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Abstract

The TV white space (TVWS) is one of the promising technologies to provide wide

coverage, energy efficient and cost effective Internet of Things (IoT) services. However,

its low operating frequency and wide bandwidth poses significant challenges to antenna

designs.

In this thesis, three antennas are developed using the characteristic mode analysis (CMA)

for IoT devices operating over the TVWS.

First, a very-low profile circular small antenna is transformed from a vertical monopole

antenna. The CMA is used to determine the mode to be excited and to design a spe-

cific feeding structure. After being printed on Rogers 5880 substrate, the final antenna

structure operates at 474 MHz with a V SWR < 2 bandwidth of 2.2 MHz. Its lateral

radius is just 5.2% of the wavelength of its resonant frequency.

Second, a compact U-shaped printed UWB monopole antenna is proposed to operate

over the entire UHF TV spectrum. This antenna measures 0.36λ0 × 0.06λ0 × 0.01λ0

where λ0 is the wavelength of its lowest operating frequency. Its V SWR < 2 bandwidth

is 87.5%, and the UWB behaviour is discussed by the CMA.

Third, a novel antenna design method is established on annular ring-shaped structures

with modal characteristics revealed by the CMA. Following the proposed method, anot-

her UWB antenna is achieved by creating and exciting multiple modes with resonant

frequencies distributed across the UHF TV spectrum.

All antenna designs are verified thorough simulations and measurements. Furthermore,

antennas are also integrated into IoT devices and their system performance is measured

under different communication scenarios. The system measurements also verify the good

propagation property and the abundant spectrum resource of the TVWS.
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Chapter 1

Introduction

1.1 Background

“The Internet of Things (IoT) has the potential to change the world, just as the Internet

did. Maybe even more so,” said Kevin Ashton, the person firstly coined the term of IoT,

and after decades of development, the IoT era is coming [8]. The IoT connects power

grids, railways, pipelines, buildings, household appliances, and various objects, all called

things, and with technical support from the global positioning system (GPS), wireless

sensor networks (WSN), radio-frequency identification (RFID), wireless communications,

etc. a huge network reaching everything all over the world is established. According to

the BI Intelligence [9], the number of connected IoT devices is expected to exponentially

grow, and it will increase to 34 billion by 2020. Keys to unlash benefits of the IoT are

the connectivity between things and people as well as communications among things

without human intervention.

Based on the quality of service (QoS) requirements of different applications, kinds of

wireless connectivity technologies are selectively used for IoT connections, and among

which, low-power wide-area networks (LPWANs) are regarded as promising technologies.

LoRa and Narrowband-IoT are the representatives of LPWANs, and they operate mainly

1
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at frequencies below 1 GHz. Having longer wavelengths, the sub-1 GHz signals can

penetrate and bypass obstacles easily, and therefore reach further areas. Operating

on vacant channels reserved for the licensed broadcasting services, the TV white space

(TVWS) has been moved forward initially by regulatory steps and deployments of TV

white space devices (TVWSDs) by the Federal Communications Commission (FCC) in

the United States [10], [11], and Europe is also proceeding with the finalization of rules

and testing of TVWS technology on a large scale [12–14]. Since 2013, the use of TVWS

spectrum for IoT received a significant boost with the ratification of the version 1.0 core

specification of Weightless standard [15]. Therefore, the high market demand and wide

application prospect result in new expectations for the conventional ultra-high frequency

(UHF) antennas to be used for the IoT applications.

1.2 Motivations and Contributions

1.2.1 Motivations

Modern devices are tending to be increasingly small and miniaturized antennas are

expected to be integrated with them. Nevertheless, antenna size is comparable to its

operating frequency, and for example, the length of a half-wave dipole antenna wor-

king at 500 MHz is around 30 cm. Therefore, it is important but challenging to design

compact antennas for devices operating at sub-1 GHz. Moreover, IoT devices opera-

ting over TVWS should not cause harmful interference to primary services in the UHF

TV spectrum like broadcasting and wireless microphones, and vacant channels availa-

ble for TVWS operation are changing with location and time. In the United Kingdom,

spectrum reserved for the licensed broadcasting services is from 470 MHz to 790 MHz

over the UHF band, which has a fractional bandwidth exceeding 50%. According to

FCC, a radio system is ultra-wideband (UWB) if its fractional bandwidth is greater

than 20% or its absolute bandwidth is wider than 500 MHz [16]. As a result, antennas

for smart TVWSDs should be either reconfigurable or have ultra-wide bandwidths, and
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thus TVWSDs as cognitive radio devices are able to operate at vacant channels acquired

from spectrum detection using methods like geo-location database access and spectrum

sensing [17–20]. Proposed by Garbacz [21] and further developed by Harrington and

Mautz [22], [23], the theory of characteristic mode (TCM) gives insight into antenna

operation by identifying independent modes able to be supported on a structure and the

radiation ability of each mode. Therefore, the characteristic mode analysis (CMA) has

become one of the popular methodologies for antenna design in recent years. With phy-

sical essences revealed by the CMA, radiating structures could be utilized and optimized

efficiently. They also help to understand how the UWB property of an antenna is rea-

lized. Furthermore, results drawn from the CMA give instructions on feeding structure

design in order to excite one or multiple desired characteristic modes.

1.2.2 Contributions

Based on the motivations presented above, contributions of the thesis are summarized

as follows:

• CMA is carried out to discuss the radiation behavior of a circular radiating body

with ground in the same plane. The relationship between resonant frequency and

dimensions of the planar structure is quantified. The shape of the ground plane is

then modified to acquire a more efficient structure with a lower resonant frequency.

Moreover, scale factors of resonant frequencies for antennas with substrate having

different heights are summarized. After incorporating a feeding loop, a complete

miniaturized antenna design guideline is given. A very-low profile UHF small

antenna is finally fabricated as an example.

• To support smart operation of IoT devices over TVWS, a printed monopole antenna

is designed and optimized to work over the entire UHF TV spectrum. CMA demon-

strates modal wideband properties of the proposed radiator, and it also reveals that

multiple significant modes have been excited to realize the UWB performance.



Chapter 1. Introduction 4

• Another UWB antenna is proposed and the CMA is applied to help modify the

radiating body and design an appropriate feeding structure to excite all desired

modes. Its UWB performance is finally achieved through combining resonances of

multiple modes. Moreover, to provide a general design reference for annular ring-

shaped antennas, a fitted polynomial is given to clarify the relationship between

dimensions of an annular ring and resonant frequencies of its basic modes.

• Characteristics of all the proposed antennas are validated via simulations, measu-

rements, and their combination. In addition, by integrating the proposed antennas

onto multiple testbeds, their real-time system performance is appraised. Practical

communication tests also verify the transmission advantages of TVWS signals.

1.3 List of Publications

Journal Papers

1. Q. Zhang, R. Ma, W. Su, and Y. Gao, “Design of a Multi-Mode UWB Antenna

Using Characteristic Mode Analysis,” IEEE Transactions on Antennas and Pro-

pagation (Accepted).

2. Q. Zhang, and Y. Gao, “A Compact Broadband Dual-Polarized Antenna Array

for Base Stations,” IEEE Antennas and Wireless Propagation Letters (Accepted).

3. Q. Zhang and Y. Gao, “Compact Low Profile UHF UWB Antenna with Charac-

teristic Mode Analysis for TV White Space Devices,” IET Microwaves, Antennas

& Propagation, vol. 11, no. 11, pp. 1629-1635, Sep. 2017.

4. Q. Zhang and Y. Gao, “Comprehensive Evaluation of an Antenna for TV White

Space Devices,” IET Journal of Engineering, Feb. 2017.

5. L. Bedogni, A. Trotta; M. Di Felice, Y. Gao, X. Zhang, Q. Zhang, F. Malabocchia,

L. Bononi, “Dynamic Adaptive Video Streaming on Heterogeneous TVWS and
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Wi-Fi networks,” IEEE/ACM Transactions on Networking, vol. 25, no. 6, pp.

3253-3266, Dec. 2017.

6. Y. Gao, R. Ma, Q. Zhang and C. Parini, “Design of Very Low Profile Circular UHF

Small Antenna Using Characteristic Mode Analysis,” IET Microwaves, Antennas

& Propagation, vol. 11, no. 8, pp. 1113-1120, Jun. 2017.

7. D. Tirapu, Q. Zhang, Y. Gao, D. Valderas, “UHF Passive RFID-based sensor-

less system to detect humidity for irrigation monitoring,” Microwave and Optical

Technology Letters, vol. 59, no. 7, pp. 1709-1715, May 2017.

8. Y. Gao, R. Ma, Y. Wang, Q. Zhang, and C. Parini, “Stacked Patch Antenna with

Dual Polarization and Low Mutual Coupling for Massive MIMO,” IEEE Transacti-

ons on Antennas and Propagation, vol. 64, no. 10, pp. 4544-4549, Oct. 2016.

9. B. Peng, S. Li, J. Zhu, Q. Zhang, L. Deng, Li, Q. Zeng and Y. Gao, “Wide-

band Bandpass Filter with High Selectivity Based on Dual-Mode DGS Resonator,”

Microwave and Optical Technology Letters, vol. 58, no. 10, pp. 2300-2303, Oct.

2016.

10. B. Peng, S. Li, J. Zhu, Q. Zhang, L. Deng, Q. Zeng and Y. Gao, “Compact Quad-

Mode Bandpass Filter Based on Quad-Mode DGS Resonator,” IEEE Microwave

and Wireless Components Letters, vol. 26, no. 4, pp. 234-236, Apr. 2016.

