39 research outputs found

    Antenna Designs for 5G/IoT and Space Applications

    Get PDF
    This book is intended to shed some light on recent advances in antenna design for these new emerging applications and identify further research areas in this exciting field of communications technologies. Considering the specificity of the operational environment, e.g., huge distance, moving support (satellite), huge temperature drift, small dimension with respect to the distance, etc, antennas, are the fundamental device allowing to maintain a constant interoperability between ground station and satellite, or different satellites. High gain, stable (in temperature, and time) performances, long lifecycle are some of the requirements that necessitates special attention with respect to standard designs. The chapters of this book discuss various aspects of the above-mentioned list presenting the view of the authors. Some of the contributors are working strictly in the field (space), so they have a very targeted view on the subjects, while others with a more academic background, proposes futuristic solutions. We hope that interested reader, will find a fertile source of information, that combined with their interest/background will allow efficiently exploiting the combination of these two perspectives

    Geometry Modification Assessment and Design Optimization of Miniaturized Wideband Antennas

    Get PDF
    Maintaining small physical dimensions of antenna structures is an important consideration for contemporary wireless communication systems. Typically, antenna miniaturization is achieved through various topological modifications of the basic antenna geometries. The modifications can be applied to the ground plane, the feed line, and/or antenna radiator. Unfortunately, various topology alteration options are normally reported on a case-to-case basis. The literature is lacking systematic investigations or comparisons of different modification methods and their effects on antenna miniaturization rate as well as electrical performance. Another critical issue—apart from setting up the antenna topology—is a proper adjustment of geometry parameters of the structure so that the optimum design can be identified. Majority of researchers utilize experience-driven parameter sweeping which typically yields designs that are acceptable, but definitely not optimal. Furthermore, in many of the cases, the authors provide a cooperative progression before and after topological modifications that generally lead to a certain reduction of the antenna size, however, with appropriate parameter adjustment missing. Consequently, suitability of particular modifications in the miniaturization context is not conclusively assessed. In order to carry out such an assessment in a reliable manner, identification of the truly optimum design is necessary. This requires rigorous numerical optimization of all antenna parameters (especially in the case of complex antenna topologies) with the primary objective being size reduction, and supplementary constraints imposed on selected electrical or field characteristics. This thesis is an attempt to carry out systematic investigations concerning the relevance of geometry modifications in the context of wideband antenna miniaturization. The studies are carried out based on selected benchmark sets of wideband antennas. In order to ensure a fair comparison, all geometry parameters are rigorously tuned through EM-driven optimization to obtain the minimum footprint while maintaining acceptable electrical performance. The results demonstrate that it is possible to conclusively distinguish certain classes of topology alterations that are generally advantageous in the context of size reduction, as well as quantify the benefits of modifications applied to various parts of the antenna structure, e.g., with feed line modifications being more efficient than the ground plane and radiator ones. Several counterexamples have been discussed as well, indicating that certain modifications can be counterproductive when introduced ad hoc and without proper parameter tuning. The results of these investigations have been utilized to design several instances of novel compact wideband antennas with the focus on isolation improvement and overall antenna size reduction in multi-input-multi-output (MIMO) systems. Experimental validations confirming the numerical findings are also provided. To the best of the author’s knowledge, the presented study is the first systematic investigation of this kind in the literature and can be considered a step towards the development of better, low-cost, and more compact antennas for wireless communication systems.Fyrir þráðlaus fjarskiptakerfi er mikilvægt að tryggja að loftnet séu lítil að umfangi. Yfirleitt er smækkun loftneta náð með ýmis konar formbreytingum á grunngerðum þeirra. Formbreytingarnar geta verið á jarðtengingu, fæðilínu og / eða geislagjafa. Því miður er venjulega einungis sagt frá slíkum formbreytingum fyrir einstaka tilvik. Skortur er á kerfisbundnu mati og samanburði á mismunandi formbreytingum og hvaða áhrif þær hafa á smækkun og raffræðilega eiginleika loftneta. Annað mikilvægt atriði, fyrir utan að ákveða gerð formbreytingarinnar, er að velja stika sem lýsa nákvæmri lögun svo að bestuð hönnun geti átt sér stað. Flestir hönnuðir notast við þá aðferð að notast við stikaskimun sem byggir á reynslugögnum, en sú aðferð skilar almennt ásættanlegri hönnun, þó ekki bestaðri. Einnig er í mörgum tilvikum sagt frá samhliða þróun fyrir og eftir formbreytingu sem leiðir til smækkunar án þess að tilgreina breytingar á stikum. Fyrir vikið er erfitt að meta til hlítar ávinning af mismunandi formbreytingum. Til þess að framkvæma slíkt mat með áreiðanlegum hætti er nauðsynlegt að geta metið bestu hönnunarútfærslu nákvæmlega. Þetta kallar á ítarlega tölulega bestun allra stika sem lýsa loftnetinu (einkum fyrir loftnet flókinnar lögunnar) þar sem aðalmarkmkið bestunar er smækkun en skorður eru settar af raffræðilegum eiginleikum. Í þessari ritgerð er leitast við að kerfisbundna rannsókn á mikilvægi formbreytingna í tengslum við smækkun bandbreiðra loftneta. Rannsóknin byggir á völdum söfnum viðmiðunarloftneta. Til að tryggja rétt mat eru allir stikar er varða lögun stilltir með rafsegulfræðilegri hermun til að tryggja minnst rúmtak með ásættanlegum raffræðilegum eiginleikum. Niðurstöðurnar sýna að unnt er að greina, án vafa, ákveðna flokka formbreytinga sem eru að jafnaði til þess fallnir að smækka loftnet. Auk þessa er hægt að reikna ávinning af formbreytingum mismunandi hluta loftnetsins, t.d. að breytingar á fæðilínu eru almennt hagkvæmari en breytingar á geislagjafa eða jarðtengingu. Þá er greint frá nokkrum tilvikum þar sem tilfallandi formbreytingar geta verið til tjóns ef ekki stikaval er ekki gert með réttum hætti. Niðurstöður þessara rannsóknar hafa verið notaðar til að hanna nokkur nýstárleg breiðbandsloftnet með áherslu á smækkun og bættan aðskilnað fjölgátta (MIMO) loftneta. Töluleg hermun er sannreynd með tilraunum. Að bestu vitund höfundar er hér um fyrstu kerfisbundnu rannsókn þessarar gerðar að ræða og má reikna með að hún leiði til þróunar betri, ódýrari og smærri loftneta fyrir þráðlaus fjarskiptakerfi.The Ph.D. project was supported by the Icelandic Research Center (RANNIS) Grant 16329905

