2 

® (a3 a a7)Z2x1 ®(a4 ®as ®a6 a7)2 

e (as ® a7) xl ® (a6 ®°7)xs7 °71, '2x1 
(2.11) 

2.4 Shannon Expansion Theorem and Exclusive-OR Sum-of-Products Forms 
The Shannon expansion theorem [261 forms a series expansion of a 
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switching function, fY ä-iý""""xl), and has the general form 

Ax n+ x  -1+..., x1 /)=x f(x xx0x_,..., )+ xj ýý f(x x-1,..., x/+1, l, x/-1 ..., x2, x1) ýý "-1,.. y j+1, ,/1 x2x1 

18 

(2.12) 

where the coefficients of xJ and xJ, namely flxn, xn_1.... , XJ, 191, XJ_1,... OX2, x1) 

and flxn, x, 1,..., xJ. i, O, xJ_1,..., x2, x1) (j - 1,2,..., n) are subfunctions of tixn, xn-1, 

..., x1), and are themselves switching functions of (n-1) variables. These 

functions of (n-1) variables may be expanded about any variable xk (k 

1,2,..., n k¢ j). This operation may be used in a recursive manner until 
the original function has been expanded about all n variables. The 

switching function is then represented by the expansion 
A0101---010) + XýXý_1... x2X1 xD, 01..., U, 1) 

+ X�X�-1... X2X1 x0,0,..., 1,0) + ...... + XIXx-l... x2x1 f(1,1,..., 1,1) 
(2.13) 

Comparing Equations (2.1) and (2.13) it can be seen that the 2n coefficients, 
fY0,0,..., 0,0), fj0,0,..., 0,1)......, f(1,1,..., 1,1), can be equated with the operational 
domain coefficients dI (I = 0,1,..., 2n-1 

Hence, 
do = fý0,0,..., 0,0) 

dl = fý0,0,..., 0,1) 
d2 = iY0,0,..., 1,0) 

d3 = fY0,0,..., 1,1) 

d2n_2 = fý1,1,..., 1,0) 

d2n_1 = 

The expansion of Equation (2.12) represents the canonic disjunctive form 

of a switching function. It is, therefore, possible to replace the inclusive- 
OR operator with the exclusive-OR operator without altering the validity of 
the expression. The resulting expansion is 

. 
f(xnsxn-1t 

... sx) ° X1 fýxýrxý-1ý"+X1+1'ý'X1_lý»yX2X1ý " X1fýxýýxý-1'"-sX/"1'1'Y1-Iý... 
ýXZý11ý 

( 2.14 ) 

Employing the substitutions xj = xj ®1 and xx = xj ®1 It is possible to 
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derive two further expansions 
f(xý, xý_l, ".., xl) s fýXýsXý-I+..., Xý. ý, 

ýrXý_is-yXpXl) 

0 xJ I f(x,,, x�-1,..., x1, l, ý, xj-1,..., xZxl) s f(x,,. x�-11 ..., X lax/-1,.., , xl) ) J+ll 

f(xA, x�-1,..., xl) - f(x"'XII-If ..., xj. l, l, xj-1,.., xz, xl) 

0 xj I f(x Ix. -it ..., xf. i, 0$'xJ-1,.. 

19 

(2.15) 

(2.16) 

The expansion given in Equation (2.15) may be used iteratively to construct 

the polarity 0 FPRM expansion of n variables. Each of the remaining 2"-1 

FPRM expansions of an variable switching function may be constructed by 

expanding the appropriate combination of the expressions represented in 

Equations (2.15) and (2.16). 

e. g. for n=3 and p=4, variable x3 is present in complemented form, 

f(x3, xs, x1) - X3 f(D, x7, x1) s x3 f(l, x2, X1) 

0 f(1, xyx1) 0 x3 1 f(O, x2, xl) 4) f(1, x2, xl) l 

Variable x2 is present in true form, 

f(O, xz, x1) = xz f(O, O, xI) ® x2 f(O, 1, x1) 

f(O, O, xI) 19 x2 [ f(O, O, xI) 40 f(O, 1, x1) ] 

f(l, xz, xl) aý f(1, U, x1) * X2 fm "XI) 

- f(1, U, x1) * xz [f(1,0, x1) 0 f(1,1sx1) ] 

Variable xl is present in true form, 

f(O, O, x1) .i it f(0.0,0) ®xl f(O, O, 1) 

- f(0,0, O) 0 xl [ f(0,0, O) s f(O, 0,1) 1 

f(0,1, x1) - z1 f(0,1,0) ® x1 f(0,1,1) 

= f(0,1,0) ® xl 1 f(0,1,0) 40 f(0,1,1) ] 
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Z, f(1,0,0) ® xl f(1,0,1) 

f(1,0,0) ® xl If(1,0,0) ®f(1,0,1) l 
il f(1,1,0) ® x1 f(1,1,1) 

: f(1,1,0) 0 x, If(1,1,0) 0 f(1,1,1) 1 

The polarity 4 FPRM expansion may be formed by substituting the 

appropriate expressions for each subfunction. Thus, 
f4(X3, X2, Xl) 

Rearrange 

f(1, xrxl) ® 13 [f(4, x2'xl) ®f(1, x2, x1) ý 

= f(1, p, xi) " x2 [f(1, O, xl) "for 1, x1) 
J 

" x3 [ f(O, O, xI) " x2 [ f(O, O, xl) " f(O, 1, x1) J 

40 f(1, U, x1) " x2 [ f(1, O, x1) 0 f(1,1'xl) 11 
= f(1,0,0) 49 x1 [ f(1,0,0) 49 f(1,0,1) ] 

49 x2 [f(1,0,0) 49 xl [f(1,0,0) 49f(1,0,1) ] 

49 f(1,1,0) 49 x1 [ f(1,1,0) 49 f(1,1,1) ]] 

® x3 [ f(0,0,0) ® xl [ f(0,0,0) 0 f(0.0.1) ] 

® x2 [ f(0,0,0) 49 xl [ f(0,0,0) 49 f(0,0,1) ] 

49 f(0,1,0) 49 x1 [ f(0,1,0) ® f(0,1,1) ]ý 

49 f(1,0,0) 49 xl [ f(1,0,0) 49 f(1,0,1) ] 

® X2 [f(1,0.0) 49 xl [f(1.0,0) 49 f(1.0,1) ] 

®f(1,1,0) 49x1[f(1,1,0) 49f(1,1,1)]ýý 

fi(x31xrx1) =f(1,0,0) ® xl [f(1,0,0) 0 f(1,0,1) ] 

® xz [f(1,0,0) ®f(1,1,0) ] 
® z1x1 1 f(1, o, 0) 0 f(1, o, 1) ®f(1,1,0) ®f(1,1,1) ] 

0 73 [ f(0,0,0) o f(1,0,0) ] 
® 73x1 [ f(0,0,0) ® f(0,0,1) ® f(1,0,0) ® f(1,0,1) ] 

® x. 3x2 [ f(0,0,0) ® f(0,1,0) ® f(1,0,0) ® f(1,1,0) ] 

® x3xZx1 [ f(0,0,0) ® f(0,0,1) ® f(0,1,0) ®1(0,1,1) 

0 f(1,0,0) ®1(1,0,1) ®1(1,1,0) ®1(1,1,1) 1 
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2.5 Classes of Exclusive-OR Sum-of-Products Expansions 

The FPRM expansions of switching functions, as defined in Equation (2.5), 

constitute only a small subclass of the total number of exclusive-OR (or 

ring) sum-of-products forms which uniquely describe any switching 

function. ESOP forms may be divided into several categories, where each 

category contains expansions which display similar characteristics. These 

range from the well-defined, consistent and canonical FPRM forms to the 

inconsistent generalised Reed-Muller (GRM) expansions (defined in section 

2.5.3). Figure 2.2 illustrates the classes of ESOP expansions which may 

represent any switching function and their relationships. This diagram was 

presented by Sasao [71 and the definitions adopted in this thesis are those 

proposed by Sasao. 

It is, perhaps, useful to relate the notation introduced by Sasao, and 

employed in this thesis, to another popular form of notation [27]. 

Alternative name [271 

PPRM (Positive Polarity RM) expansion RM expansion 
(Equation (2.4)) 

FPRM (Fixed Polarity RM) expansions CRM (generalised RM) expansions 
(Equation (2.5)) 

KRO (KROnecker) expansions KRM (Kronecker RM) expansions 
PSDRM (PSeuDo RM) expansions 1 PKRM (Pseudo Kronecker RM) 
PSDKRO (PSeuDo KROnecker) expansions J expansions 

The categories of ESOP forms which have been introduced are now 

considered in more detail. 

2.5.1 Kronecker Expansions 

The Kronecker expansions may be termed mixed polarity RM expansions as 

each expansion variable may appear in both true and complemented forms 

throughout an expression. A KRO expansion is constructed from an initial 

switching function by expanding the function (subfunction) about each 

variable using one of the expansions given in Equations (2.14), (2.15) and 
(2.16). There are 3' possible combinations of these 3 equations, hence any 

n variable switching function may be represented by a total of 3n KRO 

expansions, each of which is a canonical form. The RM expansion and FPRM 

expansions which may be constructed by employing only expansion (2.15) 

and combinations of expansions (2.15) and (2.16) respectively, are also KRO 
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expansions. This is illustrated in Figure 2.2. As a general rule, a KRO 

expansion may be identified by observing that an expansion variable which 

appears in both true and complemented forms throughout the expression 

must be present in each and every product term. This constraint is relaxed 
for expansion variables which consistently appear in either true or 

complemented form, but not both forms. 

PPRM 
FPRM 

KRO 
PSDRM 

PSDKRO 
GRM 

ESOP 

Key 
PPRM - Positive Polarity Reed-Muller expansion 
FPRM - Fixed Polarity Reed-Muller expansions 
KRO - KROnecker expansions 
PSDRM - PSeuDo Reed-Muller expansions 
PSDKRO - PSeuDo KROnecker expansions 
GRM - Generalised Reed-Muller expansions 
ESOP - Exclusive-OR Sum-Of-Products expansions 

Figure 2.2: Classes of Exclusive-OR sum-of-products expansions and their 
relationships. 

Each KRO expansion fjxa, xn_i,..., x1) may be identified by means of a polarity 
number m, 0sm5 3n-1. Hence, the polarity m KRO expansion is denoted 
m( Ä"xn-1""""'x1)" This number, m, indicates the state of each expansion 
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variable throughout the expression, that is, which variables are present in 

true form, complemented form or both true and complemented forms. The 

polarity number m is the decimal equivalent of the ternary n-tuple <m,, mA_1 

... m1>, where mi is replaced by 0 if xx is present throughout the KRO 

expansion, and replaced by 1 if xj is consistently present in the expansion. 
If the variable is present in both true and complemented forms, i. e. xx and 
xj, then mj is replaced by 2. The FPRM expansions will correspond to all 

polarity numbers whose ternary forms comprise only 0's and 1's. 

The following expressions illustrate the use of polarity numbers to identify 

KRO expansions. 

e. g. for n=3, 

m=0=<000> m3=0 -» x3 
m2 =0 -º x2 

m1=0 -0 x1 

Polarity 0 KRO expansion. (This is also the polarity 0 FPRM expansion 
(Equation (2.9)), and is termed the positive polarity RM expansion. ) 

fo(x3, x2, x1) =1(0,000) ® x1 [ 1(0,0,0) ®1(0,0,1) ]® x2 [ 1(010,0) ®1(0,1,0) ] 

" x2x1 [1(0,0,0) . f(0,0,1) ®1(0,1,0) ®1(0,1,1) ] ®x3 [ f(0,0,0) . f(110,0) ] 

" x3x1 [ f(0,0,0) ®1(0,0,1) 0 f(1,0,0) ®f(1,0,1) ] 

" x3x2 [ f(0,0,0) ®1(0,1,0) ®1(1,0,0) . f(1,1,0) ] 

o x3x2x1 [f(0,0,0) ®1(0,0,1) . f(0,1,0) ®1(0,1,1) 

®1(1,0,0) " f(1,0,1) " f(1,1,0) " f(1,1,1) ] 

M=1= <001> m3 =0 x3 

m2=0 -» x2 
m1 =1 "' Xl 

Polarity 1 KRO expansion (and the polarity 1 FPRM expansion). 
fl(x3, x2, x1) =A01011) ®xl [ 1(0,0,0) ®1(0,0,1) ] ®x2 [ f(0,0,1) " f(0,1,1) ] 

® x2 [ f(0,0,0) 0 f(0,0,1) ®1(0,1,0) ®1(0,1,1) ] ®x3 [ f(0,0,1) ®1(1,0,1) ] 

" x311 [ f(0,0,0) ®1(0,0,1) ®1(1,0,0) . f(1,0,1) ] 

" x3x2 [/(0,0,1) . f(0,1,1) . f(1,0,1) . f(1,1,1) ] 

® x3; x1 [1(0,0,0) ®1(0,0,1) ®/(0,1,0) . f(0,1,1) 

®1(1,0,0) " f(1,0,1) " f(1,1,0) 49 f(1,1,1) ] 
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m=2= <002> m3 =0 -º x3 

m2 =0 -º x2 

m1=2 -» x1, xl 
Polarity 2 KRO expansion. 

12(x3, x2, x1) = xl f(0,0,0) ® XI 1(0,0,1) ® x2z1 [f(0,0,0) ®1(0,1,0) ] 

" xZx1 [f(0,0,1) ®1(0,1,1) ]® x3x1 [f(0,0,0) ®1(1,0,0) ] 

" x3x1 [1(0,0,1) ®1(1,0,1) ] 

® x3x2X1 [ 1(0,0,0) ® /(0,1,0) ®1(1,0,0) ® /(1,1,0) ] 

0 x3x2x1 l f(0,0,1) S A0,1.1) ® 1(1,0,1) ® /(1,1,1) ] 

m=4= <011> m3=0 

m2 =1 

ml =1 

r 

.. º 

... 

x3 

x2 

X1 

24 

Polarity 4 KRO expansion (and the polarity 3 FPRM expansion (Equation 

(2.10))). 

fi(x3, x2, x1) =1(0,1,1) 0 "l [1(0,1,0) 6f(0,1,1) ]0 12 [1(0,0,1) 01(0,1,1) ] 

" 72x1 [1(0,0,0) ®1(0,0,1) ®1(0,1,0) ®/(0,1,1) ] 0x3 [/(0,1,1) 0/(1,1,1) ] 

" x311 [1(0,1,0) *A0111") ®1(1,1,0) 01(1,1,1) ] 

" X372 [1(0,0,1) 0/(0,1,1) 0f(1,0,1) ®1(1,1,1) ] 

0 x37271 (f(0,0,0) 01(0,0,1) ®1(0,1,0) ®1(0,1,1) 

0f(1,0,0) "f(1,0,1) 01(1,1,0) 01(1,1,1) ] 

m=5= <012> 

ml =2 

m3=0 

m2 =1 

... 

-. 0 

No 

x3 

x2 

X1. X1 

Polarity 5 KRO expansion. 
fs(x3, x2, x1) = 71 f(0,1,0) ® xl f(0,1,1) ® 7271 [ f(0,0,0) ® f(0,1,0) l 

® 72x1 [1(0,0,1) ®1(0,1,1) ]® x371 [/(0,1,0) ®1(1,1,0) ] 

® x3x1 [1(0,1,1) ®f(1,1,1) ] 

® x37271 [ f(0,0,0) ® f(0,1,0) ®1(1,0,0) ® f(1,1,0) ] 

® x372x1 [ f(0,0,1) ®1(0,1,1) ®1(1,0,1) ®1(1,1,1) ] 

m= 13 = <111> m3 =1 

m2 =1 

m1=1 

r 

... 
r 

x3 

x2 
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Polarity 13 KRO expansion. (As this is also the polarity 7 FPRM expansion 

(Equation (2.11)) it may be termed the negative polarity RM expansion. ) 

f13(x3, x2, x1) =1(1.1,1) ® 11 (1(191,0) ®1(1.1.1) ] 

0 x2 1 f(1,0,1) ® f(1,1,1) 1 

® xZxi [1(1,0,0) " f(1,0,1) " f(1,1,0) " f(1,1,1) ] 

® i3 [ f(0,1,1) " f(1,1,1) ] 

" xsxl [f(0,1,0) " f(0,1,1) " f(1,1,0) " f(1,1,1) ] 

" xA [ f(0,0,1) ®1(0,1,1) " f(1,0,1) " f(1,1,1) ] 

" W=xl [ f(0,0,0) " f(0,0,1) Of(0,1,0) " f(0,1,1) 

0 f(1,0,0) 0 f(1,0,1) ® f(1,1,0) 0 f(1,1,1) 1 

m= 26 = <222> m3 =2 -" x3, x3 
m2 =2 "º X2, X2 

m1 =2., º X1' X1 

Polarity 26 KRO expansion. 
f26(x3, xz, x1) = x3x2x1 f(0,0,0) ® x3xzxl f(0,09 1) ® X3x21 f(0,1,0) 

® x3x2x1 f(0,1,1) ® x3xZx1 f(1,0,0) ® x3x2x1 f(1,0,1) 

® x3x. ixl 
f(1,1,0) ® x3x1x1 f(1,1,1) 

Note that the polarity 26 (3"-1) KRO expansion, with all variables present 

in both true and complemented forms, is equivalent to the Boolean SOP 

expansion (Equation (2.2)). 

2.5.2 Pseudo Reed-Muller Expansions and Pseudo Kronecker Expansions 

Pseudo Reed-Muller expansions and Pseudo Kronecker expansions exhibit 

similarities in their basic structure. Both types of expressions may be 

constructed using the same technique and will therefore be described 

simultaneously. 

The Shannon expansion theorem (Equation (2.12)) may be modified to allow 

a switching function to be represented using three different expansions. 
This was demonstrated in section 2.4 and the expressions are now repeated. 
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_1ý... ºX2X3ý ® Xý fýXýXý_1+... 
ýXýý1ý 

IýXý_1ý... 
s. LjýX1ý Xi! (XwsXn_1s... 

vX7+190, Xj 

f(x., x�-1,..., xl) = f(x., x�-1,.., xi,,, 0, xj_1,..., xz, x, ) 

26 

(2.17) 

® Xi I fix. +x"-1+..., x/. rý+x/-r yýxiý 0 f(x. +x. -i+..., xJ+1,1, x/_1,..., xz, xl) 1 

(2.18) 

f(X, 
OX�-19 ..., X1) = f(X*, Xj, 

_1,..., 
XJ. 1,1, XJ_1,..., XZ, X1) 

® XJ [ f(X., X"-19 ..., XJ. 1+0"XJ-19. "»X2X1) ® f(X,, X, 
-1+..., 

XJ+1,1, XJ-19-. »X2'X1) l 
(2.19) 

The original function fjD, ä_1,..., xl) is now composed of two subfunctions 

of (n-1) variables. Each subfunction may be considered to be a coefficient 

of the expansion, and is either independent of the function variable xj or 

is associated with literal xx or x 
f. There are a total of 3 possible 

subfunctions and of these any 2 are used in the representation of the 

original switching function. The subfunctions are 
f(xn, xx_1,..., xx, 1,0, xx_1,..., x2x1) 

flxýaxý'la---$Xj 
la 

lax/-19*"OIX7aXl) 

(2.20) 

(2.21) 

(2.22) 

Each subfunction may be expanded about function variable xk (k = 1,2,..., n 

k# j'). The original subfunction is split into 2 new subfunctions of (n-2) 

variables, which exhibit structures similar to the subfunctions denoted in 

Equations (2.20), (2.21) and (2.22). 

The PSDRM expansion is constructed by applying either expansion (2.18) or 

(2.19) to the switching function 1jxn, xn_1,..., xl). Either of these expansions 

are then applied to each subfunction until the function is expanded about 

all n variables. It is possible to construct 22n'1 canonic PSDRM expansions. 

PSDKRO expansions are constructed in a similar manner, allowing expansions 
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(2.17), (2.18) and (2.19) to be applied to the switching function and to all 

subsequent subfunctions. This results in a total of 32"-1 possible canonic 
PSDKRO expansions. 

Note that in constructing PSDRM and PSDKRO expansions it is not necessary 
to apply the same expansion (i. e. (2.17), (2.18) or (2.19)) to each 

subfunction. If, however, the same expansion is applied to all subfunctions 

of any function variable and this is adhered to for each function variable 
then the expression constructed is a KRO expansion. If a further constraint 
is imposed and only expansions (2.18) and (2.19) may be applied then a 
FPRM expansion will be formed. Hence FPRM expansions are a subclass of 
PSDRME expansions whilst KRO forms are a subclass of PSDKRO expansions. 
Additionally, PSDKRO forms include all PSDRME expansions. These 

relationships are illustrated in Figure 2.2. Henceforth, any reference to 
PSDKRO expansions will include all PSDRM expansions. 

A PSDKRO expansion fýxn, n_1,..., xl) may be identified by a polarity number 
q, 0Sqs 32n-1-1. The polarity q PSDKRO expansion may be denoted 

f9( n, x1_1,..., xl). The number q is the decimal equivalent of the ternary 
(2n-1)-bit number and each qk indicates the type of expansion, i. e. (2.17), 
(2.18) or (2.19), which should be applied to each subfunction of j variables. 
The ternary digit g2n_1 indicates which expansion should be applied to the 

subfunction of n variables, i. e. the original function. Ternary digits q2n-2 
and q2 n-3 dictate which expansion should be applied to the two 

subfunctions of (n-1) variables. If expansion (2.17) Is applied to the 

original function then q2n-3 Indicates which expansion should be applied to 
the subfunction associated with literal xn, whilst g2n_2 Indicates which 
expansion should be applied to the subfunction associated with literal xn. 
Alternatively, if expansion (2.18) ((2.19)) is applied to the original function 
then q2n-3 indicates which expansion should be applied to the subfunction 
which is independent of literal xD (s), whilst g2n_2 Indicates which 
expansion should be applied to the subfunction associated with literal xx 
(Xn). This rule may be applied for each function variable and the associated 
polarity digit qk. The ternary digits qk, 2n-2n'f+1+1 sk5 2n-2n'j, indicate 

which expansion should be applied to the subfunction of variable j (j = 
1,2,..., n). 
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The use of the polarity number, q, is illustrated In the following examples, 

e. g. for n=3, 

q= 270 = <0101000> q7 =0 x3 

q6= 1 x2 

q5=0 x2 

q4 =1 xi 

q3 =0r x1 

q2 =0- x1 

qi =0 8-0 x1 

Polarity 270 PSDKRO expansion. 

q7 = 0, therefore apply expansion (2.18) to the original function. 

f(x3, x2, x1) = f(O, x2, xl) ® x3 [ f(O, x2, x1) ® f(l, x2, x1) I 

q6 = 1, therefore apply expansion (2.19) to the subfunction associated with 

literal x3. 

q_ = 0, therefore apply expansion (2.18) to the subfunction independent of 

literals x3, X3. 
f(x3, x2, x1) = f(O, O, x1) ® x2 [ f(O'O'xl) ® f(0,1, x1) J 

® x3 [ f(0,1, x1) e x2 [ f(O, O, xI) ® f(0,1, x1) ý 

0 f(1,1, x1) 40 x2 [f(1'O'xl) 0 f(1,1, x1) 11 

Rearrange 

f(x3. x2. xl) - f(o. oºxl) ® x2 [ f(Orosxl) ® f(0l lsxl) 1 

" x3 ý[ f(o'1'xl) of(" 1'xl) ] 

" x2 ý f(O'O'xl) 0 f(o. 1'xl) ® f(1. O, xl) 40 f(l'1. x1) ýý 

q4 = 1, therefore apply expansion (2.19) to the subfunction associated with 
literals x3x2. 
q3 = 0, therefore apply expansion (2.18) to the subfunction associated with 
literal x3. 

q2 = 0, therefore apply expansion (2.18) to the subfunction associated with 
literal x2. 

ql = 0, therefore apply expansion (2.18) to the subfunction independent of 

any literals. 

The polarity 270 PSDKRO expansion may be formed by expanding each 
subfunction about variable xl using the appropriate expressions for each 



McKenzie, L. M. 1995 Chapter 2 29 

subfunction. 
Thus, 
f27p(x3, x2. x1) a f(0,0.0) " x1 [ f(0.0.0) ® f(0+0.1) ] 

" x= [ f(0,0,0) " x1 [ f(0,0,0) " f(0,0,1) ]" f(0,1,0) " x1 [ f(0,1,0) " f(0,1,1) ]] 
" x3 [f(0,1.0) " x1 [f(0,1,0) "f(0.1,1) ] ®f(1.1.0) " x1 [f(1.1.0) " f(1,1+1) ] 

® x2 [ f(0,0,1) " Z1 [1(0,0,0) " f(0,0,1) ] ®1(0,1,1) " x1 [1(0,1,0) " f(0,1,1) ] 

401(1,0,1) " x1 l f(1,0.0) " f(1,0,1) ] 0)1(1,1,1) " z1 [f(1,1,0) " f(1,1,1) 1]] 

Rearrange 
frp(x3, x2, xl) = A0,0-0) ® Xi [ f(0,0,0) ® f(0,0,1) ]® x2 [ f(0,0,0) ® f(0,1,0) ] 

® x2x1 [ f(0,0,0) ® f(0,0,1) ® f(0,1,0) ® f(0,1,1) ]® x3 [ f(0,1,0) ® f(1,1,0) ] 

® x3x1 [ f(0,1,0) ® f(0,1,1) ® f(1,1,0) ® f(1,1,1) ] 

® x3x2 [ f(0,0,1) ®1(0,1,1) ® f(1,0,1) ® f(1,1,1) ] 

® x3x2x1 [ f(0,0,0) ® f(0,0,1) ® f(0,1,0) ® f(0,1,1) 

® f(1,0,0) ® f(1,0,1) ® f(1,1,0) ®1(1,1,1) ] 

This PSDKRO expansion is also a PSDRM expansion as only expansions (2.18) 

and (2.19) are applied. 

q= 1328 = <1211012> q7=1 

q6=2 

q5 =1 

q4 =1 

q3=0 

.. 

.. 
no 

-0 

2-0 

x3 

X2, X2 

X2 

X1 

X1 

92 =1 -'' xi 

q1=2 x1,31 

Polarity 1328 PSDKRO expansion. (This expansion is also derived in [27]) 

97 = 1, therefore apply expansion (2.19) to the original function. 

f(x3, x2, x1) = f(l, x2, xl) " x3 [ f(O, xj,, x1) " f(i, x2, x1) I 

q6 = 2, therefore apply expansion (2.17) to the subfunction associated with 
literal x3. 

q5 = 1, therefore apply expansion (2.19) to the subfunction independent of 
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literals x3, x3. 

f(x3, xZ, x1) ' f(1,1, x1) 0 S2 [f(1, O, x1) 40 f(1,1, x1) ] 

0; [ ý2f(O. O. x1) 40 x2 f(0.1. x1) " x2 f(1.0. x1) " x2 f(1.1. x1) I 

Rearrange 

f(x3, x2, x1) m f(1,1, x1" ® XZ [f(19O9xi) ® f(1,1, x1) ] 

41 x3 [ x2 [ f(0,0, x1) 0 f(1, O, x1) 10 x2 [ f(0.1. x1) ® f(1,1. x1) ]] 

30 

q4 = 1, therefore apply expansion (2.19) to the subfunction associated with 

literals X3X2. 

q3 = 0, therefore apply expansion (2.18) to the subfunction associated with 

literal x372. 

q2 = 1, therefore apply expansion (2.19) to the subfunction associated with 

literal ' 2. 
ql = 2, therefore apply expansion (2.17) to the subfunction independent of 

any literals. 

The polarity 1328 PSDKRO expansion may be formed by expanding each 

subfunction about variable xl using the appropriate expressions for each 

subfunction. 
Thus, 

f132b (X3'X2, xl ) = x1 f(1,1,0) ® x1 f(1,1,1) 

x2 [ f(1,0,1) ® x1 [ f(1,0,0) ® f(1,0,1) ] 

® f(1,1,1) ® x1 [1(1,1,0) ® f(1,1,1) ]] 

® 'ý [ x2 [ f(010,0) ® x1 [ f(0,0,0) 40 f(0,0,1) ] 

" f(1,0,0) s x1 [1(1,0,0) ® f(1,0,1) ]] 

® xz [ f(0,1,1) ® x1 [f(0,1,0) ® f(0,1,1) ] 

®f(1,1,1) ® s1 [f(1,1,0) ®1(1,1.1) ]]ý 
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Rearrange 
flrsa(x3, X2, x1) = zIf(1,1,0) ® xlf(1,1,1) ® xz [1(1,0,1) ®f(1,1,1) ] 

® x2z1 [ f(1,0,0) ® f(1,0,1) ® f(1,1,0) ® f(1,1,1) ] 

0 X3zZ [ f(0,0,0) ® f(1,0,0) ] 

® x3z2x1 [/(0,0,0) ®1t0,0,1) 10 f(1,0,0) ®1(1,0,1) 1 

® xsXx [1(09 10 1) 0 f(1l 1r1) l 

0 x3*ý2x1 1 f(0,1, () 0 f(0,1,1) 0 f(1,1,0) ® f(1,1,1) ] 

31 

2.5.3 Generalised Reed-Muller Expansions 

The FPRM expansions defined in section 2.3 exhibit the basic property that 

each expansion variable appears in either true or complemented form 

throughout the expression. These expressions may therefore be termed 

consistent canonical forms [28]. Another class of exclusive-OR sum-of- 

products expansions may be formed by considering the RM expansion (PPRM 

expansion), 
=- ao ® a1x1 ® a2x2 ® a3x2x1 9 ...... ® a2. 

-ix. 
x. 

-1«. 
x2x1 

This expression may be modified by replacing any combination of literals 
by their complemented forms (employing the substitution xi = xi is 1). This 

allows variables to appear in both true and complemented form throughout 

some expansions and these are termed inconsistent canonical forms [28]. 

The total number of possible combinations of true and complemented literals 

is 2n2n-1. It is, therefore, possible to derive 2n2n-1 expressions, termed 

generalised Reed-Muller (GRM) expansions. The GRM expansions are 

comprised of the 2' consistent canonical forms, which are the FPRM 

expansions, and 2nZn-1 - 2n Inconsistent canonical forms. This relationship 
is illustrated in Figure 2.2. 

2.5.4 Exclusive-OR Sum-of-Products Expansions 
Exclusive-OR sum-of-products expansions encompass any switching function 

which employs modulo-2 operators. This obviously includes all canonical 
expansions defined in the categories of the preceding sections and any 
canonical expansions which do not fall into any of these categories. 
Additionally, modulo-2 sum-of-products expansions which are not canonical 
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forms may be classified under the general title of exclusive-OR sum-of- 

products expansions. It is possible to derive a maximum of 3 to ESOP forms 

of n expansion variables and t product terms [7]. This category is very 

general and many of these ESOP forms have little regular structure and 

are loosely defined. 

2.6 Binary Decision Diagrams 

Binary Decision Trees and Binary Decision Diagrams [29,30,311 are 

graphical representations of switching function and are an alternative to 

Karnaugh maps and truth tables. The BDT of the n variable Boolean 

function 

f(x., x. -1,..., xl) = dox"xn-1. »x2x1 + dlxaxn-l... x2x1 + d2xnxa-l... x2x1 + ... 

... + dr-ix4x4-l... x2xJ 
(2.23) 

is illustrated in Figure 2.3. The Boolean SOP expansion of Equation (2.23) 

is a canonical form where die (0,1) are the operational domain coefficients 
(I = 0,1,..., 2"-1) and xj and xJ are literals of the expansion, in true and 

complemented forms respectively (j = 1,2,..., n). 

A BDT (Figure 2.3) is comprised of nodes connected to one another by 

branches. Two types of nodes are present in the structure, namely terminal 

nodes and non-terminal nodes. A terminal node (box) may assume either the 

value 0 or the value 1, whilst each non-terminal node (circle) is associated 

with a function variable. Every non-terminal node has one input branch 

and two output branches. The left output branch, denoted 0, indicates the 

presence of the node variable in complemented form. The right output 
branch is denoted 1, indicating that the node variable is present in true 
form. 

The function of a non-terminal node is illustrated in Figure 2.4. Hence, the 
node variable xf (j = 1,2,..., n) may be considered to be the splitting 
variable in the Shannon. expansion theorem. The functions fX x, xn_1, 
..., Xi. 1,0, 

x, 
_1,..., 

x2, x1) and x,. 
j, 

1, x, 
_1,..., 

x2, x1) are independent of 

variable xx and are subfunctions of the original Boolean function. A subtree 
is defined as a part of a BDT and is, therefore, also a BDT. Any subtree 
represents a subfunction of the original function depicted by the full BDT. 
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A subtree will be comprised of fewer nodes than the BDT of the original 

function and may be rooted at an output branch of any non-terminal node 

of the BDT. 

Figure 2.3: Ordered Binary Decision Tree of an variable Boolean function 

Figure 2.4: Non-terminal node representing function variable xj 

Tracing a path from the root of the BDT (Figure 2.3) to a terminal node 

with value 1 realises a minterm of the Boolean function. If this is repeated 
for all terminal nodes with value 1 then the canonical Boolean SOP 

expression is formed. 
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Branches of a BDT may only connect nodes on level k to nodes on level m, 

where k<m and k, me {1,2,..., n}. The BDTs discussed in this thesis are 

ordered structures. That is, if a path is traced from the root to the 

terminal nodes each function variable will be encountered only once. The 

order in which the function variables are encountered is identical for each 

path traced from the root of the BDT to a terminal node. Relating this to 

Figure 2.3, each node at level j will represent the same function variable 

xk (j, ke {1,2,..., n}). Henceforth, only Ordered Binary Decision Trees 
(OBDTs) will be considered. 

The OBDT of any n variable function is comprised of a total of 212'1-1 nodes 
of which 212-1 are non-terminal nodes. The remaining number of terminal 

nodes (212) is equal to the number of rows in the truth table representation 
of an variable function. It is, however, possible to reduce the number of 
nodes in a BDT by deleting redundant nodes and merging identical 

subtrees. 
Equivalent nodes [32] 

Two terminal nodes of an OBDT are equivalent if they each have the 

same Boolean value. 
Two non-terminal nodes of an OBDT are equivalent if both nodes 
represent the same function variable, the subtrees rooted at the left 

output branch of the nodes are identical and subtrees rooted at the 
right output branch are identical. 

The definition of equivalent nodes leads to the formulation of two rules 
which may be employed to reduce the number of nodes in an OBDT. 

Reduction rules [32] 

1) If the subtree (terminal node) rooted at the left output branch of 
a node is equivalent to the subtree (terminal node) rooted at the 
right output branch then redirect the input of the node to the input 
branch of the left subtree (terminal node). Delete the node and the 
right subtree (terminal node). 
2) If two nodes, a and b, of a OBDT are equivalent, redirect the 
input branch of node b to the input of node a. Node b and its 
subtree can then be deleted. 

The Ordered Binary Decision Diagram (OBDD) is a reduced form of the OBDT 
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where the nodes of an OBDD may have more than one input branch 

connected to any node. If the reduction rules which have been detailed are 

repeatedly applied to an OBDT until the number of nodes in the structure 

can no longer be reduced then a Reduced Ordered Binary Decision Diagram 

(ROBDD) is formed. The ROBDD comprises of a minimum number of nodes for 

a given variable ordering, and is a unique representation of the Boolean 

function. A ROBDD can, therefore, be defined as a canonical representation 

of a Boolean function [31]. 

A ROBDD represents the essential implicants of a Boolean function. The 
implicants are essential as every minterm (product term) of the initial 

Boolean function is covered by one implicant represented by the ROBDD. It 

cannot, however, be guaranteed that the implicants are prime implicants as 
the ROBDD representation does not allow minterms (product terms) to be 

covered by more than one implicant [331. Hence, the implicants represented 
by a ROBDD are disjoint. 

The use of the reduction rules is illustrated in Figure 2.5, where the 
Boolean function 

f(X3, X2, X1) ° x3x2X1 + X3x2X1 + x3x2xl + x3x2X1 + X3x2x1 

is first represented by an OBDT (Figure 2.5(a)). The order of the function 

variables in Figure 2.5(a)-Figure 2.5(c) is <3,2,1>, starting with the lowest 
level of non-terminal nodes and ending at the root of the structure. The 
OBDD of Figure 2.5(b) Illustrates equivalent nodes which may be merged 
and identifies redundant nodes. The ROBDD representing the Boolean 
function is shown in Figure 2.5(c). This ROBDD is comprised of 3 non- 
terminal nodes and 2 terminal nodes. Thus, the total of nodes has been 

reduced from 15 in the OBDT to 5 in the ROBDD. The number of paths 
which terminate in a node with value one has been reduced from 5 to 3. 

The OBDT of a Boolean function may be constructed from a truth table. 
Alternatively, OBDTs and OBDDs may be derived by repeatedly applying the 
Shannon expansion theorem (Equation (2.12)) to the algebraic description 

of a Boolean function. These structures can then be manipulated, using the 
reduction rules defined previously, to form canonical ROBDDs. 
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Figure 2.5: (a) OBDT of the Boolean function, (b) OBDD, showing redundant 
nodes and isomorphic subfunctions, (c) ROBDD of the Boolean function. 
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The ROBDD is a canonical representation of a Boolean function and the 

number of nodes in the ROBDD cannot be reduced [31]. It is, however, 

possible to alter the order in which the function variables are encountered 
in the ROBDD. This leads to the construction of another ROBDD which is 

also a canonical representation of the original Boolean function. Hence, 

ROBDDs representing a Boolean function may be constructed where the 

number of nodes in each ROBDD varies, and is indeed dependent on the 

order of the variables [30,31]. The total number of OBDTs which may be 

constructed to represent an variable Boolean function is M. Additionally, 

any n variable Boolean function may also be represented by a total of n! 
ROBDDs. 