11. Q. Zhang, B. Wu, and Y. Gao, “MLFMA-Enhanced Half-Space Characteristic

Mode Analysis for Vehicle Platforms,” IEEE Transactions on Vehicular Technology

(Under review).

12. W. Su, Q. Zhang, S. Alkaraki, Y. Zhang, X. Zhang, and Y. Gao, “Radiation

Energy and Mutual Coupling Evaluation for Multimode MIMO Antenna Based on

the Theory of Characteristic Mode,” IEEE Transactions on Antennas and Propa-

gation (Under revision).
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Conference Papers

1. Q. Zhang, and Y. Gao, “Embedded Antenna Design on LoRa Radio for IoT

Applications,” 12th European Conference on Antennas and Propagation, London,

UK, Apr. 2018.

2. Q. Zhang and Y. Gao, “Sensor Node Enabled by a Miniaturized Planar Antenna

for IoT Applications at TV White Space,” 2017 International Symposium on

Advances in Communications and Computing for Internet-of-things (CCIoT-2017),

Exeter, UK, Jun. 2017.

3. Q. Zhang and Y. Gao, “Design of an UHF UWB Doubled Annular Ring Antenna

Using Characteristic Mode Analysis,” 11th European Conference on Antennas and

Propagation, Paris, France, Mar. 2017.

4. Q. Zhang X. Zhang, Y. Gao, O. Holland, M. Dohler, J. M. Chareau, and P.

Chawdhry, “TV White Space Network Provisioning with Directional and Omni-

directional Terminal Antennas,” 2016 IEEE 84th Vehicular Technology Conference,

VTC2016-Fall, Montral, Canada, Sep. 2016.

5. Q. Zhang Y. Gao, and C. Parini, “Compact U-shape Ultra-wideband Antenna

with Characteristic Mode Analysis for TV White Space Communications,” 2016

IEEE International Symposium on Antennas and Propagation, Fajardo, Puerto

Rico, Jul. 2016.

6. B. Peng, S. Li, Q. Zhang, Y. Gao, J. Zhu, L. Deng, and Q. Zeng, “CPW-Fed

Dual-/Tri-Band Slot Antenna Based on Multi-Mode Slot Line Resonator,” 2016

IEEE International Symposium on Antennas and Propagation, Fajardo, Puerto

Rico, Jul. 2016.

7. B. Peng, W. Hong, Q. Zhang, Y. Gao, J. Zhu, L. Deng, S. Li and Q. Zeng,

“CPW-Fed Dual-Band MIMO Antenna Based on Harmonic Resonance with High

Isolation,” 2016 IEEE International Symposium on Antennas and Propagation,
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Fajardo, Puerto Rico, Jul. 2016.

8. Y. Gao, R. Ma, Q. Zhang, and C. Parini, “UHF Antennas for Machine-to-Machine

Communications and Internet of Things,” 10th European Conference on Antennas

and Propagation, Davos, Switzerland, Apr. 2016.

9. Q. Zhang, Y. Gao, and C. Parini, “Miniaturized UHF Antenna Using a Magneto-

Dielectric Superstrate for M2M Communications,” 2015 IEEE International Sym-

posium on Antennas and Propagation, Vancouver, Canada, Jul. 2015.

10. Q. Zhang, Z. Chen, Y. Gao, C. Parini, and Z. Ying, “Miniaturized Antenna Array

with Co2Z Hexaferrite Substrate for Massive MIMO,” 2014 IEEE International

Symposium on Antennas and Propagation, Memphis, USA, Jul. 2014.

1.4 Organisation of the Thesis

Chapter 2 provides a comprehensive overview of the theoretical background know-

ledge and state-of-the-art technologies on IoT systems, antenna miniaturization, UWB

technologies, and TCM.

Chapter 3 proposes a miniaturized circular UHF antenna. Its radiating body is gra-

dually improved by analyzing fundamental modes of the structure with different ground

planes via CMA, and a feeding loop is designed for excitation.

Chapter 4 designs a compact and low-profile UHF UWB printed monopole antenna.

The UWB operation principle of the proposed antenna is revealed from the point of CMA.

Chapter 5 creates multiple modes with resonant frequencies distributed over the

spectrum of interest by manipulating annular rings. A feeding structure is designed

correspondingly to excite all the significant modes to realize an UWB antenna.

Chapter 6 integrates predesigned antennas into IoT devices and evaluates their
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system performance through a series of measurements. The whole UHF TV spectrum

at Queen Mary University of London (QMUL) is also detected.

Chapter 7 draws the conclusions and a plan for future work.



Chapter 2

Background

In this chapter, Section 2.1 gives an overview of the IoT system. Different connectivity

technologies for the system are summarized and compared, and among which, the TVWS

is presented in detail. Section 2.2 explains fundamental limitations for small antennas

and introduces some approaches to antenna miniaturization. The UWB technology and

representative UWB antenna types are provided in Section 2.3. Section 2.4 interprets

the TCM, and introduces important parameters to evaluate characteristic modes. State-

of-the-art applications of CMA on antenna designs are also reviewed in this section.

Section 2.5 concludes this chapter.

2.1 Internet of Things Systems

2.1.1 Overview of the Internet of Things

Having a huge market potential, the IoT has attracted significant interest from aca-

demics, industry and government. Through the IoT, things can communicate without

human intervention, and a frame of the IoT system is illustrated in Fig. 2.1. According

to the system framework, data of things are collected by sensors, RFID tags, intelligent

9
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Figure 2.1: IoT Framework.

terminals, etc. based on their location, velocity, temperature, power, motion, illumina-

tion, air quality, humidity, and any kind of property. Then the data is disseminated

to other things or for cloud processing, and the feedback will finally reach the desired

things to stimulate corresponding reactions.

New data from Juniper Research has found that retailers will connect 12.5 billion

business assets, such as products, digital signs and Bluetooth beacons, to the IoT plat-

forms by 2021 [24]. Benefits of introducing IoT technology into the retail can be seen

from Zara, the worlds largest apparel retailer. Data of its products is stored in RFID

chips and sent via radio signals to a scanner. As each item is sold, data from its RFID

chip prompts an instant order to the stockroom requesting a replacement, making Zara’s

supply chain more responsive to store stock levels and avoiding stock deficiencies [25].

The IoT technology has also been exploited in agriculture, and it significantly benefits

food production and food safety. Besides, sensors and smart software decision also help

to decrease environmental footprint and foster the sustainability. Mounted on cows tails

and gathering over 600 pieces of data a second, the Moocall calving sensors will send an

alert to farmers smart phones via the Vodafone managed IoT connectivity platform when
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a cow is giving birth [26]. CropX, a Silicon Valley company, has developed an adaptive

irrigation platform, and through which farmers can improve yield while reducing water

usage [27].

At the beginning of the 21st century, self-driving and connected vehicles were solely

presented in science fiction films. Now, driving by the IoT, these fantasies are coming

true. Since 2016, the Bavarian motor vehicle (BMW) has collaborated with the Interna-

tional Business Machines Corporation (IBM) to improve the personalized and intuitive

driving experience, leveraging the IoT. For example, in the future, we will be informed

about the nearby available parking, or in how long parking will be available at a specific

location. Also, once our cars are approaching home, the system connected with the house

will open the garage and light up lamps outside our house [28].

There is no doubt that the IoT has meld into our daily life and its applications on

smart farming, smart retail, industrial internet, smart supply chain, smart home, smart

city, smart grid, connected health, etc. are all flourishing and changing our lifestyles.

2.1.2 Connectivity Technologies for the Internet of Things

According to QoS requirements of different applications, IoT systems have various data

rates and communication ranges. High-data-rate IoT systems achieve large data throug-

hput and low latency, and it ensures the communication quality of high value services like

automotive and live radio [29]. On the contrary, low-data-rate systems need a narrower

bandwidth, which makes the system receiver sensitive. The thermal noise is proportio-

nal to the bandwidth and therefore lower transmit power is required for low data rate

systems. Hence this kind of system yields a high link budget, and is ideal for remote

management of fixed assets including tracking, telemetry, smart meter, automated teller

machine (ATM) and point-of-sales systems [30].

Depending on various application requirements, various kinds of wireless communi-

cation technologies, with different characteristics, are selectively adopted to achieve IoT
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Table 2-A: Comparison of different connectivity technologies for the IoT.
Technology Operating frequency Peak rate Maximum range

LoRa
433/868/915 MHz 50 kbps 15 km

ISM bands

NB-IoT
In-band, stand-alone 150 kbps 15 km

and guard-band in GSM
UMTS and LTE bands

Sigfox
868/915 MHz 100 bps 50 km

ISM bands

NFC 13.65 MHz 424 kbps 10 cm

WiFi 2.4/5 GHz 600 Mbps Around 50 m

Bluetooth 4.0
2.4 GHz ISM band Basic: 1 Mbps Around 60 m

Enhanced: 3 Mbps

Zigbee
868/915 MHz and 20 kbps @ 868 MHz 100 m

2.4 GHz ISM bands 40 kbps @ 915 MHz
250 kbps @ 2.4 GHz

Weightless-W 470-790 MHz 10 Mbps 10 km

connectivity. Popular technologies are summarized in Table 2-A, in which their opera-

ting frequencies, peak rates and communication ranges are all specified. For example,

WiFi and Bluetooth have very low power consumptions and high data rates, but their

coverages are limited. To make the world smart, the IoT needs wide area connectivity–

network across cities, not across the office [31]. Cellular networks, although operating

over several kilometres, are not extensively applied in the IoT due to their high power

consumption and high modem cost. Ultimately, LPWANs are regarded promising to

be used for the IoT connectives. LoRa, NB-IoT and Sigfox are the representatives of

LPWANs, and they are mainly operated at frequencies below 1 GHz. Having longer

wavelength, the sub-1 GHz signals can penetrate and bypass obstacles more easily, and

therefore cover wider areas. As a result, fewer base stations or access points are needed,

and lower energy will be consumed at nodes and networks, which leads to long battery

life and low deployment cost.