    Recent Advances in Antenna Design for 5G Heterogeneous Networks

    Get PDF
    The aim of this book is to highlight up to date exploited technologies and approaches in terms of antenna designs and requirements. In this regard, this book targets a broad range of subjects, including the microstrip antenna and the dipole and printed monopole antenna. The varieties of antenna designs, along with several different approaches to improve their overall performance, have given this book a great value, in which makes this book is deemed as a good reference for practicing engineers and under/postgraduate students working in this field. The key technology trends in antenna design as part of the mobile communication evolution have mainly focused on multiband, wideband, and MIMO antennas, and all have been clearly presented, studied and implemented within this book. The forthcoming 5G systems consider a truly mobile multimedia platform that constitutes a converged networking arena that not only includes legacy heterogeneous mobile networks but advanced radio interfaces and the possibility to operate at mm wave frequencies to capitalize on the large swathes of available bandwidth. This provides the impetus for a new breed of antenna design that, in principle, should be multimode in nature, energy efficient, and, above all, able to operate at the mm wave band, placing new design drivers on the antenna design. Thus, this book proposes to investigate advanced 5G antennas for heterogeneous applications that can operate in the range of 5G spectrums and to meet the essential requirements of 5G systems such as low latency, large bandwidth, and high gains and efficiencies

    Advanced Radio Frequency Antennas for Modern Communication and Medical Systems

    Get PDF
    The main objective of this book is to present novel radio frequency (RF) antennas for 5G, IOT, and medical applications. The book is divided into four sections that present the main topics of radio frequency antennas. The rapid growth in development of cellular wireless communication systems over the last twenty years has resulted in most of world population owning smartphones, smart watches, I-pads, and other RF communication devices. Efficient compact wideband antennas are crucial in RF communication devices. This book presents information on planar antennas, cavity antennas, Vivaldi antennas, phased arrays, MIMO antennas, beamforming phased array reconfigurable Pabry-Perot cavity antennas, and time modulated linear array