In the BDTs, OBDDs and ROBDDs which have been introduced, each non- 
terminal node has been described as representing a function variable, xj . 
However, it is also possible to employ non-terminal nodes to represent 
subfunctions [30,31]. This allows subfunction sharing and extends the use 

of the structures to the representation of multiple-output Boolean 

functions. Additionally, the OBDTs, OBDDs and ROBDDs have been considered 

as two-level representations of Boolean functions. If the root of the OBDT 
(OBDD, ROBDD) is assumed to correspond to the output of a circuit and the 
terminal nodes to the primary inputs then the structure can be considered 
to be a multiple-level representation of a circuit implementing a Boolean 
function. Indeed, the levels of the structures correspond to the levels of 
a multiple-level circuit. Hence, ROBDDs may be employed as concise 
multiple-level representations of multiple-output Boolean functions. 

The concept of graphically representing Boolean functions may be further 
developed, resulting in structures which may be employed to describe FPRM 

expansions. These graphical constructions are called Reed-Muller Binary 
Decision Trees and are detailed fully in chapter 7. 

2.7 Reed-Muller Universal Logic Module Networks 

A Reed-Muller Universal Logic Module (RM-ULM) is a device which may be 
used to implement switching functions [3]. The device has c control inputs, 
21 data inputs and a single output. The number of control inputs to a 
particular RM-ULM may be indicated by employing the notation RM-ULM(c). 
The symbol of the RM-ULM(c) is given in Figure 2.6. 
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Figure 2.6: Symbol of a RM-ULM(c) 

The output of a RM-ULM(c) is described by the switching function f, 

f= g0 ® g111 ® g2"2 0 83"211 ®...... ® g2`-iXCXC_1... 1211 

(2.24) 

where gi c {0,1} is a data input and xJ is a variable of the switching 

function (xj = xf or xj). (I = 0,1,..., 21-1, j=1,2,..., G) 

The circuits and symbols for RM-ULM(1) and RM-ULM(2) are illustrated in 

Figure 2.7. RM-ULM(1) Is a single control input device (c = 1), and 
RM-ULM(2) is a device with 2 control inputs (c = 2), they implement the 

switching functions f= go a g1X1 and f= go a g1X1 e g2k2 ® g3x2x1, 

respectively. 

A RM-ULM(c) can directly implement any FPRM expansion of c variables by 

employing the functional domain coefficients, bi (i = 0,1,..., 2n-1), as the data 
inputs and the expansion variables, xx (j = 1,2,..., n), as the control inputs 

to the module. This is verified by observing that any FPRM expansion of 
c variables may be represented by the expansion 

f(x , xe-1,..., x1) = b, ® b1 *1 ' b2±2 ® bj#2x1 ® ...... ® bb-1tc c-1.. 
c2#1 

(2.25) 

bi c {0,1}, i=0,1,..., 2'-1. 

Equation (2.25) is identical to Equation (2.24), the output of a RM-ULM(c), 

when b1 is equated with g1. 
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ýý 
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F- T-1 

X1 lgý X1 Xz ýbý 

Figure 2.7: Circuits and symbols of (a) RM-ULM(1) and (b) RM-ULM(2) 

It is also possible to utilise a RM-ULM(c) to implement any FPRM expansion 

of (c+ 1) variables. This is now demonstrated, 

A FPRM expansion of (c+1) variables 

f(x,, 1, xO..., x1) s bo e b1l1 9 b212 ® b, 1231 e ...... ®bzý-1 brt,. 1 
® br+1i, 1i1 ® b., 

+2io+1i2 0 br+3ic+1i2i1 ® ...... 0 b2"'_lio+lic... i2i1 

Equating 

- (bo ® brt,, l) ® (bl ® br, 1t,, 1)at1 ® (b2 ® br. zýý. l)ý ® ... 

® (br-1 8 br. l-lzc, l)zc.. -t2xl 

10 ýf b, - 0, b2.,, - 0; 

1 jf bi - 1, bý, ý - 0; 
B, - b, ® 6ý,, t., 1 - te1 lt b, - 0º bs.. i - 

t7,, i }f b, -1, b2.,, -1. 

1=0,1,2,..., 2'-1. 
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then 
f (Xl-1, X,,..., X1) = BO ® B1 XI ® B2x2 ® B3ý]ll ® ".... ® B2'_1XýXý-1 

". X2ý1 

40 

(2.26) 

Equation (2.26) is identical to (2.24), the output of a RM-ULM(c), when BB 

is equated with gj. Hence, a RM-ULM(c) can implement any FPRM expansion 

of (c+l) variables, where each data inputs of the RM-ULM(c) may be 0,1, 

xf or xj. This technique is illustrated by using a RM-ULM(2) to implement 

a function of 3 variables. 
FPRM expansion (n = 3) 

f(x3, x2, x1) = b0 ® bill ® b212 ®b3ii11 e b413 ® b, 1311 ® b61312 e b7t3X2x1 
(2.27) 

Rearranging 

f(x3, xq, x1) - (bo ® b4z3) ® (bl ® bs. t3)1i ® (bZx ® b6t3)X2 ® (b3 ® b7z3)z2atl 

- Bo ® BIXI ® B212 ® B31211 

Ba = bo ® b4X3 

Bl = bl ® b; x3 
B2 = b2 ® b6x3 
B3 = b3 ® b7x3 

where bi e {0,1}, and B. e {0,1, X3, X3} 

Hence, Bi (I = 0,1,2,3) are the data input of 
in Figure 2.8. The output of this module is 

the RM-ULM(2), as illustrated 

f= Bo ® B111 ® B212 9 Bsxixi 

A RM-ULM network may be formed by connecting the data inputs of one 
RM-ULM to the outputs of other RM-ULMs. Indeed, each data input of RM- 

ULM(c) may be connected to the output of another module, RM-ULM(d), to 

form a network which consists of 2c RM-ULM(d)s and a single RM-ULM(c). 

This network is equivalent to a single RM-ULM(c+d). This is now detailed, 

assuming that the data inputs of 2' RM-ULM(d)s are g,, (k = 0,1,..., 2c'd-1), 

and the control inputs are xl, xZ,..., xd, as illustrated in Figure 2.9. 
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B. 

X1 Xz 

Figure 2.8: RM-ULM(2) Implementation of the FPRM expansion given in 
Equation (2.27) 

The output of each RM-ULM(d) is given by: 

fo= So ® 81x1 ® Szx2 ® S3xzx1 ® ...... 11 gr-lxdxa-1.. xzx1 

f' = gr ® gr. iX, ® gr. xX2 0 gr, j. z2z, ®...... ® gr. l-lzezd-1.42s1 

gý.. 
-lxaxa-1 'X2X1 

f Z`-1 =8a ®$2... -', 1'x1 ®g2°"'-'42x2 ® 82"x-', 3 '1 ®...... 41, 

where each fi (I = 0,1,..., 2-1) is the output of the ith RM-ULM(d) in the 

network and is a data input of the first level module RM-ULM(c), as 
illustrated in Figure 2.9. If Xd, 

1, 
Xd, 

2...... C, d are the control inputs of the 

module RM-ULM(c), then the output f is given by 

f° f0®f 1j? 
1+1 ® f2'xd+2 40 f 3Xd+2'xJ+1 ®...... 0f 

ýýlXe+d2eýd-1.. 
Xd+2x1+1 

° go ® glxl ® g242 ® ...... ® g2. -l. 
Ltlf11-1.. 'x2't1 ® g2ld+1 

® g2r+lI d+lý1 9 g21+2'd+1ý ® ...... ® $e. t-1I1.1x1ý/-1.42I1 ® ...... 

® gr. -'; tc, d.. 31+1 ® gz,.. -', lýo. a"ýc, iýi ® gr.. -'+Z'tc+l.. *a+l'. L2 ® ...... 

® 92°''-llo"e'tc+l-1... *d+1jtdt1-i-t2'tl 

(2.28) 
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ED 

Xd+i ýö+a 

Figure 2.9: RM-ULM network 
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The output of a RM-ULM (c+d) is 

f(c+d) = go ® glxl ® g2xi ® &xizl ® ...... ® gsr+-ixo. asc+e-1.. x2x1 

43 

(2.29) 

Equations (2.28) and (2.29) are identical, hence implementing a network 

using 2c RM-ULM(d)s and a single RM-ULM(c) is equivalent to an 
implementation comprised of a single RM-ULM(cs d). 

Any data input of a RM-ULM may be the binary value 0 or 1, literal xj or 
xJ or the output of another RM-ULM. A tree network is a network of 3 or 

more RM-ULMs. Additionally, 2 or more data inputs of at least one RM-ULM 

in the network must be the outputs of other RM-ULMs in the network. An 

example of a tree network is illustrated in Figure 2.10, implementing the 

FPRM expansion of Equation (2.30). 

f(xs, x4, x3, xyx1) = 73x1 ® 73x2 ® x4 ® 73 ® 73x4x3 

(2.30) 

Figure 2.10: Tree network implementing the FPRM expansion given in 
Equation (2.30). 
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A cascade network is formed from a minimum of 2 RM-ULMs where a 

maximum of one data input of each RM-ULM is connected to the output of 

another RM-ULM in the network. An example of a cascade network is 

illustrated in Figure 2.11, implementing the FPRM expansion of Equation 

(2.31). 

. 
fixs, x4, x3, x2, x1) = xl 41 x2 41 x3 40 x4 41 xs 

(2.31) 

Figure 2.11: Cascade network implementing the FPRM expansion given in 
Equation (2.31). 

2.8 Summary 

The preceding sections of this chapter have reviewed some principles of 

switching theory. This has included comprehensive descriptions and 
definitions of logic functions, various types of RM expansions and ESOP 

forms. Additionally, the theory of BDDs and RM-ULMs has been discussed. 

Hence, this chapter supports the research work detailed in the remainder 

of this thesis. 



Chapter 3 
Logic Minimisation Using Fixed 

Polarity Reed-Muller Expansions' 

An arbitrary n variable switching function may be represented as an 

exclusive-OR sum-of-products form. This has been demonstrated in chapter 
2. Constraints can be imposed which limit each variable to appearing in 

either true or complemented form throughout an ESOP expression. This 

gives rise to the 2n fixed polarity Reed-Muller expansions formally defined 

in section 2.3 of chapter 2. The numbers of product terms and literals in 

each FPRM expansion will vary, depending on the form of the original 

switching function. Hence, some FPRM expansions may be more efficient 

representations than other FPRM forms. 

There are many criteria for determining what constitutes an optimum 

representation of a switching function. One possible criterion may be that 

of minimisation, hence the optimum representations may be those which are 

comprised of the fewest numbers of product terms and literals. This may 
lead to reductions in the number of components and overall area required 
to implement the original function. Alternatively, the emphasis may be 

placed on deriving expressions which are easily tested. A third criterion 

may be that of minimising the timing delays through the final 

implementation. It is possible, however, that the optimum representation is 

that which meets several criteria. Hence, it may be necessary to determine 

representations which are judged to be good, though not necessarily 

optimum, when individual parameters are assessed. 

The criterion for determining the efficiency of FPRM representations of 

switching functions which is adopted in this thesis is that of minimisation. 
The parameter used for assessment is the number of product terms in a 
FPRM expansion and this is termed the weight of the expansion. The FPRM 

expansions which contain fewest product terms, and hence have the lowest 

I The work presented in this chapter is published in 134 J (see inside 
back cover). 
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weight, are deemed to be optimum solutions. It may be argued that the 

EXOR operator is more expensive to implement, in terms of area and speed, 

than the AND and invert operators. This may be overcome by introducing 

cost functions, where the EXOR operator has a higher value than the AND 

and invert operators. The scheme adopted in this thesis, that is, to count 

the number of product terms in an expansion without applying cost 

functions, is both simple and commonly used. It has the additional 

advantage of being technology independent. 

Determining the optimum FPRM expansion of a Boolean function is a 

considerable task as each n variable function may be represented by 2n 

FPRM expansions. It is possible to exhaustively search for the minimum 

expansion, however, as the number of variables increases the time and 

memory allocations required for the search become impractical. The 

following section of this chapter reviews techniques for representing, 
deriving and minimising ESOP expressions with a particular emphasis being 

placed on techniques for FPRM expansions. A heuristic minimisation 
technique for determining minimal FPRM expansions, based on an algorithm 
developed by Marinkovic and Tosic [21], is presented in section 3.2. The 

switching functions are represented using a method devised by Almaini, 

Thomson and Hanson [1]. The performance of the algorithm is evaluated and 

results are presented. 

3.1 Review of Techniques for Fixed Polarity Reed-Muller Expansions 

The purpose of this literature review is to summarise some of the many 
techniques which are available for representing, generating and optimising 
FPRM expansions. The techniques reviewed include those commonly 
implemented and tested and also those which are particularly relevant to 
the work presented in this chapter. 

Muller [24] and Cohn [28] initially employed algebraic equations to 

represent ESOP forms, where each operator (AND, EXOR) and operand were 
explicitly denoted. This type of representation can result in unwieldy and 
inefficient expressions, hence more compact methods of describing FPRM 

expansions and ESOP forms have been devised. Most forms of 
representation and, indeed, many methods for generating and minimising 
FPRM expansions are extensions of techniques employed in the Boolean domain. 
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Perhaps Karnaugh maps provide one of the most familiar methods of 

representing Boolean functions. This type of representation supports both 

completely and incompletely specified functions. Additionally, a Boolean 

function represented by a Karnaugh map may be minimised according to a 

set of pre-defined rules. However, the Karnaugh map method has two main 
limitations. Firstly, maps becomes unwieldy and difficult to visualise when 
the number of variables in the Boolean functions increase. Secondly, the 

minimisation procedure, which involves forming groups of minterms, is to 

some extent intuitive relying on the ability and experience of the user. 
This second limitation leads to difficulties when trying to automate the 

minimisation process. The counterpart of the Karnaugh map is the Reed- 

Muller coefficient map [35], a technique for representing FPRM expansions. 
Wu, Chen and Hurst [35] initially demonstrated the representation of the 

PPRM expansion. Each coefficient at (I = 0,1,..., 2n-1) of the expression is 

plotted in a cell of the map, the relationship between cells being EXOR or 

modulo-2 addition. Wu et al also formulated a procedure whereby plotting 
the di coefficients of a Boolean function resulted in a map representation 

of the equivalent PPRM expansion. The RM coefficient maps of each FPRM 

expansion may be generated from the map representing the PPRM 

expansion. This is achieved through a 'folding' operation performed on the 
RM coefficient map where modulo-2 addition is carried out between the 

contents of certain cells of the map. A heuristic minimisation technique has 
been developed from this procedure which determines the optimal (sub- 

optimal) equivalent FPRM expansion of an initial Boolean function. 

Additionally, Wu et al considered deriving minimal (sub-minimal) ESOP forms 
from the RM coefficient map. This technique, similar in principle to 

minimising Boolean functions using Karnaugh maps, is more fully detailed 

in chapter 5. 

Tran [36] demonstrated that it is possible to generate the equivalent RM 

coefficient map of any FPRM expansion from the Karnaugh map representing 
the Boolean function. This technique employs an adapted form of the 
folding operation developed in [35]. The number of folds which must be 

made is equal to n, the number of variables present in the Boolean function 

and the only arithmetic operation undertaken is modulo-2 addition. The RM 
coefficient map was also extended to allow the representation of the FPRM 

expansions of incompletely specified Boolean functions. Again, the folding 



McKenzie, L. M. 1995 Chapter 3 48 

technique is employed to derive the- RM coefficient map of a FPRM 

expansion from an incompletely specified Boolean function initially portrayed 

on a Karnaugh map. It is then possible to assign values to the 'don't care' 

terms with the goal of minimising the number of cells of the RM coefficient 

map which contain the value 1. Tran described a heuristic method which 

relies on the judgement of the user. Green [371 also used the map method 

to assign the 'don't care' terms of incompletely specified 'functions. The 

procedure involves transforming all specified terms of a Boolean switching 

function to the RM domain. All combinations of unspecified terms are then 

separately transformed and 'added' to the terms on the RM coefficient map 

of completely specified terms. The map of unspecified terms which provides 

the greatest reduction in the number of terms on the RM coefficient map 

provides the optimum solution. This, method exhaustively searches for the 

optimum assignment of 'don't care' terms. The use of RM coefficient maps 
is further extended as Green considered jointly the best use of 'don't care' 
terms and the optimum polarity. 

Tri-state maps [38] are similar in structure to Karnaugh and RM coefficient 

maps. However, this new representation has one attribute which makes it 

valuable when used in the process for converting Boolean functions to 

FPRM expansions. Throughout the conversion process the polarity of each 

variable is clearly indicated by the tri-state map. Thus, RM coefficient maps 

may be modified to adopt this characteristic of tri-state maps. The folding 

technique described previously may once again be employed as the 

technique for converting the maps from one representation to another. In 

addition to this work Tran [36,38] considered the minimisation of ESOP 

forms using RM coefficient maps, this is reviewed in detail in chapter 5. 

The technique of map-compression, that is, using map-entered variables, is 

often applied to Boolean functions represented on Karnaugh maps. This 

technique has been extended to the RM domain by Green [37], making it 

possible to compress RM coefficients maps and thus reduce the number of 
folds required when generating the RM coefficient map representing a FPRM 

expansion. The technique, when applied to Karnaugh maps reduces the 

number of folds needed to obtain the equivalent RM coefficient map 
representation of a function. 
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Besslich [391 utilised a signal flow diagram to generate any FPRM expansion 
from an initial Boolean function. Each diagram is constructed according to 

the relationship between the di coefficients of the n variable Boolean 

function and the bk coefficients of the final FPRM expansion (i, k= 

0,1,..., 2n-1). Thus, the inputs to the signal flow diagram are the di 

coefficients whilst the outputs are the bk coefficients. The conversion 

employs only modulo-2 addition and the number of operations which must 

be undertaken is n2n-1. Additionally, Besslich addressed the problem of 

determining the optimum FPRM expansion of a Boolean function by devising 

an efficient exhaustive technique. A FPRM expansion may be derived from 

another FPRM expansion by complementing any single expansion variable 

throughout the initial expression. If the order in which the FPRM 

expansions are generated is Gray code ordering then it is possible to 

sequentially construct all 2n FPRM expansions. Besslich performed this task 

using signal flow diagrams, transforming one FPRM expansion to another 
FPRM expansion where the polarity of a single expansion variable is 

complemented. This operation requires 2n-1 modulo-2 additions. Hence, 

deriving all 2n FPRM from an initial Boolean function would require a total 

of (n2n-1 + (2n-1)2n-1) modulo-2 additions. The optimum FPRM expansion may 
then be selected from the complete set of all 2n expressions. 

The transform triangle [3,4] is an alternative graphical technique for 

deriving the equivalent RM expansions of Boolean functions initially 

expressed in minterm form. This method involves listing all di coefficients 
(I = 0,1,..., 2n-1) of the Boolean function as the first row of a triangular 

array. Each consecutive pair of coefficients are then summed using modulo- 
2 addition, the results form the next row of the array. Each consecutive 

pair of these new coefficients are then summed modulo-2 and the third row 

of the array is formed. This is repeated until a row is formed which 

comprises of only a single coefficient. The ai coefficients of the RM 

expansion are listed down the left-hand edge of the triangle where 

coefficient ao occupies the first row, ai occupies the second row and so on. 
If this technique is employed to generate the RM expansion of an variable 
Boolean function then the number of modulo-2 additions which must be 

executed is E i. 
! -1 

Marinkovic and Tosic [211 introduced both an exhaustive and a heuristic 
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technique for deriving minimal (sub-minimal) FPRM expansions. Both 

techniques are iterative and commence by evaluating the number of literals 

in an arbitrarily selected FPRM expansion. The state of a single expansion 

variable is complemented during each iteration. The variable to be 

complemented is chosen by evaluating the effects of complementing each 

variable in turn. The variable which causes the greatest reduction in the 

number of literals in the FPRM expansion is then complemented resulting 
in a new FPRM expansion. The technique is repeatedly applied to each new 
FPRM expansion until the number of literals cannot be further reduced. At 

this point the heuristic minimisation technique determines that this FPRM 

expansion is the minimal (sub-minimal) expression. However, the exhaustive 
technique continues by selecting another FPRM expansion which has not 

previously been derived or, indeed, evaluated. If the number of literals in 

this expression can be reduced then the appropriate variable is 

complemented and the algorithm is repeatedly applied until no further 

reduction is possible. This is done until the number of literals in all 2n 
FPRM expansions has been calculated. It should be noted that in order to 

perform this task it is not necessary to derive all FPRM expansions, it is 

only necessary to determine the number of literals In each expression. 
These minimisation techniques are further considered in the following 

sections of this chapter. 

The tabular technique [1] may be employed to convert any completely 
specified Boolean function to an equivalent FPRM expansion. This aptly 
named technique employs a tabular representation where each minterm of 
a Boolean function or product term of a FPRM expansion is explicitly 
denoted in binary form. Additionally, a heuristic algorithm for deriving 

minimal (sub-minimal) FPRM expansions has been developed. This iterative 

method does not guarantee to find the optimum FPRM expansion but at each 
iteration reduces the number of product terms in the representation. The 
tabular technique is more fully described in section 3.2.1. 

Habib [40,411 developed exhaustive and heuristic algorithms for deriving 
FPRM expansions from Boolean functions. The techniques utilise a Boolean 
matrix representation where the di (I = 0,1,..., 2n-1) coefficients of the n 
variable Boolean function are represented in a 1x2° Boolean matrix. The 
matrix undergoes a series of n transformations, similar to folding a 
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Karnaugh map. This operation does not employ matrix multiplication, the 

only arithmetic operation being that of modulo-2 addition. The resulting 

matrix represents a FPRM expansion of the function where the polarity of 

the expression is decided by the user. Hence, this technique may be 

employed to sequentially generate each FPRM expansion of a Boolean 

function making it possible to determine the optimum equivalent FPRM 

expansion through exhaustive search. Additionally, Habib [411 adapted this 

technique to form a heuristic method for determining the minimal (sub- 

minimal) FPRM expansion of a Boolean function. These techniques may also 
be employed to generate FPRM expansions from incompletely specified 
Boolean functions as the 'don't care' terms are assigned so as to match 

their corresponding term in the partitioned matrix. This is, however, a 

heuristic method and it cannot be guaranteed that the 'don't care' terms 

have been optimally assigned or that the minimal FPRM expansion has been 

determined. The algorithms developed by Habib include another useful 
technique, that of identifying independent variables. This is implemented 

whilst converting a Boolean function to the equivalent FPRM expansion and, 
hence, does not add any overheads to the conversion procedure. Finally, 

the nature of the Boolean matrix representation and the fact that the 

minimisation procedures are not intuitive make these algorithms suitable for 

automation. 

Harking [421 presented a novel algorithm which may be employed to form 

a polarity matrix denoting all 2n FPRM expansions of any Boolean function. 

Initially, the coefficients di (I = 0,1,..., 2n-1) of the n variable Boolean 

function are represented by a Boolean matrix of dimension 1x2n. A 2°x2'2 

Boolean matrix is then iteratively constructed. Each row of this matrix 
denotes the bi (I = 0,1,..., 2'-1) coefficients of the polarity p (p = 0,1,..., 

2n-1) FPRM expansion of the original Boolean function. The matrix is formed 

through modulo-2 addition, no matrix multiplication is undertaken. Harking 

also describes a modified form of this algorithm where any single FPRM 

expansion may be constructed without forming the 2nx2n polarity matrix. 
This technique is suitable when n is large and it is impractical to calculate 
a matrix with dimensions 2nx2n. Additionally, the generation of FPRM 

expansions from incompletely specified Boolean functions is discussed. Three 

procedures were detailed for deriving optimal (sub-optimal) FPRM 

expansions, one of these methods is exhaustive whilst the remaining 
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techniques are heuristic. 
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The representation of switching function using the operators of modulo-2 

algebra makes it possible to employ the mathematical devices which support 

this algebra. One area where this has been exploited is in using transform 

matrices to convert Boolean functions to FPRM expansions [43]. The di (i 

= 0,1,..., 2''-1) coefficients of the n variable Boolean function are represented 

by a 2"xl Boolean matrix which is multiplied by the 2"x2'1 Reed-Muller 

transform matrix. This yields a new 21x1 Boolean matrix representing the 

ai coefficients of the equivalent PPRM expansion. Modulo-2 addition and 

modulo-2 multiplication are employed throughout. The recursive structure 

of the RM transform matrix makes it possible to redefine this matrix using 

the Kronecker product. Hence, any 2"x2'1 RM transform matrix may be 

constructed from a basic 2x2 matrix. It is also interesting to note that 

multiplying the matrix representing any PPRM expansion by the RM 

transform matrix will result in the matrix, representing the equivalent 

Boolean function. That is, the RM transform matrix is its own Inverse. 

Transform matrices may be employed to generate all FPRM expansions from 

the positive polarity form or indeed the initial Boolean function [37]. Two 

different transform matrices are applied according to the polarity of each 

variable In the final FPRM expansion. Each new FPRM expansion may be 

generated from the previous one by a single matrix transformation if Gray 

code order is used to determine the sequence in which FPRM expansion 

should be derived. 

The techniques developed by Zhang and Rayner [44] may be employed to 

efficiently derive FPRM expansions of Boolean functions. The 2Ax2A RM 

transform matrix, as described previously, is employed to transform Boolean 

functions to FPRM expansions. The coefficients of these FPRM expansions 

and Boolean functions are represented using 2°x1 Boolean matrices and 

matrix multiplication is performed during the conversion from the 

operational domain to the functional domain. Zhang and Rayner described 

a means for reducing the number of modulo-2 additions which must be 

performed when generating any FPRM expansion from an variable Boolean 

function. This is achieved through factoring the RM transform matrix into 

n matrices using the Kronecker product form. The resulting technique is 

called the Fast Reed-Muller Transform (FRMT) algorithm. Thus, the number 
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of modulo-2 additions which- must be performed when generating a FPRM 

expansion from an variable Boolean function has been reduced from (3D-2A) 

to n21'1. Additionally, Zhang and Rayner illustrated a technique for 

deriving each FPRM expansion from an existing FPRM expression of 

different polarity using only a single matrix from the Kronecker form of 

the RM transform matrix. Gray code ordering was used to determine the 

sequence in which the FPRM expansions should be derived, i. e. which new 

FPRM expansion should be generated from the existing expression. Thus all 

FPRM expansions may be generated sequentially from an initial Boolean 

function. The total number of modulo-2 operations which must be performed 

is (n21-1 + (2n-1)(2n-1)). This technique was explored by Green [37], who 

also demonstrated the derivation of all 2D FPRM expansions, represented by 

a 2x2' Boolean matrix. The minimal FPRM expansion may then be determined 

by locating the row of the matrix comprised of the fewest number of Is. 

Saluja and Ong [45] also employed the RM transform matrix to generate all 
FPRM expansions of a Boolean function. Thus the optimum FPRM expansion 

of a Boolean function may be found through exhaustive search. This method 
differs from the transform matrix techniques discussed previously in that 

only the RM transform matrix is employed and the Boolean matrix 

representing the di coefficients of the Boolean function is repeatedly 

modified to generate each new FPRM expansion. This technique does, 

however, employ matrix multiplication which becomes inefficient for Boolean 

functions with large numbers of variables. 

Sarabi and Perkowski 1461 described a technique for deriving FPRM 

expansions from Boolean functions expressed in disjoint SOP form. 

Additionally, two minimisation algorithms were presented, one exact, the 

other heuristic. Both techniques operate by considering the state of each 

variable in the Boolean function and altering the polarity of the variable 

according to certain rules. Results are presented which indicate the 

performance of the heuristic algorithm when compared to existing heuristic 

algorithms. The algorithms are tested using benchmark functions and the 

results are referenced again in section 3.2.2 of this chapter. 

Purwar [47] developed a novel technique for deriving FPRM expansions 
from a Boolean function initially represented by a BDD. This method differs 
from many of the techniques already discussed In this literature review In 
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that the initial Boolean representation may be a disjoint SOP form, i. e. the 

product terms need not be minterms. Purwar determined each coefficient, 

af, (j = 0,1,..., 2'-1) of the equivalent RM expansion by considering the 

contribution of each relevant path through the BDD. Only paths which 

terminate in the Boolean constant 1 need be evaluated. The bJ coefficients 

of any FPRM expansion may also be determined from the BDD. The 

efficiency of this technique is determined by the number of paths of the 

BDD which must be evaluated. If the number of paths which terminate in 

the constant i is greater than the number of paths which terminate in 

constant 0 then Purwar concluded that the complement of the FPRM 

expansion be derived through evaluating paths which terminate in the 

value 0. The nature of FPRM expansions means that the task of re- 

complementing the expansion is a trivial one. This method of generating 

FPRM expansions is particularly useful as the initial representation may be 

a disjoint Boolean SOP form. 

Functional Decision Diagrams (FDDs) [48,49] provide a graphical form of 

representation for FPRM expansions and are similar in structure to BDDs 

used to represent Boolean functions. Kebschull, Schubert and Rosenstiel 

[48] described an algorithm for deriving the factored forms of FPRM 

expansions from the FDDs representing the expressions. Hence, FDDs 

provide multi-level representations of FPRM expansions. The structure and 

uses of FDDs are further investigated In chapter 7. 

Miller and Thomson [501 described an efficient technique for determining 

minimal FPRM expansions of Boolean functions through exhaustive search. 
The technique may be modified so as to utilise a heuristic technique to 
isolate a sub-minimal FPRM expansion which may then be used as a starting 

expression for the subsequent search. Additionally, a non-exhaustive 

method of determining the optimum FPRM expansions of any 3 variable 
Boolean function was presented. 

Other techniques for deriving minimal (sub-minimal) FPRM expansions of 
Boolean functions include those developed by Davio, Deschamps and Thayse 
[22], Mukhopadhyay and Schmitz [51], Lul and Muzio [52], Ungern [53] and 
Clarkson and Zhuang [54]. Also of Interest is work presented by Sasoa [7], 

who considered the numbers of product terms in the FPRM expansions of 
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different types of Boolean function and also compares the efficiency of 

FPRM representations with different categories of ESOP forms. Additionally, 

Csanky, Perkowski and Schafer [17,551 presented a heuristic algorithm for 

deriving minimal (sub-minimal) canonical restricted mixed polarity forms of 

Boolean functions. These forms are comprised of all FPRM expansions and 

the inconsistent canonical forms identified by Cohn [28]. 

Techniques developed by Lui and Muzio [52,56,57,581, Falkowski and 

Perkowski [59,601, Riege and Besslich [611 and Varma and Trachtenberg 

[621 may also be considered to be related to the work presented in the 

following sections of this chapter. However, the techniques presented in 

these publications are more relevant to the work described in subsequent 

chapters of this thesis. Hence, reviews are undertaken in the appropriate 

chapters. 

3.2 Minimisation Techniques for Fixed Polarity Reed-Muller Expansions 

A variety of techniques for representing and deriving FPRM expansions 
have been reviewed in the previous section. Additionally, algorithms for 

determining minimal (sub-minimal) FPRM expansion have been examined. The 

work presented in this section documents the evolution of a heuristic 

minimisation algorithm. The algorithms on which this new technique is based 

are first reviewed and their strengths and weaknesses discussed. The goal 

of this work is to formulate a technique which shows improvements in both 

efficiency and the quality of the solution obtained when evaluated against 

existing techniques. 

3.2.1 Review of Tabular Techniques 

The tabular technique [1] considered in section 3.1 provides a means of 

converting a Boolean function to any FPRM expansion. The technique 

employs a notation whereby each term (minterm (mi), piterm (n1) or product 
term (pi), i=0,1,..., 211-1) of an variable expansion is represented as a 
binary n-tuple. Thus, the ith term of an expansion Is represented by the 
binary equivalent of f, that is, 11>, ii e {0,11, j=1,2,..., n. Minterms, 

piterms and product terms have been defined and referring to the 

convention adopted In chapter 2, It is possible to relate the state of the 

variables comprising any term to the notation employed by the tabular 
technique. Thus, if a minterm of a Boolean function contains the literal xJ 
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(xi), then the binary n-tuple representing the minterm will contain the 

integer 0 (1) in position j. If a product term of a FPRM expansion is 

independent of literal Xj (contains literal k) then the binary n-tuple 

representing the product term will contain the integer 0 (1) in position j. 

e. g. for n=3, 
m3 is a minterm of a3 variable Boolean function. 

m3 = X3XZX1 = X3 X2 Xi = 011 

a3 is a piterm of a3 variable RM expansion. 
71 3= XZXI = X3 X2 X1 = oll 

p. is a product term of a3 variable FPRM expansion. 
P5= X3X1 = X3 X2 x1 = 101 

Boolean functions, RM expansions and FPRM expansions may be represented 
by a list of terms where each column of the list represents a variable (Xj) 

and each row represents a term (mi, ni, pi) of the Boolean function, RM 

expansion or FPRM expansion. The number of columns is fixed and is equal 
to n. The number of rows is equal to the number of terms in the 

expansion. The following example illustrates the tabular representations of 

a Boolean function, RM expansion and FPRM expansion. 

Example 3.1 Using the tabular notation display the following 3 variable 
Boolean function, RM expansion and FPRM expansion. 

Boolean function 

x I(x3, xz, xI) = x3x2 1+ xsxzxl + xjx=xl + x3x2 i 

X3 X2 X1 

000 
001 

101 

111 
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RM expansion 
f(x3, x2, x1) =1 ®x2 6 x3 ® x3x1 ® x3x2 

x3x2 X1 

000 
0i0 
10 

101 

110 

FPRM expansion (Polarity 5) 
fs(x3, x2, x1) =16 11 40 x311 6 "3x2 

x3 X2 X1 

000 
00i 
i0i 
110 

(End of example) 
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The transformation of a Boolean function to the equivalent RM expansion is 
based on the equality 

xi =xf®1 

The tabular technique for converting a Boolean function to a RM expansion 
is dependent on this equality. It is, therefore, necessary that it be realised 
in a form suitable for use with the notation described previously. Thus the 

equality may be expanded and expressed as 

i, 
I_xJ... 

zl 

Thus. for each term of an expansion which has a representation of the form 

<in... i f, 101J_l... 11> then a new term is generated which is represented by the 
n-tuple <in .. if'ill f_l... il>. The newly generated terms are then compared 
with the existing terms. If any terms are found to be equivalent then both 
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the newly generated term and the term existing in the expansion are 
deleted. Any generated term which has no equivalent term should be added 
to the representation of the expansion. The procedure is repeated, 

generating new terms of the form <in .. ir`llik_j... I, > (k c {1,2,..., n} ký J) 

and deleting equivalent terms. The conversion is complete when this 

procedure has been applied for each function variable. The final 

representation is the RM expansion. The transformation from a Boolean 

function to a RM expansion is comprised of n steps. 

The number of steps in transforming a RM expansion to a FPRM expansion 
is dependent on the polarity of the FPRM expansion. Indeed, it is equal to 

the total number of 1's in the binary representation of the polarity number 

p' <pApn_l... pl>. If Pi =1 (j e (1.2..... n}) then the variable x. must be 

present in complemented form throughout the FPRM expansion. The equality 

1 xi = xý 0 

may be expressed in the form 

=® xý.. Xfý1Xj-1.. X1 

Thus. if pj =1 and any term of a RM expansion has a representation of the 
form <in... iJi11ij_1... i1> then generate a new term which is represented by 

the n-tuple <in... i f, 10iJ_l... 
i1>. The procedure of deleting equivalent terms 

and adding any remaining generated terms to the existing expansion is 
identical to that described for the process of transforming a Boolean 
function to a RM expansion. The conversion process is complete when the 

procedure has been applied for each variable xj for which pj = 1. 

The tabular techniques presented in [1] include a heuristic algorithm which 
derives (minimal) sub-minimal FPRM expansions of Boolean functions. The 
minimisation procedure commences by evaluating the RM expansion (polarity 
o FPRM expansion) and proceeds by complementing expansion variables in 

order to reduce the number of product terms in the expansion. The final 

representation is a FPRM expansion. The algorithm comprises of a series of 
distinct steps. 
S. 1 Count the number of occurrences of each variable xx (this is 
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equivalent to counting the number of 1's in each column of the 

tabular representation of the FPRM expansion). Let this equal 

occur x f. This value, occur x1' equals the number of new product 

terms generated if the state of variable xf is altered (xx W). 

S. 2 Determine the number of product terms which may be deleted (i. e. 

equivalent product terms) by complementing a variable. This is 

realised by counting the number of pairs of product terms which are 

adjacent in each variable x f, and is denoted adj x f. 
(Two product terms p8 and pb are said to be adjacent in variable xf 

'ff Pa = XD.. xf... Xl, Pb = Jf1 and p8 = kjpb. 

Hence, pa® Pb =xfpb® Pb = pb(x f® 1) (a, be {O, 1,..., 2n-1}, 

je {1,2,..., n}). 

S. 3 Calculate di 'f x f, the number of product terms which can be lost 

from or gained by the FPRM expansion by complementing variable x f, 
diffxf= occurxf - (2 x adjxf) 

S. 4 Find variable xj for which diff xf is a minimum. Let this equal 

min diff. 

If min diff <0 then min diffj product terms will be lost from the 

FPRM expansion by complementing variable xj, for which diff xJ = 

min-diff. Hence, convert the FPRM expansion to the new FPRM 

expansion with variable xx complemented. 
If min diff z0 then the number of product terms in the FPRM 

expansion is minimal (sub-minimal) and cannot be reduced by 

complementing any single variable xx. 

This series of steps can be applied to the new FPRM expansion to 

determine whether the number of product terms in the expansion can be 

further reduced. This may be repeated until the number of product terms 

in the expansion cannot be reduced. 