However, with the tremendous increase of heterogeneous objects connected in the

IoT, unlicensed ISM bands are becoming congested, and new spectrums are expected

to support IoT communications. Dynamic frequency allocation will also have to be

adopted for efficiency spectrum utilization [32], and fortunately the use of opportunistic
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Figure 2.2: Frequency allocation of channels 21-69 in the spectrum between
470 MHz and 862 MHz in the United Kingdom.

radio resource utilization based on cognitive radio (CR) can provide efficiency as well

as reliability [33, 34]. Operating on vacant channels reserved for the licensed broad-

casting services, the TVWS offers abundant spectrum resources for cost effective IoT

communications.

2.1.3 Overview of TV White Space

Lately, the world has gone through digital switchover, which releases spectrum within

174-230 MHz and 470-862 MHz by transiting terrestrial television broadcasting from

analogue to digital [35]. Frequency allocation for channels in the spectrum between

470 MHz and 862 MHz in the United Kingdom is shown in Fig. 2.2. Digital terrestrial

television services occupy the frequency band over 470-790 MHz, which is divided into

40 channels from channel 21 to channel 60, and each channel has a bandwidth of 8 MHz.

It worth mentioning that over the UHF TV spectrum, the 38th channel is reserved for

programme making and special events (PMSEs).

Within an area, the DTT services will not occupy all UHF TV channels at one time,
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Figure 2.3: UHF TV spectrum usage in London (Crystal Palace) [1].

and the unused spectrum is known as TVWS. An example of spectrum usage over the

UHF TV spectrum usage in London is shown in Fig. 2.3. It can be observed that a large

portion of the UHF TV spectrum can be used for unlicensed power transmissions. In

2008, the FCC approved unlicensed use of TVWS [10] in the United States. Subsequently,

the Office of Communications (Ofcom) has also enabled license-exempt use of TVWS in

the United Kingdom [13]. The use of TVWS for IoT applications received a significant

boost in April 2013 with the ratification of the version 1.0 core specification by Weightless

Special Interest Group (SIG) [15].

In spite of taking the world by storm, the IoT still faces challenges including security,

privacy, connectivity, compatibility, etc. This thesis focuses the attention on design of

miniaturized and UWB antennas for IoT devices and evaluation of their performance

under different scenarios.

2.2 Antenna Miniaturization

Nowadays devices are tending to be increasingly compact, and therefore antennas equip-

ped with them are required to be as small and low profile as possible while keeping good

performance. It is a significant challenge for antennas designed for IoT devices because

size of antennas are physically restricted by their operating frequencies. In addition, to
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realize low power consumption and long battery life, antennas are expected to possess

high efficiency and reasonable gain. In the following, fundamental limitations for small

antennas and some general approaches to antenna miniaturization are presented.

2.2.1 Fundamental Limitations for Small Antennas

It has been commonly known that antenna efficiency and bandwidth are always sacri-

ficed to realize antenna miniaturization. Therefore, it is important to understand the

relationship between antenna efficiency, bandwidth, and its size. In 2005, Yaghjian and

Best [36] derived that the quality factor (Q) is inversely proportional to the antenna

bandwidth

B ≈
1

Q
(
s− 1√
s

) (2.1)

where B is the bandwidth and s is the specified value of the voltage standing wave ratio

(VWSR) at the edge of the band. The quality factor is defined as the ratio of the stored

energy (Wstored) over the energy dissipated in one cycle (Pdissipated) [37–40]

Q =
2ωWstored

Pdissipated
(2.2)

where ω is the angular frequency and ω = 2πf , and f indicates the frequency.

Wheeler [41] firstly proposed fundamental limitations of small antennas in 1947. He

defined the radiation power factor for electric antennas (pe) and magnetic antennas (pm)

as

pe =
G

wC
(2.3a)

pm =
R

wL
(2.3b)

where C or L is the capacitance or inductance, and G or R is the radiation shunt

conductance or series resistance He demonstrated that the radiation power factor of

either kind of antenna is greater than 1
6πk

3Vc, in which Vc is the cylindrical volume
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Figure 2.4: The method for determining the radius, a, of the smallest enclo-
sing sphere. (a) For an antenna without ground plane, it is the
smallest sphere to enclose the entire antenna. (b) For antennas on
a small ground plane with less than λ/4 radius, or closer than λ/4
from an edge, the sphere encloses the entire ground plane. (c) For
antennas on an electrically large ground plane, the sphere encloses
the antenna and its image currents [2].

occupied by the antenna, k is the wave number associated with the electromagnetic field

and equals to 2π/λ , and λ represents the wavelength.

In the following year, Chu [37] provided a plot of the minimum quality factor of omni-

directional antennas. Later, following Chu’s analyses, Hansen [38] and McLean [39]

derived an expression for the quality factor of the lowest order mode in terms of the

antenna’s electrical size

Q =
1 + 2(ka)2

(ka)3[1 + (ka)2]
· η (2.4)

where η is the radiation efficiency, a is the minimum radius of a sphere enclosing the

antenna, and the determination of a for different types of antennas is shown in Fig. 2.4 [2].

Through subtracting the energy density associated with the power flow from the total
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Figure 2.5: The measured bandwidth-efficiency products for 110 antenna
designs published in the IEEE Transactions on Antennas and Pro-
pagation by the end of the year 2010 [2].

energy density, Collin and Rothschid [40] enabled the magnetic and electric reactive

energy to be computed, and they simplified the quality factor of the first mode as

Q =
1

(ka)3
+

1

ka
(2.5)

Discussions introduced above were all for linear polarized antennas, and by combining

TE01 and TM01 fields, McLean [39] obtained the quality factor for circular polarized

antennas as

Q =
1

ka
+

1

2(ka)3
(2.6)

Recently, Sievenpiper et al. summarized the products of bandwidths and efficiencies

for 110 antenna designs published in the IEEE Transactions on Antennas and Propaga-

tion since 2010 [2]. The experimental performance data was plotted together with curves

of the theoretical limits as shown in Fig. 2.5. Discussions and analyses based on these

statistic results validate the theoretical limits and they also reveal the applicability of

the limits for antennas that are not electrically small.
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2.2.2 Approaches to Antenna Miniaturization

In recent decades, researchers have devoted much effort to making antennas more com-

pact, and state-of-the-art techniques of antenna miniaturization are summarized as fol-

lows.

• Lumped element loading

An antenna can be equivalent to a resonant circuit whose resonant frequency is

calculated from

f =
1

2π
√
LC

(2.7)

Therefore, loading inductors/capacitors significantly lowers resonant frequencies,

and in other words, reduces size of antennas resonating at specific frequencies. Chi

et al. [42] loaded 14 shunt capacitors along the resonant path of a slot-loop antenna,

and their design realized a size reduction of about six times. In addition, the input

impedance of an electrically small antenna has a large reactive component, which

will make most of the dissipated energy be stored as electrical/magnetic energy.

A straightforward method to make a small antenna resonate is to compensate its

stored energy by loading inductors/capacitors. However, inductors will introduce

severe loss and deteriorate antenna efficiency. Capacitors, on the other hand, have

a high quality factor, and lead to the reduction of antenna bandwidth [43].

• Material loading

Electromagnetic waves propagate slower in materials than in free space, and the

velocity of propagation (u) is

u =
c0√
µrεr

(2.8)

where c0 is the speed of light in vacuum, µr and εr is material’s relative permittivity

and permeability respectively. Therefore, for a fixed physical length and frequency,

longer electrical length is achieved with loading materials.
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Figure 2.6: Illustration of the image theory.

In [44–46], high-permittivity dielectrics are used to achieve antenna miniaturiza-

tion. However, this loading leads to the concentration of the electric field in the

high permittivity regions, which increases the quality factor and decreases antenna

bandwidth. Moreover, a higher permittivity is unfortunately often associated with

higher dielectric losses [47].

The wave impedance in a material (ηr) is calculated from

ηr = η0

√
µr
εr

(2.9)

in which η0 is the wave impedance in free space. Close values of µr and εr will

improve the matching of wave impedances in materials and in free space, and make

more energy being radiated, which lowers the quality factor. From (2.8), in addition

to achieving a wider bandwidth, increasing µr also reduces the sizes of antennas by

multiple times. Materials with µr > 1 are known as magneto-dielectric materials.

Many research work has proved, through theoretical analyses or experimental data,

that the use of magnetodielectric materials helps to achieve better size-bandwidth

characteristics [48–50]. However, currently available magneto-dielectric materials

like MFseries (developed by Emerson & Cuming), TTZ series, and Z-type (deve-

loped by Trans-Tech) all have large losses over the UHF band, which will lead to

low radiation efficiency and gain.
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(a)

J J

(b)

Figure 2.7: The effect of slots and notches on currents on a patch [3].