    Reconfigurable Antennas

    Get PDF
    In this new book, we present a collection of the advanced developments in reconfigurable antennas and metasurfaces. It begins with a review of reconfigurability technologies, and proceeds to the presentation of a series of reconfigurable antennas, UWB MIMO antennas and reconfigurable arrays. Then, reconfigurable metasurfaces are introduced and the latest advances are presented and discussed

    UWB Technology

    Get PDF
    Ultra Wide Band (UWB) technology has attracted increasing interest and there is a growing demand for UWB for several applications and scenarios. The unlicensed use of the UWB spectrum has been regulated by the Federal Communications Commission (FCC) since the early 2000s. The main concern in designing UWB circuits is to consider the assigned bandwidth and the low power permitted for transmission. This makes UWB circuit design a challenging mission in today's community. Various circuit designs and system implementations are published in this book to give the reader a glimpse of the state-of-the-art examples in this field. The book starts at the circuit level design of major UWB elements such as filters, antennas, and amplifiers; and ends with the complete system implementation using such modules

    Harnessing energy for wearables: a review of radio frequency energy harvesting technologies

    Get PDF
    Wireless energy harvesting enables the conversion of ambient energy into electrical power for small wireless electronic devices. This technology offers numerous advantages, including availability, ease of implementation, wireless functionality, and cost-effectiveness. Radio frequency energy harvesting (RFEH) is a specific type of wireless energy harvesting that enables wireless power transfer by utilizing RF signals. RFEH holds immense potential for extending the lifespan of wireless sensors and wearable electronics that require low-power operation. However, despite significant advancements in RFEH technology for self-sustainable wearable devices, numerous challenges persist. This literature review focuses on three key areas: materials, antenna design, and power management, to delve into the research challenges of RFEH comprehensively. By providing an up-to-date review of research findings on RFEH, this review aims to shed light on the critical challenges, potential opportunities, and existing limitations. Moreover, it emphasizes the importance of further research and development in RFEH to advance its state-of-the-art and offer a vision for future trends in this technology

    Antenna System Design for 5G and Beyond – A Modal Approach

    Get PDF
    Antennas are one of the key components that empower a new generation of wireless technologies, such as 5G and new radar systems. It has been shown that antenna design strategies based on modal theories represent a powerful systematic approach to design practical antenna systems with high performance. In this thesis, several innovative multi-antenna systems are proposed for wireless applications in different frequency bands: from sub-6 GHz to millimeter-wave (mm-wave) bands. The thesis consists of an overview (Part I) and six scientific papers published in peer-reviewed international journals (Part II). Part I provides the overall framework of the thesis work: It presents the background and motivation for the problems at hand, the fundamental modal theories utilized to address these problems, as well as subject-specific research challenges. Brief conclusions and future outlook are also provided. The included papers of Part II can be divided into two tracks with different 5G and beyond wireless applications, both aiming for higher data rates.In the first track, Papers [I] to [IV] investigate different aspects of antenna system design for smart-phone application. Since Long Term Evolution (LTE) (so-called 3.5G) was deployed in 2009, mobile communication systems have utilized multiple-input multiple-output antenna technology (MIMO) technology to increase the spectral efficiency of the transmission channel and provide higher data rates in existing and new sub-6 GHz bands. However, MIMO requires multi-antennas at both the base stations and the user equipment (mainly smartphones) and it is very challenging to implement sub-6 GHz multi-antennas within the limited space of smartphones. This points to the need for innovative design strategies. The theory of characteristic modes (TCM) is one type of modal theory in the antenna community, which has been shown to be a versatile tool to analyze the inherent resonance properties of an arbitrarily shaped radiating structure. Characteristic modes (CMs) have the useful property of their fields being orthogonal over both the source region and the sphere at infinity. This property makes TCM uniquely suited for electrically compact MIMO antenna design.In the second track, Papers [V]-[VI] investigate new integrated antenna arrays and subarrays for the two wireless applications, which are both implemented in a higher part of the mm-wave frequency range (i.e. E-band). Furthermore, a newly developed high resolution multi-layer “Any-Layer” PCB technology is investigated to realize antenna-in-package solutions for these mmwave antenna system designs. High gain and high efficiency antennas are essential for high-speed wireless point-to-point communication systems. To meet these requirements, Paper [V] proposes directive multilayer substrate integrated waveguide (SIW) cavity-backed slot antenna array and subarray. As a background, the microwave community has already shown the benefits of modal theory in the design and analysis of closed structures like waveguides and cavities. Higher-order cavity modes are used in the antenna array design process to facilitate lower loss, simpler feeding network, and lower sensitivity to fabrication errors, which are favorable for E-band communication systems. However, waveguide/cavity modes are confined to fields within the guided media and can only help to design special types of antennas that contain those structures. As an example of the versatility of TCM, Paper [VI] shows that apart from smartphone antenna designs proposed in Papers [I]-[IV], TCM can alsobe used to find the desirable modes of the linear antenna arrays. Furthermore, apart from E-band communications, the proposed series-fed patch array topology in Paper [VI] is a good candidate for application in 79 GHz MIMO automotive radar due to its low cost, compact size, ability to suppress surface waves, as well as relatively wide impedance and flat-gain bandwidths