The tabular technique for determining minimal (sub-minimal) FPRM 

expansions is similar to an earlier method developed by Marinkovic and 

Tosic [211. The algorithms which they proposed employed the technique 

subsequently adopted by Almaini et al [1]. That is, determining which 

expansion variables should be complemented by evaluating the number of 

occurrences of variables and the number of pairs of adjacent product 
terms. Two algorithms are presented, one is heuristic whilst the second 
determines the minimum FPRM expansion without performing an exhaustive 
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search. The first algorithm is very similar to the tabular technique [11 

reviewed previously. The tabular technique minimisation method does not 

allow an expansion variable which has been complemented during the 

minimisation procedure to be returned to its true state. Indeed, once an 

expansion variable has been complemented it is excluded from the 

evaluation process. Although not explicitly stated in the algorithm 

presented in [21], it was implied that expansion variables may be returned 

to their true state if this conversion further reduces the number of terms 

in a FPRM expansion. The second algorithm operates in a manner similar to 

the first. However, the FPRM expansions determined as minimal are always 
the absolute minimum and not sub-minimal expansions. The solutions may 
be found without performing exhaustive searches but this cannot be 

guaranteed. They are derived through eliminating FPRM expansions which 

are not minimum forms from the evaluation procedure. 

The tabular technique minimisation procedure and algorithms Al and A2 

presented in [21] are now briefly summarised. It may be possible to merge 
the strengths of each algorithm to form an improved heuristic minimisation 
technique. 

Summary of tabular technique minimisation algorithm 
l. a The maximum possible number of iterations of the algorithm is equal 

to the number of expansion variables. 
1. b if several expansion variables, xr have diff x. = min diff then the 

choice of the variable to be complemented is arbitrary. This choice 

obviously affects the quality of the final solution. 

l. c During evaluation, if min diff =0 then the algorithm will cease. If, 
however, the state of variable xx (diff xx = 0) is altered then a new 
FPRM expansion will be generated. Although the number of product 
terms in the representation has not been reduced another iteration 

of the algorithm can be performed introducing the possibility of 
further reducing the number of product terms in the expansion. 

l. d Expansion variables may only be complemented and cannot be 

returned to their true state. It is possible that allowing a variable 
which has been complemented during an earlier iteration of the 

minimisation algorithm to be returned to Its true state may enhance 
the quality of the final solution. 
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i. e The starting point of the minimisation algorithm is the RM expansion 
(polarity 0 FPRM expansion). If the minimal FPRM expansion contains 

many complemented variables then many iterations of the algorithm 

must be performed increasing both the possibility of locating a 

locally minimum FPRM expansion rather than the global minimum and 

the time taken to reach a solution. 
i. f The algorithm will locate and cease on locally minimum FPRM 

expansions and cannot determine if a global minimum exists. 

Summary -of algorithm Al 

This algorithm is structurally very similar to the tabular technique 

minimisation algorithm, however, its operation is ambiguous in certain areas. 

2. a If, for more than one expansion variable, altering the state of each 

variable maximally reduces the number of product terms in a FPRM 

expansion then the algorithm does not explicitly state which variable 
should be altered. (See l. b. ) 

2. b If altering the state of any variable of a FPRM expansion will not 

reduce the number of product terms in the FPRM expansion then the 

algorithm will cease. (See 1. c. ) 

2. c It is unclear whether an expansion variable complemented during an 
earlier iteration of the minimisation algorithm may be returned to its 

true state. (See Ld. ) 

2. d The-FPRM expansion with which the minimisation algorithm commences 
is determined by the user. (See i. e. ) 

2. e The algorithm will locate and cease on locally minimum FPRM 

expansion and cannot determine if a global minimum exists. (See l. f. ) 

Summary of algorithm A2 
This algorithm will always determine the minimal FPRM expansion. The 
technique evaluates the number of product terms in all FPRM expansions 
without it being necessary to generate each FPRM expansion. 

The following modifications are derived from observing the strengths and 
weaknesses of the tabular technique minimisation algorithm and algorithms 
Al and A2 summarised previously. 
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Modifications 

a Introduction of a branching mechanism into the algorithm. If k 

variables have diff xx = min dlff then generate k new FPRM 

expansions. Each of the k new FPRM expansions is of a different 

polarity and in each the state of a single expansion variable differs 

from its state in the original FPRM expansion. During the next 
iteration of the minimisation algorithm the FPRM expansions which can 
be maximally reduced are used to generate new FPRM expansions. 
Any remaining FPRM expansions are deleted. (See 1. b, 2. a. ) 

b If dIi'f_xx = min diff =0 then the state of expansion variable xJ is 

altered. This does not reduce the number of product terms in the 

solution but generates new FPRM expansions allowing further 

iterations of the algorithm. (See l. c, 2. b. ) 

c The state of an expansion variable may be altered more than once. 
(See 1. d, 2. c. ) 

These modifications were applied to the tabular technique minimisation 

algorithm to realise the Full Gains minimisation algorithm. This new 
technique and results illustrating its performance are presented in the 

following sections. 

3.2.2 Full Gains Minimisation Algorithm 

The definitions of the following terms are based on those of the tabular 

technique minimisation algorithm described in section 3.2.1. 

Let occur xp J 
denote the number of occurrences of expansion variable xJ 

in the polarity p FPRM expansion. (p c {O, 1,..., 2n-1}, j=1,2,..., n) 
Term adj x, denotes the number of pairs of terms in the polarity p FPRM 

expansion which are adjacent in variable xJ. 
The term dLff xp J represents the number of terms which may be lost from 

or gained by the polarity p FPRM expansion by altering the state of 

variable xJ. Hence, diff xp, J= occur xP. J- (2 x adj xP. J) 
If diff xP. J<0 then I diff xp. J1 product terms will be lost from the 

polarity p FPRM expansion by altering the state of variable xJ. 
If diff xp J>0 then I diff p. JI product terms will be gained by the 

polarity p FPRM expansion by altering the state of variable xf 
If diff xp, J=0 then altering the state of variable xJ will have no effect 
on the number of product terms in the polarity p FPRM expansion. 
P is the set of FPRM expansions which are minimal (sub-minimal), Pa 
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{0,1,..., 2'-1}. 

R is the set of FPRM expansions which are minimal (sub-minimal), Rc 

{0,1,..., 2'-1}. 

Q is the set of all FPRM expansions generated by the minimisation 

algorithm, Qc {0,1,..., 212-1}. 

The minimum value of diff xp. j is min diff where pcR, j=1,2,..., n. 

Full Gains minimisation algorithm 
S. 1 SetP={}andR={}. 

S. 2 Convert the Boolean function to the equivalent RM expansion (Polarity 

p= 0). Set P= {0}, R= {0}, Q= {0}. 

S. 3 Determine occur x, j and adj P. j for all peR and j=1,2,... n. 
S. 4 Calculate diff p. J for all peR and j=1,2.... n. 
S. 5 Find min diff. If min diff >0 then go to S. 9 else go to S. 6. 

S. 6 Find all FPRM expansions with diff x= min diff, pcR and j= 

S. 7 If min duff <0 then set P={} and insert into P the polarity 

numbers, p, of each FPRM expansion with diff xp, J= min diff, as 
found in S. 6, removing any duplicates. Repeat for set R. 
If min duff =0 then add to set P any polarity numbers, p, of the 

new FPRM expansion generated in S. 6 which are not currently 
contained in P. Set R=(), if any polarity numbers, p, of the new 
FPRM expansions have been added to P then insert these numbers 
into R. Otherwise R={}. 

Insert into Q the polarity numbers, p, of each FPRM expansion with 
duff äd= min diff, as found in S. 6, removing any duplicates. 

If min diff >0 then go to S. 9 
S. 8 If Qý {0,1,..., 21'-1} and R/{} then for each FPRM expansion with 

duff xp. '= min duff generate new FPRM expansions in which the state 
of variable xi is altered (zý x 

j). Go to S. 3. 

Otherwise go to S. 9. 

S. 9 The algorithm determines the polarity p FPRM expansions to be 

minimal, peP. 

It is suggested that if this new algorithm is employed in preference to 
either the tabular technique minimisation algorithm or the first algorithm 
presented by Marinkovic and Tosic then it is more probable that minimal 
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FPRM expansions will be derived. However, the technique requires more 

computation time as it introduces the possibility of performing more 

iterations of the algorithm and operating on more that one FPRM expansion 

during each iteration. Also, the number of FPRM expansions generated by 

the algorithm cannot be controlled depending instead on the inherent 

structure of the Boolean function. These considerations led to further 

refinement of the new algorithm with the goal of increasing the efficiency 

of the technique. The new algorithm was modified by removing the facility 

to transform a polarity p FPRM expansion to new FPRM expansions if 

min diff =0. This is realised by replacing S. 5 and S. 7 of the algorithm with 

two new steps. 

S. 5' Find min diff. If min diff Z0 then go to S. 9 else go to S. 6. 

S. 7' If min diff <0 then set P={I and insert into P the polarity 

numbers, p, of each FPRM expansion with diff_xp, f= min - 
diff. as 

found in S. 6, removing any duplicates. Repeat for set R. 

Insert into Q the polarity numbers, p, of each FPRM expansion with 
dli'P Pj= min diff, as found in S. 6, removing any duplicates. 

If min diff Z0 then go to S. 9 

The branching mechanism and the facility to repeatedly alter the state of 

each variable remain unchanged. The modified form of the Full Gains 

minimisation algorithm is entitled the Full Gains MinO minimisation algorithm. 

The graphs of Figure 3.1 - Figure 3.3 illustrate the performance of four 

different minimisation algorithms. Two of the algorithms evaluated are the 

Full Gains and Full Gains MinO minimisation algorithms described previously. 
The Tabular technique is the minimisation algorithm reviewed in section 
3.2.1. The Boolean matrix optimisation method was developed by Habib [411 

and is a heuristic technique which determines minimal (sub-minimal) FPRM 

expansions of Boolean functions. The graphs display as a percentage the 

number of Boolean functions for which each optimisation algorithm derived 

minimal FPRM expansions. The minimal FPRM expansions of each Boolean 

function were determined using the technique developed by Harking 1421. 

The x-axis of each graph illustrates the number of variables and minterms 
in a Boolean function. The results presented in Figure 3.1 and Figure 3.3 

are derived from testing each algorithm with sets of 1000 randomly 
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generated Boolean functions with fixed numbers of variables and minterms. 
The Boolean functions were constructed by a random number generator. 

The output of this random number generator was filtered so as to remove 

any duplicate minterms. In Figure 3.2, each algorithm optimised sets 

comprised of all possible Boolean functions which could be constructed from 

the indicated numbers of variables and minterms. All algorithms (a. Full 

Gains b. Full Gains MinO c. Boolean matrix d. Tabular technique e. 

exhaustive search (Harkings' technique [42]) were implemented in Pascal 

and the programs executed on a HP workstation. 

It may be observed from each of the graphs in Figure 3.1 - Figure 3.3 that 

the Full Gains minimisation algorithm consistently produces superior results. 
This is a predictable outcome due to the structure of this algorithm and 
that of the two others which were tested, namely Tabular technique and 
Full Gains MinO. The performance of the Boolean matrix minimisation 

algorithm degrades very rapidly as the numbers of variables in the Boolean 

functions increases. It produced poor results when compared with the other 

algorithms. 

The effectiveness of the branching mechanism (modification a) is to some 

extent illustrated by the improved performance of Full Gains MinO when 

compared with the performance of Tabular technique. Consider the 

modification allowing the state of variables to be altered without causing 

a reduction in the number of product terms in the FPRM expansion 

(modification b). The effects of this modification are illustrated by the 

differences in performance between Full Gains and Full Gains MinO. 

Unfortunately, from these graphs it is impossible to determine the effects 

of the modification allowing the repeated alterations in the state of 

expansion variables (modification c). These results illustrate that two out 

of three modifications introduced to the original tabular technique 

minimisation algorithm have proved to be effective. It is suggested that 

modification c has also acted to improve the quality of the solutions 

determined by minimisation algorithms Full Gains and Full Gains MinO. 

The following table (Table 3.1) presents results which illustrate the 

performance of the Full Gains minimisation algorithm when operating on a 

number of different Boolean functions. These functions are selected from 
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Figure 3.3: Percentage (, f randomly generated I3u lean functions for which 
the minimisation algorithms formed optimum l'PRM expansions. (Boolean 
functions of 4-10 variables. ) 



McKenzie, L. M. 1995 Chapter 3 69 

the 1991 set of benchmarks distributed by the MCNC&. Generally, each 

function referred to in the table has been adapted from a multiple-output 

function (as circulated by the MCNC) to a single-output function suitable 

for use with the minimisation algorithms listed in the table. 

Fa of prod- 
uct terms in 
SOP form 

Fad product berms in minimal (sub-minimal) FPRH expansion 

Boolean 
function' 

No. or 
variables 
n 

Espresso-ll 

1631 

Exhaustive 
search 
1421 

Tabular 
technique 
111 

Boolean 
matrix 
1411 

Full 
Gains 

CGRMIF 

1461 
5xp11 7 7 12 12 16 12 12 

9sy m 9 85 173 182 173 182 173 

bw7 5 6 8 12 14 12 12 

con12 7 5 8 8 9 8 8 

151m4 8 10 7 7 9 7 9 

rd532 5 16 5 5 5 5 5 

rd732 5 64 7 7 7 7 7 

rd842 8 128 8 8 8 8 8 

sao22 10 20 52 52 52 52 61 

sao23 10 22 47 47 61 47 59 

z42m1 7 28 9 9 9 9 13 
Table 3.1 

The first and second columns of this table indicate the title of the Boolean 

functions and the number of variable in the functions, respectively. The 

results presented in the third column indicate the number of products in 

the SOP expansions subsequent to minimisation using Espresso-II [63]. 

Espresso-II derives a minimal (sub-minimal) SOP representation of an initial 

Boolean function. The benchmark functions were also optimised using four 

other heuristic minimisation algorithms, hence the values presented in the 

relevant columns of the Table 3.1 Indicate the number of product terms in 
the minimal (sub-minimal) FPRM expansions. The CGRMIN algorithm was 
devised by Sarabi and Perkowski [46] and is discussed in section 3.1. This 
heuristic technique determines minimal (sub-minimal) FPRM expansions of 
Boolean functions. Finally, the number of product terms in the absolute 
minimum FPRM expansion was determined by exhaustive search and is 

I Microelectronics Center of North Carolina 
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presented in the fourth column of Table 3.1. 
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The results presented in Table 3.1 indicate that the Full Gains minimisation 

algorithm performs satisfactory when compared with other minimisation 

techniques. In general, it performs better than that of the Boolean matrix 

and CGRMIN minimisation techniques. It is, however, interesting to note that 

for this small set of benchmark functions both the Tabular technique and 

Full Gains minimisation algorithms produced FPRM expansions comprised of 

equivalent numbers of product terms. It is also interesting to compare the 

numbers of product terms in the Boolean SOP forms determined by 

Espresso and the numbers of product terms in the corresponding FPRM 

expansions. 

3.2.3 Pre-treatment Techniques for the Full Gains Minimisation Algorithm 

When reviewing the tabular technique minimisation algorithm it was noted 
that the algorithm commenced by evaluating the polarity 0 FPRM expansion. 
If the polarity, p, of the optimum FPRM expansion has many bits p, =1 
then the algorithm will cease at any local minimum which exists between the 

polarity 0 FPRM expansion and the optimum polarity p FPRM expansion. 
Additionally, many iterations of the algorithm must be performed before the 

solution is reached. In order to overcome these problems two pre-treatment 
techniques have been devised and implemented. These pre-treatment 
techniques determine the polarity p of the FPRM expansion to which the 

initial Boolean function should be transformed and hence, the FPRM 

expansion initially evaluated by the minimisation algorithm. 

The pre-treatment techniques may also be used in conjunction with the 

algorithm Al [21] as it was noted that the polarity p of the initial FPRM 

expansion is undefined. The FPRM expansion obtained by a pre-treatment 
technique may be used as the starting FPRM expansion. 
The pre-treatment techniques are now introduced. 

Pre-treatment 

If, for a Boolean function of n variables, the total number of 
variables present in true form is less than the number of variables 
present in complemented form then convert the Boolean function to 
the negative polarity (polarity 21-i) FPRM expansion. Otherwise, 
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convert the Boolean function to the positive polarity (polarity 0) 

FPRM expansion. This FPRM expansion is the initial expression 

evaluated by the minimisation algorithm. 

The pre-treatment technique evolved from observing the process of 

converting a Boolean function to a FPRM expansion. It was noted that if the 

majority of variables in a Boolean function are present in true form then 

converting the function to the polarity 0 FPRM expansion may generate 

fewer terms than converting the Boolean function to the polarity 21-1 FPRM 

expansion. The pre-treatment technique does not take into account the 

number of minterms lost through deleting equivalent terms but concentrates 

solely on minimising the increase in the size of the FPRM expansion 

through limiting the generation of product terms. 

This pre-treatment technique was tested as 'a supplement to the Full Gains 

minimisation algorithm (S. 1 of the algorithm being modified). In general, the 

results of the tests indicated that employing the Full Gains minimisation 

algorithm with pre-treatment led to an increase in the number of occasions 

on which the algorithm derived the minimal FPRM expansion. However, it 

was noted that the pre-treatment was unsuccessful for Boolean functions 

which comprised of larger numbers of minterms, relative to the number of 
function variables. The initial pre-treatment technique was based on 
limiting the number of terms generated during the conversion from Boolean 

function to FPRM expansion. Whilst this approach seemed suitable for 

functions with low numbers of minterms (relative to the number of function 

variables) it was conjectured that this may not be valid for functions with 

larger numbers of minterms. Through observation, it was determined that 

a more appropriate technique seemed to be that of reducing the number of 
terms in the final FPRM expansion through deleting equivalent terms during 

the conversion process. Hence, a Boolean function with a large number of 

minterms should be converted to the polarity 0 (211-1) FPRM expansion if 

the majority of variables are present in complemented (true) form. This 

would increase the numbers of new product terms generated thus 
increasing the possibility of deleting equivalent product terms. This led to 

a modified form of pre-treatment which is now described. 

1) Pre-treatment Pos_neg 

If the number of minterms in the n variable Boolean function is less 
than or equal to half the total possible number of minterms which 
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may be formed (i. e. 2') then 1. a, else 1. b. 

1. a) If the total number of variables present in the Boolean 

function in true form is less than the number of variables 

present in complemented form then convert the Boolean 

function to the negative polarity (polarity 2'-1) FPRM 

expansion. Otherwise convert the Boolean function to the 

positive polarity (polarity 0) FPRM expansion. 
This FPRM expansion is the initial expression evaluated by the 

minimisation algorithm. 
1. b) If the total number of variables present in the Boolean 

function in true form is less than the number of variables 

present in complemented form then convert the Boolean 

function to the polarity 0 FPRM expansion (PPRM expansion). 
Otherwise convert the Boolean function to the negative polarity 
(polarity 21-1) FPRM expansion. 
This FPRM expansion is the initial expression evaluated by the 

minimisation algorithm. 

As a further modification a pre-treatment technique was devised whereby 
the resulting FPRM expansion could be of any polarity p (p a (0,1,..., 2n-1)). 

The technique entails evaluating the state of each function variable. 
2) Pre-treatment M_pre pol 

If the number of minterms In the n variable Boolean function is less 

than or equal to half the total possible number of minterms which 

may be formed (i. e. 2n) then 2. a, else 2. b. 

2. a) For each function variable xx (j = 1,2.... n), 
if, for the Boolean function, the number of occurrences 
literal xf (true form) is less than the number of 
occurrences of literal xf (complemented form) then pf= 
1. Otherwise pj = 0. 

2. b) For each function variable xx (j = 1,2,..., n), 
if, for the Boolean function, the number of occurrences 
literal xj (true form) is less than the number of 
occurrences of literal xf (complemented form) then p. - 
0. Otherwise pJ = 1. 

Form the polarity number p, the decimal equivalent of <pn pn_l... pl>" 
Convert the Boolean function to the polarity p FPRM expansion. This 



McKenzie. L. M. 1995 Chapter 3 73 

FPRM expansion is the initial expression evaluated by the 

minimisation algorithm. 

The pre-treatment techniques, Pre-treatment Pos_neg and Pre-treatment 

M_pre_pol, were tested as supplements to the Full Gains minimisation 

algorithm. An additional pre-treatment technique identified as Pre-treatment 

Pre_pol was also tested. This procedure is similar to M_pre_pol, however, 

the number of minterms in the Boolean function has no effect on the 

polarity of the Initial FPRM expansion. Thus only step 2. a of the Pre- 

treatment M_pre_pol is utilised. The procedure for testing the pre- 
treatment techniques is now outlined. 

Perform pre-treatment (Pos_neg, M_pre_pol or Pre_pol) to determine 

the polarity p of the Initial FPRM expansion. 
S. 1 as for Full Gains minimisation algorithm. 
S. 2' Set P= (p}, R= (p), Q= (p) where p Is determined by the 

pre-treatment and is the polarity of the FPRM expansion used 
in the first Iteration of this algorithm. 

S. 3 - S. 9 as for Full Gains minimisation algorithm. 

The graphs of Figure 3.4 and Figure 3.5 illustrate the performance of the 
three pre-treatment techniques when used In conjunction with the Full 
Gains minimisation algorithm. Results generated by the Full Gains 

minimisation algorithm without pre-treatment are also presented. The graphs 
display as a percentage the number of Boolean functions for which each 

minimisation technique derived minimal FPRM expansions. The minimal FPRM 

expansions of each Boolean function were determined using the technique 

developed by Harking [42]. The x-axis of each graph illustrates the number 
of variables and minterms in a Boolean function. The results are derived 
from testing each algorithm with sets of 1000 randomly generated Boolean 
functions with fixed numbers of variables and minterms. As for the 

previous sets of result the Boolean functions were constructed by a random 
number generator. The output of the random number generator was filtered 

so as to remove any duplicate minterms. The algorithms (a. Full Gains b. 
Pos_neg Full Gains c. Pre_pol Full Gains d. M_pre_pol Full Gains e. 
exhaustive search - Harkings' technique [42]) were Implemented In Pascal 
and the programs executed on a HP workstation. 
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The graphs presented in Figure 3.4 and Figure 3.5 illustrate the benefits 

of introducing a pre-treatment step into the Full Gains minimisation 

algorithm. In general, both pre-treatments Pos_neg and M_pre_pol improve 

the performance of the Full Gains minimisation algorithm. The pre-treatment 

technique Pre-pol degrades the performance of the Full Gains minimisation 

algorithm when used to minimise Boolean functions with large numbers of 

minterms (relative to the total number of minterms which may be used to 

represent any Boolean function, i. e. 2n). This result would seem to support 

the previous observations on which the structure of the pre-treatment 

techniques M_pre_pol and Pos neg are based. 

3.3 Summary 

The heuristic minimisation algorithms presented in this chapter may be 

employed to determine optimal (sub-optimal) FPRM expansions of Boolean 

functions. The first technique described, the Full Gains minimisation 

algorithm, is an extension to an existing technique developed by Marinkovic 

and Tosic [211. Additionally, the notation used to represent both Boolean 

functions and FPRM expansions and the technique used to generated FPRM 

expansions are those developed by Almaini et al [1]. A modified form of the 

Full Gains minimisation algorithm has been presented. namely the Full Gains 

MinO minimisation algorithm. This technique may be considered to be a 

reduced form of the initial algorithm as certain steps have been omitted. 
This will to some extent limit both the number of FPRM expansions which 

will be generated during the minimisation operation and the number of 
iterations of the algorithm. Both the Full Gains minimisation algorithm and 
its modified form have undergone extensive evaluation and results have 

been presented illustrating the performance of these algorithms when 

compared with existing heuristic techniques. The significance of these 

results has been explored in section 3.2.2. 

Pre-treatment techniques suitable for use with the Full Gains and Full 

Gains MinO minimisation algorithms have also been devised. The purpose of 
the pre-treatment is to provide a means of predicting a sub-optimal FPRM 

expansion of a Boolean function which would be used as a starting 

expansion by either the Full Gains or Full Gains MinO minimisation 
algorithms. Results are presented which illustrate the performance of the 
Full Gains minimisation algorithm when used in conjunction with the pre- 



McKenzie, L. M. 1995 Chapter 3 75 

Mm 

C 
m 

ýo 
ýo I- 

Gf 
C 
ý 

0 rn 
0 00 

O 
n 0 KO 0 Ir) g 0 M 0 N 

O 
1 

M 
T 

N 
ý 

C 
rp 

U 
C 
7 

Qý 

V- 0 
ý v 

rn ý 
> 

ý 
a0 L- 

W 
ao 

ýE 

to ý 

0 

14- 0 

L'' °1 L 

W* 

M 

Figure 3.4: Percentage of randomly generated Boolean functions for- which 

ý 
c 

cý 

LL. 

1 

al 
cq4 

LL 

pÖ 
l 

m 
ý CL 

P71 

r1zz1zNz\/ 
, -, X ,, W 7%, -, % 1ý,, X 'r, A 1% 

1 
r_ __ _ ____ _____ n/ "wyyyyvvvvv...., 

rzz 
IU XXXXXXXXXXXAXAAXAMXXXX A- AL 

Mxý. 7,77 ; J7ý EEýEEýEEEEEEEýtýEýEEE ;ýp,; k ý ;hI---w- ;hý ;ký ;k eo w-- 

tý 

-P, Jx Z, P, 

rZZ iý Z7FZZZ7Z-Z, 0;, 
ä. 

Z" . 4'-, Z% /x 
ý'AN 4 ; 6,0; 4 >ýXý%-ýý4ý44ý 

(e ý dý dý iý, + 
ýI 

- 

ýII 

2. AxxxAA, --X Aaýý2xxxxA -AL- 
A 

výI xý 
1x 

IL AAAAA 

FzZ /- Z/7,, 'r //zzzzz//z/z Lvcv 
xxx 111.11 

7K-ZK -, Z\ /-ý f% /% /\ /-I "I I-N 

r Nr If Ne Nf 

441; 44444444 
ýex aot Jlý 

the minimisation techniques (pre-treated) Formed optimum FPRM expansions. 
(Boolean functions of 4 variables, 3-13 ininterms (1000 Boolean functions per 
set). ) 



McKenzie, L. M. 1995 Chapter 3 76 

Figure 3.5: Percentage of randomly generated Boolean functions for which 
the minimisation techniques (pre-treated) formed optimum FPRM expansions. 
(Boolean functions of 4-10 variables. ) 
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treatment techniques. An evaluation of these results is given in section 
3.2.3. 

The heuristic algorithms and techniques introduced in this chapter form 

alternative means of deriving optimal (sub-optimal) FPRM expansions of 
completely specified Boolean functions. In general, these methods show 
improved performance when compared with a limited number of existing 
techniques. However, it is possible that the new techniques are more 
complex than some established methods. 



Chapter 4 

Fixed Polarity Reed-Muller 

Expansions of Incompletely Specified 

Boolean Functions' 

The generation of FPRM expansions from incompletely specified Boolean 

functions is discussed in this chapter. Initially, the concept of the Reed- 

Muller 'don't care' term is explored and existing techniques for generating 

and allocating RM 'don't care' terms are reviewed. A technique which finds 

the optimum allocation of the 'don't care' terms leading to minimal FPRM 

expansions is then described. The problem of determining the optimum 

allocation of 'don't care' terms whilst addressing the problem of deriving 

the optimal polarity is also addressed. Two heuristic approaches to solving 
this problem are presented. 

4.1 Fixed Polarity Reed-Muller Expansions of Incompletely Specified Boolean 

Functions 
An incompletely specified Boolean function has one or more input conditions 
for which the corresponding output states are undefined. Any incompletely 

specified n variable Boolean function may be represented as 

d07.7. 
-1... 

7271 + d17"7m-1... 72X1 + d27.7m-1... X271 + ».... + dir-1x ýXs-1... X2X1 

di e (0,1, D} is an operational domain coefficient which may take the value 
0,1 or the undefined state, D (D c (0,1}). 

xx and x. are literals of the function, in true and complemented forms 

respectively. 
I=0,1,..., 2n-1, j=1,2,..., n 

If the value of a coefficient, di, is defined (it is either 0 or 1) then the 
minterm, mi, associated with the coefficient Is a specified term of the 
function. If, however, the value of di is undefined, that is, it may take the 

The work presented in this chapter is published in [34] (see inside 
back cover). 
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value 0 or 1 without affecting the output of the function, then the 

corresponding minterm, m1, is an unspecified or 'don't care' term of the 

function. The 'don't care' terms offer a degree of freedom when minimising 
Boolean SOP forms. 

The RM expansion of a Boolean function may be derived from the Boolean 

SOP form (chapter 2). The RM (PPRM) expansion of n variables has the form 

f(x. 
sx. -1, "yxl) = ao ® a1x1 ® a2x2 9 a3x2x1 9 -. ® a2'-lx. x. 

-i-"x2x1 

The functional domain coefficients, a,, are related to the operational domain 

coefficients, di, in the following 

ao = do 

al = do ® dl 

a2 = do ® d2 

a3 = do ® dl ® d2 

manner, 

(D d3 

a2n-2 = do ® d2 ® d4 ® ds ® ...... ® d2n-4 ® d2n-2 

a2n_ 1= 
do ® di ® d2 9 d3 ® ...... ® d2n-2 9 d21 

If a coefficient di is undefined then any coefficient ak (1, ke {0,1,..., 2n-1}) 

which is dependent on di will also be undefined. The piterm associated with 

an undefined coefficient ak may be described as an unspecified piterm and 
the RM expansion may be denoted an incompletely specified RM expansion. 
As Boolean 'don't care' terms may be utilised to form minimal SOP 

expansions, it follows that RM 'don't care' terms may also be employed to 

minimise RM expansions. The minimum form of a RM expansion is that which 
has the minimum weight, that is, the least number of piterms. Hence, the 

goal in minimising an incompletely specified RM expansion is to set the 

maximum number of coefficients, ak, equal to 0. As these coefficients are 
dependent on the coefficients di, the minimisation problem may be 
formulated as deriving the assignment of Boolean 'don't care' terms which 
results in the maximum number of coefficients ak being equated to 0. The 

relationship between the coefficients di and ak is not a one-to-one mapping. 
Thus, it may be conjectured that it is not generally the case that the 
allocation of 'don't care' terms which leads to a minimum Boolean SOP form 
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will also lead to a minimum RM expansion [37]. 
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The particular case of the polarity 0 FPRM expansion described previously 

may be extended to the other 21-1 FPRM expressions. The coefficients of 

each FPRM expansion, bk, can be related to the coefficients, di, of the 

Boolean SOP form as discussed in chapter 2. Therefore, an incompletely 

specified Boolean function can be transformed into an equivalent 
incompletely specified FPRM expansion. The minimal FPRM expansion is that 

which has the maximum number of coefficients bk equal to 0. The 

techniques and algorithm developed in a later section of this chapter may 
be employed to determine minimal FPRM expansions of incompletely specified 
Boolean functions. Note, the polarity of each FPRM expansion is 

predetermined. 

It is, perhaps, necessary to state that the unspecified terms of a Boolean 

function may be used to minimise ESOP forms. This is best explained by 

considering the Karnaugh representation of a Boolean function where each 

cell of the map represents a minterm of the function. Obviously, an ESOP 

form may be represented using a map where the relationship between the 

product terms represented by each cell of the map is modulo-2 addition. 
On a Karnaugh map representing a Boolean function, specified and 

unspecified terms may be grouped according to the rules of Boolean 

algebra to obtain a minimised SOP form of the original function. A similar 
technique may be applied to the map representing the ESOP expression, 
however, specified and unspecified terms must be grouped according to the 

algebra of GF(2). That is, any cell containing the value 1 may be included 

in an odd number of groups, whilst any cell containing the value 0 may be 

excluded from all groups or included in an even number of groups. A cell 

which contains the value D, representing a 'don't care' term, may be 
included in any number of groups. An example of the technique is given 
in Figure 4.1. Determining the allocation of the 'don't care' terms so as to 
derive a minimal ESOP form is not a trivial task and continues to be a 
research topic. 

4.2 Review of Techniques for Deriving Fixed Polarity Reed-Muller 
Expansions of Incompletely Specified Boolean Functions 

The literature review of the previous chapter (section 3.1) examined 
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f(x3, x2, x1) = x3xZx1 + x3xZx1 + x3x2x1 + x3x=x1 + Dx3xZx1 

Karnaugh map representation 
of Boolean function. 

Map representation of 
equivalent ESOP expansion. 

Xsx2 ýýý 
"I- 

-00 01 11 10 

D1 
111 

Groupings using rules 
of Boolean algebra. 

I 
ýýoo 01 11 10 
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1511 11 

Groupings using rules 
of GF(2) algebra. 
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ý'ýoo ol 11 10 

0 
ý 

Figure 4.1: Minimisation of a Boolean function and an ESOP expression using 
'don't care' terms. 

techniques for representing, generating and optimising FPRM expansions. 
Many of the methods discussed included techniques suitable for 

incompletely specified Boolean functions, these techniques are now 
described in more detail. 

Tran [36,38] described a method for transforming an incompletely specified 

Boolean function represented on a Karnaugh map to a FPRM expansion. The 

method is an extension to the map folding technique and the resulting 
FPRM expansion is represented on a RM-coefficient map. The 'don't care' 
terms of the Boolean function are transformed to RM 'don't care' terms 

where any RM 'don't care' term may be dependent on one or more of the 

unspecified terms of the initial Boolean function. These RM 'don't care' 
terms may then be allocated values of 0 or 1 so as to minimise the number 

of cells of the map which contain the value 1. Tran did not suggest an 
algorithm for this purpose and user must decide on the best values for the 
'don't care' terms in order to derive the FPRM expansion comprised of the 
minimum number of product terms. This map method becomes impractical as 
the number of variables in the Boolean function increases. 
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The RM coefficient map and map folding was utilised by Green [371 who 
illustrated a technique for transforming an incompletely specified Boolean 
function to a FPRM expansion. The Boolean function is partitioned into two 

subfunctions, where one subfunction comprises of the specified minterms 
of the original function. The second subfunction is formed from the 'don't 

care' terms of the Boolean function. The subfunctions are represented on 

separate Karnaugh maps and these are independently transformed to RM 

coefficient maps. Each of the Boolean 'don't care' terms may be assigned 
values (either 0 or 1) until each cell of the equivalent RM coefficient map 
contains a binary value. The contents of both RM coefficient maps may then 
be summed (modulo-2). The 'resulting RM coefficient map represents the 
FPRM expansion of the original Boolean function where the 'don't care' 
terms have been assigned values. Green proposed determining the optimum 
FPRM expansion of the initial Boolean function through exhaustive search. 
That is, deriving RM coefficient maps for all possible combinations of values 
for the 'don't care' terms. Each RM coefficient map would in turn be added 
to the RM coefficient map representing the specified terms of the initial 
Boolean function. The resulting RM coefficient map which displays the 
fewest number of cell containing is represents the minimal FPRM expansion. 
If the Boolean function is comprised of k 'don't care' terms then 2k RM 

coefficient maps will be generated. 

Habib [40,411 employed 1x2' Boolean matrices to represent n variable 
Boolean functions, FPRM expansions and ESOP forms. This type of notation 
allows the representation of incompletely specified Boolean functions. Habib 
illustrated a heuristic technique for deriving FPRM expansions and ESOP 
forms from Boolean functions with 'don't care' terms. The technique utilises 
the matrix folding method previously outlined in section 3.1 of chapter 3. 
The matrix is partition into equal parts according to the state of any 
function variable. The 'don't care' terms are then assigned values which 
minimise the number of is in the matrix formed from the modulo-2 sum of 
the components of both partitions of the original matrix. This operation is 
repeated for all function variables. It cannot be guaranteed that this 
method will determine the optimum allocation of the 'don't care' terms. 
Indeed, the quality of the solution is affected by the order in which the 
partitioned matrices are formed. The technique is suitable for transforming 
incompletely specified Boolean functions to FPRM expansions of pre- 
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determined polarity and may also be used in conjunction with the heuristic 

minimisation techniques for determining minimal (sub-minimal) FPRM 

expansions [41] and ESOP forms [40]. (Note, in all of the techniques 

described the only arithmetic operation performed is modulo-2 addition, 

matrix multiplication is not employed. ) 

Harking [42] presented a method for deriving a 2nx2n polarity matrix 

representing all 2n FPRM expansions of an variable Boolean function. The 

Boolean matrix notation is employed and modulo-2 addition, not matrix 

multiplication, is used to form the polarity matrix. This technique may be 

used to determine the optimum (sub-optimum) FPRM expansions representing 

an incompletely specified Boolean function. The Initial Boolean function is 

partitioned into 2 parts, specified minterms and 'don't care' terms. The 

2nx2n polarity matrix representing all 2n FPRM expansions is then 

constructed from the Boolean matrix representing the specified terms of the 

function. The 'don't care' terms are used to form a 2nx2n Boolean matrix 

which represents the effects of these 'don't care' terms on the coefficients 

of each FPRM expansion. Harking then formulated a technique which alters 
the relevant coefficients of each FPRM expansion according to the value of 

a 'don't care' term. The technique may be employed to determine all 2n 

FPRM expansions for all combinations of values of 'don't care' terms. Thus 

the optimum FPRM expansions of the initial incompletely specified Boolean 
function may be determined through exhaustive search. Alternatively, two 
heuristic techniques are. presented, both lead to a reduction in the number 

of FPRM expansions which must be evaluated but the quality of the solution 
is obviously degraded. 

A novel heuristic technique for deriving optimal (sub-optimal) polarity 0 
FPRM expansions of incompletely specified Boolean functions was introduced 
by Varma and Trachtenberg [62]. This method may be used with a Boolean 

matrix representation where Boolean functions are transformed to the 

equivalent RM expansion using matrix multiplication (modulo-2 multiplication 
and addition are performed). Alternatively, equations are detailed which 
may be employed to compute the coefficients of RM expansions. Initially, the 
equivalent RM expansion of the incompletely specified Boolean function with 
all 'don't care' terms equated to 0 is generated. The effects of the 'don't 
care' terms on the terms of the RM expansion are then evaluated. The first 
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'don't care' term is considered and a value is allocated so as to minimise 

the number of terms in the RM expansion derived from the Boolean function 

with all unspecified terms set equal to 0. Hence, the RM expansion is 

altered so as to represent the Boolean function with the 'don't care' term 

assuming the value determined in the previous step. Another 'don't care' 

term is then allocated a value, the aim being to further reduce the number 

of terms in the new RM expansion. This RM expansion is now altered 

according to the effects of the 'don't care' term. The process is repeated 

until all 'don't care' have been assigned values. The resulting RM expansion 
is a minimal (sub-minimal) representation of the original incompletely 

specified Boolean function. It is of interest to note that Varma and 

Trachtenberg use the numbers of literals in a RM expansion as a measure 

of the complexity of the implementation. Thus, a cost function is introduced 

into their algorithm. Additionally, Varma and Trachtenberg [621 determine 

limits for the maximum number of product terms in the RM expansion 

representing an incompletely specified Boolean function. Finally, the 

heuristic technique is extended to allow reduced representations to be used 

when deriving minimal (sub-minimal) FPRM expansions of incompletely 

specified Boolean functions. 