• Utilizing ground planes and short circuits.

A well known example of reducing antenna size by utilizing ground planes is the

transformation from dipole antenna to monopole antenna. Based on the image

theory as explained in Fig. 2.6, the length of a monopole antenna mounted above

an infinite ground plane is one half of a dipole antenna. The planar inverted-

F antenna (PIFA) is a quarter-wavelength patch antenna. Because its patch is

shorted at one end, the current at this end of the patch is no longer forced to be

zero, and as a result, the PIFA has the same current-voltage distribution as a half-

wave patch antenna. Ground planes and short circuits have been used alone or in

combination with other techniques widely to achieve antenna miniaturization [51–

53].

• Modifying and optimizing antenna geometry

When modifying geometries of antennas, the effective electrical lengths can be

increased to achieve more compact antennas. Folding wires repeatedly is a useful

method to shorten physical lengths of conventional antennas, and these antennas

were classified as meander line antennas by Rashed and Tai [54] in 1991. Chew

and Saunders [55] bent the liner element of a conventional printed quadrifilar helix

antenna into a rectangular meander, and through which, they reduced the axial

length of the conventional antenna by 53%. Moreover, for patch antennas, as shown

in Fig. 2.7, slots and notches are often cut to increase electrical lengths.
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Figure 2.8: The iterative-generation procedure for a Vicsek fractal.

The fractal antenna is another choice for antenna miniaturization. As illustrated

in Fig. 2.8, fractals are space-filling geometries that can be used as antennas to

effectively fit long electrical lengths into small areas [56].

• Utilizing the environment

After being integrated into devices, properties of small antennas may change and

lead to poor radiation. Ban et al. [57] divided the metal rim of a smart phone into

two strips via a small grounded patch, and the proposed dual-loop antenna was

capable to provide hepta-band wireless wide area network and long-term evolution

(WWAN/LTE) operation. Operating at very high frequency (VHF), vehicular FM

antennas are relatively long, and traditional roof-mounted monopole antennas suf-

fer from lack of durability and undesirable appearance. Therefore, FM antennas

printed directly on the rear or quarter glasses of a vehicle has been widely deve-

loped [58, 59]. Additionally, rapid development of CMA in recent years enables

analyses of electromagnetic characteristics of integration platforms and inspires

researchers to make full use of the environment antennas are designed for, which

will be introduced in detail in Section 2.4.4.

2.3 Ulta-Wideband Technology

In real communication scenarios, IoT devices communicating over TVWS should operate

on one or multiple vacant channels over the UHF TV spectrum based on interactions

with geo-location databases, and hence their antennas should be either UWB to cover
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the whole UHF TV spectrum or narrowband but reconfigurable to switch over channels.

Reconfigurable antennas rely heavily on switching circuits, and the design and integra-

tion of these circuits increase the system complexity. Besides, energy will be consumed

on switching circuits. More importantly, reconfigurable antennas switch over the fixed

bandwidth, and this mechanism prevents TVWSDs to use multiple separated or a bunch

of channels at one time, and hence the communication efficiency is restricted. Therefore,

this thesis focuses on designs of UWB antennas, and overviews of UWB technology and

antennas are given below.

2.3.1 Overview of the Ulta-Wideband Technology

The first UWB signals were generated in experiments by Hertz [60] in 1887, in which

he generated sparks and radiated them via wide-band loaded dipoles. Afterwards, the

concept of UWB was developed in the early 1960s through research in time domain elec-

tromagnetics, where impulse measurement techniques were adopted to characterise the

transient behaviour of certain microwave networks [61]. The UWB radio communication

received more interest in the 1990s with the improvements in digital signal processing

and the invention and investigation of time-hopping impulse radio [62, 63]. In 2002, the

FCC [16] defined a radio system to be an UWB system if its bandwidth is wider than

500 MHz or the fractional bandwidth (FBW = B/fc) is greater than 20%.

The Shannon capacity formula gives the upper bound of the capacity (C) of a channel

in bits/sec as

C = Blog2(1 + SNR) (2.10)

from which C grows logarithmically with the signal-to-noise ratio (SNR) and it grows

linearly with bandwidth. Offering extremely large bandwidths, UWB systems exhibit

great potential for high data rate communications. Moreover, UWB systems have good

multipath immunity. The multipath effect is the out-of-phase addition of light-of-sight

(LoS) and/or non-light-of-sight (NLoS) waveforms and it degrades signals. Thanks to the
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very short pulses transmitted in UWB systems, the reflected pulse has an extremely short

window of opportunity to collide with the LoS pulse and to cause signal attenuation [64].

Besides, transmission powers of unlicensed UWB communications are normally restricted

by national regulators. Thence, the low power transmission prevents UWB systems from

interfering with other radio systems and achieves longer battery life for mobile devices.

Finally, since UWB systems are carrierless, they have simpler transceiver architecture

and need fewer RF components than narrowband systems, which makes them more cost

effective.

Unique features and advantages make the UWB technology attractive for various

applications such as:

• Multimedia communications: the high-data-rate capability of UWB systems for

short distances has numerous applications for home networking and multimedia-

rich communications in the form of wireless personal area network (WPAN) [64].

Providing wireless connections and high speed transmissions in multipath rich envi-

ronments with coverage up to 20 m, the UWB technology helps users be able to

interact with a cluster of interconnected multimedia devices, such as PCs, cameras,

and printers, by a portable device.

• Radar systems: UWB radar pulses are shorter than the dimensions of targets, so

signals reflected by targets change not only in amplitude and time shift, but also

their impulse shapes. Hence, radar systems established on the UWB transmission

exhibit extremely high resolution, and this property can be extended to additional

applications such as underground, through-wall and ocean imaging, as well as

medical diagnostics and border surveillance devices [65].

• Sensor networks: in a sensor network, a large number of nodes are spread across a

geographical area, and low rate communications are combined with precise ranging

and geolocation. Key requirements for sensor networks include low cost, low power

consumption, and multifunctionality, which can be met by high data rate UWB
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communication systems through gathering and disseminating or exchanging an

enormous quantity of sensory data in a timely manner [66, 67]. The short-duration

pulses also ensure very high time resolution for positioning of nodes.

2.3.2 Ulta-Wideband Antennas

As the equipment to capture and/or transmit radio electromagnetic waves, the UWB

antenna is one of the essential elements to enable UWB systems. Based on discussion in

Section 2.2, the smaller the antenna is, the narrower the maximum bandwidth will be.

Accordingly, it is more challenging to design UWB antennas within limited space. In

addition, with the increase of frequency, high order modes will occur and strongly affect

the impedance matching and radiation feature. Thence, as well as reaching the band-

width requirement, to provide stable system performance, UWB antennas are expected

to exhibit consistent radiation behaviour over the entire operating frequency. Designs of

UWB antennas have been explored for many years and common techniques to achieve

UWB antennas include:

• Travelling wave antennas

Antennas like dipole antennas and patch antennas are resonant antennas where

standing waves are supported. For this kind of antenna, their operating frequencies

are closely related to lengths of structures. One approach to broaden bandwidths

of antennas is to make them support travelling waves, which indicates that uniform

patterns in current and voltage are distributed on the structures. Travelling wave

antennas offer for the guided wave a smooth, almost not recognizable transition

with the fields accelerated to free-space propagation speed. The helical antenna is

a well-know representative of travelling wave antennas. As shown in Fig. 2.9(a),

currents on helical antennas travel along the wire in the shape of a corkscrew.

Etched on a dielectric substrate as shown in Fig. 2.9(b), the Vivaldi antenna gui-

des the wave from the feed in a slot line to a wide-band taper, which provides

all frequencies within the given bandwidth with proper radiation condition. The
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(a) (b)

Figure 2.9: Illustrations of (a) helical antenna and (b) Vivaldi antenna [4].

low-profile characteristic makes the Vivaldi antenna well suited for direct planar

integration and also for UWB antenna arrays for radar and communications [68].

• Frequency independent antennas

Characteristics such as impedance, radiation pattern, polarization, and so forth, are

invariant over an ultra-wide frequency band for frequency independent antennas.

This is based on the scaling characteristics of antenna modeling, and to satisfy

this, the shape of an antenna should completely be specified by angles. Common

frequency independent antennas are the spiral antenna (shown in Fig. 2.10(a)) and

the log-periodic antenna (shown in Fig. 2.10(b)).

• Antennas with multiple resonances

By creating multiple resonances and combining them, UWB antennas can be achie-

ved on standing wave antennas like the dipole antenna and PIFA. Through exciting

two resonant modes controlled by two radiating arms as shown in Fig. 2.11(a), Chi

et al. [5] achieved a broadband planar dipole antenna with a step-shaped feed gap

to operate over 470-806 MHz with VSWR less than 2.5. See et al. [6] proposed an

UWB antenna consisting of a driven F-shaped element and a parasitic L-shaped

element as illustrated in Fig. 2.11(b). Using a broadband rectangular feeding struc-
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(a) (b)

Figure 2.10: Illustrations of (a) spiral antenna and (b) log-periodic antenna [4].

(a) (b)

Figure 2.11: Illustrations of two UWB antennas with multiple resonances [5,
6].

ture, the planar inverted-F-L antenna (PIFLA) achieved |S11| ≤ −10 dB from 2.8

to 5.6 GHz

In addition to the antennas introduced above, the horn antenna, Yagi-Uda antenna, bow-

tie antenna, conical antenna, self-complimentary antenna, etc. are also commonly used

in UWB systems. This thesis focuses on exciting multiple resonances, having neighboring

resonant frequencies, with the help of CMA to achieve UWB performance.

