684 research outputs found

    Higher homotopy groups of complements of complex hyperplane arrangements

    Get PDF
    We generalize results of Hattori on the topology of complements of hyperplane arrangements, from the class of generic arrangements, to the much broader class of hypersolvable arrangements. We show that the higher homotopy groups of the complement vanish in a certain combinatorially determined range, and we give an explicit Z\pi_1-module presentation of \pi_p, the first non-vanishing higher homotopy group. We also give a combinatorial formula for the \pi_1-coinvariants of \pi_p. For affine line arrangements whose cones are hypersolvable, we provide a minimal resolution of \pi_2, and study some of the properties of this module. For graphic arrangements associated to graphs with no 3-cycles, we obtain information on \pi_2, directly from the graph. The \pi_1-coinvariants of \pi_2 may distinguish the homotopy 2-types of arrangement complements with the same \pi_1, and the same Betti numbers in low degrees.Comment: 24 pages, 3 figure

    On Stein fillings of contact torus bundles

    Get PDF
    We consider a large family F of torus bundles over the circle, and we use recent work of Li--Mak to construct, on each Y in F, a Stein fillable contact structure C. We prove that (i) each Stein filling of (Y,C) has vanishing first Chern class and first Betti number, (ii) if Y in F is elliptic then all Stein fillings of (Y,C) are pairwise diffeomorphic and (iii) if Y in F is parabolic or hyperbolic then all Stein fillings of (Y,C) share the same Betti numbers and fall into finitely many diffeomorphism classes. Moreover, for infinitely many hyperbolic torus bundles Y in F we exhibit non-homotopy equivalent Stein fillings of (Y,C).Comment: 18 pages, 10 figures. This preprint version differs from the final version which is to appear in the Bulletin of the London Mathematical Societ

    Dimension on Discrete Spaces

    Full text link
    In this paper we develop some combinatorial models for continuous spaces. In this spirit we study the approximations of continuous spaces by graphs, molecular spaces and coordinate matrices. We define the dimension on a discrete space by means of axioms, and the axioms are based on an obvious geometrical background. This work presents some discrete models of n-dimensional Euclidean spaces, n-dimensional spheres, a torus and a projective plane. It explains how to construct new discrete spaces and describes in this connection several three-dimensional closed surfaces with some topological singularities It also analyzes the topology of (3+1)-spacetime. We are also discussing the question by R. Sorkin [19] about how to derive the system of simplicial complexes from a system of open covering of a topological space S.Comment: 16 pages, 8 figures, Latex. Figures are not included, available from the author upon request. Preprint SU-GP-93/1-1. To appear in "International Journal of Theoretical Physics

    Shortest path embeddings of graphs on surfaces

    Get PDF
    The classical theorem of F\'{a}ry states that every planar graph can be represented by an embedding in which every edge is represented by a straight line segment. We consider generalizations of F\'{a}ry's theorem to surfaces equipped with Riemannian metrics. In this setting, we require that every edge is drawn as a shortest path between its two endpoints and we call an embedding with this property a shortest path embedding. The main question addressed in this paper is whether given a closed surface S, there exists a Riemannian metric for which every topologically embeddable graph admits a shortest path embedding. This question is also motivated by various problems regarding crossing numbers on surfaces. We observe that the round metrics on the sphere and the projective plane have this property. We provide flat metrics on the torus and the Klein bottle which also have this property. Then we show that for the unit square flat metric on the Klein bottle there exists a graph without shortest path embeddings. We show, moreover, that for large g, there exist graphs G embeddable into the orientable surface of genus g, such that with large probability a random hyperbolic metric does not admit a shortest path embedding of G, where the probability measure is proportional to the Weil-Petersson volume on moduli space. Finally, we construct a hyperbolic metric on every orientable surface S of genus g, such that every graph embeddable into S can be embedded so that every edge is a concatenation of at most O(g) shortest paths.Comment: 22 pages, 11 figures: Version 3 is updated after comments of reviewer

    Toric Topology

    Full text link
    Toric topology emerged in the end of the 1990s on the borders of equivariant topology, algebraic and symplectic geometry, combinatorics and commutative algebra. It has quickly grown up into a very active area with many interdisciplinary links and applications, and continues to attract experts from different fields. The key players in toric topology are moment-angle manifolds, a family of manifolds with torus actions defined in combinatorial terms. Their construction links to combinatorial geometry and algebraic geometry of toric varieties via the related notion of a quasitoric manifold. Discovery of remarkable geometric structures on moment-angle manifolds led to seminal connections with the classical and modern areas of symplectic, Lagrangian and non-Kaehler complex geometry. A related categorical construction of moment-angle complexes and their generalisations, polyhedral products, provides a universal framework for many fundamental constructions of homotopical topology. The study of polyhedral products is now evolving into a separate area of homotopy theory, with strong links to other areas of toric topology. A new perspective on torus action has also contributed to the development of classical areas of algebraic topology, such as complex cobordism. The book contains lots of open problems and is addressed to experts interested in new ideas linking all the subjects involved, as well as to graduate students and young researchers ready to enter into a beautiful new area.Comment: Preliminary version. Contains 9 chapters, 5 appendices, bibliography, index. 495 pages. Comments and suggestions are very welcom
    • …
    corecore