4.3 Minimisation of Fixed Polarity Reed-Muller Expansions using Unspecified 

Product Terms 

The technique described in this section determines the allocation of the 

unspecified coefficients of a Boolean function which results in a minimal 
FPRM expansion, where the polarity of the FPRM expansion is 

predetermined. It has been stated that the coefficients bk (k = 0,1,..., 2"-1) 

of any FPRM expansion depend on the coefficients di of the equivalent 
Boolean function (1 = 0,1,..., 2n-1). The value of coefficients bk will depend 

on the coefficients di, which take the values 0,1 or D. Henceforth, di will 
denote the specified coefficients of the Boolean function which take the 

value 1. Any coefficient which is unspecified and so takes the value D will 
be denoted dk 

r where dk, 
re 

(0,1}, i, k a (0,1,..., 2n-1}, i#k. and r= 
0,1,..., t where t is the number of unspecified terms in the Boolean function. 

In order to evaluate the FPRM coefficients, bk, it is necessary to establish 
some rules, 
(i) di ® dk = (1 ® 1) =0 (terms cancel) 
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(ii) dk. 
s ® dk, s =0 (terms cancel) 

(iii) di ® dk, r= 
1® dk. 

r 

(iv) di ®( dk. 
r® 

dl. 
r+1 ® ... ® ds, 

s) = 1® dk, 
r® 

dt. 
r"1 ®... ® ds, 

i, k, . 2, me {0,1,..., 2n-1}, iýký .¢¢m 

r, sE{1,..., t}, rýs 

85 

It is a simple task to derive the coefficients bk which are independent of 

any coefficient d1, 
r. 

These coefficients are termed the specified FPRM 

expansion coefficients and may take the value 0 or 1. The remaining bk 

coefficients are dependent on dl. 
r, and are the unspecified FPRM expansion 

coefficients. The minimisation problem is, therefore, to allocate the 

coefficients di, 
r such that a minimal number of coefficients bk have the 

value 1. 

One approach to solving this problem is to evaluate each bk for all 

combinations of t coefficients, di, , being set to 0 and to 1, where each bk 

is dependent on some dt, r Alternatively, a technique which offers the 

possibility of determining optimum assignments of dd, 
r without performing 

an exhaustive search is now proposed. This technique identifies 

combinations of coefficients, dt, 
r=0 or 1, which cannot lead to optimum 

allocations. The procedure employs a tree-type structure (Figure 4.2) 

similar to the BDDs presented in chapter 2. 

Each node (box) has one Input branch and 2 output branches. The left 

output branch denotes a path on which the value of coefficient d. 
s 

is 0, 

whilst the value of d,,., on the right output branch is 1. Each node 
contains a value denoted score which is equal to the number of coefficients 
bk which equal 0 when the coefficients dam, 

s assume the values indicated on 
the branches leading from the top of the tree to the node. The initial value 
of score is 0. A group of FPRM expansion coefficients, bk, may be evaluated 
at each level of the tree and the scores are carried down from one level 
to the next. The total number of levels in the tree Is equal to t, the 
number of Boolean 'don't care' terms. The maximum score at the final level 
(maxscore) Is the maximum number of FPRM expansion coefficients, bk, which 
can be set to zero, and the path leading to maxscore Indicates the optimum 
allocation of the Boolean 'don't care' terms. It is possible to reduce the 
number of calculations which must be undertaken to find a solution. This 



McKenzie, L. M. 1995 Chapter 4 86 

Figure 4.2: Tree-type structure used to determine the optimum use of 
'don't care' terms. 

means that the optimum allocation of Boolean 'don't care' terms can be 

found without performing an exhaustive search. The technique is now 

explained. The unspecified FPRM expansion coefficients should be 

partitioned into groups according to the coefficients di, 
r on which they 

depend, 

i. e. 
Group 1 coefficients bk dependent on di, 1 only. 
Group 2 coefficients b1 dependent on dk 2 or (di. 1e dk, 2). 
Group 3 coefficients b@ dependent on dd, 3' (di, 

1 (D dl, 3)' (dk. 2® di, 3) 
or (di. 

1 ® dk, 
2 (D dß. 

3). 

Group t coefficients bq dependent on ds, 
to (dt, 1® 

ds, 
t), (dk, 2® 

ds, 
t), 

(dt. 
1 ® dk. 2® 

ds, do (d1,3 ® ds. c)......., 
(di. 1®dx. 2® 
(or di. 1 ® dk. 2 

1, k, . Q, m, p, q E {0,1,..., 2n-1} 

... ® dm. ( t- 2) ® ds. 
t) 

® ... ®dp. ( t-i) 9 ds, t) 

The number of FPRM coefficients in each of these groups should be 

counted. Let dc1 equal the number of coefficients, bk, which depend on 
only di, 

1 and, hence, are in Group 1. Then, dc2 will denote the number of 
unspecified FPRM expansion coefficients in Group 2, and so on. Let dctot 
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equal the total number of unspecified FPRM expansion coefficients, then 

dctoe = dcl + dc2+ ... + dct. Additionally, dc equals the number of FPRM 

expansion coefficients which at any stage of the allocation procedure have 

not been evaluated. Considering the structure illustrated in Figure 4.2, as 

the coefficients bk are evaluated a score is calculated. Initially, score is set 

equal to 0, then score is the total number of coefficients bk which can be 

equated to zero when the values of all ds 
s assume the values indicated on 

the path leading to the node associated with score. At any level there may 
be a range of scores. An inequality may be formulated which makes it 

possible to determine which paths of the structure may be terminated at 

a level prior to the final level, thus reducing the number of calculations 

required to find an optimum allocation of the coefficients dm. 
s. 

Hence, at 

any level, a path which leads to a node with value score should be 

terminated when 

score + dc < rnaxscore +f 
dc l 

I2I 

where score is any score at level X, maxscore is the maximum score at level 

. 2. and dc is the number of coefficients bk which have yet to be evaluated. 
(lxi is the smallest integer greater than or equal to the real number x and 
Lxj is the greatest integer less than or equal to the real number x. ) 

The validity of this inequality is now proved. 
Proof 

At level £ (2 = 1,2,..., t) assume that dc FPRM expansion coefficients, bk, are 
yet to be evaluated and the maximum score is maxscore (dc and maxscore 
have integer values). Consider evaluating all dc FPRM expansion coefficients 
at level £+1, i. e. all remaining bk coefficients are dependent on di i, l and 
some combination of coefficients dk 1, d. 2,..., d 

p, t. 
Two new scores will be 

derived for any score at level . Q. One new score will indicate the number 
of bk coefficients equated to 0 when di. 1 1=0, whilst the other will 
indicate how many coefficients are equated to 0 when dt ! "1 =1 
(coefficients dk, 1" :, 2...., d 

p, t assume the values indicated on the branches 
leading to the node with value score). If all bk coefficients are equated to 
0 when d1 I"1 =0 (or di, 1.1 = 1) then the new values of score, i. e. the 
values at level . e+1, will be score and (score + dc). Alternatively, if only 
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half the coefficients are equated to 0 when di. 1.1 =0 (or di 1.1 = 1) then 

the new values of score will be 

I de I. (Note dc =II+ [2 ý 
(score 

+ 
2l 

and 
(score 

+I 

lJ It is now possible to establish bounds on the scores at level £+1. 

Upper limit on the maximum score at level . C+1 is 

(maxscore + dc) 

and the lower limit on maximum score at level £+1 is 

mazscore + 
[dcl 

2 

Upper limit on any score at level £+1 is 

(score + dc) 

Therefore, if any score at level £ has a value such that 

score + dc < maxscore +[ 
do 
21 

then the path emanating from that node cannot lead to a maximum score at 

level £+1. 

This inequality is also valid for the case where dc coefficients are allocated 

not at level £+1 but at levels £+1, £+2,..., £+s. (Note, t= .C+s. ) The bk 

FPRM expansion coefficients are grouped according to their dependency on 

the coefficients d1, 
r, and the number of coefficients in each group is 

indicated by the values dct. 
1, 

dq, 
2,..., 

dct. It will be shown that the 

established limits are valid for this case. Once again, let score denote the 

value of any score at level £ and maxscore be the maximum score at level 

¢. 

Upper limit on maximum score at level £+s is 

(maxscore + dcl, 
1 + dc1,2 + ... + dcl.. ) 

and the lower limit on maximum score at level . ¢+s is 

score + 
dc1 

1 dcl+2 
+ .. 

+ 
dcl 

2 
[21 

2 

Upper limit on any score at level C+s is 
(score + dq, 

1 + del+z + ... + dq, 
s) 
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Therefore, if any score at level . ¢+s has a value such that 

score + dc1*1 + dc1+2 + .., + dc1+s < nazscore + 
dC1+1 

+ 
dC1+2 

+ ... 22 

then the path cannot lead to a maximum score at level £+s. 

Now, dc = d9+1 + dq 
42 + ... + dcl+s and 

( dC 
S 

dcl+l 
+ 

dC1+2 
+ ...... + 

dcl+= 

21 21[22 

hence, (score + dc) = (score + dcl"i + dcl+2 + """ + dcl, 
s) and 

r 
score + 

(dcl )s (score 
+ 

dcý, 
i + 

dcý+2 
+ ,,,,,, + 

dc2l 
" 

II 

Thus the validity of the inequality is confirmed. 

89 

+ 
tl. 

s 
2 

Any node with value score which satisfies the following inequality will not 
lead to a node with value maxscore at level t 

score + dc < maxscore +f 
ýl 

I2I 

(End of Proof) 

The following algorithm employs the techniques introduced in the preceding 
discussion to provide a means of determining the optimum use of the 'don't 

care' minterms of a Boolean function. The resulting expression is a minimal 
FPRM expansion of the initial Boolean function. The following terms are 

used in the algorithm and therefore require to be formally defined. 

The term do count denotes the number of unspecified FPRM expansion 

coefficients bk which have been' evaluated at level r, where r=1,2,..., t. 

score0 and scorel denote the number of coefficients bk at any level r 
which are equated to zero when di, 

r=0 or di. 
r=1, respectively. 

score is the total number of coefficients bk which can be equated to zero 
when the values of all di, 

r assume the values indicated on the path 
leading to the node associated with score. 
Maxscore is the maximum value of score at level r. 
All other terms are as previously defined in this section. 

2 
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Converting an incompletely specified Boolean function to polarity p FPRM 

expansion. 

Si For r=1,2,..., t denote each coefficient di of a 'don't care' term of 

the incompletely specified Boolean function di. 
r, 

(i a {0,1,..., 2n-1}). 

S. 2 Convert the Boolean function to the polarity p FPRM expansion, 

transforming the 'don't care' terms according to rules (i) - (iv) 

detailed previously. 
S. 3 Form t groups comprised of the unspecified FPRM expansion 

coefficients bk. Group 1 contains coefficients dependent on di, It 
Group 2 contains product terms dependent on dk, 2 and (di. 1® 

dk 2)" 
Group 3 contains ... etc.. 
For r=1,2,..., t, let dcr equal the number of coefficients bk in Group 

r. Let dctot = dcl + dc2 + ... + dct and let dc = dctot. Set r=1. 

S. 4 Form level r of the tree structure (see Figure 4.2). 

If r#1 then S. 5 else construct a left branch denoted di, 
r=0 and 

a right branch denoted di, 
r=1. 

Each branch terminates in a node. 

Let the value contained in the node be denoted score. Let score = 

scoreO = scorel = 0. Go to S. 6. 

S. 5 Select a level r-1 node which is unterminated. Let the value 

contained in this node be score and from this node construct a left 

branch denoted di, 
r=0 and a right branch denoted di, 

r=1. 
Each 

branch terminates in a level r node. Let the value contained in this 

new node be score where score at level r is equal to score at level 

r -1 . Let scoreO = scorel = score. 
S. 6 Let do count = dcr. If do count =0 then S. 10. Select the first 

coefficient bk from Group r. Let di, 
r=0, also d1 

1,..., 
di, 

1'-1 assume 

the values on the branches leading to this node. If bk =0 then 

score0 = score0 +1 else scorel = scorel + 1. Let do count = 
do count - 1. 

S. 7 If do count =0 then S. 10 else S. B. 
S. 8 Select next coefficient bk from Group r. Let di, 

r=0, also di, 
1,..., 

di 
r_1 assume the values on the branches leading to this node. If bk 

=0 then scoreO = scoreO +1 else scorel = scorel + 1. Let do count 
= do count - 1. 

S. 9 If do count =0 then S. 10 else S. B. 
S. 10 Let the score associated with the node attached to branch denoted 

di 
r=0 equal scoreO, and the score associated with the node 
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attached to branch denoted di, 
r. =1 equal scorel. 

S. 11 Repeat S. 5 to S. 10 until all unterminated level r-1 nodes have been 

selected. 
S. 12 Let dc = dc - dc,,, if dc =0 then S. 14. Otherwise, denote the value 

associated with each level r node as score. Find maxscore at level r. 
If any node has 

score + dc < maxscore +I 
dcl 
2 

then terminate the path at this node. 
S. 13 Let r= r+ 1. Go to S. 5. 

S. 14 Denote the value associated with each level t node as score. Find 

maxscore at level t. 
The values r=0 and di, 

r=1, r=1,2...., t, on the paths leading 

to the level t nodes with value maxscore indicate the allocation of the 

'don't care' terms which leads to an optimum FPRM expansion. 
S. 15 The optimum FPRM expansions may be derived by substituting the 

appropriate sets of values of di, 
r 

into the incompletely specified 
FPRM expansion. 

4.4 Tabular Technique for Deriving Fixed Polarity Reed-Muller Expansions 
from Incompletely Specified Boolean Functions 
The tabular technique reviewed in chapter 3 section 3.2.1 may be employed 
to transform a completely specified Boolean function to a FPRM expansion. 
It is possible to extend this procedure to incompletely specified Boolean 

functions. The method now proposed transforms an incompletely specified 
Boolean function to an equivalent incompletely specified FPRM expansion. 

A specified minterm, m,, (I = 0,1,..., 2'-1) of an variable incompletely 

specified Boolean function may be represented by the binary n-tuple <inln-1 

... i1>, ij a {0,1}, j=1,2,..., n. Let an unspecified minterm, mk, of an 
incompletely specified Boolean function with t 'don't care' minterms be 

represented by the binary n-tuple <knkn_l... kl>dk, ,kja {0,1}, ke 
{0,1,..., 2'-1}, j=1,2,..., n and r=1,2,..., t. Thus, an Incompletely specified 
Boolean function may be represented by a table of minterms. 
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Example 4.1 Display the following incompletely specified Boolean function 

= 3) using the tabular notation 

f(x3, x2, x1) = x3x2x1 + x3x2x1 + 'x3xZx1 

DE {0,1} 
Boolean function 

x3 x2 x1 

000 
011 

100 

101 ds. 
1 

110 d6,2 

111 d7.3 

(End of example) 

+ Dx3xZx1 + Dx3xZx1 + DxAx1 

92 

(n 

Now consider transforming a incompletely specified Boolean function to the 

equivalent PPRM expansion using a modified form of the original tabular 

technique [1] and the tabular notation just described. Let Av= ®E8, where 
Se {1, di, 1' dk, 2'* *" dm, c}' i, k, m, ve {O, 1,..., 2n-1}. If any term in the 

table has the form <in"""IJ+1OIJ_1... I1> (<i ... iJ. 
10IJ_1... i1>0 

v) 
then generate a 

new term which is represented by <fn .. ij+11i 
f_L... i1> (<in .. 3J. 

11if_1 ... i1>A1"). 

The newly generated terms are then compared with the existing terms. If 

a term of the existing expansion (table) and a generated term are found to 

satisfy any of the cases listed below then both terms are deleted and a 

new term is formed (resulting term). This resulting term is then added to 

the existing expansion (table). 

Existing term Generated term Resulting term 
(Generated term) (Existing term) 

<ial ... 
i > <i ä-1... I > <i Ä-1... 1 >(1 ® 1) 

11>(0) =0 

<ln n-I... ll>C]i, 
r 

<lnýn-l... il>dt. 
r <nn 

_l... 
il>(di. 

r® di, 
= <inin-l... il>(0) =0 
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11> <lnln-1... 11>dt. 
T 

I1>dt. 
r 

<Ia! 
n-1... 

Ii>dk. 
s 

<3n3n-1 ... il>(1 ® di. 
r) 

< ÄlA-1... I1>( dt. 
r0 

dk. 
s) 

In general, 
<lnln-1... i >A <inin-l... il'ýw <inia-l... il>(ýv ®ý ý 

where Sv =9S, A w=s8, öe 11, dt. 19 dlc. 2+..., dm. J, v, we 10,1,..., 2"-1} 

The procedure is repeated, generating new terms for variable xY, kE 

{1,2,..., n), kXj, and updating the expansion according to the above rules 
formulated for the tabular technique. The conversion is complete when the 

procedure has been applied for each expansion variable. The resulting 

expansion is the polarity 0 FPRM expansion. 

It is possible to convert the RM expansion to another FPRM expansion. The 

technique detailed for completely specified Boolean functions may be 

employed (section 3.2.1 of chapter 3). Additionally, the rules formulated for 

transforming the 'don't care' terms should be applied. The resulting 

expression is a FPRM expansion comprised of specified and unspecified 
product terms. The optimum allocation of the unspecified terms may be 
derived using the algorithm detailed in section 4.3. 

The following example illustrates the use of the algorithm detailed in 

section 4.3 to determine the optimum allocation of the 'don't care' terms of 

a incompletely specified Boolean function. The tabular notation is employed 
to represent the function. 

Example 4.2 Determine the minimum (sub-minimum) polarity 2 FPRM 
expansion of the incompletely specified Boolean function 

f(x4, - s 4x1) - Em(1,4,7,8,9,11) + Ed(3,5,6,15) 
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S. 1 Denote the unspecified minterms of the Boolean function d3 
, 1,..., 

d15.4 

Boolean function 

x4 x3 x2 x1 

0001 
0100 

0111 

1000 

1001 

1011 

0011 d3.1 

0101 d5.2 

0110 d6,3 

1111 d15.4 

S. 2 Transform the Boolean function to the polarity 0 FPRM expansion. 

Polarity 0 FPRM expansion 

X4 X3 X2 X1 

*1 0001 

* 0100 

0111 

*3 1000 

1®d3.1®d5,219 d6.3 

1011 d3,1 

0011 1®d3.1 

*4 0101 d5.2 

0110 1®d6.3 

1111 d3.1®d5.29 d6.39 d15,4 

*5 1101 d5.2 

1110 d6,3 

1010 
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S. 2 Transform the Boolean function to the polarity 2 FPRM expansion, 
applying the transformation rules. 
(*i denotes existing terms and generated terms which are equivalent) 

Generated terms 
(X2) 

X4 X3 X2 X1 

*4 0101 19 d3.19d5.29 d6.3 

*6 1001 d3,1 

ý1 0001 1®d3,1 

#2 0100 1®d6.3 

*5 1101 d3,1®d5,2®d6.3®d15.4 

1100 d6.3 

*3 1000 

Polarity 2 FPRM expansion 

X4 X3 X2 X1 

0001 d3,1 

0100 d6,3 

0111 1®d3.1®d5,2®d6,3 

1011 d3,1 

0011 1®d3.1 

0101 1®d3 1®d6.3 
0110 1®d6.3 

1111 d3,1®d5.2®d6,3®d15.4 

1101 d3,1®d6.3®d15.4 

1110 d63 

1010 

1001 1®d3,1 

1100 d6,3 

The incompletely specified Boolean function has been transformed to 
the equivalent polarity 2 FPRM expansion. 
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S. 3 Group the product terms according to the unspecified minterms on 

which they depend. 
Unspecified FPRM terms No. of FPRM terms 

Group 1 d3.1, d3,1' (1 a d3.1)' (1 a d3,1) dc1 =4 
Group 2 No unspecified FPRM terms are dc2 =0 

dependent only on d5,2, or (d3.1 (D d5,2) 
Group 3 d6.3' d6.3' d6.3' (1 ® d6.3) 

, 
dc3 =6 

(1 ® d3.1 ® d6.3)' (1 ® d3.1 ® d5.2 ® d6.3) 

Group 4 (d3,1 ® d6.3 ® d15,4)' dc4 2 

(d3.1 (D d5.2 $ d6,3 9 d15.4) 

Total number of FPRM expansion unspecified terms is 12, dctot = 12 

S. 4 - S. 13 Set d3.1 first to 0 and then to 1 and evaluate the effects on 
the 'don't care' coefficients of the FPRM expansion. This is 
illustrated in Figure 4.3. Additionally, determine which 
combinations of Boolean 'don't care' coefficients need not be 

evaluated. Repeat for d5,2' d6 3 and d1s. a" 

dc = dctot = 12 

dc = do-dcl = 12-4 =8 
maxscore =2 
No paths can be terminated 

dc = dc-dc 
2= 8-0 =8 

maxscore =2 
No paths can be terminated 

d =0 
dc = do-de ý= 8-6 =2 
maxscore = 
Terminate all paths with 
level 3 nodes containing 
score <6 

dc = dc-dc 
,ý= 

2-2 =0 
maxscore 

s. 3 
: ý1 d. 

3=O/ 
\ý i :. ý°/ \ä. ý1 s. ý°, 

d, 
ýl 

dlý 0/\ dlýl d«0 

Figure 4.3: Determining the optimum use of the 'don't care' terms for 
Example 4.2. 
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Note: At level 3 maxscore =7 and do = 2, 

Evaluating the inequality 

score + dc < marscore 

score +2<7+1 
f=1 

determines that any node with score <6 should be terminated. 

97 

S. 14 At level 4 maxscore = 9, hence all paths which terminate in nodes 

with score =9 indicate the optimum allocation of Boolean 'don't care' 

terms, i. e. d3.1 = d15.4 = 1, d5 
,2= 

d6 3=0. 
S. 15 Substitute this assignment of d3.1,..., d15.4 into the incompletely 

specified polarity 2 FPRM expansion. This generates the minimal 

polarity 2 FPRM expansion of the incompletely specified Boolean 

function. 

Optimum polarity 2 FPRM expansion 
f2(x4, x3, x2, x1) = x362 ® x472 ®x1 0 x4i3xI 

x4 x3 Xz x1 

0001 
1011 

0110 
1010 

Note, this is derived from the completely specified Boolean function 

f(x4"x3"x2, x1) Zm(1,4,7,8,9,11.3,1S) 

= x4x3x2x1 + x4x3x=x1 + x4x3x2x1 + x4x3x2x1 

* x4x3xzxl + x4x3xzxl + x4x3xzxl + x4x3xzxl 

It is of interest to note that the optimum allocation of the 'don't care' 
terms in the Boolean domain is d3,1 = d5.2 = d613 = 1, d15,4 = 0. 

(End of example) 
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4.5 Determining Minimal FPRM Expansions of Incompletely Specified Boolean 

Functions 

Determining minimal FPRM expansions of an incompletely specified Boolean 

function is a complex problem. It combines the task of finding the optimum 

assignment of 'don't care' terms with the search for the minimum FPRM 

expansions representing the function. Any n variable Boolean function may 

be represented by a total of 2n FPRM expansions. Additionally, an 

incompletely specified Boolean function with t 'don't care' terms may be 

represented by any one of 21 fully specified Boolean functions. An 

exhaustive search would generate 211't FPRM expansions and is obviously 

impractical for all functions except those with very few variables and low 

numbers of unspecified terms. 

Another approach to solving the minimisation problem is to consider 

initially, only the specified minterms of the Boolean function and so 
determine the minimum FPRM expansions representing the function. The 

'don't care' terms may then be allocated so as to further reduce the 

numbers of product terms in the FPRM expansions. Alternatively, an 

optimum allocation of the 'don't care' terms may be derived for a FPRM 

expansion where the polarity is randomly selected. The minimal FPRM 

expansions may then be determined from this fully specified FPRM 

expansion. Unfortunately, neither approach can guarantee to identify the 

minimal FPRM expansion of an incompletely specified Boolean function. 

However, the number of possible combinations of polarity and 'don't care' 

terms which must be evaluated when employing either of these approaches 
is a minimum of (2n+2 t). This quantity is significantly less than the 2n* 1 

FPRM expansions generated when performing a full exhaustive search, 
however, the number grows rapidly as n and t increase. Once again, either 

of these techniques may be applied only to functions with limited numbers 

of variables and unspecified terms. 

It is, perhaps, necessary to emphasise that only one of the three methods 
detailed above can be guaranteed to find the minimum FPRM expansions of 
an incompletely specified Boolean function. Obviously, this is the method 
which performs the full exhaustive search. Additionally, if both of the 
heuristic techniques are applied to any Boolean function then two different 

minimal (sub-minimal) FPRM expansions may be derived. It is possible that 
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one of these FPRM expansions is the minimal form but this cannot be 

guaranteed. This is illustrated by the following example. 

Example 4.3 Determine the minimum FPRM expansion of the incompletely 

specified Boolean function 
f(x3, x2, x1) = Em(0,2,3,4,7) + Ed(l, 5) 

= x3x2x1 + x3xZxi + x3xzx1 + xjxzxi + x3xzx1 + D'3xsxl + Dx372xl 

(4.1) 

Three possible approaches to solving this minimisation problem are now 
described. 

(i) Determine through exhaustive search the optimum FPRM expansion of 
the completely specified Boolean function. i. e. set D equal to zero for 
both 'don't care' terms. Then transform the 'don't care' terms to the 
FPRM expansion where the polarity is that determined in the 

previous operation. Employ these 'don't care' terms to further reduce 
the number of terms in the FPRM expansion. (The technique 
described in section 4.3 may be utilised for this task. ) 

The polarity 5 FPRM expansion is the minimal representation of the 

specified term of the Boolean function of Equation (4.1). 
f3(x3, x2, x1) = Xl 0 X2 e 13X211 

The number of terms in the polarity 5 FPRM expansion cannot be 
further reduced by employing the 'don't care' terms. However, 

allocating the 'don't care' terms in the following manner ensures that 
the number of terms in the FPRM expansion does not increase, d1 

= d5.2=0and d1.1= d5.2=1. 

(ii) Form the optimum polarity 0 FPRM expansion of the incompletely 
specified Boolean function of Equation (4.1). (The technique described 
in section 4.3 may be utilised for this task. ) Next, determine the 
optimum FPRM expansion of the polarity 0 FPRM expansion derived 
in the previous operation. 
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The optimum use of the 'don't care' terms gives 

RM expansions (polarity 0). 

di. 
i=1, 

d5.2=0 

fo(x3, x3, x1) =1" . x3x1 41 x3x2 

di. 
i = ds. 

z = 1. 

fo(x3, x2, x1) =10 x3x2 ® x3x2x1 

100 

rise to two minimal 

(4.2) 

(4.3) 

The RM expansion of Equation (4.2) may be transformed to the 

polarity 3 FPRM expansion which also comprises of 3 product terms. 

These representations are the minimum forms corresponding to the 

allocation of 'don't care' terms. However, the RM expansion of 
Equation (4.3) may be transformed to the polarity 1 FPRM expansion 

which comprises of 2 product terms. 
f1(x3, x2, x1) =1 ®x3x2x1 

(4.4) 

(iii) The optimum FPRM expansion of the incompletely specified Boolean 

function of Equation (4.1) may be determined by performing a 

complete exhaustive search. This involves generating all 23 FPRM 

expansions for each combination of 'don't care' terms. Thus, the total 

number of FPRM expansions which must be generated is 23'2 = 32. 

The results of this search indicate that the optimum representation 
is the polarity 1 FPRM expansion (Equation (4.4)) generated from a 
Boolean function where dl. 

l = d5.2 = 1. 

This example illustrates that the optimum FPRM expansion of an incompletely 

specified Boolean function can only be determined by performing a complete 
exhaustive search as described in (iii) above. Additionally, the heuristic 
technique which is employed influences the quality of the solution. 
(End or example) 

The large -numbers of FPRM expansions which must be derived when 
utilising any of the techniques previously described in this section render 
these method impractical for Boolean functions with large numbers of 
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variables and 'don't care' terms. It is, therefore, more realistic to consider 
heuristic minimisation techniques as a means of solving the minimisation 

problem within a reasonable time scale. The Full Gains minimisation 

algorithm (or any of the modified algorithms described in chapter 3) may 
be employed together with the exact technique for deriving optimum 

assignments of the 'don't care' terms of an incompletely specified Boolean 

function (section 4.3). The two heuristic approaches which have been 

detailed above are now considered using the Full Gains method to determine 

minimal (sub-minimal) FPRM expansions of the Boolean functions. The 'don't 

care' terms are allocated using the technique detailed in section 4.3. 

Apply Full Gains minimisation algorithm then assign 'don't care' terms. 
(Full Gains, DC) 

S. 1 Employ the Full Gains method to determine the minimum (sub- 

minimum) FPRM expansion of the fully specified terms of the 
Boolean function. 

S. 2 The 'don't care' terms are allocated using the technique 
described in section 4.3, where the polarity of each FPRM 

expansion is as determined in S. 1. 

S. 3 The resulting FPRM expansion with the fewest product terms 
is the minimal (sub-minimal) representation of the initial 
incompletely specified Boolean function. 

This procedure is not ideal as the heuristic Full Gains minimisation 
algorithm may not have found the minimum FPRM expansions. However, the 

optimum assignments of 'don't care' terms for the FPRM expansion(s) have 
been identified. 

Assign 'don't care' terms then apply Full Gains minimisation algorithm. 
(DC, Full Gains) 

S. 1 Transform the initial incompletely specified Boolean function to 
the equivalent polarity 0 FPRM expansion. Determine the 
optimum allocation of the 'don't care' terms 
technique described in section 4.3. 

S. 2 

S. 3 

using the 

Employ the Full Gains method to determine the minimum (sub- 
minimum) FPRM expansions from the completely specified PPRM 
expansion. 
The resulting FPRM expansions are the minimal (sub-minimal) 
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representations of the initial Incompletely specified Boolean 

function. 

In common with the first procedure, this approach can also prove to be 

unsatisfactory as the optimum allocation of the 'don't care' terms for the 

PPRM expansion may not be the allocation which leads to a minimal FPRM 

expansion of different polarity. 

The graphs of Figure 4.4 and Figure 4.5 illustrate the effectiveness of both 

the approaches detailed above. The procedures are identified as Full Gains, 

DC and DC, Full Gains, indicating the order in which the optimisation 

algorithms are applied. These techniques are evaluated against a third 

method, denoted Boolean matrix (DC), which was presented by Habib [41] 

and is reviewed in section 4.2. The x-axis of the graphs of Figure 4.4 and 

Figure 4.5 indicate the number of variables, specified minterms and 'don't 

care' terms of an incompletely specified Boolean function. Each algorithm 

optimised 1000 randomly generated incompletely specified Boolean functions 

where the numbers of variables and minterms is as indicated on the x-axis. 
The results illustrated in Figure 4.4 indicate the percentage of incompletely 

specified Boolean functions for which the optimisation algorithm identified 

a minimal FPRM expansion. (The optimum FPRM expansions of each 
incompletely specified Boolean function were determined through exhaustive 

search. That is, for each Boolean function a polarity matrix [42] was 

generated for every combination of 'don't care' terms. ) In Figure 4.5 the 

graph shows the time taken for each algorithms to optimise each set of 
1000 randomly generated incompletely specified Boolean functions and so 

produce the results illustrated in Figure 4.4. The results indicating user 
time are given so as to illustrate the time taken by each algorithm to form 

solutions, relative to one another and not as an absolute quantity. 
Additionally, the incompletely specified Boolean functions were generated 
by a random number generator. The output of the random number 
generator was filtered so as to remove any duplicate minterms. All 

algorithms (a. Full Gains, DC b. DC, Full Gains c. Boolean matrix (DC) d. 

exhaustive search (modified form of Harkings' technique [421) were 
implemented in Pascal and the programs executed on a HP workstation. 

The graph of Figure 4.4 illustrates that the minimisation technique entitled 
DC, Full Gains was most effective in determining the optimum FPRM 
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expansions of incompletely specified Boolean functions. This indicates that 

an incompletely specified Boolean function should first be converted to the 

minium PPRM expansion. The optimum FPRM expansion can then be 

determined from this PPRM expression. It is interesting to note that both 

minimisation algorithms Full Gains, DC and DC, Full Gains performed 

significantly better than the Boolean matrix (DC) minimisation algorithm. The 

graph of Figure 4.5 illustrates that despite the differences in performance 

between the Boolean matrix (DC) and the remaining two minimisation 

algorithms the time taken by the algorithms to minimise groups of 
incompletely specified Boolean functions was not significantly different. 

4.6 Summary 

The minimal representation of any incompletely specified Boolean function 

may be realised through judicious use of the 'don't care' terms of the 

function. The work presented in this chapter has illustrated the operation 

of deriving optimal (sub-optimal) FPRM expansions from incompletely 

specified Boolean functions. Initially, the process of generating FPRM 

expansions from Boolean functions with 'don't care' terms was considered 

and existing methods for performing this task have been reviewed. A 

technique has been introduced which may be employed to derive the 

optimum allocation of 'don't care' terms of an incompletely specified Boolean 

function when this function is transformed to a polarity p FPRM expansion 
(p is pre-determined). The technique does not perform an exhaustive 

search although the number of combination of values for the 'don't care' 
terms which must be evaluated is determined by the structure of the initial 

Boolean function. This method was incorporated into an algorithm and 
illustrated by an example using the tabular notation [1] and tabular method 

of generating FPRM expansions. The algorithm is not restricted to using 
this form of representation and may be employed with other notations e. g. 
RM coefficient maps, Boolean matrices. The use of this technique in 

conjunction with Harkings' technique [42] for generating the polarity matrix 
of any FPRM expansion is of particular interest and may prove to be 

efficient. However, this possibility has not yet been evaluated fully. 

Finally, the determination of the optimum (sub-optimum) FPRM expansions 
of an incompletely specified Boolean function was discussed. Two heuristic 

algorithms have been presented where the order in which optimum (sub- 
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optimum) polarity and optimum allocation of the 'don't care' terms is altered 
in each. The heuristic Full Gains minimisation algorithm of chapter 3 was 

employed to derive the polarity p of the minimal (sub-minimal) FPRM 

expansions whilst the optimum use of the 'don't care' terms was determined 

by the technique described in section 4.3. Results have been presented 

which illustrate the performance of these algorithms and conclusions were 
drawn as to the significance of these results. 



Chapter 5 

Generating Kronecker Expansions 

Using a Tabular Technique 

This chapter presents a tabular technique for representing and generating 

Kronecker expansions. The technique is an extended form of the tabular 

method of deriving fixed polarity Reed-Muller expansions from Boolean 

functions which was developed by Almaini, Thomson and Hanson [1]. 

The first section of this chapter details existing techniques for 

representing, deriving and optimising KRO expressions. Following this 

review the tabular technique for deriving KRO expansions is introduced. 

The technique may be employed to derive KRO expansion of both completely 

and incompletely specified Boolean functions. The full procedure for 

generating KRO expressions is fully detailed in section 5.3. 

5.1 Review of Optimisation Techniques for Kronecker Expansions and 

Exclusive-OR Sum-of-Products Forms 

The algorithms described in the following sections of this chapter may be 

employed to derive KRO expansions from Boolean functions. Hence, in this 

literature review alternative techniques for generating KRO expansions, 

other types of mixed polarity RM expansions and general ESOP forms are 
detailed. Additionally, in order to make the literature review as complete 

as possible, methods for deriving minimal ESOP forms are briefly described. 

Bioul, Davio and Deschamps [64] described the 3° canonical expressions 
(KRO expansions) which represent any n variable Boolean function. These 

forms may be generated using transform matrices. The Boolean functions 

and KRO expansions are represented using Boolean matrices and the 

transform matrices constructed using the Kronecker product. The extended 
truth and weight vectors, which describe the coefficients and the weights 
of KRO expressions, respectively, were also introduced. The extended truth 

vector indicates the relationship between the 211 coefficients of an variable 
RM expansion and the total of 3n coefficients which may be used to 

107 
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represent the expansion as a KRO expression. It is possible to determine 

the minimal KRO expansion representing an initial Boolean function by 

examining the extended weight vector. Additionally, Bioul et al determined 

minimal KRO expansions for Boolean functions of 3 and 4 variables. This was 

calculated by considering various classes of functions. Green [651 also 

considered the extended truth and weight vectors of KRO expansions and 

ternary maps were utilised to represent the extended truth vector. This 

type of map differs from a Karnaugh map and a RM coefficient map as it 

has a total of 3' cells, where n is the number of expansion variables. 

Techniques were introduced which may be employed to derive a ternary 

map of the extended truth vector from an initial ternary map representing 

the Boolean function or the RM expansion. The method is based on 'folding' 

the map and is similar to the manner in which RM coefficient maps may be 

derived from Karnaugh maps, as detailed in section 3.1 of chapter 3. Green 

also demonstrated that the ternary map representing an extended weight 

vector may be derived from the map representing the extended truth 

vector. Further, it is of interest to note that the techniques developed for 

deriving KRO expansion may be extended to realise PSDKRO expansions and 

quasi-Kronecker canonical forms. This was comprehensively demonstrated 

by Green [27]. Further research undertaken by Green and Khuwaja [66] 

considered KRO expansions represented by extended function vectors. 
Groups or cosets were formed where each coset comprised of all extended 
function vectors derived from a single truth vector. The relationships 
between the vectors of different cosets were identified and the value of 

this type of representation was explored with regard to determining minimal 
KRO expansions. 