2.4 Characteristic Mode Theory

The TCM was first developed by Garbacz [21] in 1968, and later refined by Harrington

and Mautz [22, 23]in 1971. Garbacz obtained the modes of a conducting body with
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Figure 2.12: Illustration of modal decomposition on a metallic plate.

arbitrary shape by diagonalizing the scattering matrix. Alternatively, Harrington and

Mautz arrived at the same results by diagonalizing the generalized impedance matrix

of the body. Offering a physical explanation for radiation mechanisms of antennas, the

CMA provides one of the methodologies for antenna design. With current distribution

and radiation ability of each mode given by the CMA, antenna structures could be

efficiently optimized. In addition, different feeding techniques are able to be applied to

excite the desired characteristic modes. In this thesis, all simulations related to the CMA

are carried out in the commercial electromagnetic simulation software FEKO, while the

final antenna optimizations are carried out in the CST Microwave Studio.

2.4.1 Physical Interpretations of Characteristic Modes

Fig. 2.12 gives the first 6 modes of a metallic plate. According to the TCM, these

modal currents and their corresponding far-field radiations are orthogonal to each other.

Besides, the characteristic modes are only related to the geometry and material of the

structure at a certain frequency. To evaluate the characteristics of a mode with and

without excitation, key parameters like eigenvalue, modal weight coefficient, modal exci-

tation coefficient, etc. are introduced.
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2.4.1.1 Eigenvalue

The eigenvalue (χn) is introduced to predict modal capabilities of radiation and energy

storage, and it is defined as:

X(Jn) = χnR(Jn) (2.11)

where Jn is the eigencurrent of the nth mode, and X and R are reactance and resistance

operators, respectively.

Eigenvalue χn can be derived by a ratio of the inner products based on (2.12) and it

ranges from −∞ to ∞. According to the deduction in (2.12), where ’∗’ is the notation

for conjugate transpose operator, Prect,n is the modal energy storage power and Prad,n

is the modal radiation power, a characteristic mode with χn < 0 stores electrical energy,

whereas a mode with χn > 0 stores magnetic energy. A characteristic mode with χn = 0

is at resonance, and all energy is radiated.

χn =
< Jn

∗,X(Jn) >

< Jn
∗,R(Jn) >

=
Prect,n
Prad,n

(2.12)

2.4.1.2 Modal Significance

For an antenna mainly radiates by a single mode, we can study the eigenvalue of this

mode near its resonant frequency. However, for UWB antennas contributed by multiple

modes resonating at separate frequencies, their eigenvalues can have significant differen-

ces over the wide frequency band, which results in the plot of the eigenvalue against the

frequency having a large vertical range and it is difficult to be distinguished near χn = 0.

Therefore, the modal significance (Sn) is used to compare the significance of each mode,

and it is defined as:

Sn =

∣∣∣∣ 1

1 + jχn

∣∣∣∣ (2.13)

in which j =
√
−1.
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According to (2.13), when a mode is at resonance (i.e. χn = 0), its significance is

1. If most energy is stored (i.e. χn → ±∞), the significance of this mode is close to 0.

Hence, the modal significance Sn ranges from 0 to 1, and modes with significances close

to 0 contribute little to radiation, while modes with Sn close to 1 radiate significantly.

2.4.1.3 Modal Characteristic Angle

According to the discussion above, the modal significance describes the radiation ability

of a mode, but it fails to reveal whether the stored energy is electrical or magnetic.

Characteristic angle (an) is therefore employed as another important quantity to describe

eigenvalue and it is acquired from:

an = 180o − tan−1(χn) (2.14)

Characteristic angles are between 90o and 270o. Resonance occurs while an is 180o,

and otherwise the structure stores electrical energy when 180o < an < 270o, or magnetic

energy when 90o < an < 180o. Capable of indicating the type of energy stored by a

mode and has a reasonable variation range, the characteristic angle is mainly used in

this thesis to discuss UWB antennas achieved by exciting multiple resonating modes.

2.4.2 Bandwidth Estimation

The radiating bandwidth of a mode (Bn) is normally defined as the range of frequencies

within which the power radiated by the mode is no less than the power stored by it [69],

i.e. |χn| ≤ 1 according to the definition of eigenvalue given in (2.12).

Take |χn| = 1 into (2.13), we can obtain

Sn = | 1

1± j
| = 1√

2
(2.15)
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Furthermore, take |χn| = 1 into (2.14), we can obtain

an = 180o − tan−1(±
√

2

2
)

= 225o or 135o
(2.16)

Thus, within the modal radiating bandwidth, the modal significance and characte-

ristic angle satisfy 1√
2
≤ Sn ≤ 1 and 135o ≤ an ≤ 225o.

2.4.3 Excitation of Characteristic Modes

Previous discussions about characteristic modes focus on understanding characteristics

of radiating bodies without considering excitations. Given by the TCM in [22], a modal

solution for the resultant current J on a conducting body defined by S in an impressed

electric field Ein is a linear superposition of the modal currents Jn, which is expressed

as

J =
∑

αnJn (2.17)

where αn is the weight contributed by the nth characteristic mode and it is calculated

by

αn =
V i
n

1 + jχn
(2.18)

in which V i
n is the modal excitation coefficient, and it is computed by the surface integral

as

V i
n =

‹
J∗n ·EindS (2.19)

Input impedance (Zin), which is important in antenna engineering for matching, can

be obtained with the current Iin and the voltage Vin at the feeding port given as follows

Iin =
∑

αnJ
P
n (2.20)
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and

Vin = EPin (2.21)

where JPn and EPin are current and electric field at the feeding port, respectively. Since

the input impedance does not satisfy a linear combination, input admittance (Yin), the

reciprocal of the input impedance, is given instead as

Yin =
Iin
Vin

=
∑ V i

nJ
P
n

1 + jχn
=
∑

Y n
in (2.22)

According to (2.22), the input admittance is the sum of modal admittances (Y n
in). Thus

the modal reflection coefficient (Γn) can be acquired from

Γn =

1
Y n
in
− Z0

1
Y n
in

+ Z0
(2.23)

where Z0 is the port impedance.

2.4.4 State-of-the-art Review of Characteristic Mode Analysis on Antenna

Designs

The CMA has been applied in various applications including mutual coupling reduction,

pattern synthesis, bandwidth enhancement, feeding location selection, etc. and some

representative work in recent years is summarized below:

• Platform-conformal/platform-embedded antenna design

The large wavelength of decameter wave brings a lot of practical difficulties to

the design of shipboard, vehicular, and aircraft antennas in high frequency (HF)

and VHF bands. Besides, antenna performance may deteriorate after being inte-

grated into devices. Instead of tedious trying and evaluating system performance

of antennas at different mounting locations, design and deployment of antennas

could benefit a lot if electromagnetic characteristics of platforms are known in

advance [70–73]. To overcome the difficulty of implementing low coupling multi-
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antennas operating below 1 GHz in compact mobile handsets, Li et al. [70] created

multiple characteristic modes by manipulating the chassis structure, and they rea-

lized the multi-antenna structure by exciting these modes individually. Chen and

Wang [71] solved characteristic modes to understand the resonant behavior of a

ship platform. By making use of these modes, they synthesized radiating currents

for the designated radiation patterns. Consequently, the superstructure of the ship

acted as the main radiator to operate at 5 MHz.

• Multiple-input multiple-output antenna design

Using only one element to radiate multiple modes with different radiation pat-

terns, multimode antennas avoid the large spatial requirements of conventional

multiple-input multiple-output (MIMO) antenna arrays and can be a very com-

petitive candidate in the construction of a massive MIMO systems. The idea of

using CMA to identify different radiating modes and choose excitation mecha-

nisms for them to achieve multimode MIMO antennas was firstly introduced by

Antonino [74] in 2009. Later, Araghi and Dadashzadeh [75] analyzed the first

seven characteristic modes of a triangular-shaped radiator. Exciting the first two

characteristic currents that resonate at the same frequency, they obtained two ort-

hogonal radiation patterns, which resulted in the antenna having pattern diversity

for MIMO applications. Manteuffel and Martens [76] excited four characteristic

modes on a square plate to achieve a compact multimode antenna element with

four ports. Afterwards, they extended the optimized 4-port antenna element to a

11× 11 array having 484 ports.

• Feeding structure design

With modal current distributions given by CMA, special feeding structures can be

designed to excite the desired modes efficiently. Antonino et al. [77] proposed a

square planar monopole antenna with a double feed. They excited the radiator

at two symmetrical points to generate a pure and intense vertical current distri-

bution in the whole structure, and to avoid the horizontal currents that degrade



Chapter 2. Background 33

the polarisation properties and the impedance bandwidth performance. Synthe-

sized currents of the platform-conformal HF shipboard antenna proposed in [71]

were excited with inductive coupling elements (ICEs) achieved through cutting

nonprotruding slits with voltage sources. Bohannon and Bernhard [78] proposed a

novel technique to calculate a quasi-optimal aperture excitation for finite size UWB

antenna arrays. The approach was based on using the characteristic modes of the

arrays mutual impedance matrix, and the proposed characteristic mode taper pro-

vided for wideband matching of all array elements, including those at the edges of

the finite array.

