529 research outputs found

    Blind Minimax Estimation

    Full text link
    We consider the linear regression problem of estimating an unknown, deterministic parameter vector based on measurements corrupted by colored Gaussian noise. We present and analyze blind minimax estimators (BMEs), which consist of a bounded parameter set minimax estimator, whose parameter set is itself estimated from measurements. Thus, one does not require any prior assumption or knowledge, and the proposed estimator can be applied to any linear regression problem. We demonstrate analytically that the BMEs strictly dominate the least-squares estimator, i.e., they achieve lower mean-squared error for any value of the parameter vector. Both Stein's estimator and its positive-part correction can be derived within the blind minimax framework. Furthermore, our approach can be readily extended to a wider class of estimation problems than Stein's estimator, which is defined only for white noise and non-transformed measurements. We show through simulations that the BMEs generally outperform previous extensions of Stein's technique.Comment: 12 pages, 7 figure

    Compressed Sensing over â„“p\ell_p-balls: Minimax Mean Square Error

    Full text link
    We consider the compressed sensing problem, where the object x_0 \in \bR^N is to be recovered from incomplete measurements y=Ax0+zy = Ax_0 + z; here the sensing matrix AA is an n×Nn \times N random matrix with iid Gaussian entries and n<Nn < N. A popular method of sparsity-promoting reconstruction is ℓ1\ell^1-penalized least-squares reconstruction (aka LASSO, Basis Pursuit). It is currently popular to consider the strict sparsity model, where the object x0x_0 is nonzero in only a small fraction of entries. In this paper, we instead consider the much more broadly applicable ℓp\ell_p-sparsity model, where x0x_0 is sparse in the sense of having ℓp\ell_p norm bounded by ξ⋅N1/p\xi \cdot N^{1/p} for some fixed 000 0. We study an asymptotic regime in which nn and NN both tend to infinity with limiting ratio n/N=δ∈(0,1)n/N = \delta \in (0,1), both in the noisy (z≠0z \neq 0) and noiseless (z=0z=0) cases. Under weak assumptions on x0x_0, we are able to precisely evaluate the worst-case asymptotic minimax mean-squared reconstruction error (AMSE) for ℓ1\ell^1 penalized least-squares: min over penalization parameters, max over ℓp\ell_p-sparse objects x0x_0. We exhibit the asymptotically least-favorable object (hardest sparse signal to recover) and the maximin penalization. Our explicit formulas unexpectedly involve quantities appearing classically in statistical decision theory. Occurring in the present setting, they reflect a deeper connection between penalized ℓ1\ell^1 minimization and scalar soft thresholding. This connection, which follows from earlier work of the authors and collaborators on the AMP iterative thresholding algorithm, is carefully explained. Our approach also gives precise results under weak-ℓp\ell_p ball coefficient constraints, as we show here.Comment: 41 pages, 11 pdf figure

    A mathematical framework for new fault detection schemes in nonlinear stochastic continuous-time dynamical systems

    Get PDF
    n this work, a mathematical unifying framework for designing new fault detection schemes in nonlinear stochastic continuous-time dynamical systems is developed. These schemes are based on a stochastic process, called the residual, which reflects the system behavior and whose changes are to be detected. A quickest detection scheme for the residual is proposed, which is based on the computed likelihood ratios for time-varying statistical changes in the Ornstein–Uhlenbeck process. Several expressions are provided, depending on a priori knowledge of the fault, which can be employed in a proposed CUSUM-type approximated scheme. This general setting gathers different existing fault detection schemes within a unifying framework, and allows for the definition of new ones. A comparative simulation example illustrates the behavior of the proposed schemes

    Near-Optimal Recovery of Linear and N-Convex Functions on Unions of Convex Sets

    Full text link
    In this paper we build provably near-optimal, in the minimax sense, estimates of linear forms and, more generally, "NN-convex functionals" (the simplest example being the maximum of several fractional-linear functions) of unknown "signal" known to belong to the union of finitely many convex compact sets from indirect noisy observations of the signal. Our main assumption is that the observation scheme in question is good in the sense of A. Goldenshluger, A. Juditsky, A. Nemirovski, Electr. J. Stat. 9(2) (2015), arXiv:1311.6765, the simplest example being the Gaussian scheme where the observation is the sum of linear image of the signal and the standard Gaussian noise. The proposed estimates, same as upper bounds on their worst-case risks, stem from solutions to explicit convex optimization problems, making the estimates "computation-friendly.

    Regularization and Bayesian Learning in Dynamical Systems: Past, Present and Future

    Full text link
    Regularization and Bayesian methods for system identification have been repopularized in the recent years, and proved to be competitive w.r.t. classical parametric approaches. In this paper we shall make an attempt to illustrate how the use of regularization in system identification has evolved over the years, starting from the early contributions both in the Automatic Control as well as Econometrics and Statistics literature. In particular we shall discuss some fundamental issues such as compound estimation problems and exchangeability which play and important role in regularization and Bayesian approaches, as also illustrated in early publications in Statistics. The historical and foundational issues will be given more emphasis (and space), at the expense of the more recent developments which are only briefly discussed. The main reason for such a choice is that, while the recent literature is readily available, and surveys have already been published on the subject, in the author's opinion a clear link with past work had not been completely clarified.Comment: Plenary Presentation at the IFAC SYSID 2015. Submitted to Annual Reviews in Contro
    • …
    corecore