Lui and Muzio [521 identified fixed polarity modulo-2 canonical expansions 

and fixed basis modulo-2 canonical expansions which are identical to the 

FPRM and KRO expansions defined in this thesis. Algorithms which perform 
fast matrix transforms were presented and employed to efficiently derive 

fixed polarity and fixed basis expansions. Additionally, methods for 

exhaustively searching for minimal forms of both type of expansion were 
described. The techniques employ and generate expansions in Gray code 
and ternary Gray code sequences. 

Fleisher, Tavel and Yeager [671 introduced the novel concept of the 
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exclusive-OR space. Here, KRO expansions adopt a graphical representation 
instead of the traditional algebraic form. This approach allows KRO 

expressions to be represented in a manner similar to that of using Boolean 

cubes to represent Boolean functions. Another type of graphical 

representation, the Kronecker Functional Decision Diagram, was presented 
by Sarabi, Ho, Irvani, Daasch and Perkowski [68]. These structures are 

similar to the BDDs described in section 2.6 of chapter 2. Indeed, ordered 
KFDDs include ordered BDDs [31] and Functional Decision Diagrams [48] as 

subsets. Sarabi et al described a technique for deriving minimal (sub- 

minimal) reduced ordered KFDD of Boolean functions. The technique is 

dependent on determining an optimal (sub-optimal) two-level KRO expression 

which can then be realised as a ROKFDD. The number of nodes in a ROKFDD 

is sensitive to the order of the variables in the structure, hence the 

optimisation problem becomes that of selecting a 'good' variable ordering. 
These structures are further considered in section 7.1 of chapter 7. 

The different classes of ESOP forms were fully explored by Sasao [7]. 

Various functions were represented by each class of ESOP form and the 

numbers of product terms in each representation was presented. These 

results support the notions that, in general, the minimal form of any 
Boolean function will be contained within the broad class of ESOP forms, 

and that restricting minimisation algorithms to searching only subclasses 
will not result in optimal representations. Additionally, Sasao presented an 
algorithm for deriving PSDKRO expansions of Boolean functions. 

Although many techniques exist for generating KRO expansions from Boolean 
functions there are, by comparison, relatively few minimisation methods. 
Techniques developed by Lui and Muzio [52] and Sarabi et al [68] have 

already been discussed. It is, therefore, of interest to consider briefly 

some methods for deriving minimal (sub-minimal) ESOP forms as these 

expressions include KRO expansions as a subclass. The development of 
exhaustive techniques for generating minimal ESOP expressions is 

prohibited by the complexity of this task. Any* Boolean function may be 

represented by a large number of ESOP forms, as detailed in section 2.5.4 

of chapter 2. As the number of variables in the Boolean function increases, 
the number of possible ESOP forms grows dramatically. This has 
necessitated the development of heuristic minimisation techniques which 
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endeavour to find optimal (sub-optimal) ESOP forms within a practical time- 

scale. A number of these heuristic minimisation techniques are now 

reviewed. 

The use of RM coefficient maps to represent- and minimise FPRM expansions 

has previously been discussed. It is also possible to represent ESOP forms 

or mixed polarity expansions using Karnaugh maps and RM coefficient maps. 

Wu, Chen and Hurst [35] demonstrated that minimal (sub-minimal) ESOP 

forms may be derived by applying a similar minimisation strategy to the RM 

coefficient map as is applied to the Karnaugh map when minimising Boolean 

functions. Groups of terms are formed, with the dimensions 2kx2m (k, me 
{0,1,..., n}), and the rules for minimisation require that cells containing 1's 

be looped an odd number of times and, if necessary, cells containing 0's 

be looped an even number of times. The product terms represented by 

these new groups may then be read from the map using a modified set of 

rules. It is also possible to apply the rules for grouping terms in reverse 

order and plot an ESOP expression on a map to represent a FPRM 

expansion. Tran [36] Introduced a minimisation algorithm which operates on 
the RM coefficient map representing the FPRM expansion. The basic method 
is that of grouping terms according to the rules of GF(2) algebra. 
Additionally, the algorithm provides some means of determining which 

groups should be formed so as to realise a minimal (sub-minimal) ESOP 

form. Thus, the significance of the problem which is also inherent to 

Karnaugh map minimisation is addressed. The introduction of tri-state maps, 

suitable for representing ESOP forms is another extension to this graphical 

form of logic synthesis [38]. 

Habib [401 extended the original procedure for generating FPRM expansions 
from Boolean functions to include an algorithm which may be employed to 

generate minimal (sub-minimal) ESOP expressions. This is a heuristic 

technique which operates on the PPRM expansion represented in Boolean 

matrix form and uses 'minterm separation'. This operation partitions the 

matrix for each variable in turn making it possible to count the number of 
'matching' coefficients between rows in the matrix. The variable with the 

highest count is the starting point. the Boolean matrix being partitioned 

accordingly. The EXOR operation which follows, takes into account each 

variable appearing in both true and complemented forms. Coefficients which 
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match in the matrix produce a single product term when the EXOR 

operation is performed, whilst terms which do not match will realise one or 

more terms in } the new matrix. Hence maximum matching gives fewest 

product terms. The whole procedure is repeated until all variables have 

been appropriately transformed. Robinson and Yeh [69] presented a method 

for deriving a minimal ESOP expressions. The technique uses Boolean matrix 

representation and forms matrices for various ESOP expressions using the 

optimum FPRM expansion of the initial Boolean function as a starting point. 

The ESOP forms are constructed from the FPRM. expansion and any one 

variable may be present in both true and complemented forms, all other 

variables are present in fixed polarity form. The method is extended to 

include expansions where more than one variable may be present in both 

true and complemented forms. The search for a minimum (sub-minimum) 

ESOP form involves the construction of a matrix comprised of the mixed 

polarity row vectors, then from this matrix deducing which combinations of 

rows reduce the number of product terms in the initial expansion. 

Even, Kohavi and Paz [70] investigated the minimum number of product 

terms required to represent any switching function as an ESOP form. They 

specifically considered symmetric functions and stated upper bounds for 

the number of terms in FPRM expansions and ESOP forms. This work is 

particularly useful as it provides a means of determining the effectiveness 

of minimisation algorithms and techniques. Additionally, Even et al 
introduced a set of rules which may be employed to obtain an economic 

representation of a switching function as a FPRM expansion or ESOP 

expression. The rules of Merger, Exclusion, Increase of Order and Bridging 

were developed from modulo-2 algebra and are listed here in order of 
increasing complexity. The rules are applied successively, simplest first, 

and after each successful application the simplest rules are reapplied. This 

is repeated until the number of product terms in the ESOP form cannot be 

further reduced. Helliwell and Perkowski [71] extended the search for 

optimum mixed polarity RM expansions by introducing an operation called 
'Xlinking'. This operation allows any two product terms to be expanded into 

an EXOR sum of one or more product terms which contain fewer literals. 

The product terms are not necessarily adjacent and do not need to contain 
the same number of literals. Two Xlinking operations are defined, the first, 

primary Xlinking relies on the substitution x9x=1 and operates on 
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terms of the same order which have the same literals present In opposite 

states. Although primary Xlinking may not reduce the number of product 
terms In an expression it will reduce the number of literals in these terms. 

Secondary Xlinking allows terms of different orders to be linked. The 

operation results in terms with fewer literals than the original lower order 

terms and another term of the same order as the higher order term. The 

Xlink algorithm utilises both primary and secondary Xlinking operations and 

simply tries to perform all Xlinks. The procedure does, however, have some 

order. All primary Xlinks should be carried out first, before moving on to 

secondary Xlinking and, if necessary, reiterating the procedure. 
Additionally, preference is given to performing simple Xlinks. The Xlinking 

rules can be applied to multiple output functions. In this case, all single 

output functions are minimised independently before being considered in 

conjunction with each other to determine which product terms should be 

Xlinked so as to optimise the multiple output function. It is also stated that 

the algorithm can be adapted to minimise incompletely specified functions. 

In addition to presenting a minimisation procedure for ESOP forms, Helliwell 

and Perkowski provided results indicating the performance of the algorithm 

when used to minimise a broad sample of Boolean functions. These results 

are valuable as they provide much needed information on the effectiveness 

of optimisation procedures and can act as a comparison for future work. 
Saul [72) further developed the rule-based method of obtaining a minimal 
(sub-minimal) ESOP representation. This work Is based on the rules of 
Merger, Exclusion, Increase of Order and Bridging. Sub-algorithms are 
introduced which determine the best choice of product terms to link and 
the order in which the linking rules should be applied. The method of 
deciding which terms to link adopts a Quine-McCluskey type approach and 
determines all possible links. The technique for determining which rules 
should be applied provides a more efficient approach than that of the 

previous method. It categorises product terms depending on their order, 
thus product terms which obviously cannot be linked are not tested. 
Additionally, Saul proposed two new linking rules for multiple output 
functions, namely multiple output merging and multiple output bridging. 
These rules can be utilised to increase the efficiency of techniques for 

optimising ' multiple output functions. Incompletely specified Boolean 
functions are also considered. Only the merger rule is applied to these 
Boolean functions as It is considered that all other rules will Increase the 
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number of product terms in the ESOP expression. The four rules defined 

previously [70] may be employed to form minimal (sub-minimal) ESOP forms 

from FPRM expansions or indeed initial ESOP expressions. However, one 

particular area where they do not produce optimum results is in failing to 

identify input irredundancy. This deficiency was highlighted by Pitty and 
Salmon [73] who proposed a linking rule, formed from the merger and 
bridging rules, as a solution. They suggested employing this rule in 

conjunction with the 4 rules developed by Even et al, thus improving the 

efficiency of the rule-based minimisation algorithms. 

Fleisher, Tavel and Yeager [74] presented a heuristic minimisation algorithm 
based on the cube notation introduced in [67]. The technique links product 
terms of the initial RM expansion using three different operations. Two of 
these operations reduce the number of product terms in the expansion 

whilst the third is a restructuring operation. The principles which are 

employed in this technique are similar to those introduced by Even et al 
[70] and subsequently adopted by Helliwell and Perkowski [71]. 

Papakonstantinou [75] presented a technique for obtaining minimal ESOP 

forms from Boolean functions. The method involves the construction of a 
'generation tree' formed from subfunctions of the original function and 
allocates weights as a means of determining optimum (sub-optimum) 

solutions. The algorithm is particularly suited to functions of 3 or 4 

variables as it generates minimal ESOP forms. It can also be used with 
Boolean functions with larger numbers of variables provided sub-minimal 
solutions are acceptable. 

Gatemap [76] is a logic synthesis system which employs RM minimisation 
techniques. The system generates three equations for each signal, two are 
Boolean expressions, the sum of products and the inverse sum of products 
forms. The third equation is the ESOP representation of the signal. The 

system proceeds to minimise these equations. The technique employed to 
optimise ESOP expressions is the rule-based method developed by Even et 
al [70]. The results of the minimisation algorithms are evaluated to obtain 
the most suitable circuit implementation. Gatemap appears to be the first 
synthesis system to utilise ESOP forms, others such as Socrates [77], 
employ Espresso-Il [63] to minimise Boolean functions. 
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Programmable logic arrays (PLAs) are typically realised as an AND array 

and an OR array and are suitable for implementing Boolean functions. It 

has been suggested that a programmable device comprising of an AND array 

and an EXOR array and thus suited to RM applications could offer certain 

advantages as an alternative to the traditional form [5,6,16,711. These 

advantages include a reduction in the number of product terms required 

to implement a function and, hence, in the area of the device, and a device 

more suited to testing. The structure of PLAs with an EXOR array was 
investigated by Sasao [5] who determined the advantages of using different 

types of inputs to the AND array. The type of input provided affects the 

class of ESOP expression which could be implemented. A device without 
inverters or decoding logic at the input to the AND array can only realise 

a PPRM expansion, whilst providing input EXOR gates allows all FPRM 

expansions to be realised. It was, however, determined that the most 
beneficial implementation is a device with input decoders suitable for 

realising ESOP forms. Sasao also investigated the advantages of employing 
EXOR PLAs by establishing bounds for the number of product terms in the 

ESOP expressions of groups of Boolean functions. These bounds were 

calculated using three methods of minimising ESOP forms. The principles 
behind two of these methods are derived from the rules presented by Even 

et al [70]. Additionally, Sasao provided results for minimised functions 

which allow comparisons to be made between Boolean and RM 
implementations. 

Sasao [61 extended his work on EXOR PLAs to develop a non-exhaustive 

minimisation algorithm. The technique is based on 7 rules and can be 

applied to multi-valued Input two-valued output functions and Is also 

suitable for multiple output functions. The algorithm forms a design method 
for EXOR PLAs with Input decoders, hence, the minimisation procedure 

realises an ESOP expression. Additionally, Sasao provided results for the 
implementation of switching functions using AND-OR array devices and AND- 
EXOR array devices, both with 1-bit and 2-bit input decoders. These 

results were generated by the algorithm previously outlined for generating 
ESOP forms and by exhaustively searching for the optimal Boolean 

representation. 

A module generator which realises CMOS devices, XPLAs, which comprise of 
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an AND-plane and an EXOR-plane was developed by Froessl and Eschermann 

[16]. The EXOR-plane consists of a tree-like structure of interconnected 2- 

input EXOR gates and it is possible to share EXOR gates common to several 

output functions. The XPLA and PLA implementations of logic functions were 

evaluated and comparisons show that using a XPLA-type device utilised less 

silicon area than PLA implementations for only a limited number of 

applications. The XPLA implementation was beneficial only when the number 

of product terms in the ESOP expression was significantly less than the 

number of product terms in the Boolean SOP representation. This can be 

attributed to the fact that the implementation of an EXOR gate requires a 
larger area than is necessary to realise AND, NAND and NOR gates. 

Additional heuristic techniques for deriving minimal (sub-minimal) ESOP 

forms include the map-based method developed by Tran and Wang [78], 

which was also utilised as a part of an algorithm for minimising multiple 
output functions [79]. Green and Khuwaja [80] presented a heuristic 
technique based on principles similar to those employed in the Quine- 
McCluskey technique. This tabular approach searches for groups of 
'adjacent terms' which may be combined to form a cover of the original 
expression. The rules of modulo-2 algebra are employed throughout. This 
type of approach was also adopted by Tran and Lee [81]. Riege and 
Besslich [61] presented the HEALEX system, a heuristic minimiser which 
generates optimal (sub-optimal) ESOP expressions from incompletely 

specified Boolean SOP forms. The strategy employed by this system is to 
derive a minimal (sub-minimal) FPRM expansion which can then be further 

minimised using heuristics to realise an ESOP form. As an alternative, 
Perkowski and Chrzanowska-Jeske [82] presented an intensive technique 
for deriving the absolute minimum ESOP form of any incompletely specified 
Boolean function. 

5.2 Tabular Technique for Generating Kronecker Expansions 
KRO expansions are a type of ESOP form with restrictions placed on the 
states of the expansion variables. These expansions have been described 
in section 2.5.1 of chapter 2 and their characteristics are now briefly 

summarised. Any Boolean function of n variables may be represented by a 
total of 31 KRO expansions. A KRO expression may be identified by 
observing the state of the expansion variables. That is, any variable which 
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appears in both true and complemented form throughout the expansion must 

appear once in each and every product term. This constraint is relaxed for 

variables which appear in either true or complemented form (but not both 

forms) throughout the expansion. Each canonical KRO expansion is identified 

by a polarity number m (0 sms 3°-i) which indicates the state of each 

variable throughout the expansion. 

It is also of interest to note that the polarity (311-1) KRO expansion (all 

variables present in both true and complemented forms) representing a 

switching function is equivalent to the Boolean SOP representation (each 

product term is a minterm) when the inclusive-OR operator is replaced by 

the exclusive-OR operator. Finally, the 3' KRO expansions include all 2r' 

FPRM expansions. 

The tabular techniques reviewed in section 3.2.1 of chapter 3 included a 

means of representing Boolean functions and FPRM expansions. This 

representation may be adapted in the following manner to allow the 

representation of KRO expansions. The tabular structure is once again 

adopted and each minterm of the Boolean function or product term of the 

KRO expansion is represented by the contents of a row of the table. Each 

column of the table represents a variable of the Boolean function or KRO 

expression. The table includes a header row which indicates the state of 

each variable. 

Column j (j = 1,2,..., n) should be headed 

xx if literal xf is present throughout the expression. 
xj if literal Xj is present throughout the expression. 
xf if variable xf is present in both true and complemented forms 

throughout the expression. 

Each cell of the table should contain either a0 or a 1, indicating the state 

of each variable in each minterm or product term. Let the binary n-tuple 
<cncn_1... cl> denote a row of the table representing a Boolean function or 
KRO expression. Hence, any cj represents a cell of the table where cc F 
{0,1} and j=1,2,..., n. (It should be noted that <äC, 

_, ... 
cl> also denotes the 

condition of each variable in a minterm of a Boolean function or product 
term of a KRO expansion. ) Consider a KRO expansion in which variable xj 



McKenzie, L. M. 1995 Chapter 5 117 

appears only in true (complemented) form throughout the expression. If 

literal xx (i) is present in product term pt then column j of the row 

representing pi should contain a1 and this row is represented by the n- 

tuple <cn.. cJ, 1lcJ_1... c1>. If, however, literal xj (7) is absent from product 

term pk then column j of the row representing Pk should contain a 0. This 

row is represented by the n-tuple <cn .. Cj-10cj_l... cl>. Now consider another 

KRO expansion where variable xx appears in both true and complemented 

forms. If literal xx (X) is present in product term pi then column j of the 

row representing p1 should contain a1 (0) and the row is represented by 

the n-tuple <cn.. cc, 11cc_1... c1> (<cn.. Cc, 1OCj_1... c1>). Note that variable xi 

must appear in every product term of the KRO expansion. If a Boolean 

function is being represented and literal xx (xj) is present in minterm mi 

then column j of the row representing mi should contain a1 (0). This row 

is represented by the n-tuple <cn.. cJ, 11cj_1... ci> (<cA... cj10cf_1... c1>) (i, k 

The following example illustrates the use of the tabular notation to 

represent a Boolean function and a KRO expansion. 

Example 5.1 Display the following 3 variable Boolean function and KRO 

expansion using the tabular notation detailed previously. 

Boolean function 

f(x3, x2, x1) = x3'rzi + x3Xixi + 3x2xi + X3X2 1 
X3 X2 X1 

000 

i00 
110 

KRO expansion (Polarity 21) 
f21(x3, x2, x1) = X3 ®x3z1 ®x3x1 ®x3x2 
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7iC3 XZ Xl 

100 

101 

001 

010 

(End of example) 
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The existing tabular technique of representing and generating FPRM 

expansions [11 may be used in two modes. The first mode operates by 

converting an initial Boolean function to the positive polarity RM expansion, 

then from this expression generating the FPRM expansion of the required 

polarity. In the second mode the initial Boolean function may be 

transformed to the necessary FPRM expansion using a modified form of this 

technique. It is also necessary to introduce an additional final step to 

'adjust' the tabular representation of the FPRM expansion. Two new forms 

of the tabular technique are now described. The first method may be 

employed to derive a KRO expression from an initial Boolean function. The 

second technique is more general and may be used to derive a KRO 

expansion from either an initial Boolean function or from a KRO expansion 

of different polarity. The technique does not require the final 'adjustment' 

necessary in the tabular technique for deriving FPRM expressions [1]. 

The tabular notation described in the earlier part of this section is 

employed in the procedure to generate KRO expressions. However, an 

additional qualifier must be introduced. This will be called the bias of the 

variable and any variable may be said to be either positively or negatively 
biased. The bias of each variable in a Boolean function or KRO expression 
is indicated in the header row where the polarity of each variable is also 

shown. These column headings are now detailed. 

If a variable xx is positively biased then column j (j = 1,2,..., n) should be 

headed according to the notation displayed in the earlier part of this 

section (see also Example 5.1). 

If variable xj is negatively biased then column j (j = 1,2,..., n) should be 
headed 

NJ if literal xi is present throughout the expression. 
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xi if literal 
_xj 

is present throughout the expression. 

xj if variable xf is present in both true and complemented forms 

throughout the expression. 
The bias of a variable does not affect the polarity of that variable. Instead, 

it indicates the significance of the Os and is in the rows which represent 

each minterm or product term of the expression. If a variable is positively 

biased then the significance of these 0s and is is as described previously. 

The significance of these Os and is for a negatively biased variable is now 

detailed. Once again each cell of the table should contain either a0 or a 

1, indicating the state of each variable in each minterm or product term. 

The binary n-tuple <cncn_1... c1> denotes a row of the table representing a 

Boolean function or KRO expression. Hence, any cc represents a cell of the 

table where cf e {0,1} and j=1,2,..., n. (The n-tuple <cncn_1... c1> also 

denotes the condition of each variable in a minterm of a Boolean function 

or product term of a KRO expansion. ) Consider a KRO expansion in which 

variable xx appears only in true (complemented) form throughout the 

expression. If literal xx (xj) is present in product term pi then column j 

of the row representing pi should contain a 0. This row is represented by 

the n-tuple <cn .. ci, 10c f_i... ci>. If, however, literal xx (x) is absent from 

product term Pk then column j of the row representing Pk should contain 

a1 and the row is represented by the n-tuple <cn.. cc it cj_ 1... ci>. Now 

consider another KRO expansion function where variable xx appears in both 

true and complemented forms. If literal xx (X) Is present in product term 

pi then column j of the row representing pi should contain a0 (1) and the 

row is represented by the n-tuple <c,... cj, 10cj_1 ... c1> (<cn... cj-11cc_1... c1>). 

Note that variable xx must appear in every product term of the KRO 

expansion. If a Boolean function is being represented then if literal x. (xj) 

is present in minterm mi then column j of the row representing mi should 

contain a0 (1). This row is represented by the n-tuple <cn .. cf, 10cf_1... ci> 
(<cn .. cjý11cf-l... cl>) (i, k 

The following examples illustrate the representation of a Boolean function 

and a KRO expansion using the modified tabular notation 

Example 5.2 Display the following 3 variable Boolean function and KRO 

expansion using the tabular notation detailed previously. Variable x3 is 
positively biased whilst variables x2 and xl are negatively biased. 
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Boolean function 

f(x3, xz, xi) = x3xZx1 + x3x2x1 + Xxtxt + x3x'ix1 

X3 X2 Xl 

011 
000 
111 

101 

KRO expansion (Polarity 21) 

f2l(x3, x2, x1) = x3 40 x3x1 410 x3x1 ®x3x2 

äC3 X2 Xl 

111 

110 

010 

001 

(End of example) 
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A table may be constructed to represent any Boolean function or KRO 

expansion by employing the notation which has been introduced. It is also 

necessary to perform the reverse operation, that is, to derive the KRO 

expansion from its tabular representation. This process is straightforward 

and is merely a reversal of the operation used to construct the table. It 

is, however, now briefly discussed to ensure both the clarity and integrity 

of this thesis. The polarity of each expansion variable throughout the KRO 

expression is indicated by the relevant column heading. The bias of each 

variable is also shown in the header row. The KRO expansion may be 

constructed by expanding each row of the table to form a single product 
term of the expression. The binary n-tuple <cncA_i... c1> denotes a row and 
any cf represents a single cell and also a variable of the KRO expansion 
(cc E {0,1}, j=1,2,..., n). 

Consider first positively biased variable xj and a row of the table 

represented by <cs... cß, 10 c f_ 1... cl> 
if column j is headed xf (i) then literal xx (xJ) is absent from the 
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product term p, 
if column j is headed zj then literal xJ is present in the product 

term pi 
Next consider positively biased variable xf and a row of the table 

represented by <cII... cj+11 cj_1... c1> 

if column j is headed xx (x) then literal xj (i) is present in the 

product term p. 
if column j is headed zj then literal xJ is present in the product 
term p1 

Now variable xj is negatively biased and a row of the table is represented 
by <cn.. cJ. 1Occ_l... cl> 

if column j is headed xj (y) then literal xj (3F) is present in the 

product term p. 
if column j is headed xj then literal xx is present in the product 
term p1 

Finally, consider negatively biased variable xj and a row of the table 

represented by <cn.. CJ., 1cj_l... cl> 
if column j is headed xj (xj) then literal xj (x) is absent form the 

product term p1 
if column j is headed xf then literal x, is present in the product 
term pj 

The product terms must be summed using modulo-2 addition (EXOR). If the 
final representation is the polarity (31-1) KRO expansion (column headings 

are xf, j=1,2,..., n) then this may be converted to a Boolean function 

simply by replacing the EXOR operator with the OR operator. 

The use of this notation, which is more complex than that used in the 

original tabular technique, makes it possible to derive a KRO expansion 
from either a Boolean function or another KRO expression. The tabular 
technique for deriving a KRO expansion from an initial Boolean function is 
now described. 

This tabular technique may be used to construct expansions comprised of 
mixed polarity variables and this procedure may be considered to consist 
of two steps. The steps are the generation of new product terms and 
deletion of equivalent terms. As the derivation of KRO expansions is an 
extension to the original tabular technique it is necessary to modify the 
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step of generating new product terms. The deletion of equivalent terms is 

unaffected. The step of generating new terms is now described. Consider 

first generating a polarity m KRO expansion from a Boolean function. 

Consider mj of the ternary n-tuple <m ä-1... m1> where mj = 0, thus variable 

xj will appear in true form throughout the KRO expansion. Each variable 

of the Boolean function is positively biased. If a minterm of the Boolean 

function is represented by a row of the form <cn-.. cj., Ocj_l... cl> then a new 

row is generated which is represented by the n-tuple <cn... cc, 11cc_i... c1>. 
This. operation may be expressed algebraically, 

... xf =nä... xf.. X ®XX ... X X ... X XnXn-1 "1 -1 1n n-1 j+l j-1 1 
Hence, the row <c ... CJ. Oc . ', cl> now represents the product term xX 

n1 j- 1n n-1 

... 
xj+1Xf_1... X1 whilst the new product term ä n_l... xj... xl is represented by 

1... cl>. the n-tuple <cn .. cj+11 Ci- 

Now, consider generating a polarity m KRO expansion from a Boolean 
function where mj of the ternary n-tuple <mmm, _1... ml> equals 1, thus 

variable xx will appear in complemented form throughout the KRO expansion. 
Each variable of the Boolean function is positively biased. If a minterm of 
the Boolean function is represented by a row of the form <cn .. C f"111 ci_ 1... cl> 
then a new row is generated which is represented by the n-tuple 
<cn .. cJ, 10cJ_1... c1>. This operation may be expressed algebraically, 

XnXn-1... X,... X1 = XnXn-1... Xf... X1 ® nXn-1... Xfý1X 
f-1... 

X1 

Hence, the row < Ä... CJ. 11 c J_ 1... c1> now represents the product term Xn ä_ 1 
,.. 

Xýý1Xf_1... X1 whilst the new product term nXn_1... xf... Jf1 is represented by 

the n-tuple <c... c 1Ocj _1... c1>. Variable x. Is now negatively biased. 

Finally, consider generating a polarity m KRO expansion from a Boolean 
function where mj of the ternary n-tuple <mmmn_l... ml> equals 2, thus 

variable xx will appear in both true and complemented forms throughout the 
KRO expansion. Each variable of the Boolean function is positively biased. 
Each minterm of the Boolean function contains variable xf in either true or 
complemented form. As this is the representation required in the polarity 
m KRO expansion then no new terms need be generated for variable xf. 

The following algorithm may be employed to derive a polarity m KRO 
expansion from a Boolean function. 

As defined previously, the binary n-tuple <cncn_i... ci> denotes a row of the 
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table representing a Boolean function or KRO expression. Hence, any cf 

represents a cell of the table where cc F {0,1} and j=1,2,..., n. (<cncn-1"""c1> 

also denotes the condition of each variable in a minterm of a Boolean 

function or product term of a KRO expansion. ) 

The ternary n-tuple in (<mmmn-1... m1>) Indicates the polarity of a KRO 

expansion (mf c {0,1,21). 

Converting a Boolean function to a polarity m KRO expansion 
S. 1 Represent the n variable Boolean function using the tabular notation. 

Thus for j=1,..., n form a column with the heading zf, i. e. each 
function variable is present in both true and complemented forms 

and each variable is positively biased. Form the rows of the table 

where each row represents a minterm. Each cell of the table is filled 

with 0 or 1 according to the rules defined previously. A binary n- 
tuple <cncn_1... c1> denotes each row of the table. Let h=n. 

S. 2 Let j=h. 

If mi =0 (mm = 1) then 

if any row of the table (minterm of the Boolean function or 
product term of the KRO expansion) has a representation of 
the form <cn... ci-10ci_i... ci> (<cn .. CJ., lcj_l... cl>) then generate 

a new row which is represented by the n-tuple <cn... cc, 11cf_1 
... c1> (<cn .. cc, 10ci_i... c1>). If this new row is identical to any 
row already existing in the table then delete both the existing 
row and the new row. Otherwise add the new row to the foot 

of the table. 

If m=2 then do not generate any new terms. 
Repeat this step until all rows of the table have been evaluated. 

S. 3 If mý =0 then 

alter column heading according to the polarity of the variable. 
New column heading is xx. 

If mi =1 then 

alter column heading according to the polarity of the variable 
and change the bias of the variable. New column heading Is 39'j. 

If mj =2 then column heading does not change. 
S. 4 If h>1 then let h=h-1 and go to S. 2. Otherwise the table 

represents the polarity m KRO expansion. The state of each variable 
is indicated by the header row of the table. 
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The polarity m KRO expansion may be constructed from the final table 

generated by the algorithm which has just been detailed. The rules for 

interpreting this tabular representation have already been developed. This 

algorithm was implemented in Pascal and the programs executed on a Dell 

P60 personal computer. The following example illustrates the generation of 

a KRO expansion from a Boolean function using the algorithm previously 

detailed. 

Example 5.3 Derive the polarity 69 KRO expansion of the 4 variable Boolean 

function 

f(x4, x3, xj, x1) = Em(3,4,5,6,8,9,13,14,15) 

- x4x3xzx1 + x4x3xzx1 + x4x3xzxl + x4x3xzx1 + x4x3xzxl 

+ x4X3X2X1 + x4x3x2x1 + x4x3x2x1 + x4x3x2X1 

Transform the Boolean function to the polarity 69 KRO expansion, applying 
the transformation rules. 

S. 1 Represent the 4 variable Boolean function using the tabular notation. 
S. 2 - S. 4 m4 = 2, therefore do not generate any new terms. Column 

heading does not change. h=4 therefore go to S. 2. 

S. 2 m3 = 1, therefore generate new product terms. 

(* denotes equivalent terms) 

Boolean function 

X4 JIC3 X2 1l 

Generated terms 

(X3) 

R4 X3 X2 Jll 

00110000 

01000001 

01010010 

0110 s1 1001 

10001010 

*1 1001 

1101 

1110 

1111 

1011 
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Cancel all equivalent product terms and add any remaining new 

product terms to the foot of the table. 

S. 3 Alter the column heading to indicate the polarity of the variable (x3) 

and change the bias of the variable. 
The table represents the polarity 71 KRO expansion. 

S. 4 h=3 therefore go to S. 2. 

S. 2 - S. 4 m2 = 2, therefore do not generate any new terms. Column 

heading does not change. h=2 therefore go to S. 2. 

S. 2 ml = 0, therefore generate new product terms. 

Generated terms 

Polarity 71 KRO expansion 

X4 X3 X2 X1 

(xi) 

JiC4 X3 X2 x1 

*Z 0011 *3 0101 

01000111 

* 0101 

0110 

1000 

1101 

1110 

*+ 1111 

1001 

*+ 1111 

* 0001 

*Z 0011 

*6 1011 

0000 
*5 0001 

0010 
1010 

ss 1011 

Cancel all equivalent product terms and add any remaining new 
product terms to the foot of the table. 

S. 3 Column heading to indicate the polarity of the variable (x1) and 
change the bias of the variable. 
The table represents the polarity 69 KRO expansion. 

S. 4 h=1. The Boolean function has been converted to the polarity 69 
KRO expansion. 
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Polarity 69 KRO expansion 

X4 X3 JfC2 x1 

0100 x4X2) 

0110 (37 
4x2) 

1000 (X4X3X2) 

1101 (x4x2X1) 

1110 (x4x2) 

0000 x4x3X2) 

0010 (37 
473X2) 

1010 (x4X3X2) 

0111 (xax, x, ) 

1001 (X4X3X2x1) 
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The Boolean function has been transformed to the equivalent polarity 69 

KRO expansion and is represented by the following equation. 

f69(X4, X3, X2, X1) X4X2 ® X4x2x1 ® X4X3X2 ® X4X3X2 ® X4X3X2X1 

® X4X2 ® X4X2X1 ® X412 ® X4X3X2 0 X4X3X2 

(End of example) 

The preceding algorithm has detailed a technique for deriving a polarity 

m KRO representation from an initial Boolean function. It may, however, be 

necessary to derive a polarity m KRO expansion from another KRO expansion 

of different polarity. A more general technique is now detailed in which 

any Boolean function or polarity r KRO expansion may be converted to a 

polarity m KRO expansion. The step of generating new terms must be 

modified. When generating terms the current polarity and new polarity of 
each variable (as indicated by r and m, respectively), must be taken into 

account together with the bias of that variable. The following algorithm 
forms a polarity m KRO expansion from an initial expression which may be 

either a Boolean function or polarity r KRO form. 

The binary n-tuple <cn ... ci> is as defined previously and denotes a row of 
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the table representing a Boolean function or KRO expression. Hence, any cf 

represents a cell of the table where cc a {0,1) and j=1,2,..., n. 

The ternary n-tuples m (<mmmý_l... ml>) and r (<rprn_l... rl>) indicate the 

polarity of KRO expansions (m r rr a {0,1,2) ). 

Generating a polarity m KRO expansion 
S. 1 Construct a table representing the n variable Boolean function or 

KRO expansion using the tabular notation detailed previously. For j 

= 1,2,..., n form a column with a heading which indicates both the 

polarity of the variable xx and its bias. Form the rows of the table 

where each row represents a minterm or product term. Each cell of 

the table is filled with a0 or a1 according to the rules defined 

previously. A binary n-tuple <cncn_l... cl> denotes each row of the 

table. Let h=n. 

Let r be the polarity of this initial expansion. If the initial 

expression is a Boolean function then let r= 3n-1. 

S. 2 Let j=h. 

If mj = rf then no change in the polarity of variable xj, go to S. 5. 

Otherwise, go to S. 3. 

S. 3 If variable xj is positively biased then determine whether rf and mj 

satisfy any one of the following conditions. 
a) rr = 0, mi =1 
b) rJ= 1, mi= 0 

c) rj = 2, mj =1 
d) r=2, mf= 0 

If ri and mj satisfy any one of the conditions a-c (d) then 

if any row of the table (minterm of the Boolean function or 

product term of the KRO expansion) has a representation of 
the form <c,... cc, 1lcc_1... c1> (<cn.. cc, 1OcJ_1... c1>) then generate 

a new row which is represented by the n-tuple <c,,... cc, 1Occ_1 
... C1> (<Cn... Cf, 11C, _1... C1>). 

If variable xi is negatively biased then determine whether rj and mf 
satisfy any one of the following conditions. 

e) rJ = 0, mf =1 
f) rj = 1, mj =0 
g) rr=2, mJ= 1 
h) rr = 2, mj =0 
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If rf and mf satisfy any one of the conditions e-g (h) then 

if any row of the table (minterm of the Boolean function or 

product term of the KRO expansion) has a representation of 

the form <cn... cc, 10cc-1... c1> (<cn .. cf411cc-1... c1>) then generate 

a new row which is represented by the n-tuple cn .. cj, 11cf-1 

... c1> (<cn-.. cc+10cc-1... c1>). 

If mf =2 and xf is positively (negatively) biased then 

if any row of the table (minterm of the Boolean function or 

product term of the KRO expansion) has a representation of 

the form <cn... cf+locj-l... c1> (<cn... cc, 11cf-1... c1>) then generate 

a new row which is represented by the n-tuple <cn... cj-11cß-1 

... c1> (<cn .. cc+10cß-1... c1>). 

If this newly generated row is identical to any row already existing 

in the table then delete both the existing row and the new row. 

Otherwise add the new row to the foot of the table. Repeat this step 

until all rows have been evaluated. 
S. 4 If rf =0 and mj =1 or 2 then 

alter column heading according to the polarity of the variable 

xJ. The bias of the variable is unchanged. 
If rj =1 or 2 and mj =0 then 

alter column heading according to the polarity of the variable 

x. r The bias of the variable is unchanged. 
If rj = 1(2) and mj = 2(1) then 

alter column heading according to the polarity of the variable 
x f. The bias of the variable is reversed i. e. a positively biased 

variable becomes negatively biased and vice versa. 
S. 5 If h>1 then let h=h-1 and go to S. 2. Otherwise the table 

represents the polarity m KRO expansion. The state of each variable 
is indicated by the header row of the table. 

The polarity m KRO expansion may be constructed from the final table 

generated by the preceding algorithm. The rules for interpreting the 
tabular representation have already been developed. 

The above algorithm was implemented in Pascal and the programs executed 

on a Dell P60 personal computer. 

The following example illustrates the conversion of a polarity 69 KRO 
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expansion to a polarity 76 KRO expansion. 

Example 5.4 Derive the polarity 76 KRO expansion from the equivalent 

polarity 69 KRO expression. 

f69(x4, x3, x2, x1) - x4x2 " x4x2X1 " x4-'3x2 " x4x3x2 " x4x3'2xi 

411 X4X2 ® X4X2X1 9 X4X2 10 X4X3XZ 40 X4X3JG2 

Transform the polarity 69 KRO expansion to the polarity 76 KRO expression, 

applying the transformation rules. 
S. 1 Represent the 4 variable polarity 69 KRO expansion using the tabular 

notation. r= 69, m= 76. (Polarity 69 KRO expansion was generated 
in Example 5.3. ) 

S. 2 - S. 5 m4 = r4 = 2, therefore do not generate any new terms. Column 

heading does not change. h=4 therefore go to S. 2. 