• Bandwidth study

By observing and manipulating different characteristic modes, bandwidth proper-

ties of antennas can be explored with the help of CMA. Adams and Bernhard [79]

investigated the potential of a TM10 antenna by examining different characteris-

tic modes, and the antenna bandwidth was nearly doubled by combining multiple

resonances. Wu and Zhang [80] discussed the operating mechanism of an UWB

antenna working from 2.8 GHz to 12 GHz from the point of CMA. Effects of ground

plane and miniaturization of the antenna by chopping it in half were also discus-

sed by analyzing modal current distributions and VSWRs. Antonino et al. [81]

embedded a thin slot into an UWB antenna having VSWR less than 2 over 3-12

GHz, and they used CMA to explain the effect of the slot mode to the antenna’s

band-notched behavior.

2.5 Summary

This chapter presents the fundamental concepts of IoT systems, small antennas, UWB

technologies, and the TCM. Antenna miniaturization techniques and state-of-the-art

applications of CMA are demonstrated. Additionally, representative UWB antennas are

presented.
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Design of a Narrowband

Miniaturized Circular Antenna

3.1 Introduction

With the boom of portable IoT devices built in limited areas [82, 83], the demand for

compact and low-profile antennas is increasing. This chapter proposes a very low-profile

UHF small antenna. The related work on small antennas and the main contributions of

this chapter are reviewed in Section 3.1. The proposed radiating body and ground plane

are analyzed and modified with CMA in Section 3.2. Section 3.3 discusses modes of the

proposed radiator when printing it on different substrates. Next, the feeding structure is

designed in Section 3.4. Simulation and measurement results are presented and discussed

in Section 3.5. Finally, Section 3.6 concludes this chapter.

3.1.1 Related Work

Extensive research has been devoted to miniaturized and low-profile antenna designs.

Monti et al. [84] proposed a compact UHF planar antenna. Fractal techniques and

34
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appropriate shorting posts were used to significantly reduce the antenna size to 0.19λ×

0.22λ. Its size reduction with respect to a rectangular patch antenna was 89.8%; whilst an

85.5% and a 45.8% size reduction were reached when the same structure was compared to

the fractal and the short-circuited patch antennas respectively. Hong and Sarabandi [82]

proposed an extremely short monopole antenna with omnidirectional radiation pattern

and vertical polarization. The concept was based on superposition of multiple quarter-

wave segments that are meandered and spiraled around to suppress the radiation from

horizontal currents above the ground plane. Operating at around 460 MHz, the antenna

was around λ/30 in height and λ/10 or smaller in lateral dimension.

Providing full characteristics of a radiating body with arbitrary geometry, CMA

has been used to analyze and design several small antennas. Ma et al. [85] wrapped

and flattened the common PIFA to have a circular ground patch in the center and a

circular arm along the circumference. The novel circular co-planar inverted-F antenna

operated at 480 MHz with radius less than 0.1λ and height less than 0.005λ. Chen and

Wang [86] took an electrically small unmanned aerial vehicle (UAV) platform as the

radiating aperture and used compact and low-profile probes to excite currents on the

UAV body. Their concept avoided mismatching problems caused by the low resistance

and large reactance that are always faced in conventional electrically small antennas.

3.1.2 Contributions

Motivated by the previous work, this chapter proposes a miniaturized UHF antenna for

IoT applications. Operating at 474 MHz, the small antenna is very low profile with a

lateral radius of 0.052λ and a height of 0.005λ. Its miniaturization is based on novel

structure design with CMA. The main contributions of this chapter are summarized as

follows:

• The shape of a typical monopole is transformed to achieve a compact and low-

profile antenna. The ground plane for a monopole is transformed into a small
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disk and the monopole is placed in the same plane of the disk and bent around it

to become a circular arm. The CMA is carried out to understand the proposed

structure from the point of TCM.

• Based on the current distribution of the significant mode, the disk ground plane is

modified to different rings. Afterwards, the final ground plane is determined based

on modal current and field distributions as well as the eigen values.

• CMA is then performed to discuss the effect of the height of the substrate on the

resonant frequency, and thence complete the guidelines of the radiator design.

• A feeding loop is designed to excite the radiator, and its effects on modal excitation

coefficient and resonant frequency are explored.

• A prototype of the proposed antenna is fabricated and measured. Eigen values

of the final structure with coaxial cable having different lengths are simulated to

analyze the difference between results of simulation and measurement.

3.2 Radiating Body Design and Characteristic Mode Ana-

lysis

3.2.1 Circular Radiating Body with Disk Ground Plane

Monopoles have been widely adopted for wireless communications during the last deca-

des. It typically has a length of about λ0/4 at resonant frequency f0, where λ0 is the

wavelength in free space at f0. However, the monopole has a high profile because its pole

is vertical to the ground plane. In this chapter, a small radiating body with very low

profile is designed by shape transformations on the monopole. The ground plane in a

typical monopole is transformed into a small disk ground plane with a radius of r3. The

monopole is placed in the same plane of the disk and bent around the disk to become

a circular arm with outer radius of r1 and inner radius of r2, as shown in Fig. 3.1. The
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width and average radius of the arm are w1 = r1− r2 and r0 = (r1 + r2)/2, respectively.

The arc between the open and the short end of the arm is defined as θ.
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Figure 3.1: The proposed planar circular radiating body with a disk ground
plane.

(a) (b)

Figure 3.2: Current flows of (a) mode 1 and (b) mode 2.

To better understand and optimize the structure, CMA is carried out on a generic

model of the proposed radiating body and modal current flows of the first two significant

modes are illustrated in Fig. 3.2. In Fig. 3.2(a), the modal current distribution of mode

1 on the circular arm decreases gradually from the short end to the open end, which is
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Figure 3.3: Eigen values and modal significances for the first three modes on
the structure shown in Fig. 3.1.

similar to that of a typical monopole in its vertical form. However, there are two peaks

in the current distribution of mode 2 as shown in Fig. 3.2(b). The mode 1 is therefore

selected for the proposed circular radiating body.

The proposed radiating body should tune the resonant frequency of mode 1 at f0

and suppress the higher modes. According to Chapter 2.4, modes with eigen value

χn = 0 (n = 1, 2, ...) are at resonance and radiate most efficiently. Based on extensive

CMA simulations, mode 1 can resonate at f0 when the proposed radiating body is at

settings of

r1 : r2 : r3 : λ0 = 0.065 : 0.051 : 0.03 : 1

θ = π/6

(3.1)

The effective length of the circular radiating body can be then defined as

le =
r0 + r3

2
(2π − θ) (3.2)

which is about λ0/4 similar to a typical monopole.
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The eigen values and modal significances of the first three modes for the radiating

body with settings in (3.1) are illustrated in Fig. 3.3, where frequency f is normalized

to fN using

fN = f/f0 (3.3)

At fN = 1, χ1 is equal to 0, while χ2 and χ3 are far away from 0. Similarly, S1 is equal

to 1 at fN = 1, while S2 and S3 are very small and near 0, which means that mode 1

is the most significant mode at the resonant frequency. This is consistent with modal

current distributions shown in Fig. 3.2.

3.2.2 Radiating Bodies with Different Ground Planes

In Fig. 3.2(a), modal currents on the disk are flowing mostly along the left edge. There

is hardly any current flow in the center and upper right area of the disk ground plane,

which hints that the impact on the current flow could be slight when these areas are

removed. Fig. 3.4 illustrates three modified structures with different ring ground planes

named as ring 1, ring 2 and ring 3. Ring 1 is formed by only removing the center

area with a radius of r4 from the disk. Simulations show that when r4 = 0.022λ0, impacts

on the current flow between radiating body with the disk and the ring ground plane are

slight. Based on ring 1, ring 2 is formed by removing the upper right part with arc of

(a) (b) (c)

Figure 3.4: Structures with variant grounds and their current flows of mode
1: (a) ring 1, (b) ring 2, and (c) ring3.
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(a) (b)

(c) (d)

Figure 3.5: Near H-fields in the xz -plane of mode 1 for radiating bodies with
different ground planes: (a) disk, (b) ring 1, (c) ring 2, and (d)
ring 3.

θ from the whole ring, while ring 3 is formed by removing the upper left part with arc

of θ from the whole ring.

As shown in Fig.3.4(a) and Fig. 3.4(b), the current flows on both ring 1 and ring

2 are in the opposite rotation direction to the current flows on the arm, which is the

same as the radiating body with disk ground plane in Fig. 3.2(a). However, having an

upper left cut, the current flow on ring 3 is forced in the same rotation direction as the

current flow on the circular arm as shown in Fig. 3.4(c), and therefore stronger and more

uniform near H-field is generated, as shown in Fig. 3.5. Near H-fields in Fig. 3.5(a)-(c)

are very similar, and their magnitudes around the arm are strong while those around the

center are weak. However, the near H-field for ring 3 in Fig. 3.5(d) is nearly uniform
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Figure 3.6: Eigen values of radiating bodies with different ground planes.

from the center to the outer edge of the structure. Thus, the radiating body with ring

3 is more constructive and efficient.

The eigen value χ1 for each ground plane is plotted in Fig. 3.6. Curves of χ1 for

radiating bodies with ring 1 and ring 2 are on the right side and close to the one for

using the disk ground plane. This verifies again that the effect of cutting the central

area of the disk ground plane is slight, and the proposed radiating bodies with disk, ring

1 and ring 2 ground planes have similar radiation behaviors and resonant frequencies.