    Antenna Design with Characteristic Mode Analysis for Internet of Things Applications

    Get PDF
    PhDThe TV white space (TVWS) is one of the promising technologies to provide wide coverage, energy effcient and cost effective Internet of Things (IoT) services. However, its low operating frequency and wide bandwidth poses significant challenges to antenna designs. In this thesis, three antennas are developed using the characteristic mode analysis (CMA) for IoT devices operating over the TVWS. First, a very-low profile circular small antenna is transformed from a vertical monopole antenna. The CMA is used to determine the mode to be excited and to design a specific feeding structure. After being printed on Rogers 5880 substrate, the final antenna structure operates at 474 MHz with a V SWR < 2 bandwidth of 2.2 MHz. Its lateral radius is just 5.2% of the wavelength of its resonant frequency. Second, a compact U-shaped printed UWB monopole antenna is proposed to operate over the entire UHF TV spectrum. This antenna measures 0:36 0 0:06 0 0:01 0 where 0 is the wavelength of its lowest operating frequency. Its V SWR < 2 bandwidth is 87.5%, and the UWB behaviour is discussed by the CMA. Third, a novel antenna design method is established on annular ring-shaped structures with modal characteristics revealed by the CMA. Following the proposed method, another UWB antenna is achieved by creating and exciting multiple modes with resonant frequencies distributed across the UHF TV spectrum. All antenna designs are verified thorough simulations and measurements. Furthermore, antennas are also integrated into IoT devices and their system performance is measured under different communication scenarios. The system measurements also verify the good propagation property and the abundant spectrum resource of the TVWS

    Development of miniaturized antennas and adaptive tuning solutions for body sensor network applications

    Get PDF
    Wireless Sensor Networks (WSNs) are currently having a revolutionary impact in rapidly emerging wearable applications such as health and fitness monitoring amongst many others. These types of Body Sensor Network (BSN) applications require highly integrated wireless sensor devices for use in a wearable configuration, to monitor various physiological parameters of the user. These new requirements are currently posing significant design challenges from an antenna perspective. This work addresses several design challenges relating to antenna design for these types of applications. In this thesis, a review of current antenna solutions for WSN applications is first presented, investigating both commercial and academic solutions. Key design challenges are then identified relating to antenna size and performance. A detailed investigation of the effects of the human body on antenna impedance characteristics is then presented. A first-generation antenna tuning system is then developed. This system enables the antenna impedance to be tuned adaptively in the presence of the human body. Three new antenna designs are also presented. A compact, low-cost 433 MHz antenna design is first reported and the effects of the human body on the impedance of the antenna are investigated. A tunable version of this antenna is then developed, using a higher performance, second-generation tuner that is integrated within the antenna element itself, enabling autonomous tuning in the presence of the human body. Finally, a compact sized, dual-band antenna is reported that covers both the 433 MHz and 2.45 GHz bands to provide improved quality of service (QoS) in WSN applications. To date, state-of-the-art WSN devices are relatively simple in design with limited antenna options available, especially for the lower UHF bands. In addition, current devices have no capability to deal with changing antenna environments such as in wearable BSN applications. This thesis presents several contributions that advance the state-of-the-art in this area, relating to the design of miniaturized WSN antennas and the development of antenna tuning solutions for BSN applications
    corecore