S. 2 m3 = 2, r3 =1 therefore m3 ý r3. 
S. 3 Generate new product terms. 

(*i denotes equivalent terms) 

Generated terms 

Polarity 69 KRO expansion (; ) 
X4 X3 X2 Xl X4 g3 X2 x1 

1110 *1 1010 

1101 *Z 1001 

*l 1010 *3 0010 

10000011 

*2 1001 *4 0000 

0110 

0111 

0100 

S3 0010 

*4 0000 

Cancel all equivalent product terms and add any remaining new 
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product terms to the foot of the table. 

S. 4 Alter the column heading to indicate the polarity of the variable (93) 

and change the bias of the variable. 

The table represents the polarity 78 KRO expansion. 

S. 5 h=3 therefore go to S. 2. 

S. 2 m2 = 1, r2 =2 therefore m2 ý r2. 

S. 3 Generate new product terms. 

Generated terms 

Polarity 78 KRO expansion (XZ) 

X4 JK3 JfC2 X1 JfC4 23 X2 Xl 

11101100 

1101 *5 0100 

10000101 

01100001 

0111 

*5 0100 

0011 

Cancel all equivalent product terms and add any remaining new 

product terms to the foot of the table. 

S. 4 Alter the column heading to indicate the polarity of the variable (x2) 

and change the bias of the variable. 

The table represents the polarity 75 KRO expansion. 

S. 5 h=2 therefore go to S. 2. 

S. 2 mi = 1, rl =0 therefore ml ý rl. 
S. 3 Generate new product terms. 
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Generated terms 

Polarity 75 KRO expansion 

X4 X3 X2 X1 

(Xl) 

X4 X3 XZ X1 

1110 

1101 

S? 1100 

#s 0110 

10000010 

ss 0110 0100 

01110000 

0011 
:, 1100 

0101 
0001 

Cancel all equivalent product terms and add any remaining new 

product terms to the foot of the table. 

S. 4 Alter the column heading to indicate the polarity of the variable (xl) 

and change the bias of the variable. 

The table represents the polarity 76 KRO expansion. 
S. 5 h=1. The polarity 69 KRO expansion has been converted to the 

polarity 76 KRO expansion. 

Polarity 76 KRO expansion 

R4 3 X2 Xl 

1110 ýX4X) 

1101ý X4 X3XZ X1 ý 

1000 (x432) 

0111 ýX4X3X1) 

0011( X4X3X1) 

0101 (34X3JfZXd 

0001( X4X3X2X1) 

0010( X4X3) 

0100( X4X3322) 

0000( X4X3X2) 
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The polarity 69 KRO expansion has been transformed to the equivalent 

polarity 76 KRO expansion and is represented by the following equation. 

f76(X4'X3'X29X1) = X4X3 ®747372X1 ® X47372 ®X4X3X1 ®7473X2 

® x4x3xZxl 0 x4X3 ® X4x3xl 10 x4x3x2 ® x4x3xZxl 

(End of example) 

5.3 Tabular Technique for Generating Kronecker Expansions from 

Incompletely Specified Boolean Functions 

Kronecker (KRO) expansions are a subset of all the ESOP forms which may 
be used to represent any switching function. This group, comprising of 3n 

expansions, includes all 2n FPRM expressions. The tabular techniques 

detailed in the preceding section may be employed to derive a KRO 

expansion from a Boolean function or another KRO expression. However, the 

techniques are suitable only for completely specified Boolean functions. A 

technique, described in section 4.3 of chapter 4, may be used to construct 

polarity p FPRM expansions from an incompletely specified Boolean function, 

where p is predetermined. The technique detects the allocation of 'don't 

care' terms which maximally reduces the number of product terms in the 

FPRM expansion. It is possible to employ this technique In conjunction with 

either of the algorithms detailed in the preceding section to derive polarity 
m KRO expansions from incompletely specified Boolean functions. The 

polarity, m, must be predetermined and the expressions are the minimal 

polarity m KRO expansions of the incompletely specified Boolean function. 

The technique is now detailed. 

Converting an incompletely specified Boolean function to polarity m KRO 

expansion. 
Employ the algorithm detailed in section 4.3 of chapter 4, where each 
reference to polarity p and a polarity p FPRM expansion is instead a 
reference to polarity m and a polarity m KRO expansion. S. 2 of the 

algorithm is replaced by S. 2'. 

S. 2' Transform the Boolean function the polarity m KRO expansion, using 
either of the algorithms detailed in section. Transform the 'don't 
care' terms according to the rules detailed in section 4.4 of chapter 
4. 
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The final table represents the minimal m KRO expansion derived from 

incompletely specified Boolean function and may be interpreted according 

to the definitions detailed in the previous section. 

5.4 Summary 

Any Boolean function may be represented by a total of 3n KRO expansions. 

These expressions include all 2A FPRM expansion where expansion variables 

appear in either true or complemented form. The remaining KRO expansions 

may be termed mixed polarity forms as any expansion variable may appear 

in both true and complemented form throughout the expression. A variable 

which is present in both states must appear in each and every product 

term in the expression. Thus, KRO expressions constitute only a small, 

clearly defined subset of all possible ESOP forms of any switching function. 

Simple tabular methods of deriving KRO expansions have been described in 

the preceding sections of this chapter. These techniques may be employed 

to generate KRO expression from Boolean functions or from initial KRO 

expansions of different polarity. Additionally, the KRO expression 

representing any incompletely specified Boolean function may be generated. 

The optimal allocation of the 'don't care' terms is determined using the 

technique detailed in chapter 4. This work is, therefore, a valuable 

extension to the tabular technique developed by Almaini et al [1]. Simple 

tools have been developed which may be employed in an exhaustive search 
for minimal KRO expansions. This is not an insignificant task and perhaps 

the most efficient method of generating one KRO expression from an 

existing KRO expansion is to use ternary Gray code ordering. Additionally, 

the optimum allocation of any 'don't care' terms may be determined. Thus, 

it is possible to realise the minimum (sub-minimum) KRO expansions of an 

incompletely specified Boolean function, where only the polarity of the KRO 

expressions must be determined through exhaustive search. 



Chapter 6 
Generating Kronecker Expansions 

from Reduced Boolean Sum-of- 

Products Forms 

This chapter presents a technique which may be employed to generate 

Kronecker expansions from reduced Boolean sum-of-products forms. A 

tabular technique, developed by Almaini, Thomsom and Hanson [1] and 

reviewed in chapter 3, generates FPRM expansions from Boolean functions 

where each product term of the function is a minterm. If, however, the 

initial representation is a Boolean SOP form where some, or indeed all, 

product terms are not minterms then an additional transformation must be 

performed before the conversion to a FPRM expansion may be initiated. This 

conversion involves expanding each product term to minterm form and, if 

the Boolean SOP representation is not disjoint, then duplicate minterms 

must be removed. This operation may result in a significant increase in the 

number of terms in the Boolean function as well as introducing an extra 

step into the transformation procedure. 

The following section reviews techniques for deriving exclusive-OR sum-of- 

products expressions from reduced Boolean SOP forms. An extended form 

of the tabular technique is then presented. This new technique provides 

a means of generating KRO expansions from reduced Boolean SOP forms 

which are comprised of disjoint product terms. The KRO expansions are 

generated directly from the disjoint product terms hence the Boolean SOP 

expression need not be expanded to its canonical form. 

6.1 Review of Techniques for Deriving Exclusive-OR Sum-of-Products 

Forms 

A variety of techniques for deriving FPRM and KRO expansions of Boolean 
functions have been reviewed in chapters 3 and 5. The techniques operate 
on an initial Boolean function where each product term of the expression 
is a minterm. The methods now detailed may be employed to generate FPRM 

134 
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expansions and ESOP forms from Boolean SOP forms where the product 

terms of each Boolean expression are disjoint. That Is, the Boolean function 

is expressed in canonical form. 

Fisher [83] introduced a technique for deriving FPRM expansions from 

disjoint Boolean SOP forms. The technique constructs a 21x21 matrix where 

each row of the matrix represents a polarity p FPRM expansion of the 

initial Boolean SOP form (p = 0,1,..., 21-1). Each column of the matrix denotes 

a single bi coefficient of a FPRM expansion (I = 0,1,..., 21-1). It is necessary 

to construct a matrix for each product term of the initial Boolean SOP form 

then the matrices should be summed using modulo-2 addition. The resulting 

matrix represents all 21 FPRM expansions of the initial disjoint Boolean SOP 

form. 

An alternative approach is detailed by Purwar [471 who derived FPRM 

expansions from Boolean functions represented by BDDs. This technique 

exploits a particular feature of BDDs, namely, that the Boolean function is 

always represented as a disjoint SOP form. Any path through a BDD which 
terminates in a node with the value 1 will contribute a product term to the 

equivalent FPRM expansion. Paths which terminate in nodes with value 0 

need not be evaluated. The value of each bi coefficient of any FPRM 

expansion is determined by evaluating the numbers of minterms represented 

on each of the relevant paths of the BDD. 

Falkowski and Perkowski [60] described a technique where each product 
term of the initial disjoint SOP form is expanded to represent the 

equivalent product terms of the polarity p FPRM expansion. Duplicate 

product terms must then be located and deleted before the final FPRM 

expansion is realised. The method described by Sarabi and Perkowski [46] 

introduces the operations of cube commonality, difference and symmetric 
difference. These algebraic operations are performed on the product terms 

of the initial disjoint Boolean SOP form in order to generate equivalent 
FPRM expansions. Additionally, Varma and Trachtenberg [62] introduced a 
means of deriving a AND-EXOR covers (ESOP forms) from initial Boolean SOP 
forms and incorporated this technique with their method for transforming 
incompletely specified Boolean functions to PPRM expansions. 
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6.2 Tabular Techniques for Generating Kronecker Expansions from Reduced 

Boolean Sum-of-Products Forms 

The work presented in this section includes details of an algorithm which 

may be employed to derive KRO expansions from reduced Boolean SOP 

forms. It is necessary that the initial Boolean representation on which the 

algorithm operates is comprised of disjoint product terms. Hence, this 

section commences with a review of the relationships between Boolean 

functions and ESOP forms. Additionally, the construction of disjoint SOP 

forms is discussed. 

6.2.1 Reduced Boolean Sum-of-Products Forms 

Any n variable switching function may be represented in Boolean SOP form 

r-1 
dime 

1-0 
4i T, 

-I.... 2z1 + d1X, X1_1... X=x1 + d2x, x, 
_l... 

x2x1 + . «. « + 4r-1xxw-1'"x2x1 

(5.1) 

where mt denotes a minterm of the function, di a {0,1} is an operational 

domain coefficient and x. and xf are literals of the function, in true and 

complemented forms respectively (1 = 0,1,..., 2n-1, j=1,2,..., n). This 

expression is the canonical disjunctive form. A minterm mi is defined as a 

product of function variables and each minterm comprises of every function 

variable in either true or complemented form. The canonical Boolean SOP 

form may, however, be an inefficient representation of a switching function. 

A more economical form may be realised by employing the rules of Boolean 

algebra to combine minterms to form product terms. The minimisation of 

Boolean functions has been extensively studied and will not be reviewed 
here as it is beyond the scope of this research project. The techniques 

presented in this chapter may be used to derive KRO expansions from 

minimised Boolean functions. A Boolean function which is not a canonical 
form, that is each term is not a minterm, will henceforth be described as 

a reduced Boolean SOP form. Any term of a reduced n variable Boolean SOP 

form will be termed a product term and each product term will be 

comprised of n or fewer function variables. The structure of the product 
terms of a reduced Boolean SOP form are identical to the product terms, 

p,, of the ESOP forms defined in chapter 2. 
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As the minterms of a Boolean function are mutually exclusive (or disjoint), 

it is possible to replace the inclusive-OR operator with the exclusive-OR 

operator without altering the operation of the expansion [3]. This forms an 

exclusive-OR (or ring) sum-of-products expansion of the function. The 

product terms of a reduced Boolean SOP form may or may not be disjoint. 

If each and every product term of the representation is disjoint, i. e. no 

overlapping product terms (p ip k=0 for all iýk, i, k = 0,1,..., 2"-1), then 

it is possible to form an ESOP expression directly from the reduced Boolean 

SOP form. That is, the inclusive-OR operator may be replaced by the 

exclusive-OR operator without altering the validity of the expression. 

The following example illustrates the derivation of ESOP forms from reduced 
Boolean SOP forms. In the first equation the product terms of the Boolean 

function are disjoint whilst the Boolean SOP representation of the second 
function contains overlapping product terms. 

Example 6.1 Convert the following Boolean functions to the equivalent ESOP 
forms. 

1) 

f(x3, x2, x1) ý x3x2x1 + x2x1 + x2 

- x3xZx1 ® x2x1 ® xz 
(5.2) 

The product terms of this reduced Boolean SOP form (Equation (5.2)) are 
disjoint (non-overlapping) hence it is valid to directly replace the 
inclusive-OR operator by the EXOR operator. The validity of this statement 
is illustrated by Equation (5.3). Each product term of the reduced Boolean 
SOP form is expanded to minterms and the OR operator is replaced by the 
EXOR operator. The rules of GF(2) algebra are then employed to minimise 
the ESOP form. The product terms of the final ESOP form are equivalent 
to the initial representation. 
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f(xyx2, x1) = x3xsx1 + xzxi + x7 

= x3x2xl + x3x2x1 + x3x2xl + x3x3x1 + x3x2xi + x3x2x1 + x3xZx1 

` x3x2x1 " x3x2x1 " x3x2X1 " x3x2X1 " x3x2x1 " x3x2x1 " x3x2x1 

= x; x: zi ® x2a1 0 x2 

, 
f(x3, xZ, x1) = x3x2 * x2x1 ; x2 
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(5.3) 

(5.4) 

The product terms of this reduced Boolean SOP form (Equation (5.4)) are 

non-disjoint (overlapping), hence it is not valid to directly replace the 

inclusive-OR operator by the EXOR operator. Each product term of the 

reduced Boolean SOP form is expanded to the equivalent minterms (Equation 

(5.5)). 

f(x3"x2, x1) = x3x2 + x2x1 + x2 

as x3xzX1 + x3x2x1 + x3x2X1 + x3x2x1 + x3xZx1 + x3xzxl + x3xzxl + x3x,, x1 
(5.5) 

Product term x3x2x1 occurs twice in the expanded form of Equation (5.5). 

According to the rules of Boolean algebra xx + xj = x., hence the second 
term may be removed forming the following equation. 

f(x3, x2, x1) = x3x2'l + x3x2xl +'3'2x1 + x3x2xl + x3x2xl +'3'2x1 + x3x2x1 

` '3'2x1 ® '3'2x1 ® '3'2x1 ® '3'2x1 ® '3'2x1 ® '3'2x1 B '3'2x1 

='3x2'1 ®'2x1 ®x2 

(5.6) 

The product terms of the final ESOP form differ from the product terms of 
the initial Boolean function. This illustrates that it is not possible to 

directly generate an ESOP form from a reduced Boolean SOP containing 

overlapping product terms. 

(End of example) 

The algorithms described in the following sections may be employed to 
derive RM and KRO expansions from disjoint Boolean SOP forms. The 
product terms of the representation must be disjoint. It may be suggested 



McKenzie, L. M. 1995 Chapter 6 139 

that this specification somewhat restricts the usefulness of these algorithms 

as the output of many Boolean minimisation packages, e. g. Espresso-II [63], 

is not a disjoint reduced Boolean SOP form. It is, however, possible to 

convert a reduced Boolean SOP form to a disjoint representation using a 

method such as that proposed by Falkowski and Perkowski [84]. Although 

this introduces an additional step into the conversion procedure the 

process of expanding the reduced Boolean SOP form to its equivalent 

canonical expression is avoided. 

6.2.2 Extended Tabular Technique to Derive Positive Polarity Reed-Muller 

Expansions from Disjoint Reduced Boolean Sum-of-Products Forms 

The tabular technique [1] reviewed in chapter 3 generates FPRM expansions 

from canonical Boolean SOP forms (each and every product term is a 

minterm). The method now proposed may be employed to derive PPRM 

expressions from reduced Boolean SOP forms where the product terms are 
disjoint. Henceforth, all reduced Boolean SOP forms will be presumed to be 

disjoint expressions unless otherwise stated. 

The tabular notation must first be extended to allow the representation of 

product terms. The modified tabular notation introduced in chapter 5 will 

now be further developed. A reduced Boolean SOP form may be represented 
by a table where each row and column of that table represent a product 
term and variable of the expression, respectively. The columns will be 

headed using the notation xj to represent a variable xf which may appear 
in both true and complemented forms throughout the expression. The 

variable is also positively biased. Consider function variable xj and product 

term p, of a reduced Boolean SOP form. Variable xx may be absent from 

term p1 or present in either true or complemented form (but not both 

forms). Each cell of the table should contain either a 0, a1 or a -, 
indicating the state of each variable in the product term. Let the n-tuple 

<cn cn_IL ... cl> denote a row of the table representing a reduced Boolean SOP 

form. Hence, any cf represents a cell of the table where cj a {0,1, -} and 
j=1,2,..., n. (It should be noted that <cncn_1... c1> also denotes the condition 

of each variable in a product term of a reduced Boolean SOP form. ) If 
literal x x(xj) appears in product term pt then column j of the row 
representing p. should contain a 1(0) and the row is represented by the 

n-tuple <cn.. cj+11cj_1... c1> (<cp .. C . 10cc_1... c1>). If, however, variable xj is 
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absent from product term p1 then column j of the row representing pi 

should contain a -. This row is represented by the n-tuple <cn.. c f+1-c j_1 

... c1>. (0 5i <- 2n-1) 

The following example illustrates the use of the tabular notation to 

represent a reduced Boolean SOP form. 

Example 6.2 Display the following 3 variable reduced Boolean SOP form 

using the tabular notation detailed previously. 

Disjoint reduced Boolean SOP form 

. 
f(x; +x2, xi) = 73x271 411 72x1 ®x2 

(6) 

Jf3 X2 JCl 

010 

11 

0- 
(End of example) 

The process of converting a Boolean function to a FPRM expansion may be 

considered to comprise of two distinct though not independent steps. 
Firstly, new product terms must be generated in which variables appear 
in the desired state (i. e. either true or complemented form) and in the 

second step any duplicate terms are cancelled. In order to generate a FPRM 

expansion from a reduced Boolean SOP form both these steps must be 

modified. These modifications are now introduced and a tabular technique 

for deriving the PPRM expansion is developed. In the following section this 

technique is extended to allow all KRO expansions to be generated from 

reduced Boolean SOP forms. 

Consider the operation of generating the PPRM expansion of a Boolean 
function. Let the n-tuple <eeen_1... el> denote a product term generated from 

a row of the table representing a reduced Boolean SOP form where ej e 
{0,1}, j=1,2,..., n. 
If a minterm of the Boolean function is represented by a row of the form 
<cn.. cf. 10cJ_1 ... cl> then a new row is generated which is represented by the 
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n-tuple <en... ee+11ee_1... e1> where el = cl for .e=1,2,..., J-1, j+1,..., n. This 

operation may be expressed algebraically, 
Xn ä-1... Xf... X1 =ä n_1... X f.. X1 

Hence, the row <n... cj. locj_l... cl> now represents the product term Xn ä-1 

... 
ij. 

jX, _l... 
x1 whilst the new product term 'nXA_1... X,.... il is represented by 

the n-tuple <en ... ee, 11ej_1... e1>. The new product term is compared with each 

product term (row) of the table. If the new product term (row) is 

equivalent to any existing term (row) then both the new term (row) and 

the existing term (row of the table) are deleted. Otherwise the new product 

term is added (modulo-2) to the expression i. e. a new row <en.. ej. 11ej_l... el> 

Is added to the table. 

Now consider a reduced Boolean SOP form represented in tabular form. A 

product term is represented by the n-tuple <cn... cf, i-cJ_l... cl>. Consider the 

algebraic representation of this product term. 

... JXJ"1XJ-1... X1 = ... XJ... X1 ®X . 
II 

Xn-1... Xl.. X "1 XnXn-1 nxn-1 

The variable xJ should be present only in true form throughout the PPRM 

expansion. Thus 

... x x j-1"' X ýl -ýý1... X Xn n-1 j+1 Ä ä- j"' 1 

®1Ä Ä-1... XJ... X1 ® itAXý_1... X fý1X'-1... X1) 

n n-1... X, 
"1Xý-1... 

X1 

This indicates that if variable xx is absent from a product term then that 

product term is unaffected by the conversion procedure. This may be 

interpreted for the tabular technique. If a product term is represented by 

the n-tuple <cD... cJ. 1-cJ-l... cl> then no new term is generated. However, the 

symbol - should be replaced by 0 and the row is now represented by the 

n-tuple <cp .. CJ. JOCJ-l... cl>. This is valid as the binary n-tuple represents 

a product term of the PPRM expansion, where a0 Indicates that a variable 
is absent from the product term and a1 indicates that a variable is 

present in the product term. 

The procedure for generating new terms (rows of the table) in the 

conversion from reduced Boolean SOP form to PPRM expansion has been 

detailed and the identification and removal of equivalent term is now 

reviewed. The product terms of a reduced Boolean SOP form are disjoint, 
however the process of generating new terms, as previously detailed, can 
form product terms which overlap with or, indeed, are contained by 
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product terms represented in the existing table. The process of identifying 

equivalent terms is no longer as simple a task as that performed in the 

original tabular technique. 

Equivalent product terms may be identified by determining whether a newly 

generated product term and an existing product term intersect. If the 

product terms intersect then it is necessary to determine the product 
terms or minterms common to both the product terms tested. The common 
terms are removed and the product terms are modified. This procedure is 

now detailed where each product term is represented using the tabular 

notation. 

The n-tuple <enen_1... e1> denotes a product term generated from a row of 

the table representing a reduced Boolean SOP form where ej a 10,11 and 

j=1,2,..., n. Consider a product term <cncn_1... c1> of the existing table and 

product term <enen_l... e1> which was generated from a different product 
term of that table. It is necessary to determine whether <cncn_1... c1> and 

<enen_1... el> intersect (contain common product terms). Intersection may be 

determined from the following table. 

n 

0 
ej 1 

C, 

ý1 

o 

oi- 

Let 0 denote the empty set and n denote intersection. 
If any cJ n ej =o (j a {1,2,..., n}) then the product terms represented by 

<cncn_1... c1> and <enen-1... el> do not intersect. Therefore, no product terms 
can be deleted. 

Iff all cc nefpo (j = 1,2,..., n) then the product terms represented by 
<cA_l... cl> and <enee_1... e1> intersect. It is necessary to determine the 
common product terms and remove these terms from <cn4: ý_1... c1> and <eeen-1 

... e1>. Thus, the modified form of the existing product term <cncc_1... c1> Is 
equal to the product term(s) formed from 

<cacA-l... cl> fl (< II Ä-1... c1> n< e. ä_ 
, ... el>). 
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Similarly, the modified form of the generated product term <enen_i... ei> is 

equal to the product term(s) formed from 

<enan-1... e1> fl (<cncn-1 ... c1> fl <enan- 1 ... e1>). 

Note, when determining the intersections the rules of Boolean algebra 

apply. 
A method for deriving these modified forms is now proposed. 

Cancelling equivalent product terms 

S. 1 For j=1,2,..., n, count the number of occasion where cc and ef 

=0 or 1. Let this equal diff. This quantity is the number of product 

terms required to represent < ncn_1... c1> after the common product 

terms have been removed. 

S. 2 Construct diff product terms denoted <CnCn... cl>1, <CnCn-1'""C1>2' 

<CfCn-i"""Cl>atrr' Let k= .e=1. 

S. 3 For j=1,2,..., n, 
S. 3a Evaluating <CnCn_l... C1> and <enen-1... e1>" 

if cc = ee, or cc = 0(1) and ej _ -, 
then let each cc of <cncn_ 1... c1>i equal cf of " <cncn_ 1 ... c1> (x = 

1,2,..., diff). Otherwise go to S. 3b 

S. 3b If cj of <cn n-1... C1> equals - and eJ of <enen_l... e1> equals 0(1) 

then cc of <cncn-1... C1>1, <cncn-1... C1>2,..., <CnCn-1 ... Cl>k-1, equals - 

and cf of <CnCn-l"""Cl>k equals 1(0). Each cc of <CnCn-1... Cl>k+1" 

<CnCn-1... C1>k+2,..., <CnCn-l... Cl>airr equals ee of <enen-1... e1>. Let 

k=k+1. 

S. 4 Generate the product terms formed from <enen_l ... el> after the 

removal of common product terms. Repeat S. 1 - S. 3, replacing every 

<cncn_1... c1> by <enen_l... el> and vice versa. Each cj and e, should be 

interchanged and the new product terms are denoted <enen_l... el>1, 

<enen_1,. "el>2,..., <enen-1"""el>airr diff indicates the number of occasion 

where ej =- and cj =0 or 1. 

This method derives the product terms formed from <cncn_l... cl> and <epen-1 

... el> when product terms common to both <ccn_l... cl> and <enen_l... ei> are 

deleted. 

The generation and cancellation operations of the tabular technique have 

been modified to include product terms as well as the minterms used in the 
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original form. The following algorithm may be employed to generated PPRM 

expansions from reduced Boolean SOP forms. 

Converting a reduced Boolean SOP form to a PPRM expansion 

S. 1 Represent the reduced n variable Boolean function using the tabular 

notation. Thus, for j=1,..., n form a column with the heading xr i. e. 

each function variable is present in both true and complemented 

forms and each variable is positively biased. Form the rows of the 

table where each row represents a product term. Each cell of the 

table is filled with 0,1 or - according to the rules defined 

previously. A n-tuple <cncn_l... cl> denotes each row of the table. 

Leth=n. 

S. 2 Let j=h. 

If a row of the table (product term of the Boolean SOP form) has a 

representation of the form <cn ... c f. 10 cj_ 1... cl> then generate a new 

row which is represented by the n-tuple <en.. ee4llee_i... el> where et 

= ci for £= Go to S. 3. 

Otherwise, if a row of the table (product term of the Boolean SOP 

form) has a representation of the form <cn... cJ, l-cJ_l... ci> then change 

this representation to <cn .. cf+10cj_l... ci> and go to S. 5. 

S. 3 Test for intersection between each row of the table and the newly 

generated term: - 
If any cf f1 ee =0 (j a {1,2,..., n}) then the product terms represented 
by <cncn_l... cl> and <enen_1... el> do not intersect. Add <enen_l... el> to 

the foot of the existing table. Go to S. 5. 

Iff all cc fl ee ý0 (j = 1,2,..., n) then the product terms represented 
by <cncn_l... c1> and <enen_l... el> intersect. Go to S. 4. 

S. 4 Employ the algorithm detailed previously, namely, cancelling 

equivalent product terms. This removes equivalent terms from the 

existing and newly generated terms. Hence, <cncn_l... cl> is deleted 

and the modified rows <cncn_l... c1>1, <cncn_l... c1>2,..., <cncn_1... C1>dlrf 

are added to the foot of the existing table (remove the subscripts 
1,2,..., d1ff). Each of the product terms <enen_l... el>1, <enen_1... el>2,... 1 
<enen_1... el>diff formed by modifying the generated product terms is 

compared again with the existing table to ensure all equivalent terms 

are deleted. Therefore, go to S. 3, the algorithm to cancel equivalent 
terms is repeatedly applied to each <enen_1... e1>1, <enen-l... el>2"-1 
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<enen-i... el>d ff until no intersections are determined. Add all of the 

remaining terms to the foot of the table. 

S. 5 If the current row is the last row in the table then go to S. 6, 

otherwise go to S. 2. 

S. 6 New column heading is x f. 
S. 7 If h>1 then let h=h-1 and go to S. 2. Otherwise the table 

represents the PPRM expansion. 

The PPRM expansion may be constructed from the final table generated by 

the preceding algorithm. The rules for interpreting the tabular 

representation have been developed in chapter 5. It is now possible to 

convert the PPRM expansion to any FPRM expansion using the tabular 

technique described in [11 and reviewed in chapter 3. 

The following example illustrates the derivation of the PPRM expansion of 

a reduced Boolean SOP form using the above algorithm. 

Example 6.3 Derive the RM expansion of a4 variable Boolean function 

expressed in disjoint SOP form. 

f(x4, x3, x2, x1) = x4x3x2x1 + x4x3x1 + x3x2x1 + x4x3x2 + x4x3x2 

Transform the Boolean SOP form to the equivalent RM expansion (polarity 
0 FPRM expansion), applying the transformation rules. 

(*i denotes equivalent or intersecting terms) 

Generated terms 

Boolean function (x4) 

g4 X3 x2 gI X4 X3 X2 Xl 

00111011 

01-0 *i 11-0 

I01 

100 

*1 111 
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Generated terms 

(X3) 

X4 X3 X2 X1 X4 X3 X2 X1 

00110111 
01-0 

0101 

I00 

*11112 

1011 

*3 1100 

X4 X3 X2 X1 

0011 

01-0 

*31 10 

*11112 

Generated terms 

(X2) 

X4 X3 X2 21 

* ý111 

*+ 101 

01011111 

100 

*41 011 

i5 0111 

1101 

X4 X3 X2 JfC1 

0011 

Generated terms 

(Xl) 

X4 X3 X2 Xl 

* 0101 

01001011 

*0101 

100 

1101 

1010 

1111 

146 
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RM expansion 

x4 x3 x2 x1 

Chapter 6 

0011 (x2x1) 

0100 (x3) 

1000 (x4) 

1101 (X4X3X1) 

1010 (X4X2) 

1111 (X4X3X2X1) 

1011 (X4X2X1) 

The Boolean function has been transformed to 

and is represented by the following equation. 

147 

the equivalent RM expansion 

fo(x4, x3, x2, x1) = x2x1 40 x3 ® x4 ® x4x2 ® x4x2x1 0 x4x3x1 ® x4x3x2x1 

(End of example) 

The above algorithm was implemented in Pascal and the programs executed 

on a Dell P60 personal computer. 

6.2.3 Extended Tabular Technique to Derive Kronecker Expansions from 
Disjoint Reduced Boolean Sum-of-Products Forms 

The tabular technique described in the preceding section may be employed 
to generate the PPRM expansion of a reduced Boolean SOP form. Any FPRM 

expansion may then be derived from this PPRM expression using the 

technique described in [1]. It is, however, more efficient to derive a FPRM 

expansion, or indeed a KRO expression, directly from the initial Boolean 

representation. The tabular techniques presented in chapter 5 may be used 
to generate KRO expansions from Boolean functions. The method presented 
in this section may be used to generate any KRO expansion from a reduced 
Boolean SOP form. It is an amalgamation of the notation and algorithms 
introduced in chapter 5 and the algorithm presented in section 6.2.2 of this 

chapter. Some preliminary discussion is necessary before the new algorithm 
is presented. 
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Consider a reduced Boolean SOP form represented in tabular form. Any 

product term is represented by the n-tuple <cD .. cj, l-cj_l... cl>. Now, 

consider the algebraic representation of this product term. 

XnXn-1... X f«1X f_1... 
X1 = Xnin-1... Xf.. X1 0) xnXn-1... 5Ff... X1 

If a variable xf is present only in true form throughout a KRO expansion 

then the variable takes the form that it would adopt in the PPRM 

expansion. This particular case has been discussed in the previous section 

and is valid for the generation of KRO expressions. Hence, the product term 

would be represented by the n-tuple <c, .. Cf, 10 c J-1 ... ci> in the table 

representing the KRO expansion. 

If a variable xf is present only in complemented form throughout a KRO 

expansion then 

'kn-kn-1... 
X1 ýxnXn-1... Xf.. il XnXn-1... Xfý1Xf-1... X1 

®n n-i... x f... x1 
xnxn-1... xJ+1xJ_1... X1 

This indicates that if variable xx is absent from a product term then that 

product term is unaffected by the conversion procedure. This may be 

interpreted for the tabular technique. If a product term is represented by 

the n-tuple <cn.. cJ, 1-cJ_1... c1> then no new term is generated. However, the 

symbol - should be replaced by 1 (the variable is now negatively biased) 

and the row is now represented by the n-tuple <cn .. cJ. 11cj_l... c1>. 
If a variable xJ is present in both true and complemented forms throughout 

a KRO expansion then 

... 
xj. 

lxj-1... ... x j... 
z1 ®Xnxn-i... x 

f.. 
xl Xnxn- 1 Xl = Xnn-1 

This indicates that if variable xx is absent from a product term then that 

product term must be replaced by two new product terms. One of these 

product terms should contain the literal xJ whilst the other should contain 
the literal xf. This may be interpreted for the tabular technique. If a 

product term is represented by the n-tuple <cn.,, cJ+1-cJ_1,,, c1> then replace 

<cp ., cj. 1-cj_1... c1> with <cý... cJ. 10cj_1... cl>. Generate a new row of the table 

with the representation <e, ... ee. llee_l... e1> where eI = cI, £=1,2..... -1, 
j+l,..., n. 

Converting a reduced Boolean SOP form to a polarity m KRO expansion 
S. 1 Represent the n variable Boolean function using the tabular notation. 

Thus for j=1,..., n form a column with the heading R f, i. e. each 
function variable is present in both true and complemented forms 
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and each variable is positively biased. Form the rows of the table 

where each row represents a minterm. Each cell of the table is filled 

with 0,1 or - according to the rules defined previously. A n-tuple 

<cncn_1... c1> denotes each row of the table. Let h=n. 

S. 2 Let j=h. 
If mJ =0 (mi = 1) then 

if a row of the table has a representation of the form 

<cn ... cc, 10c1_1... c1> (<cn... cc, 1lcc_1... c1>) then generate a new row 

which is represented by the n-tuple <en .. ej, 11ej_1... e1> 

(<en ... ee, 10ef_1... e1>) where ee = cl for t Go 

to S. 3. 

Otherwise, if a row of the table has a representation of the 

form <c.... cf, 1-cc_l... c1> then alter this representation to 

<c,; .. cc, 10cc_1... c1> (<cn .. cc, 11Cf_1... c1>) and go to S. S. 

If mf =2 then 

if a row of the table has a representation of the form 

<cII.. cc, 10c1_1... c1> (< n... cc, 11cf_1... c1>) then do not generate 

any new terms and go to S. S. 

Otherwise, if a row of the table has a representation of the 

form <cn .. c f* 1- cc_ 1... c1> then alter this representation to 

<Cn .. cf, l0cf_1... c1>. Generate a new product term with the 

representation <en... ee, 11ee_1... e1> where e1 = cl for £=1,2,..., 
j-1, j+1,..., n. Add this new term to the foot of the table and go 
to S. S. 

S. 3 Test for intersection between each row of the table and the newly 
generated term: - 
If any cf (1 ej =0 (j c {1,2,..., n}) then the product terms represented 
by <cncn_1... c1> and <enen_1... e1> do not intersect. Add <enen_1... e1> to 

the foot of the existing table. Go to S. S. 

Iff all cc fl ee ¢0 (j = 1,2,..., n) then the product terms represented 
by <cncn_1... c1> and <enen_1... e1> Intersect. Go to S. 4. 

S. 4 Employ the algorithm detailed previously, namely, cancelling 
equivalent product terms. This removes equivalent terms from the 

existing and newly generated terms. Hence, <cncn_1... c1> is deleted 

and the modified rows <ccn_1... c1>1, <cnCn-1""4Cl>2 <Cncn-1""'Cl>dLtf 
are added to the foot of the existing table (remove the subscripts 
1,2,..., d1ff). Each of the product terms <enen_1... e1>1, <enen-1"""ei>2 
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`even-l... e1>dtff formed by modifying the generated product terms is 

compared again with the existing table. This is to ensure all 

equivalent terms are deleted. Therefore, go to S. 3, the algorithm to 

cancel equivalent terms is repeatedly applied to each <enen-,... el>1, 

<enen-1... e1>2,..., <enen-l... el>difr until no intersections are determined. 

Add all of the remaining terms to the foot of the table. 

S. 5 If the current row is the last row in the table then go to S. 6, 

otherwise go to S. 2. 

S. 6 If mi =0 then 

alter column heading according to the polarity of the variable. 

New column heading is xr 
If mi =1 then 

alter column heading according to the polarity of the variable 

and change the bias of the variable. New column heading is 
_x J. 

if m=2 then column heading does not change. 
S. 7 If h>1 then let h=h-1 and go to S. 2. Otherwise the table 

represents the polarity m KRO expansion. The state of each variable 
is indicated by the header row of the table. 

The polarity m KRO expansion may be constructed from the final table 

generated by the preceding algorithm. The rules for interpreting the 

tabular representation have been developed in chapter S. 

The following example illustrates the generation of a KRO expansion from 

a disjoint Boolean SOP form. The algorithm described above is employed to 

perform the conversion. 

Example 6.4 Derive the polarity 69 KRO expansion of a4 variable Boolean 

function expressed in disjoint SOP form. 

f(x4, x3, x3. x1) = x4x3xZxi + x4X3x1 + x3x2x1 + x4x3x= + x4x3x= 

Transform the Boolean SOP form to the polarity 69 KRO expansion, applying 
the transformation rules. 

(*i denotes equivalent or intersecting terms) 



McKenzie, L. M. 1995 Chapter 6 

Boolean function 

X4 X3 X2 X1 

Generated terms 

()? 4) 
X4 X3 X2 X1 

00111101 

01-0 
101 

100 

111 

Generated terms 

(X) 

äCZ JCl XQ X3 X4 X3 JIC2 Xl 

0011 00-0 
01-0 0001 
0101 101 

S. 100- !1AA1 
1""'1J. VV1 

111 

1101 
Generated terms 

( X2) 

X4 X3 X2 X1 X4 X3 SZ X1 

00110110 

01-0 
0101 
1000 

0010 

111 

1101 

00-0 

0001 

151 

101 
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Generated terms 

(Xi) 

X4 X3 X2 Xl 

sZ 00 11 

X4 X3 X2 X1 

* 0101 

01001001 

s3 ý101 #+ 00ý1 

10000111 

111 

1101 

0000 
*4 0001 

101 

0110 
0010 

Polarity 69 KRO expansion 

4 X3 XZ X1 

ý1ýý ýXgX2) 

1ýUU ýX4X3X2) 

1110 (x4x2) 

1101 (X4X2X1) 

X4X3X2) 

X4 5F3X2 % 

011ý ýX4X2) 

ýX4X3X2) 

1ýý1 ýX4X3XZX1) 

ý111 ýX4X2X1) 

*z 0011 
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The Boolean function has been transformed to the equivalent polarity 69 
KRO expansion and is represented by the following equation. 
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jWxvx3, xZ, x1) = x4xZ " x4x2x1 " x4x3x2 " x4x3x2 " x4x3xZx1 

ID x4X= 0 x4X2X1 e X4x2 ® x4xjX2 " x4x3x2 

(End of example) 
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The above algorithm was implemented in Pascal and the programs executed 

on a Dell P60 personal computer. 