The curve of χ1 for ring 3 is on the left side to the curve for the disk, and both curves

have similar trend except that there is a wide gap between them. This indicates that

the radiating body with ring 3 not only has the similar radiation behavior as the disk,

but also supports lower resonant frequency.

Radiation patterns for the proposed radiating bodies with different ground planes

are given in Fig. 3.7. Good agreements are observed in radiation patterns for radiating

bodies with different ground planes, especially for disk, ring 1 and ring 2. The radia-

tion pattern for ring 3 is slightly more omni-directional in the E-plane than patterns for

other ground planes. These omni-directional radiation patterns in E-plane are prima-
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Figure 3.7: Far-field radiation patterns of radiating bodies with different
ground planes.

rily resulted from that their circular arm carries current flows with strong magnitudes,

and the radiating body generates magnetic field lines passing through most of the area

surrounded by the circular arm as shown in Fig. 3.5.

With the aforementioned physical insights via CMA, the radiating body with ring

3 is selected for design of the antenna with a feeding structure.

3.3 Proposed Radiator on Substrate

Although the proposed structure can be realized by only a thin metal layer, it is more

practical to fabricate it on the metal attached to the dielectric substrate by adopting

PCB technologies. Therefore, Rogers 5880 substrate with the relative dielectric constant

of εr = 2.2 and height of h is used to model a practical antenna.

The value of h is swept to study performance of the proposed structure on dielectric

substrates. The eigen values of radiators with different h are given in Fig. 3.8, indicating

that the radiating body with a substrate has lowered resonant frequency. Thus, a smaller
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Figure 3.8: Eigen values χ1 of radiators with substrates at different thicknesses
represented by h in terms of λ0.

Table 3-A: Normalized resonant frequencies.

h (percentage
0 0.15 0.30 0.45 0.60 1.20

of λ0)

Normalized resonant
0.93 0.86 0.84 0.82 0.81 0.78

frequencies (fNc)

antenna can be achieved at the same frequency with existence of a substrate. The

normalized resonant frequencies with respect to the resonant frequency of using the disk

ground plane for different h are directly obtained from Fig. 3.8 and they are given in

Table 3-A as fNc.

Thence, the proposed radiator can be generally designed at any desired resonant

frequency with the aid of Table 3-A and the geometric settings given in (3.1). Considering

the tradeoff between very low profile along z-axis and small size in xy-plane, substrate

with height of h = 0.006λ0 is selected for design of an example UHF radiator operating at

its resonant frequency fc = 474 MHz (λc = 632 mm). The radiator is designed through

the following process:
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• First, according to (3.3), the reference resonant frequency f0 can be determined by

f0 = fc/fNc (3.4)

when fc = 474 MHz and fNc=0.81 for h = 0.006λ0 are replaced in (3.4), f0 = 585

MHz can be obtained;

• Then, the corresponding wavelength is calculated as λ0 = c0/f0 = 512 mm, where

c0 is the light speed in free space;

• Finally, according to (3.1), the geometric parameters of the example radiator are

obtained as r1 = 33 mm (about 0.052λc), r2 = 26 mm, r3 = 15 mm, r4 = 11 mm

and h = 3.1 mm (about 0.005λc).

3.4 Proposed Radiator with a Feeding Loop

Previously, the CMA has been utilized to understand the proposed radiating body wit-

hout considering exciting sources. In this section, combining the radiator and a fee-

ding loop on different sides of the substrate, a planar circular antenna is illustrated in

Fig. 3.9(a).

A typical modal flow of mode 1 for the antenna with feeding loop is given in Fig. 3.9(b).

It is clear that the rotation directions of current flows on the radiator and the feeding

loop are opposite. This indicates that the feeding loop and the radiator act as an air

core transformer, which transfers the power from its feed port to the load by magnetic

coupling. Around the resonant frequency of mode 1 for the proposed radiating body,

the eigen values of higher modes would be far away from zero. Moreover, according

to (2.17) given in Chapter 2, if the small loop is placed near the strip connecting the

inner ring and the outer circular arm, where the magnitude of the current flow of mode

1 is strongest and the one of mode 2 is weak, J1 will be the only modal current with
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significant coefficient.

The main function of the feeding loop is to excite mode 1 to transfer the energy from

source to the radiator, which is equivalent to realize the impedance matching between

source and radiator excited in mode 1. The function can be realized by adjusting the

(a) (b)

Figure 3.9: (a) Structure layout of the proposed circular antenna with a fee-
ding loop. (b) The current flow of mode 1 for the antenna.
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size of the feeding loop. As shown in Fig. 3.9(a), the area of the feeding loop can be

controlled by adjusting the length and arc of the feeding loop, indicated as lf and φ.

When φ = π/9, the modal excitation coefficients and normalized resonant frequency

(fNc) of mode 1 with respect to lf are extracted from a series of simulations. According

to (2.19), the modal excitation coefficient is the inner product of the modal current and

the impressed electric field. Since the modal currents are independent of each other, the

modal excitation coefficient does not exist a fixed threshold, and its variation trend for a

specific mode should be considered to evaluate effects of different feeding structures on

this mode. From results given in Fig. 3.10, when lf increases, resulting in the increase of

the loop coupling area, the modal excitation coefficient of mode 1 increases significantly,

while its normalized resonant frequency increases slightly. It means that the modal

excitation coefficient can be directly adjusted by lf , and the effect of the feeding loop on

the resonant frequency is small.

3.5 Simulation and Measurement Results and Analyses

An example of the proposed circular antenna operating at 474 MHz is then modeled

and simulated in the CST microwave studio with parameters of r1=33 mm, r2=26 mm,

r3=15.5 mm, r4=11.5 mm and h=3.1 mm. The antenna was fabricated and measured

at QMUL. The prototype is shown in Fig. 3.11(a) and (b) where a customized SMA

connector is soldered on the probe pads through holes.

Fig. 3.12 presents the VSWR and radiation efficiency of the proposed antenna. Reso-

nant frequency and V SWR < 2 bandwidth are about 474 MHz and 2.2 MHz in simu-

lation, and 471 MHz and 3.3 MHz for measurement. The simulated radiation efficiency

is 84% at 474 MHz. The measured VSWR has a lower center frequency and a wider

bandwidth than the simulated one, which will be discussed later. The radiation patterns

of the proposed antenna is also simulated by CST and given in Fig. 3.13. It is clear that

the radiation patterns of the proposed antenna agree well with the ones of the radiator
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(a) (b)

Figure 3.11: Prototype of the proposed antenna: (a) radiator side view and
(b) feeding loop side view. (r1=33mm, r2=26mm, r3=15.5mm,
r4=11.5mm, and h=3.1mm corresponding to parameters in
Fig. 3.1).
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Figure 3.12: VSWR and radiation efficiency of the proposed antenna.

given by CMA. This means the radiation patterns of the CMA can be used to predict

the radiation behavior of the proposed antenna.

As shown in Fig. 3.11(a), the antenna prototype is measured with a SMA connector

and test cable, which generally affects the near field around the radiating body for such a

UHF band compact antenna with small ground structure although calibration is carried
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out. To make sure the difference between simulation and measurement results in Fig. 3.12

is introduced by the measurement setup, CMA is carried out again with cables having

different lengths of l. As shown in Fig. 3.11(a) and (b), the cable is located in the center

of the proposed antenna, and Fig. 3.14 gives the χ1 obtained with corresponding l.

Figure 3.13: Radiation patterns of the proposed antenna.
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Figure 3.14: Eigen value χ1 of the proposed circular radiator with a test cable
at different lengths.

It can be observed that the resonant frequency of the antenna decreases when the
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Figure 3.15: Comparison of bandwidth-efficiency product between the propo-
sed antenna and other antennas.

length of cable increases. When l < (λc/8), only resonant frequency decreases slightly

while the fractional bandwidth remains unchanged, indicated by the unchanged slope

around the resonant frequency. When l > (λc/4), resonant frequency still decreases

while the fractional bandwidth begins to increase, because the slope around the resonant

frequency decreases. When l ≈ (λc/2), the cable becomes a dipole with strong radiation

at the operating frequency, it will strongly affect the desired radiation mode of the

proposed small antenna. So, the proposed circular antenna can keep its performance

for compact devices without a feeding cable, e.g. directly connecting to a small sensor

whose system performance will be tested and demonstrated in Chapter 6.

Finally, to evaluate performance of the proposed circular antenna, its bandwidth-

efficiency product versus electrical size is compared with various antennas as illustrated

in Fig. 3.15. The ideal dipole antenna has the same electrical size and resonant frequency

as the proposed one. The experimental limit of bandwidth-efficiency product for planar

antennas is obtained from products of the best planar antennas in [2]. The performance

data contains the bandwidth-efficiency product of each antenna (Bη)a, the theoretical
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bandwidth-efficiency product limit (Bη)L, the experimental bandwidth-efficiency pro-

duct limits (Bη)E , and the ratio of the bandwidth-efficiency product of each antenna

to the theoretical limit with the same electrical size (Bη)a/(Bη)L. In Fig. 3.15, solid

and hollow symbols with the same electrical size represent (Bη)a and (Bη)a/(Bη)L of

the same antenna. It is observed that all (Bη)a are below the curve of (Bη)L, and the

change trend of gap between (Bη)L and (Bη)E indicates that the smaller the antenna

is, the more difficult the design of a planar small antenna is.

