5,601 research outputs found

    Minimal Stable Sets in Tournaments

    Full text link
    We propose a systematic methodology for defining tournament solutions as extensions of maximality. The central concepts of this methodology are maximal qualified subsets and minimal stable sets. We thus obtain an infinite hierarchy of tournament solutions, which encompasses the top cycle, the uncovered set, the Banks set, the minimal covering set, the tournament equilibrium set, the Copeland set, and the bipartisan set. Moreover, the hierarchy includes a new tournament solution, the minimal extending set, which is conjectured to refine both the minimal covering set and the Banks set.Comment: 29 pages, 4 figures, changed conten

    Dominating the Erdos-Moser theorem in reverse mathematics

    Full text link
    The Erdos-Moser theorem (EM) states that every infinite tournament has an infinite transitive subtournament. This principle plays an important role in the understanding of the computational strength of Ramsey's theorem for pairs (RT^2_2) by providing an alternate proof of RT^2_2 in terms of EM and the ascending descending sequence principle (ADS). In this paper, we study the computational weakness of EM and construct a standard model (omega-model) of simultaneously EM, weak K\"onig's lemma and the cohesiveness principle, which is not a model of the atomic model theorem. This separation answers a question of Hirschfeldt, Shore and Slaman, and shows that the weakness of the Erdos-Moser theorem goes beyond the separation of EM from ADS proven by Lerman, Solomon and Towsner.Comment: 36 page

    Gamma-Set Domination Graphs. I: Complete Biorientations of \u3cem\u3eq-\u3c/em\u3eExtended Stars and Wounded Spider Graphs

    Get PDF
    The domination number of a graph G, γ(G), and the domination graph of a digraph D, dom(D) are integrated in this paper. The γ-set domination graph of the complete biorientation of a graph G, domγ(G) is created. All γ-sets of specific trees T are found, and dom-γ(T) is characterized for those classes

    Some relational structures with polynomial growth and their associated algebras II: Finite generation

    Get PDF
    The profile of a relational structure RR is the function φR\varphi_R which counts for every integer nn the number, possibly infinite, φR(n)\varphi_R(n) of substructures of RR induced on the nn-element subsets, isomorphic substructures being identified. If φR\varphi_R takes only finite values, this is the Hilbert function of a graded algebra associated with RR, the age algebra A(R)A(R), introduced by P.~J.~Cameron. In a previous paper, we studied the relationship between the properties of a relational structure and those of their algebra, particularly when the relational structure RR admits a finite monomorphic decomposition. This setting still encompasses well-studied graded commutative algebras like invariant rings of finite permutation groups, or the rings of quasi-symmetric polynomials. In this paper, we investigate how far the well know algebraic properties of those rings extend to age algebras. The main result is a combinatorial characterization of when the age algebra is finitely generated. In the special case of tournaments, we show that the age algebra is finitely generated if and only if the profile is bounded. We explore the Cohen-Macaulay property in the special case of invariants of permutation groupoids. Finally, we exhibit sufficient conditions on the relational structure that make naturally the age algebra into a Hopf algebra.Comment: 27 pages; submitte

    Set-Rationalizable Choice and Self-Stability

    Full text link
    A common assumption in modern microeconomic theory is that choice should be rationalizable via a binary preference relation, which \citeauthor{Sen71a} showed to be equivalent to two consistency conditions, namely α\alpha (contraction) and γ\gamma (expansion). Within the context of \emph{social} choice, however, rationalizability and similar notions of consistency have proved to be highly problematic, as witnessed by a range of impossibility results, among which Arrow's is the most prominent. Since choice functions select \emph{sets} of alternatives rather than single alternatives, we propose to rationalize choice functions by preference relations over sets (set-rationalizability). We also introduce two consistency conditions, α^\hat\alpha and γ^\hat\gamma, which are defined in analogy to α\alpha and γ\gamma, and find that a choice function is set-rationalizable if and only if it satisfies α^\hat\alpha. Moreover, a choice function satisfies α^\hat\alpha and γ^\hat\gamma if and only if it is \emph{self-stable}, a new concept based on earlier work by \citeauthor{Dutt88a}. The class of self-stable social choice functions contains a number of appealing Condorcet extensions such as the minimal covering set and the essential set.Comment: 20 pages, 2 figure, changed conten
    corecore