6.3 Summary 

The algorithms presented in this chapter provide a means of deriving RM 

and KRO expansions from disjoint reduced Boolean SOP forms. The 

algorithms are an efficient approach as the Boolean SOP forms may be 

converted directly to the RM or KRO expressions without the need to 

generate the minterms of the Boolean function, a costly operation both in 

the memory requirements and processor time. Additionally, the development 

of these algorithms has significantly increased the usefulness of the 

tabular technique making it a simple and valuable method for deriving KRO 

expansions from Boolean SOP forms. 



Chapter 7 

Graphical Representation of Fixed 

Polarity Reed-Muller Expansions' 

Reed-Muller expansions provide an alternative means of representing 

switching function, as has been demonstrated in the preceding chapters of 

this thesis. Each switching function has been denoted in two-level form i. e. 

as SOP or ESOP expressions, the multiple level (multi-level) representation 

of switching functions is now described. 

Two-level logic minimisation techniques for Boolean functions derive minimal 
implementations for PLAs, devices which directly implement SOP forms [63]. 

However, the constraints imposed by two-level representations may lead to 

inefficiencies. That is, the resulting circuit may be large, performance may 
not meet specifications or the two-level representation may not be 

realisable in the target technology. This has led to the development of 
techniques for representing and optimising multi-level combinational logic 

circuits. A multi-level circuit has two or more levels of logic between the 

primary inputs and primary outputs. Indeed, two-level logic functions are 
a special case of multi-level logic functions. Multi-level logic circuits are 
more traditionally known as random logic and offer freedom to restructure 
and optimise away from the constraints imposed by two-level circuits. This 
freedom does, however, mean that more sophisticated techniques are 

required in order to determine efficient implementations of switching 
functions. 

The following section of this chapter reviews techniques for representing 
Boolean SOP forms as multi-level combinational logic circuits. This includes 

a discussion of the existing methods used to construct efficient Binary 
Decision Diagrams (section 2.6 of chapter 2). Additionally, the Reed-Muller 
factored form, developed by Saul [85], is described. Alternative graphical 
representations of FPRM expansions called Reed-Muller Binary Decision 

The work presented in this chapter is j published in [86,871 (see 
inside back cover). L. McKenzie developed and implemented the variable 
ordering algorithm whilst the work undertaken by L. Xu was mainly 
concerned with RM-ULM implementation. 

154 
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Diagrams are described in section 7.2. RMBDDs are a counterpart of the 

conventional BDDs and may be used to directly implement FPRM expressions 

as multi-level circuits. These graphical structures are initially given as full 

trees, with restrictions placed on the ordering of variables, and are 

defined as Ordered Reed-Muller Binary Decision Trees. Rules for reducing 

ORMBDTs and hence forming Reduced Ordered Reed-Muller Binary Decision 

Diagrams are described. Similar to BDDs, the size of any RORMBDD is very 

sensitive to the choice of variable ordering. An algorithm is detailed which 
finds a good variable order with respect to the number of nodes in the 

RORMBDDs. Additionally, the physical implementation of RORMBDDs using 
Reed-Muller Universal Logic Modules (RM-ULMs) 188,89] is discussed. 

7.1 Multi-level Logic Synthesis Techniques 
A multi-level representation of a switching function may be defined 

recursively as a sum of products of sums of products..... of arbitrary 
depth, or alternatively, as a product of sums of products of sums..... of 
arbitrary depth [33,90,911. 

For example, 

f(xs, x4, x3, x2, x1) _(x2x1 + x3xZXx3 + x4) + x4(x1 + xsxz) 

8(x4'x3'x2'xi) : (xl + x2(x3 + x4)Xx2 + x4) 

These expressions are known as the factored forms of a function. The 
factored form may be directly implemented to give a multi-level circuit 
performing the required function. 

Many familiar methods suitable for expressing and minimising Boolean 
functions e. g. Karnaugh and Veitch maps and the Quine-McCluskey 
technique, are applicable only to two-level representations of the Boolean 
function. This has necessitated the development of techniques suitable for 
representing and optimising the multi-level forms of Boolean functions. A 
number of these techniques are detailed in the following literature review. 
Initially, algebraic techniques for deriving multi-level representations of 
Boolean functions are described. 

The goals of synthesis and optimisation techniques suitable for multi-level 
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representations include efficient use of area (compact representation), 

reduction of delays from primary inputs to primary outputs and maximising 
the testability of the multi-level representation. The basic approach adopted 
by most multi-level logic synthesis systems is that of restructuring a logic 

function so as to determine an optimal (sub-optimal) multi-level structure, 

then employing minimisation techniques to optimally (sub-optimally) 

represent nodes of the overall structure. The restructuring or resynthesis 

of logic functions employs techniques known as extraction, collapsing, 

simplification, substitution, factoring and decomposition. 

Extraction 

The identification of common subexpressions and generation of new 
intermediate variables. New variables replace the existing subexpressions. 

e. g. 

f(x4, x3, x=, xl) _ (xl + 72)x3 + x4 

8(xs, x4, x3, x7, x1) _ (xl + 72)xs 

Extraction yields 

f(x4, x3, x2, x1) s Y(x2. x1)x3 + x4 
8(xsx4>ý*X2+x1) ` Y(x2. x1)xs 

Y(x2. x1) = XI + x2 

Collapsing 

This is, effectively, the inverse of extraction as intermediate variables are 
expanded into the subexpressions they represent. This operation has the 
potential to reduce the number of nodes in the network. 

e. g. 

. 
f(xa'rr'Giºxi) ` Y(xrxl)x3 + Y(X7. xt)x4 

Y(xrxl)'xt +xs 

Collapsing y(x2, x1) back into IYx4, x3, x2, x1) yields 

f(x4, x3, x2, x1) = 73x1 + x372 + x4xxx1 
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Simplification 

Replacing nodes by equivalent but simpler expressions. Implemented by 

two-level minimisers employing the 'don't care' terms of the multi-level 

circuit. 

Substitution 

Expressing the function represented by one node in the network by the 

function represented by another node in the network. 

e. g. 

Y(xrx1) = xl + ir2 
f(xyxi, x1) = XI + x3xz 

Substituting y(x2, x1) into fjx3, x2, x1) yields 

f(x3, x2, x1) = Y(x2, x1)(xt + x) 

Factoring 

Reducing the complexity of individual nodes in the network by determining 

optimal (sub-optimal) factored forms. 

e. g. 

f(xs, x4, x3, xq, x1) ° x3x1 + x3x= + x4x1 + x4xs + XS 

The factored form of ijx5-, x4, x3, x2, x1) is 

. 
f(xvxvxvxrxi) _ (x1 + xa, )(xs + x4) + x1 

Decomposition 

Reducing the complexity of the network by factoring. Factors are realised 
as intermediate variables and form new nodes in the network. 
e. g. 

f(x4, xl, x2, x1) = x3x2x1 + x4x2x1 
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Decomposing I x4, x3, x2, x1) into y(x4, x3) and z(x2, x1) yields 

f(x4,44rx1) a y(x4ºx3)z(x2, x1) 
y(x4, X3) s x3 + x4 

Z(x2, x1) = x2x1 

158 

The fundamental operation on which these restructuring techniques depend 

(with the exception of simplification) is that of division. The division of one 

Boolean function by another can be expressed as 

F=GQ+R 

(7.1) 

where F is a logical expression and G Is a Boolean divisor. Q and R are the 

quotient and remainder, respectively and are logical expressions. If G 

divides F exactly (without a remainder) then G is a Boolean factor of F. 

The power of Boolean division lies in its use of Boolean identities. 

Any logical expression has a large number of subexpressions which are 

Boolean divisors and factors and in any optimisation algorithm it is, 

generally, impractical to determine all of these subexpressions. The number 

of divisors and factors may be reduced by considering only algebraic 

representations of logic functions. Algebraic representations are defined as 

being prime and irredundant, that is, no cube of the representation is 

contained in another cube. An algebraic product of two expressions is valid 

if, and only if, the expressions have disjoint support. This means that an 

algebraic product can be obtained by polynomial expansion and makes no 

use of Boolean identities. 

e. g. 

(xi + x3)(x2 + xsx4) = x2x1 + xsx4xt + x3x'1 + xsxVx3 

Hence algebraic division can be expressed as 

F=GQ+R 

(7.3) 
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where G is an algebraic divisor of F if, and only if, Q, the quotient and R 

the remainder are algebraic expressions and Q is not null. Algebraic 

division is less powerful than Boolean division but experiments have shown 
it to produce good results in a reasonable time-scale [921. Hence, as is 

often the case for logic synthesis algorithms, there is a trade-off between 

the quality of results and the time spent realising a solution. 

The extensive use of algebraic division in the resynthesis techniques 

necessitates that a good divisor be identified and that the division 

operation is executed as efficiently as possible. Candidate divisors are 
identified from the set of kernels of the algebraic expression. A kernel, k, 

of an algebraic expression, F, is the quotient of F and a cube c, such that 

C 
(40) 

The kernel must be cube-free, that is, it cannot be algebraically factored 
by any cube. The cube, G used to find kernel, k, is termed the co-kernel 
of k. A kernel that contains no kernels other than itself is a level-O 
kernel. Generally, a kernel is of level-n if the highest level kernel it 

contains is a level-(n-1) kernel. Several methods have been developed for 
extracting the kernels of an expression, for example, constructing the 

cube-literal matrix and proceeding to determine prime rectangles [91]. It 
is possible to extract all kernels of an expression or limit the set to only 
kernels of a certain level. Again there is a trade-off between quality of the 

result and time spent executing the algorithm. Having extracted the set of 
kernels of an expression it is then necessary to select a suitable divisor 
from this set. The selection of a good divisor generally involves a heuristic 

as it is impractical to perform all divisions in order to determine the 
optimum solution. 

As previously mentioned Boolean division differs from the weaker algebraic 
division in that it makes use of Boolean relationships, e. g. 

x. x=0 x+0=x 

The objective of Boolean division is to determine a quotient. Q, and 
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remainder, R, where Q and R are as simple as possible. This involves the 

generation of the 'don't care' set for the expression and the utilisation of 

these 'don't care' terms to minimise the expression. The goal of minimising 

Q'and R relies on heuristic methods. 

The second step in the process of multi-level logic synthesis is to optimise 

individual nodes in the network. The restructuring techniques so far 

described have not taken into account the 'don't care' terms of the multi- 

level network, and it is in the minimisation of individual nodes that 'don't 

care' terms are utilised. The 'don't care' terms of a multi-level circuit can 

be classified as external and internal 'don't cares'. External 'don't care' 

terms are primary input patterns which will never occur for a particular 

primary output. Internal 'don't care' terms are dependent on the structure 

of the multi-level circuit. The 'don't care' terms for each network node can 
be determined, then utilised by a two-level minimiser to simplify the 

structure of network nodes. Additionally, nodes with small fan-out may be 

collapsed to create larger nodes. This leads to changes in the structure of 
the network and may lead to further restructuring. Hence, multi-level logic 

optimisation is often an iterative process. 

The theory of Boolean and algebraic approaches to logic synthesis has been 
briefly detailed. The development of multi-level synthesis techniques and 
the synthesis systems in which they are incorporated are now reviewed. 

Brayton and McMullen [931 described an algebraic technique for determining 

subexpressions common to two or more Boolean functions. The method is 

comprised of several algorithms which identify then extract common multi- 

cube expressions before extracting kernels using algebraic division. The 

algorithm can compute the full set of kernels or employ a heuristic 

whereby kernel extraction is limited to determining level-O and level-1 

kernels. It is stated that the heuristic method produces results comparable 
with those obtained for full kernel extraction. If kernel extraction is limited 

then the additional step of collapsing is applied. This method of 
subexpression extraction can also be applied to single Boolean expressions 
to form canonical factorised forms. Additionally, a form of Boolean division 

was defined which may be applied in place of algebraic division to improve 
the quality of results at the expense of execution time. The result of 
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applying the decomposition and factorisation algorithms were illustrated by 

example. Brayton and McMullen [92] extended their work on multi-level logic 

synthesis based on the operations of extraction, collapsing, simplification 

and decomposition. The simplification step employs techniques adapted from 

the two-level PLA minimiser Espresso-II [63], and uses the 'don't care' 
terms of the Boolean network. Simplification using 'don't care' terms was 
defined as Boolean substitution and it was stated that this is more powerful 
than the algebraic substitution performed in the extraction operation. An 

example was given to illustrate the performance of the synthesis system 
formed from the operations mentioned previously. 

Techniques for factoring Boolean function were developed by Brayton [94]. 

The methods are heuristic and provide the opportunity to derive results 

of varying quality with the penalty of increased execution time for reduced 
circuit area. Boolean expressions are factored using algebraic and Boolean 
techniques, and procedures for both methods were described. The method 
of Boolean division utilised the 'don't care' set of the network and is a 
heuristic technique. Additionally, the problems of optimal algebraic 
factorisation in conjunction with the rectangle-covering problem were 
addressed. The rectangle-covering problem was further considered by 
Brayton, Rudell, Sangiovanni-Vincentelli and Wang [95]. An algorithm was 
presented which heuristically determines good rectangle-coverings of the 
cube-literal matrix of Boolean functions. Additionally, the rectangle-covering 
problem was applied to factoring and common cube extraction of multi-level 
networks. 

The techniques and algorithms developed in [92,93,94,95,961 have been 

amalgamated to form the multi-level optimisation system MIS 1971. MIS 
adopts a 'global' optimisation approach, first restructuring the network 
before applying local optimisation techniques to individual nodes. In 
addition to performing area optimisation the system performs timing 
optimisation, restructuring logic and trading area for speed. This work 
illustrates the practical use of factorisation and decomposition techniques 
for multi-level circuit representations and concludes by presenting results 
for circuit optimisation. 

Other multi-level logic synthesis systems include Socrates [77.981 and 
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BOLD 1991. Socrates is a rule-based expert system which performs area and 

speed optimisation of Boolean functions. The system utilises weak division 

to decompose the function into a multi-level structure. Espresso-II [63] 

then utilises the multi-level 'don't care' terms to determine a minimal set 

of prime implicants for subexpressions of the Boolean network. The Boulder 

Optimal Logic Design System - BOLD is based on the optimisation algorithms 

of Espresso-II but additionally employs Boolean resubstitution to produce 

a multi-level logic representation which is prime and Irredundant. Results 

were given for benchmark functions, and illustrate the performance of 

BOLD compared with two other multi-level synthesis systems. In addition 

to producing a multi-level circuit representation BOLD returns the tests for 

the network, which is 100% testable for single input stuck faults. 

Additionally, Bergamaschi [100] introduced SKOL, a logic synthesis and 

technology mapping system. The algebraic and Boolean techniques for multi- 

level minimisation are similar to the methods employed by MIS. The original 

aspects of the package lie in its technology mapping strategy. 

It is appropriate to mention some other areas of research into multi-level 

optimisation. Ykman-Couvreur 11011 introduced Phifact, a multi-level 

optimisation system which employs disjoint Boolean division for incompletely 

specified Boolean functions to minimise multi-level structures. Karpovsky 
[102] considered the minimisation of multi-level circuits and implementation 

as gate arrays. The concept of multi-level prime implicants was presented 
by Lawler [103]. Generating multi-level prime implicants of a function can 
determine the absolute minimum form of the function but requires an 
iterative approach. The importance of the 'don't care' terms in determining 

optimum multi-level circuits was discussed by Brayton [104]. Brayton, 

Sentovich and Somenzi [105] introduced global flow analysis, utilising multi- 
level 'don't care' terms, whilst Bartlett, Brayton, Hachtel et al [106] adapt 
the concepts of prime and irredundant forms, familiar in two-level 

minimisation, to multi-level synthesis. 

The concept of Reed-Muller multi-level circuits was introduced by Green 

and Foulk [107] and further considered by Green and Edkins [13]. They 
described synthesis procedures which express generalised RM expansions 
of switching functions as multi-level circuits comprised of 2-input gates. 
The techniques derive Adaptive Logic Trees (ALTs) where the problem of 
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deriving a minimal tree can be solved by selecting the appropriate 

variables at each level of the tree. Two strategies are described for 

determining the order of selection of input variables. Additionally, the 

method is extended to include non-binary functions [13). 

Saul [85,108] employed algebraic techniques to develop a logic synthesis 

system for RM expressions. He introduced the RM factored form, where the 

OR operator of the traditional Boolean factored form is replaced by the 

Exclusive-OR operator. As algebraic techniques do not utilise Boolean 

identities, Saul directly employed the operations of extraction, collapsing, 

substitution, factoring and decomposition, together with algebraic division, 

for restructuring RM expressions. One aspect of logic restructuring where 
the Boolean and RM approaches differ is in extracting common kernels. Saul 

proved that whilst it is possible to extract 'overlapping' kernels from a 
Boolean expression, this is not a valid operation in RM multi-level logic 

synthesis. Node simplification in the RM domain is performed by a two-level 

minimiser which optimises mixed polarity RM expansions [85]. Results were 
presented for benchmark functions which illustrate the performance of the 

multi-level minimiser compared with the two-level RM minimiser. Additionally, 
Pearce, Saul and Lester [18] described the use of the multi-level synthesis 
techniques detailed previously [85,108] as a means of implementing logic 
functions using FPGAs. The performance of this tool was illustrated for a 
selection of benchmark functions, where the number of cells of the FPGA 

required to represent the multi-level ESOP form was compared with that 

required for the traditional multi-level SOP form. 

Reed-Muller minimisation techniques were integrated into the Gatemap 

synthesis system [76] and the Diades design automation system [109]. 
Gatemap expresses logic functions in both Boolean and mixed polarity RM 
form, hence the system may choose the 'best' realisation at each stage of 
the resynthesis. Diades employs a similar strategy, utilising both fixed and 
mixed polarity RM expansions. 

The structure of ROBDDs has been described in section 2.6 of chapter 2. 
The remainder of this section is dedicated to reviewing methods for 
deriving ROBDDs representing Boolean functions. Techniques for deriving 
efficient ROBDDs representations through variable ordering are of 
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particular interest. Additionally, the graphical representation of ESOP forms 

using structures analogous to ROBDDs are considered. 

The concept of Binary Decision Diagrams (BDDs) was first introduced by 

Lee [291 who utilised Binary Decision Programs to implement Shannon's 

theorem. Binary Decision Programs provide an alternative to the 

conventional algebraic representation of switching functions. Akers [301 

extended . this work by demonstrating the use of BDDs to graphically 

represent switching functions and, hence, both combinational and sequential 

logic functions. Additionally, it was demonstrated that any BDD represents 

more than one function, that is, by entering the BDD at various points 

between the root and leaf nodes it is possible to determine the structure 

of a number of subfunctions. This aspect of BDDs can lead to a reduction 

in the number of nodes in a BDD through subgraph sharing, and is 

important when constructing multi-output BDDs. Akers illustrated how the 

BDD may be used to determine the output of a function for any given input 

by simply tracing a path through the tree, guided by the condition of the 

input variables. The idea of reducing the number of nodes in a BDD 

through node deletion and merging was introduced. This leads to reduced 

BDDs and it was emphasised that a reduced BDD represents the essential 
implicants of a Boolean function. It cannot, however, be guaranteed that the 

BDD represents the essential prime implicants. Thus a reduced BDD may not 

give the absolute minimum realisation of a function. A method for 

determining the number of terms in a SOP (POS) form without generating 

the terms is given, and it is stated that it is possible to employ a similar 

technique to determine the number of literals in the representation. 
Additionally, the use of the BDDs as an instrument for generating test sets 

of combinational logic circuits was discussed. Akers then proceeded to 

derive an actual physical implementation of a BDD using '1 out of 2 

selectors', or single control variable multiplexers, with a particular regard 
to testability. Extracting a circuit from a BDD using path tracing results 
in a many-gate two-level realisation whilst directly implementing nodes 

generates a multi-level circuit comprising of fewer gates. The use of 
inverters in BDDs as a means of simplification was illustrated by example 

and the concept of allowing nodes to represent subfunction as opposed to 

variables was introduced. Akers illustrated these techniques by deriving 

a BDD for an adder circuit. 
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Bryant [31] further developed the use of BDDs by introducing the concept 

of ordered BDDs. The OBDD restricts the order in which the input variable 

may be considered, hence the number of OBDDs which represent a function 

is somewhat less than the total number of BDDs which can be constructed. 

Bryant conjectured that 'most commonly encountered functions have a 

reasonable representation' in OBDD form. Reduced OBDDs, determined using 

the merger and deletion rules are formally defined, and it was proved that 

a ROBDD gives a canonical representation of a Boolean function. Bryant 

recognised that the ordering of variables was very important when 

constructing minimal BDDs and additionally noted that some functions 

cannot be efficiently represented using ROBDDs regardless of variable 

ordering. He termed these 'inherently complex functions' citing the integer 

multiplier as an example. Bryant detailed a symbolic manipulation program 

which constructed ROBDDs of functions. The program comprised of 

subprograms each implementing an algorithm and the time complexity of 

each of these algorithms was given. Bryant stated that experimental results 

for the algorithms had proved to be favourable. However, results were 
dependent on the user choosing a good ordering of the input variables. 
Finally, Bryant considered the problems of verifying the design of an ALU. 

The circuit was represented and evaluated for different variable orderings. 

Matsunaga and Fujita [110] presented a multi-level optimisation system 

which uses ROBDDs to represent logic functions. The system was based on 
the transduction method which optimises by repeatedly transforming and 

reducing functions. The transduction method utilises permissible functions, 

which are analogous to 'don't care' terms, and this requires that the ROBDD 

representation be extended. This was done by introducing a new vertex 
type, enabling logic functions and permissible functions to be calculated 

using ROBDDs. Experimental results were given for benchmark functions 

where the initial implementation is a multi-level circuit representation. 

An area in which there has been a substantial amount of research is that 

of determining a optimum (sub-optimum) order of input variables for 
ROBDDs. Friedman and Supowit [321 described a technique for determining 

optimal orderings with the goal of reducing the number of nodes in the 
network. The method has a lower time complexity than the previous best 
method and was stated as being most suitable for functions of 11 or fewer 
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variables. The variable ordering methods presented by Fujita, Matsunaga 

and Kakuda [111] are based on the technique of exchanging a variable with 
its neighbour in the ROBDD. Two algorithms were presented, the first is 

suited to two-level circuits (SOP forms) and heuristically determines an 
initial variable ordering based on determining the most binate variables in 

the SOP representation. The second algorithm is suitable for multi-level 

representations and initial variable orderings are determined heuristically. 

Both algorithms then proceed to optimise the ROBDD using exchange of 

variables. The criterion for minimisation is to reduce the number of branch 

crossings on the ROBDD. Additionally, results were given for benchmark 

functions. Ishiura, Sawada and Yajima [112] presented exact and heuristic 

optimisation algorithms for determining minimal OBDD representations. The 

methods are based on exchanges of variables, with the depth of exchange 

of variable being increased, thus differing from the technique presented 
in [111]. Once again, benchmark circuits were tested and results presented. 

Besson, Bouzouzou, Floricica, Saucier and Roane [1131 computed the set of 
kernels of a Boolean function to determine good variable orderings for 
ROBDDs. The algorithm analyses the support of kernels of a Boolean 
function and derives good variable orderings based on the results of this 

analysis. Results were presented for benchmark functions which illustrated 
the performance of the algorithm when compared with other optimisation 
methods. 

Besson, Bouzouzou, Crastes, Floricica and Saucier [1141 presented synthesis 
method for speed and area optimisation. BDDs without variable ordering 
restrictions were used for speed optimisation, with the goal of selecting the 
variable ordering which resulted in the terminal nodes being reached as 
quickly as possible. The method is based on determining the variable 
occurrences in the SOP form of the Boolean function. Alternatively, area 
optimisation is performed by determining a 'good' variable ordering for 
ROBDDs. Three methods for area optimisation were presented, two based on 
kernel extraction, the third on variable occurrences. The direct relation 
between a node of a BDD and a 2-to-1 multiplexer is exploited in order to 
develop a synthesis system suitable for FPGA realisations. Experimental 
results were presented for benchmark functions and the algorithms are 
evaluated against existing techniques. 
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Liaw and Lin [115] presented an analysis of OBDDs for general Boolean 

functions. They considered the effectiveness of the merger and deletion 

rules and investigated the sensitivity of Boolean functions to variable 

ordering. Bounds for worst case sizes of ROBDDs are calculated and the 

authors conclude that the merger rule is significantly more effective than 

the deletion rule. Additionally, they stated that a large proportion of 

general Boolean functions are not sensitive to variable orderings. The work 

presented is this paper would seem to contradict much of the experimental 

and theoretical results given in [31,32,110,111,112,113,1141. However, 

it is noted that these conclusions are based on a worst case analysis and 
do not devalue the use of BDDs. 

It is appropriate to mention other aspects of research Into BDD utilisation. 
Matos and Oldfield [116] presented work on the physical implementation of 

a BDD as a custom or semi-custom device with the structure of an array. 
They exploited the similarities between the node of a BDD and 2-to-1 

multiplexer. Additionally, Abadir and Reghbati [117] presented work on 
functional test generation from BDD structures. Coudert and Madre [118] 

exploit the structural properties of BDDs to generate prime and essential 

prime implicants of Boolean functions. 

Purwar [471 introduced the concept of utilising the BDD structure to derive 
fixed polarity RM expansions of Boolean functions. A BDD represents the 

essential implicants of a Boolean function, hence no minterm is represented 
by more than one path of the BDD. By tracing all paths which terminate in 

a node with the value 1 and applying a set of rules, it is possible to 
deduce the RM coefficients of any fixed polarity RM expansion. If the same 
procedure is applied to all paths terminating in a node with the value 0 
then the complement of the FPRM expansion is formed, and by using the 
identity x®1=z It is possible to derive the expansion from its 

complement. This is useful as it is possible to limit the number of paths 
which must be traced to determine the RM expansion of the Boolean 
function. Hence, if a Boolean function has many minterms it may be more 
efficient to derive the complement then transform this expansion to its true 
state. 

Functional domain representations of Boolean functions may be graphically 
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presented using Functional Decision Diagrams (FDDs). These structures, 

devised by Kebschull, Schubert and Rosenstiel [48], are analogous to BDDs 

and provide a means of representing any FPRM expansion. Initially, a 

binary tree is formed which represents a FPRM expansion, the merger and 

deletion rules for reducing BDDs may then be applied until the number of 

nodes in the structure can no longer be reduced. The final structure is a 

FDD which represents the initial FPRM expansion both as a two-level ESOP 

expression and as a factored form. It is interesting to note that the 

number of paths through the FDD is reduced through merger and deletion. 

It is suggested that as this is equivalent to the number of terms in the 

FPRM expansion then a more efficient representation of the original 

expansion may be been derived. Results presented compare the numbers of 

nodes and paths in BDDs and FDDs used to represent initial Boolean 

functions. These illustrate that, generally, for any Boolean function the 

number of nodes in a FDD is greater than the number of nodes in the 

equivalent BDD. This result is reversed when the number of paths through 

each structure is considered. The number of nodes in any FDD and also the 

number path through the structure is dependent on the variable ordering 

of the nodes. Thus, Kebschull et al presented a heuristic algorithm which 

may be employed to derive minimal (sub-minimal) FDDs. The technique 

determines the variable ordering by counting the number of occurrences 

of each of the variables in the FPRM expansion. The variable which occurs 

most often is selected and is represented by the node closest to the root 

of the FDD. This process is repeated and variables with the highest 

numbers of occurrences are represented by nodes at levels closest to the 

root of the FDD. Thus, the FDD grows from root to leaves. A practical 

application of FDDs was presented by Schubert, Kebschull and Rosenstiel 

[49]. A technology mapping method was described where a Boolean function 

is represented in the functional domain by a FDD. Groups of nodes of the 

FDD may be mapped to configurable logic blocks (CLBs) of a FPGA. The goal 

of this algorithm is to determine an efficient FPGA Implementation of a FDD 

through grouping nodes. 

An alternative means of representing KRO expansions was presented by 

Sarabi, Ho, Iravani, Daasch and Perkowski [68]. KFDDs may be considered 
to be an extension to FDDs as any node of a KFDD may represent an 

expansion variable in either fixed or mixed polarity form. Thus, FDDs and 
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BDDs are necessarily a subset of KFDDs. An algorithm for determining the 

optimal (sub-optimal) variable ordering for OKFDDs was presented. This 

technique employs a similar strategy to that utilised for FDDs. The number 

of occurrences of the expansion variable of the KRO expansion is 

determined and, additionally, the polarity of all variables is considered. 

Sarabi et al presented results which, for a collection of benchmark 

functions, illustrated the slight benefits of employing OKFDDs as opposed 

to BDDs and FDDs. Comparisons were made on the basis of the number of 

nodes in each type of structure. The concept of graphically representing 

ESOP forms was also been explored by Sasao [7]. Ternary Decision Diagrams 

[119] may be employed to represent PSDKRO expansions. Indeed. a multi- 

level representation is ideally suited to the structure of this type of 

expression. 

The following sections of this chapter introduce RMBDTs and RMBDDs, 

graphical means of representing FPRM expansions. It will become apparent 

that similarities exist between the structure and application of these 

RMBDDs and the FDDs examined in the preceding literature review. 

Therefore, it is necessary to state that RMBDTs and RMBDDs, together with 

rules for manipulating these structures, were developed independently of 

FDDs. These two types of graphical representation are not identical. It will 
be demonstrated that RMBDDs are particulary well suited to representing 
FPRM expansions which are to be implemented as RM-ULM networks. 

7.2 Reed-Muller Binary Decision Trees and Diagrams 

A Reed-Muller Binary Decision Tree (RMBDT) is a graphical representation 

of a FPRM expansion and is similar in structure to a BDD used to represent 

a Boolean function. The RMBDT is a directed acyclic graph comprised of 

nodes interconnected by branches. Two types of nodes are employed in the 

representation, namely, terminal nodes and non-terminal nodes. A terminal 

node (represented by a box) may assume the binary value 0 or 1 and has 

a single output branch. A non-terminal node (represented by a circle) Is 

associated with a variable xj of a FPRM expansion. Each non-terminal node 
has one output branch and two input branches. The input branch which 
is denoted 0 (0-input branch) Indicates that the node variable is absent, 

whilst the input branch which is denoted 1 (1-Input branch) indicates the 

presence of the node variable k.. The state of the node variable, that is, 
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whether it is present in true or complemented form is dependent on the 

polarity of the FPRM expansion being represented. 

The relationship between a single non-terminal node of a RMBDT and the 

FPRM expansion being represented by that RMBDT is illustrated in 

Figure 7.1. The node variable xj (j = 1,2,..., n) may be equated with the 

splitting variable in both of the modified forms of the Shannon expansion 

theorem (section 2.4 chapter 2). The expansion 

f(x., xx_1, ». sX1) - . 
f(XOX. 

-1,..., 
Xj, l, 

o, xj-1+..., zZ, X1) 

I 
. 
f(X. 

+xý-1+..., x`. l+ý+xj-1+..., xzxl) " f(xý, xý_1,..., Xýý1, l, xý_1,.., xz, z1) ) 0 xi 

(7.1) 

with literal xx as the splitting variable is represented by the non-terminal 

node represented in Figure 7.1, where X=0. 

The non-terminal node which represents the expansion 

f(X, 
IX, _1p ... yX1) : f(X, 

sX, _1o... oXi. 10 
1$Xj_1,.. A, X1) 

0 xj I f(x�, xI-1,..., xj*i, U"xj-i,..., xZxl) ® f(xs+x�-1,..., xJ. l, l, xj-1,..., xs, xl) 1 

(7.2) 

with literal xj as the splitting variable is also illustrated in Figure 7.1, 
however in this instance, X=1. 

f (ä' Ä-1,..., X1) 

f (Xn' ä-1+ ýf (ä' n-1'.... X,, 
1.0. x f_1...., X1) ® 

fý ä' n-1"... "X, ý1.1"X, _1"..., 
Xlý/ 

Figure 7.1: - Non-terminal node representing function variable x. 
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(7.3) 

(7.4) 

(7.5) 

are independent of variable xj and are subfunctions of the original FPRM 

expansion. Indeed, they are FPRM expansions of (n-1) variables. 

The n variable FPRM expansion is 

f(x,,, x�-1,..., xl) = bo ® btit ® b=i= ® b3iZit ® ...... ® bz'-txýiý_t. »ýxt 
(7.6) 

where bi a {0,1} (i = 0,1....... 2°-1) and xj=xf or xj (j = 1,2,..., n) 

This expansion may be represented by connecting together terminal and 

non-terminal nodes to form a RMBDT. One possible structure is illustrated 

in Figure 7.2 where the order of the expansion variables from the lowest 

level of non-terminal nodes to the root of the RMBDT is <1,2,..., n-l, n>. 

Hence, any FPRM expansion may be represented by a RMBDT comprised of 

n levels of non-terminal nodes and a single level of terminal nodes, all 

interconnected by branches. The terminal nodes assume the values of the 

coefficients bi of the FPRM expansion. The RMBDT is, therefore, a functional 

domain representation of a switching function. This may be contrasted with 

the BDD of section 2.6 of chapter 2, where the terminal nodes assume the 

values of the coefficients dj of a Boolean function. A BDD Is an operational 

domain representation of a switching function. 

The path from the root of the RMBDT to each terminal node with the value 
bi covers n nodes and represents the Ith product term of the FPRM 

expansion. If the path is via the 0-input branch of a node then the node 
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variable is absent from the product term. If the path is via the 1-input 

branch of a node then the node variable is present in the product term. 

Figure 7.2: Ordered Reed-Muller Binary Decision Tree of n variable FPRM 
expansion. 

The following example illustrates the use of a RMBDT to represent a4 
variable FPRM expansion. 

Example 7.1 Construct the RMBDT of the following 4 variable polarity 0 
FPRM expansion. 

n=4, p=0, 

fo(x4, x3, x2, x1) =1® XI ® x2x1 ® x3 ® x4 ® x4x1 ® x4x2x1 a x4x3x1 0 x4x3x2x1 

(7.7) 
The RMBDT is illustrated in Figure 7.3. The order of the variables from the 
lowest level of non-terminal nodes to the root of the RMBDT is <1,2,3,4>. 

(End of example) 
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Figure 7.3: ORMBDT of a 4-variable RM expansion (polarity 0), Example 7.1 

The RMBDTs which have been described are ordered structures, and 

henceforth, will be denoted as ordered RMBDTs. They may be defined in a 

manner similar to that given for OBDTs (section 2.6 chapter 2). The 0-input 

and 1-input branches of the root of the ORMBDT are connected to the 

output branches of the 2 nodes present at level 2. In general, at level . ¢, 

there are 21-1 nodes and all have the same node variable, xk. Each output 

branch of the 21_1 nodes is connected to the input branches of the nodes 

at level (2 - 1) and the 21 input branches are connected to the output 

branches of the 21 nodes at level (-C + 1). At the final level, that is level 

(n + 1), there are 2' terminal nodes and the output branch of each is 

connected to one of the input branches of the nodes at level n. The 

ORMBDT of any n variable FPRM expansion is comprised of 2n+1-1 nodes, of 

which 2n-1 are non-terminal nodes and 2' are terminal nodes. 

The procedure for constructing ORMBDTs relies on two basic equations 

which are derived from the Shannon expansion theorem [26,681. The FPRM 

expression should be expanded about any expansion variable. Equation (7.1) 

should be employed if the variable is present in true form throughout the 
GRM expansion. Alternatively, Equation (7.2) should be employed if the 

variable is present in complemented form throughout the FPRM expansion. 
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This results in two subexpansions each of which may be expanded about 

another expansion variable, employing the appropriate equation. This should 
be repeated until the FPRM expression has been expanded about each 

variable. The ORMBDT may be constructed as the FPRM expression is being 

expanded. It is also possible to employ this procedure to construct an 
ORMBDT from a switching function expressed in Boolean SOP or disjoint SOP 

form. The choice of the equations employed to expand the function about 

each variable is dictated by the state of that variable in both the ORMBDT 

and the final FPRM expansion. 

The number of nodes in an OBDT representing any Boolean function may 
be reduced through merger and deletion to form a ROBDD. A similar 

reduction procedure may be applied to an ORMBDT to form an ORMBDD. In 

order to reduce the number of nodes in an ORMBDT Is it necessary to 
identify both equivalent and redundant nodes. 

Equivalent nodes 
Two terminal nodes of an ORMBDT are equivalent if they each have 
the same Boolean value. 
Two non-terminal nodes of an ORMBDT are equivalent if both nodes 
represent the same expansion variable, the subtrees rooted at the 0- 
input branches of these nodes are identical, and subtrees rooted at 
the 1-input branches are identical. 

Redundant nodes 
A non-terminal node of an ORMBDT is redundant if the 1-input 
branch is connected to a terminal node with the value 0. 

The definitions of equivalent and redundant nodes leads to the formulation 
of two rules which may be employed to reduce the number of nodes in an 
ORMBDT. 

Merger rule 

If two terminal nodes, a and b, of an ORMBDT are equivalent then 
redirect the input branch connected to the output branch of node 
b to the output branch of node a. Node b can then be deleted. 
If two non-terminal nodes, a and b, of an ORMBDT are equivalent 
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then redirect the input branch connected to the output branch of 

node b to the output branch of node a. Delete node b and its 

subtree. 

Deletion rule 

if a non-terminal node is redundant then redirect the input branch 

connected to the output branch of the redundant node to the 

subtree rooted at the 0-input branch of the node. Delete the node. 

The merger and deletion rules are illustrated in Figure 7.4 and Figure 7.5, 

respectively. 

Figure 7.4: Merger rule 

The ORMBDD is a reduced form of the ORMBDT where the output branch of 
any node in the ORMBDD may be connected to the input branches of more 
than one node. If the reduction rules are repeatedly applied to an ORMBDT 

until the number of nodes in the structure can no longer be reduced then 

a reduced ORMBDD is formed. The RORMBDD comprises of a minimum number 
of nodes for a given variable ordering, and is a unique representation of 
the initial FPRM expansion. A RORMBDD can, therefore, be defined as a 
canonical representation of a FPRM expansion. 
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Figure 7.5: Deletion rule 

The following example illustrates the use of the merger and deletion rules. 

Example 7.2 The ORMBDT illustrated in Figure 7.3 may be reduced using the 

merger and deletion rules. The resulting RORMBDD Is shown in Figure 7.6. 

Figure 7.6: ' RORMBDD of Example 7.2 

(End of example) 
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A ROBDD with a fixed variable ordering is a canonical representation of a 
Boolean function [31]. This is also true for RORMBDDs i. e. every FPRM 

expansion has a unique representation. Thus, for a given FPRM expansion 

and a fixed variable ordering, the RORMBDD has a minimum number of 

nodes and no further reduction is possible. It is, however, possible to 

reduce the number of paths through a RORMBDD by complementing the 

state of certain decision variables. If the two input branches of any level 

£ node are both connected to the output branch of the same level (t +1) 

node then disconnect the 0-input branch and attach it to a leaf with the 

value 0. Complement the state of the level £ node variable. The resulting 
structure will no longer represent a FPRM expansion but instead represents 

an ESOP form. This is illustrated in Figure 7.7, where the RORMBDD 

includes decision variables which are present in complemented form. The 

initial RORMBDD representing the FPRM expansion of Equation (7.7) Is given 
in Figure 7.6 where the structure represents 9 product terms. The number 
of paths through the RORMBDD may be reduced to 6 as illustrated in 
Figure 7.7. This new structure represents the ESOP expression of Equation 
(7.8). 

f(x4, x3, x2, x1) = 71 0 xZxl 40 x3 ® x471 ® x4x=xl 0 x4xaxixi 

(7.8) 

ORMBDTs and ORMBDDs may be derived by applying the modified forms of 
the Shannon expansion theorem (Equations (7.1) and (7.2)) to the FPRM 

expansion. The structures may then be reduced to a RORMBDD by applying 
the merger and deletion rules. 

Observing the similarities between ROBDDs and RORMBDDs, it is possible to 
make two further comments on the application of RORMBDDs. It is suggested 
that RORMBDDs may be used to represent multi-output FPRM expansions and 
ESOP forms and that any non-terminal node of this graphical structure may 
be employed to represent a subfunction of the FPRM expansion or ESOP 
form. 

7.3 Minimising RORMBDD Representations through Variable Ordering 
The number of nodes in the RORMBDD of a FPRM expansion, for a particular 
order of variables, is a minimum and cannot be reduced. However, it has 
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Figure 7.7: RORMBDD of the ESOP expansion. 

been observed that the number of nodes in a ROBDD representing a Boolean 

function is affected by the order in which the function variables are 

associated with the nodes of the structure [31]. Due to the similarities 
between ROBDDs and RORMBDDs, it is possible to state that the number of 

nodes in a RORMBDD may be altered by adjusting the order in which 

expansion variables are assigned to nodes. It is possible to construct n! 

RORMBDDs of any FPRM expansion of n variables, where each structure 

employs a different variable ordering. As the number of expansion variables 

increases the number of possible RORMBDDs grows rapidly. Hence, it is 

desirable to develop efficient algorithms which determine optimum (sub- 

optimum) variable orderings and allow the construction of RORMBDDs which 

efficiently represent FPRM expansions. A heuristic algorithm is now 

presented which determines optimum (sub-optimum) variable orderings for 

RORMBDDs of FPRM expansions. The algorithm is not exhaustive and employs 

simple, if somewhat crude, techniques drawn from the approaches detailed 

in [48,68,114]. 
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7.3.1 Variable Ordering Algorithm for Deriving RORMBDDs 

The algorithm presented in this section determines the order of variables, 

from root to leaves, of an ORMBDD. The overall structure of this heuristic 

technique is now described briefly as a precursor to the fuller, stepwise 

form presented in the latter part of this section. The FPRM expansion 

which is to be represented by an ORMBDD Is initially inspected to 

determine whether it is comprised of two identical subfunctions. If this is 

the case then merger is possible and the variable about which the identical 

subfunctions may be formed is selected as the node variable at this level. 

Otherwise, the variable which appears most often in the FPRM expansion is 

chosen as the node variable. The FPRM expansion can then be divided into 

2 subfunctions. The inspection is then repeated using the new subfunctions 

and a single node variable is selected at each level. The process is 

repeated until all variables are allocated. 

FPRM expansions may be expanded using two basic expressions derived 

from the Shannon expansion theorem. The expressions were derived in 

section 7.2 and are now repeated. 

f(x. 
aX. -1+..., 

Xl) ° f(XssX. 
-1+... vXJ. 1°09X/-111 �-tX2'Xl) 

0 Xi I 
, 
f(X,, X,, 

_1+..., 
X1'1'o'Xj-1l ... vX=Xl) ®s l(XN'X'-1".. 'XJ-IfIsXJ_lf». IX2'Xl) 

ý 

f(X., X. 
_11... rx1) - f(X-, XI_1,..., XJ. 1, 

lPxJ. 
1s»., X2, X1) 

®7 J[ f(x. +xA-11..., Xi+l, Q, xj_1,..., x=xl) ® f(x,,, x. -Il ..., x`+l, l, Xj_1,.. yX20xl) 

Thus, any FPRM expansion may be expressed as a modulo-2 sum of 2 

subfunctions of (n-1) variables. The first subfunction fjx...., x . 1,0, xj_1.... , xl) 
(Ax".... xj, 1,1, xj_1,..., xl)) Is independent of literal xx (X). The second 
subfunction ® ijXn,..., XJ+1919XJ-1r,.. xl), although 

independent of the expansion variable, can be said to be associated with 
the literal xi. 

Let [xn, xn_1,..., x11 represent the original FPRM expansion of n variables. 
Then [xn.... 

, xf'1,0, xf_1,.... x1] represents the subfunction which is independent 

of literal kj. That is, [xn.... , xjý1,0, xj_1,..., xl] represents the subfunction 



McKenzie. L. M. 1995 Chapter 7 180 

fXXn,.... x, 1, 
O, xJ_1,..., xl) if the literal xJ is present in the original FPRM 

expansion. If literal xJ is present in the FPRM expansion then 
[Xn,... xj,,, O, xj_,,..., xll represents the subfunction f(Xn,..., XJ, 1,1, XJ_1..... x1). Let 

1Xn,..., XJ, 1,1, XJ_1,..., X1j represent the subfunction fjxn,..., XJ, 1,0, XJ_1,..., X1) 

fjxn,..., xJ, 1, 
l, xJ_1,..., Xl) associated with the expansion variable xJ of the 

original FPRM expansion. 

This notation may be extended to allow the representation of a FPRM 

expansion which has been expanded about 2 or more variables, e. g. for 

expansion about 2 variables, x, and xk 
[Xn,..., xk, l, O, Xk_1.... , xj,,, O, X, _,,..., 

xl] represents the subfunction which is 

independent of expansion variables x, and xk. 
1Xn,..., Xk-1,1, xk_19 ... Xj-1, O, X, 

_j,..., 
x1j represents the subfunction which is 

independent of expansion variable x, but associated with variable xk. 
[xn,..., xk, l, 

0, xk_1,..., x,, 1, 
l, x, 

_1,.... 
x1] represents the subfunction which is 

associated with expansion variable x, but independent of variable xk. 
[xn,..., xk, l, 

1, Xk_1,..., x j+j, 1, x, _1,..., x1] represents the subfunction which is 
associated with expansion variables x, and xk. 

As each subfunction is derived from an initial FPRM expansion, the 

subfunctions are also FPRM expansions. Thus, with regard to Figure 7.1, 
[X..... XJ. 1,0, x, 

_1,..., 
xJ represents the 0-input branch of a non-terminal node 

with node variable xJ. The 1-input branch of the node is represented by 

IXn,..., X f, 1,1, xx_1,..., x11. 

Let P[xn, xn_1,..., x1} denote the number of product terms in the FPRM 
expansion represented by [ x, xn_1,..., x1]. 
Let Nk[xn, xn_1,..., xl] denote the number of occurrences of literal Xk in the 
FPRM expansion represented by [xn, xn_1,..., x1] (k E {1,2,..., n}). 
Adjr[xn, xn_1,..., x1] denote the number of product terms adjacent in literal 
In the FPRM expansion represented by [xn, xn_1,..., x11 (k e {1,2,..., n}). 
Let £ denote the level of the ORMBDD, £=1,2,..., n, and, novars represent 
the number of expansion variables which have not yet been employed as 
node variables. 

Nmax represents the maximum value of Nk[ Ä" Ä-1,..., X1] found from all FPRM 
expansions. 
These definitions may be extended to FPRM expansions of j variables where 
j=1,2,..., n. 
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Variable Ordering Algorithm 

S. 1 Form the initial n variable FPRM expansion. Represent the expansion 

as [xn, xn_1,..., xl]. Set £=1 and novars = n. If .e=n then go to S. 10 

else go to S. 2. 

S. 2 Find P[xn, Ä-1'"""`x1]" For j=1,2,..., n find NJ[xn'xn-1'"""'x1]' 

S. 3 If (P[ xn, xn-1,.... x1 j mod 2) =0 then go to S. 3a, else go to S. 3c. 
(Note: If the FPRM expansion is comprised of an even number of 

product terms then it is possible that it may be divided into two 

identical subfunctions. If, however, the expansion is comprised of an 

odd number of product terms then it cannot be divided into two 

identical subfunctions. This is determined by observing the 

remainder of integer division by 2. ) 

S. 3a If any NJ[xn, xn_1,..., xl] = P[x,, Xý_1,..., x1]/2 then go to S. 3b else 
go to S. 3c. 

S. 3b For all j where NJ[x,, xn-1,.... x1] = P[xn, xn-1,..., x1]/2, find 

Adjj[xn'xn-11..., X1]. If any Adj. [ a'xn-1+... 1x1] = Nj[xn"Xn-11..., x1] 
then the FPRM expansion may be expanded into two identical 

subfunctions (merger). Therefore, select xj as the node 

variable at level 1, the root of the ORMBDD. If there is more 
than one variable x, for which AdjJ[xn, xn_1,..., x1] = Nj[xn"xn-i' 

..., x1] arbitrarily choose the decision variable xj where 
Adji[ n' n-11..., X] = NJ[ ä. n-1,..., x1J. 

If, for all j where NJ[x Ä_I,..., X, 1 = P[xn, xn 
Adjf[ n'xn-1'..., X1] ý Nj[ xý+ n-1,..., x1J then S. 3c. 

S. 3c Find Nmax' The node variable is xf where Nj[xn, xn_1'"""'X1] Neax" 
If there is more than one variable xx for which Nj(xn, xn-11..., x1] 
= Nmax' then arbitrarily choose the decision variable xf, where 
NJ[Xn'xn-11..., x1] = Nmax" 

S. 4 Set .2=£+1 and novars = novars - 1. If .f<n then expand the 
FPRM expansion about variable xx and go to S. 5 else go to S. 10. 

S. 5 Represent each of the 21-' FPRM expansion of novars variables by 

the symbols [xn,..., x j, 1,0, 
X j_1+.:. /x1J,..., [ D,..., xji, l, x f_1,..., xj. where the 

variables selected as node variables are replaced by Os or Is. 
S. 6 For each FPRM expansion of novars variables determine 

P[xn,... 'X, -1, 
(), x, 

_1'..., 
Xl]1... 1P[ n1... 1X , 1, X ]. ý1 , l-1 xl 

S. 7 For each FPRM expansion of novars variables and for each expansion 
variable x, k, determine Nr[ ä,.... xf. 1,0, x 
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..., xi], kc (1,2,..., n} kýj. 

S. 8 If, for any FPRM expansion of novars variables (P[xn,..., xj. 1,0, xj_1, 

..., x1] mod 2= 0)...... (P[Xn,..., x j, 1,1, xj_1,..., x1] mod 2= 0) then go to 

S. Ba, else go to S. Bc. 

S. 8a Considering only FPRM expansions for which (P[x....., xj. 1,0, 
xj_1,..., x1] mod 2= 0),.... (Plx,,.,,, Xj,,, '. Xj_1,,,,, xll mod 2= 0), if 

any (Nk[Xn,..., XJ, 1,0, XJ_1,..., X1] = P[Xn,..., X,. 1,0, X, 
_1,..., 

X1112), 

...., 
(Nk[xn,..., xj-1'1'X. f-1,..., X1] = P1Xn,..., Xj-1,1, X, 

_1,..., 
X]12) then go 

to S. 8b else go to S. 8c. 

S. 8b For the FPRM expansions which satisfy S. Ba, find 

Adjk[xn,..., xj. 1,0, xj_1...., xl]...... Adjk[ D,..., xJ. 191'xf-1,..., xl]. If, for 

any FPRM expansion, (Adjk[xn,..., xf, 1,0, xj_1,..., x1J = 
N [X ,..., 

X , 
0, X 

1,..., 
x11),...., (Adjk[Xý,..., X , 1, X ,..., X ]s knJ1 . 1- .11 

j-1 1 

Nk[xn,..., xJ, 1,1, xf-1,..., x1]) then that FPRM expansion may be 

expanded into two identical subfunctions (merger). Therefore, 

select xk as the node variable at level £ of the ORMBDD. If 

there is more than one variable Xk for which 
(Adjk[ xn,..., xx, 1,0, xx_1,..., x1 = Nk[xn,.... x J, 10, xJ_1,..., x111 i. 

..... 
(Adjk[xn.... , XJ, l, 

l, XJ_1,..., xl] = Nk[xn,..., xJ, 1,1, xJ_l,..., xlj) then 

arbitrarily select the decision variable Xk where 
(Ads%k[XA,..., XJ, 1, 

(], X, 
-1+..., 

x11 = N, k[xn,..., XJ, 1,0, 
XJ_1+.... x11 )' 

...., 
(Adjk[Xn,..., XJ. 1, 

l, XJ_l,..., Xl] = Nk[Xn,..., XJ, l, 1, xJ_l,.... xLJ). 
If, for all k, (Adjk[xn,..., xJ+l, O, xJ_1,..., xl1 # Nk[xn,..., X f+l+O+XJ_1, 

..., X1]) ...... 
(Adjg[xn,..., xJ+l, l, xf_1,..., X1J ý N1, [XA,..., XJ. 1,1, Xj. 1,..., X11) 

then S. Bc. 

S. Bc Considering all FPRM expansions of novars variables, find N1ax" 

The node variable is xk where (Nk[ Ä,..., xJ. 1,0, xj_1,..., xl] 

..., (Nk[ ä,..., x,, 1,1, xf_1,..., xl] = 
N18 ). If there is more than one 

variable which satisfies the criterion of S. 8c then arbitrarily 
choose the decision variable xk from the variables which 
satisfy this criterion. 

S. 9 Set £=f+1, novars = novars - 1. If .C<n then expand each FPRM 

expansion about variable xk and go to S. 5, else go to S. 10. 

S. 10 The remaining variable is the node variable at level n. The variable 
ordering has been determined where the first variable selected is the 
node variable at level 1 or the root of the ORMBDD. 
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This algorithm was implemented in Pascal and the programs executed on 

Hewlett Packard workstations and a Dell P60 personal computer. 

The following example illustrates the use of the variable ordering algorithm. 

The FPRM expansion is represented using the tabular notation (section 3.2.1 

of chapter 3). 

Example 7.3 Represent the polarity 0 FPRM expansion 

fp(xyx4, x3, x2, X1) =1" x2 " x2x1 " x3x2 " x4x1 " x4x3x2x1 " XS " x, x2 

" xsx3 " xsx3x2x1 " xsx4y2 

by a RORMBDD. Employ the variable ordering algorithm to determine a 
'good' order of variables. 

S. 1 The FPRM expansion may be represented thus [xs. x4, x3, x2. x11. 

=1 and novars = S. 

S. 2 Count the number of piterms, P[xs, x4, x3, x2, xi] = 11. Count the number 
of occurrences of each expansion variable (identical to counting the 
number of ones in each column xx of the tabular representation of 
the expansion. 



McKenzie. L. M. 1995 Chapter 7 184 

X5 X4 X3 X2 X1 

00000 

00010 

00011 

00110 

01001 

01111 

10000 

10010 

10100 

10111 

11010 

N 
f[x5, xq, x3, x2, x1] 53474 

j=1,2,3,4,5 
N5[X5, Xq, X3"XZ. X1ý = 5+ N4 [XS, X4"x3"x2sxl] = 3, N3[XS, X4, X3, X2, X1] = 4, 

N2[X5', X4, X3, X2, X1] = 7, N1[x5, xq, x3, xZ+x1] = 4. 

S. 3a P[x5, xg, x3, x2, x1] mod 2= 11 mod 2ý 0, therefore no merger. Go to 
S. 3c. 

S. 3c N®eX = 7. 

N2[x , Xq. X3, X2, X1] =7= Nmax' Therefore, the node variable at level 1 Is 
X2. 

S. 4 £=2, novars = 4. 

£<5, therefore, expand the FPRM expansion about variable x2. 
flx5, x4, x3,0, X1) =1® X4x1 ® X5 ® XSX3 

x5, X4, X3,0, X1) ® f'x5, x4, x3,1, X1) =1® X1 ® X3 ® X4X3X1 ® XS 

® X5X3X1 ® XSX4 

S. 5 [x5, x4, x3,0, x1] represents the FPRM expansion 
1® x4x1 ® X5 ®X5X3 

[x5, x4, x3,1, x1] represents the FPRM expansion 
1e X1 ® X3 ®X4X3X1® X5 ® X5X3X1 ® X5X4 

S. 6 Count the number of piterms in each of the new FPRM expansions, 
P[x , x4, x3,0, x1] =4 and P[x5, x4, x3,1, x1] = 7. 

S. 7 Count the number of ones in each column of the tabular technique 
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representation. 

[x5'x4'x3'0'x11 [x5'x4'x3'1'x11 
x5 X4 x3 X1 X5 x4 JL3 x1 

00000000 

01010001 

10000010 

10100111 

1000 

1011 

1100 

21113233 

N [X5, x4+x3+0+x1] = 2, N[x5, x4, x3,1, X1] = 3, 

N[X , x4, x3, O, X1] ° 1+ N4[xg, x4, x3,1, x1] = 2, 

N3[x5, x4, x3,0, x1] = 1, N3[xs. x4, x3, i, x1] = 3, 

N1[x5, x4, x3,0, x1] = 1, N1[x5. X4, x3,1, X1] = 3, 

185 

S. 8 P[x5, x4, x3,0, x1] mod 2=4 mod 2=0. 

P[x , x4, x3,1, x1] mod 2=7 mod 2=1. 

Now, P[x5, x4, x3,0, x1] mod 2=0. therefore go to S. Ba. 

S. 8a N5[X., X4, X3, O, X1] =2= P[X5, X4, X3,0, X1]/2. 

N4[x5, x4, x3, O, X1] =1# P[x , x4, X3,0, x1]/2. 

N3[x , x4+x3+0, x1] =1ý P[X5, X4, X3,0, X1]/2. 

N1[x5, X4, x3, O, x1J =1ý P[x5, X4, x3,0, X1]/2. 

Now, N5[x5, x4, x3,0, x1] =2= P[x5, x4, X3,0, x1]/2, therefore go to S. Bb. 
S. 8b Adj5[x5, x4, x3,0, x1] =1 N5[x5, x4, x3,0, x1], therefore no merger is 

possible, go to S. Bc. 

S. 8c N®e. = 3. 

N5[X5, X4, x3,1, X1] = N3[x5, x4, x3,1, x1] = N1[x5, x4. x3,1, X1] 3, 

N5[x5, x4,. 3'0'x1) =2> (N4[X5, X4, x3,0, X1], N3[ X59 x4, X3,0, x1J, N1(x5, x4, x3'O, x1J) 

Therefore, x5 is the node variable at level 2. 

S. 9 £=3, novars =3 
£<5 therefore, expand the FPRM expansions about variable x5. 
flO, X4, X3,0, x1) =10 x4X1 
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AOIX4, X3, O'X1i 40 1j1. X4. X3. O, X1) =1® X3 
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I O, x4, x3,1, x1) =1e x1 ® x3 ® x4x3x1 

IO, x4, x3,1, x1) ® ljl, x4, x3, l, x1) 1® x3x1 ®x4 

S. 5 [O, x4, x3,0, x1] represents the FPRM expansion 1® x4x1 
[1, x4, x3,0, x1] represents the FPRM expansion 1o x3 

[O, x4, x3,1, x11 represents the FPRM expansion 1e x1 ® x3 ® x4x3x1 
[1, x4, x3,1, x1] represents the FPRM expansion 1® x3x1 ® x4 

S. 6 Count the number of piterms in each of the new FPRM expansions, 
P[O, X4rX3r0, X1l = 2, P[1, X4. X3,0, X1l = 2, P[O, X4, X3,1. X1J = 4r P[" X4'X3"' X1] 

3. 

S. 7 Count the number of ones in each column of the tabular technique 

representation. 
N4[O, x4. x3,0, x1] = 1, N3[O. x4. x3.0, x1] = 0, Nl[O, x4, x3, O, x1J - 1, 

N4[1, x4, x3,0, x1] = 0, N3[1, x4, x3,0, x11 1, N1(1, x4, x3,0, x1j = 0, 
N4[0, X4, X3,1, X11 = 1, N310, x41x3,1, X11 = 2, N1[O, X4, X3,1, X1j = 2, 
N4[1, X4, X3,1, X11 = 1, N3(1, x4, x3,1, X1J = 1, N1[1, X4, x3,1, x1] = 

S. 8 P[O, x4, x3,0, X1] mod 2=2 mod 2=0, 

P[1, x4, x3,0, x1J mod 2=2 mod 2=0, 

P[O, x4, x3,1, x1J mod 2=4 mod 2=0, 

therefore go to S. Ba. 
S. Ba N4[0, x4, x3,0, x1] =1= P[O, x4. x3.0. X1J/2, 

N1[0, x4, x3,0, x1] =1= P[O, x4, x3,0, x1J/2, 
N [1, x4, x3,0, X1j =1= P[ 1, X4, X3, O, X1]/2. 

N3[0, X4, X3,1, X1] =2= P[O, x4, x3,1, x1]/2. 
N1[O, x4, x3,1, X1J =2= P[O, x4, x3,1, x1]/2, 

therefore go to S. 8b. 

S. 8b Adj4[O, x4, x3,0, x1J =0/ N4[O, x4, x3,0, x11, 
Adj1[O, x4. x3.0, x1J =0 Nl[0, x4, x3,0, x1], 
Adj3[1, X4, x3, O, x1I =1 N3[1, x4, x3,0, x1], 

Adj3[O, x4, x3,1, X1] =1/ N3(0, X4, x3.1, x1 
Adj1[O, x4, x3,1, x1J =1/ N1[0, x4, x3,1, x1 
Now, Adj3[1, x4, x3,0, x1J =1= N3(1, x4, x3,0, x1J, therefore x3 Is the node 
variable at level 3. 

S. 9 £=4, novars = 2, 
£<5, therefore expand the FPRM expansions about variable x3. 
11O, x4,0,0, x1) =1® x4 x1 
110, x4,0, O. x1) 0 1jO, x4,1, O, x1) =0 
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fj 1, X4, O, O, X1) =1 
f(1, X4, O, O, x1) ® II1, X4,1,0, X1) =1 
I O, X4,0,1, X1) =10 Xi 

f(O, X4,0,1, X1) aIO, X4,1,1, X1) =1® X4x1 

f(1, x4,0,1, x1) =1® x4 

f(1, X4,0,1, X1) ® f(1, X4,1,1, x1) = X1 

Repeating S. 5 - S. Bb indicates that the node variable at level 4 may be 

chosen arbitrarily. Hence, select x4 as the node variable. 
S. 9 £=5, novars = 1. £=n therefore go to S. 10. 

S. 10 x1 is the node variable at level 5. 

The variable ordering (from level 5 to the root of the ORMBDD) Is 

<1,4,3,5,2>. 
The ORMBDD of the FPRM expansion with this variable ordering is shown 
in Figure 7.8. 

Figure 7.8: RORMBDD of Example 7.3 

(End of example) 

7.4 Physical Implementation of RORMi3DDs using Reed-Muller Universal Logic 
Modules 

This section details the implementation of RORMBDDs as multi-level circuits 
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comprised of modular devices. The Reed-Muller Universal Logic Module [3, 

88,89] is the counterpart of the digital multiplexer used to implement 

Boolean functions expressed in sum-of-products form [120]. As demonstrated 

in chapter 2, RM-ULMs can be used either as individual modules or 

connected as networks [89] to implement logic functions represented as 

generalised Reed-Muller expansions. Single control input RM-ULMs (defined 

as RM-ULM(1)s) may be used to implement FPRM expansions represented by 

RORMBDDs in a manner similar to implementing BDDs by interconnecting 

single control input multiplexers [116]. 

Figure 7.9: (a) Circuit Implementation of a RM-ULM(1), (b) Symbol of a RM- 
ULM(1), (c) Single node of a RMBDD 

Each node of a RORMBDD may be replaced by a RM-ULM(1), where the node 
variable is used as the control Input of the RM-ULM(1), and the two data 
inputs, bo and b1, are connected to the Input branches (Figure 7.9). The 
RM-ULM(1) Implementation of the RORMBDD given In Figure 7.8 Is displayed 
In Figure 7.10. Additionally, this diagram Illustrates that the number of 
modules in the network equals the number of nodes in the RORMIIDD. 
However, the number of modules may be reduced by exploiting the fact that 

a RM-ULM(1) can Implement any FPRM expansion of two variables (chapter 
2). Modules which replace nodes which have both Inputs connected to 
leaves may be deleted and the data Inputs of the modules In the level 

above modified according to the value of the leaves. When calculating the 

number of modules In a RM-ULM(1) network from the RORMBDD, nodes which 
have both inputs connected to leaves should not be Included In the node 
count. This Is Illustrated in Figure 7.11, which shows the reduced 
RM-ULM(1) implementation of the RORMBDD of Figure 7.8. 
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Figure 7.10: RM-ULM(1) Implementation of the RORMBDD of Example 7.3 
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Figure 7.11: Reduced RM-ULM(1) implementation of the RORMUDD of Example 
7.3 

An algorithm which derives good though not necessarily optimum RM-ULM 

networks was presented by Xu, Almaini, Miller and McKenzie [89]. This 

algorithm searches initially for cascade networks and looks for branches 
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which terminate early. Unlike the RM-ULM(1) networks constructed from 

RORMBDDs where the control variable is assigned for each device on a 

particular level of the network, this algorithm does not place constraints 

upon the variable ordering. A disadvantage of the resulting unordered 

structure is that it can reduce the possibility of sharing subbranches and 

hence minimising the number of modules in the RM-ULM network. This 

problem is addressed by using RORMBDDs as a means of representing 

RM-ULM networks thus constraining the variable ordering. The algorithm 
detailed in the previous section may be employed to determine the variable 

ordering for the RORMBDD. The order of the variables in the lowest two 

levels of the RORMBDD, level (n-1) and level (n), does not affect the 

number of modules in the RM-ULM network hence it is only necessary to 

perform (n-2) iterations of the algorithm. Additionally, n! /2 variable 

orderings should be evaluated when exhaustively searching for the optimum 

RM-ULM network. 

7.5 The Reed-Muller Factored Form and Gate Level Implementation of 
RORMBDDs 

The RORMBDD may also be used to determine RM factored forms and hence 

multi-level circuits composed of AND gates, EXOR gates and Inverters. 

The RM factored form of any ESOP expression was first described by Saul 
[85]. The structure of the RORMBDD means that a factored form of the 
FPRM expansion which is represented may be easily derived by tracing 

path from each terminal with value 1 to the root of the RORMDDD. This Is 
illustrated in the following example. 

Example 7.4 Derive the factored form of the FPRM expansion 

fa(x3, x4, x3,4x1) -1" x= " 12x1 "13x2 " 14x1 " ; x3x2x1 " x5 " x311 

" x513 " 25131111 " 1514x1 

The RORMBDD of this expression is illustrated in Figure 7.8 and the 
factored form may be derived from this structure. 
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The RM factored form is 

fo(XS, xvx3, Xl, xI) =10 x4X1 " xs(1 " x3) " x=(1 " XI " x3(1 " x4x1) " x3(1 " x4 " x3x1)) 

(End of example) 
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The Implementation of RORMBDDs using RM-ULM(1)s has been described in 

the preceding section. It is also possible to directly derive a circuit 

comprised of AND gates, EXOR gates and inverters from a RORMBDD. This 

process is now described. 

The inputs to the circuit are the decision variables of the nodes of the 

RORMBDD. Non-terminal nodes with both input branches connected to 

terminal nodes form input variables to the circuit. 

A non-terminal node with both Input branches connected to terminal nodes 

with the value 1 represents an input to the circuit. The input variable Is 

the decision variable of the node and should be Inverted. A non-terminal 

node with the 0-Input branch connected to a terminal node with the value 
0 and the 1-input branch connected to a terminal node with the value 1 

also represents an input to the circuit. The Input variable Is the decision 

variable of the node. 

A non-terminal node a with the 0-Input branch connected to a non-terminal 
node b and the 1-input branch connected to a terminal node with the value 
1 may be replaced by an EXOR gate. The Inputs to the gate are the 
decision variable of the node a and the output of the subcircutt rooted at 
node b. A non-terminal node a with the 0-Input branch connected to a 
terminal node with the value 0 and the 1-input branch connected to a non- 
terminal node b may be replaced by an AND gate. The Inputs to the gate 
are the decision variable of the node a and the output of the subcircutt 
rooted at node b. 

A non-terminal node a with the 0-Input branch connected to a terminal 

node with the value 1 and the 1-input branch connected to a non-terminal 
node b may be replaced by an AND gate and an EXOR gate. The inputs to 
the AND gate are the decision variable of the node a and the output of 
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the subcircuit rooted at node b. The inputs to the EXOR gate are the 

output of the AND gate and the Boolean constant 1. Alternatively, the EXOR 

gate may be replaced by an inverter. 

Finally, a non-terminal node a with the 0-input branch connected to a non- 

terminal node b and the 1-input branch connected to a non-terminal node 

c may be replaced by an AND gate and an EXOR gate. The inputs to the 

AND gate are the outputs of the subcircuits rooted at nodes b and c. The 

inputs to the EXOR gate are the output of the AND gate and decision 

variable of node a. 

Thus, any RORMBDD may be represented using discrete gates as opposed 

to the modular representation described previously. 

7.6 Summary 

RORMBDDs have been introduced as a graphical means or representing FPRM 

expansions. Analogies have been drawn between these structures and 

ROBDDs used to represent Boolean functions. An algorithm has been 

presented which may be employed to derive optimal (sub-optimal) RORMBDDs 

representing FPRM expansions. The algorithm determines the order of the 

FPRM expansion variables from the root to terminal nodes of the RORMBDD. 

The use of this algorithm to form RORMBDDs from which efficient RM-ULM(1) 

networks can be constructed has been described. Additionally, the 

derivation of the RM factored form from a RORMBDD representation of a 
FPRM expansion has been described and the gate level Implementation of 

these structures discussed. 



Chapter 8 

Conclusions 

The aims of this research project were to develop techniques suitable for 

representing, generating and minimising different classes of ESOP forms. 

These techniques have been fully described in this thesis and are now 

briefly summarised. The outcome of this research project is also reviewed 

and areas suitable for further research are suggested. 

8.1 Review of Algorithms and Techniques 

Heuristic minimisation algorithms suitable for deriving optimal (sub-optimal) 

FPRM expansions from initial Boolean functions have been developed. These 

algorithms were derived from an existing method through the introduction 

of a variety of modifications. The aim of this work was to Improve the 

effectiveness of the original technique. The benefits of each of these 

modifications were explored and Illustrated with results obtained through 

minimising sets of Boolean functions. Thus, a group of Improved heuristic 

minimisation algorithms have evolved which may be employed to optimise 
FPRM expansions. 

An incompletely specified Boolean function may be minimised by assigning 
appropriate values to the 'don't care' terms of the function. An algorithm 
has been developed which may be employed to transform an Incompletely 

specified Boolean function to a FPRM expansion comprised of specified and 
'don't care' terms. The 'don't care' terms may then be assigned values so 

as to maximally reduce the number of product terms in the FPRM expansion, 

where the polarity of the expansion is pre-determined. The technique 
developed for this purpose Is non-exhaustive, however, the number of 
evaluations which must be made before the optimum solution is derived Is 
dependent on the inherent structure of the Initial incompletely specified 
Boolean function. Although these techniques have been proposed as an 
extension to the tabular technique their use Is not limited to this method. 
Indeed, these techniques are versatile and may be used In conjunction with 
other methods for representing and generating FPRM expansions from 
Boolean functions e. g. Habib [411, Harking [421. Additionally, two heuristic 

193 
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algorithms have been developed which may be used to determine optimum 

(sub-optimum) FPRM expansions of incompletely specified Boolean functions. 

The effectiveness of these algorithms was evaluated and their performance 

illustrated through minimising sample sets of Boolean functions. 

Kronecker expansions are a broader class of ESOP forms and include FPRM 

expansions as a subset. A technique has been developed which may be 

employed to generate KRO expansions from incompletely specified Boolean 

functions. Additionally, the problem of generating ESOP forms from reduced 

Boolean functions has been addressed. This led to the development of an 

algorithm which derives KRO expansions from reduced Boolean SOP forms 

where the product terms of the Initial Boolean expression are disjoint. The 

value of this technique lies in its ability to generate KRO expansions 

without having to first derive the canonical form of the Boolean expression. 

Both these methods employ modified forms of the original tabular 

representation and are valuable extensions to the scope of the tabular 

technique. 

The algorithms and techniques which have already been summarised may 

be employed to represent and optimise FPRM and KRO expansions. These 

expressions are two-level ESOP forms and may be Implemented as two-level 

networks of discrete gates or RM-ULMs, or indeed, using programmable 
logic devices comprised of an AND array and an EXOR array (XPLAs). 

However, a switching function may also be efficiently realised as a multi- 

level circuit. RORMBDDs have been developed as an alternative graphical 

means of representing and deriving multi-level realisations of FPRM 

expansions. The RORMBDD representing a particular FPRM expansion Is a 

canonical representation and the number of nodes in that RORMi3DD may 

only be reduced by altering the order of the variables In the structure. 

The synthesis of RORMBDDs may be regarded as comprising of two distinct 

steps, the first step Is the derivation of minimal FPRM expansions whilst 
the second step Is the determination of 'good' variable orderings. A 

heuristic algorithm has been developed which derives a minimal (sub- 

minimal) RORMBDD through variable ordering. RORMBDDs allow subfunction 

sharing and may also be 'flattened' to derive two-level representations. The 

use of RORMBDDs has also been extended to Include the representation of 
ESOP forms. The construction of RM-ULM(1) networks from RORMBDDS was 
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described and demonstrated a practical application of this work. 
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An arbitrary Boolean function may be represented by 2n FPRM expansions, 

3n KRO expansions or, at most, 3tn ESOP forms, where n is the number of 

variables and t the number of product terms. It is, therefore, most 

probable that the optimum ESOP form representing a Boolean function will 

belong to the class of ESOP forms as opposed to the subclasses of FPRM 

and KRO expansions. This observation does not devalue the techniques and 

heuristic algorithms developed in this thesis. FPRM and KRO expansions are 

small, well-defined classes of ESOP forms and the optimum (sub-optimum) 

FPRM expansion of any Boolean function may be consistently identified 

within a practical time-scale. It is then possible to utilise this expression 

as a starting point for further minimisation resulting in ESOP forms. 

The algorithms and techniques developed during this research project may 

be employed to represent. generate and minimise FPRM and KRO expansions 

from incompletely specified Boolean functions. Although the performance of 

each of these techniques is by no means outstanding, they form a useful 

set of reliable synthesis tools. 

8.2 Further Research 

It is possible to identify areas in which the algorithms and techniques 
described in this thesis could be improved. These are now highlighted as 

areas for further research. Additionally, more general aspects of logic 

synthesis using ESOP forms are considered. 

It may be possible to Improve the efficiency of the technique which 

assigns the 'don't care' terms of an incompletely specified Boolean 

function to derive an optimum FPRM expansion of pre-determined 

polarity. This could be Implemented by determining the most efficient 

order in which to evaluate the RM 'don't care' terms. 

" The tabular technique for generating KRO expansions from 

incompletely specified Boolean functions could be readily extended to 

allow the realisation of PSDKRO expansions. This is a simple task 

requiring only that the tables representing KRO expansions be 
divided into sub-tables as variables are transformed into the 
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required polarity. This would further increase the value of the 

tabular technique. 

"A heuristic minimisation method which derives optimal (sub-optimal) 

KRO expansions of incompletely specified Boolean functions would be 

most valuable. The algorithm should exhibit improved performance 

when evaluated against existing techniques. This work could also be 

extended to include ESOP forms. 

" The problem of determining the variable ordering in RORMBDDs so as 
to construct efficient multi-level representations requires further 

attention. 

" The implementation of RORMBDDs using RM-ULMs with multiple control 
inputs (e. g. RM-ULM(2)) should be investigated. 

" Although synthesis techniques based on the algebra of GF(2) are 
effective, not all switching functions may be efficiently represented 

as ESOP forms. A more practical approach would seem to be that of 
the 'mixed' synthesis system where functions are represented using 
the OR and EXOR operators and optimised using both Boolean and RM 
techniques. This Is an area of particular Interest where there Is 

much scope for the development of novel techniques. 
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