3.6 Summary

A miniaturized circular UHF antenna is proposed in this chapter. CMA is used to analyze

and design the antenna whose radiating body is transformed from a monopole. After

comparing radiation behaviors and sizes of radiating bodies with different ground planes,

the one with an improved ring ground plane is selected. CMA also points out that the

size of radiator fabricated on a substrate is smaller than the one with only conductor,

and the normalized resonant frequency for the radiator fabricated on substrate is a scale

factor of the substrate height. Then, a feeding loop is designed to excite the radiator

through magnetic coupling. Finally, an example of the proposed antenna is designed and

fabricated to resonate at 474 MHz with a radius of 33 mm (0.052λ) and a height of 3.1

mm (0.005λ). CMA of the proposed antenna with a test cable having different lengths

is applied to explain the difference between simulated and measured VSWRs.



Chapter 4

Design of an UWB U-shaped

Printed Monopole Antenna

4.1 Introduction

As introduced in Chapter 2, operating frequencies of TVWSDs are dynamically obtained

from geo-location database, spectrum sensing or their combination. Thence, antennas

covering the entire TV spectrum are preferred for IoT devices operating over TVWS, and

a compact and low-profile candidate is proposed in this chapter. Specifically, the related

work on UHF TV antennas and the main contributions of this chapter are reviewed in

Section 4.1 CMA on the radiating body and the proposed antenna are carried out in

Section 4.2. Section 4.3 presents a parameter study, simulation and measurement results

discussions. Finally, Section 4.4 concludes this chapter.

4.1.1 Related Work

Begun by some European countries around 2006, the digital television transition swit-

ches analog broadcast television to digital. From 2009, full-power television stations

51
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nationwide have been required to broadcast exclusively in a digital format in the United

States [87]. Since than, new types of digital television (DTV) receiving antennas have

attracted significant interest from both the academia and the industry. These antennas

are required to not only offer a wide operating bandwidth covering the whole digital video

broadcasting —terrestrial (DVB-T) band (470-862 MHz), but also be compact enough

to be integrated into mobile communication devices such as laptop, mobile phone, vehi-

cles, etc. [5, 88–90]. Chi et al. [5] separated a rectangular plate by a step-shaped feed

gap to create a dipole consisting of two asymmetric radiating portions. By exciting two

resonant modes centered at 530 MHz and 730 MHz, they realized a DVB-T antenna

with VSWR lower than 2.5 from 470 MHz to 806 MHz. Printed on a FR4 substrate, the

proposed antenna had a volume of 227 mm × 20 mm × 0.4 mm. Caso et al. [88] pro-

posed a DVB-T antenna based on PIFA. Again, this antenna consisted of two radiating

elements, and the driven one was the primary element governing the lowest resonant

frequency. The upper resonant frequency was controlled by the other coplanar parasitic

branch. This antenna covered 470-862 MHz with less than -6 dB return loss within a

dimension of 217mm × 12mm × 8mm. To reduce the antenna size, Ma and Chu [89]

folded a radiation patch to inverted-U shape and cut a notch on the patch to increase the

equivalent electrical length. In addition, a folded parasitic arm surrounding the patch

was introduced to broaden the bandwidth. On a 157 mm×70 mm system ground plane,

the proposed antenna occupied a size of 70 mm× 42 mm, and its measured impedance

bandwidth (3:1 VSWR) reached 360 MHz (460-820 MHz). Chen [90] meandered a prin-

ted monopole to create the first low-frequency resonance within a compact space. In

addition, he extended two sleeves from the ground, which, on the one hand, lengthened

the current path of the second resonant mode to lower the resonant frequency of the

second mode; on the other hand, improved impedance matching over the entire ope-

rating frequency band by increasing effective electrical length of the ground. Finally,

this antenna achieved -10 dB bandwidth from 459 MHz to 891 MHz and its size was

174 mm× 48 mm× 1.6 mm. Nevertheless many antennas have been designed to cover

the UHF TV spectrum, most of existing designs were mainly based on parameter opti-
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mization, and further physical insights are expected to reveal how the UWB property

is fulfilled. Fortunately, those CMA-based bandwidth study introduced in Section 2.4.4

inspire me to design and understand an UWB antenna for IoT devices working at TVWS

with the help of CMA.

4.1.2 Contributions

In this chapter, a compact and low profile UHF UWB antenna is proposed with CMA,

and the main contributions of this chapter are summarized as follows:

• A U-shaped patch is transformed from a rectangular plate following physical essence

revealed by the CMA.

• Based on patch’s modal characteristics, specific modes are selected to be excited

for the UWB operation. Corresponding feeding location is also decided.

• Characteristics of significant modes are studied again after printing the radiating

body onto a thin substrate. Characteristic angles, modal current distributions, and

their contributions to the total radiation are discussed, which helps to understand

the operating mechanism of an UWB printed monopole antenna from the point of

TCM.

• Effects of significant parameters on the antenna performance are discussed, and

the whole antenna geometry is optimized. An antenna prototype is fabricated and

measured to verify its ultra-wide impedance bandwidth and monopole-like radia-

tion patterns. Realized gain and radiation efficiency over the UHF TV spectrum

are also measured.

• The bandwidth efficiency product against antenna electrical size is calculated and

compared with the theoretical limit and classical antenna designs.
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Figure 4.1: Normalized current distributions of the first three modes for (a)
rectangular plate and (b) U-shaped plate in simulation.

4.2 Antenna Design

4.2.1 Radiating Body Design and Characteristic Mode Analysis

The metal rectangular plate has been commonly adopted as a radiating body in UWB

antennas [91], [92]. Here, based on the TCM discussed in Section 2.4, characteristic

modes of a metal rectangular plate having a length of L and a width of W are analyzed.

Currents of its first three modes are illustrated in Fig. 4.1(a), and according to which,
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Figure 4.2: Simulated characteristic angles of the first three modes for rectan-
gular (solid curves) and U-shaped (dashed curves) plates. Modes
1, 2, and 3 are noted by ’◦’, ’4’, and ’+’, respectively. L is the
length of the plate and c is the speed of light.

mode 1 and mode 2 are characterized by currents flowing along the long axis and the

short axis of the plate, respectively. Having the current along the long axis of the plate,

mode 3 is a high order mode of mode 1 and has a current null. Characteristic angles

of the rectangular plate are shown as solid curves in Fig. 4.2. It is seen that modes 1

and 3 resonate at around c0/2L and c0/L, i.e. L is half wavelength and one wavelength

of the resonant frequencies of modes 1 and 3. Characteristic angles of modes 1 and 3

pass through 180o smoothly, which indicates that they have the potential to contribute

to wideband operations, and hence currents of these two modes in Fig. 4.1(a) are further

explored.

It is noticed that the current strengths of both modes 1 and 3 are weak in the

middle of the plate, and thus parts of the plate are removed and a U-shaped plate

appears. Currents of the first three modes supported by the U-shaped plate are plotted

in Fig. 4.1 (b), according to which, currents of modes 1 and 3 are along the long axis of

the plate as the corresponding modal currents of the original plate. However, some new
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Figure 4.3: Geometry of the proposed antenna (a) top view and (b) side view.

modes come up after cutting the slot, and for instance, the second mode illustrated in

Fig. 4.1 (b). Modal characteristic angles of the U-shaped plate are given in Fig. 4.2 as

dashed curves together with those of the original plate. Mode 2 of the U-shaped plate

passes through 180o exceedingly sharply, and hence it is impossible to contribute to the

wideband performance. Therefore, modes to be utilized to realize UWB property are

those having currents along the long axis of the plate. Comparing characteristic angles

of the rectangular and the U-shaped plates, it can be found from Fig. 4.2 that resonant

frequencies of modes 1 and 3 keep invariant, but characteristic angles of the U-shaped

plate have slightly flatter gradients near their resonances, which is helpful to achieve

wider bandwidth.
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4.2.2 Characteristic Mode Analysis on the Proposed Antenna

The U-shaped L ×W plate is then printed on a 0.8 mm-thick FR4 PCB board backed

by a ground plane for easier fabrication. According to analyses conducted in [69], the

presence of the ground and the substrate would not significantly alter modal current

distributions on the radiating plate, although they would affect modal resonances. To

excite modes capable of radiating efficiently over a wide range of frequencies like mode 1

and mode 3 discussed in Section 4.2.1, and other high order modes having currents along

the long axis of the plate, a microstrip line is adopted to feed the radiating body from the

bottom of its long axis as Fig. 4.3 shows. The feeding is applied at the center to preserve

the symmetry of the structure and avoid unexpected modes, having current components

along the short axis of the radiating body, being excited. Based on [93], cutting a notch

on the ground can improve impedance matching of printed monopole antennas. For this

antenna, instead of inserting a notch to improve the matching, the edges of the notch are

optimized to arcs to extend the electrical length of the ground. Afterwards, characteristic

modes of the whole structure are analyzed with a 50 Ω-impedance excitation being taking

into account.

After applying an excitation voltage on the structure, modal reflection coefficients can

be obtained following deductions given in Section 2.4.3 and modal VSWRs (V SWRn)

can then be acquired from

V SWRn =
1 + |Γn|
1− |Γn|

=
1 + | 1

Y n
in
− Z0|

1− | 1
Y n
in

+ Z0|
(4.1)

When the long axis of the radiating body is 145 mm, the total VSWR combined by

all modes is less than 2 from 500 MHz, and hence L = 145 mm is used for the following

simulations to discuss performance of the antenna over the UHF TV spectrum. Modes

become complex after having ground, feeding strip and substrate, and five significant

modes are depicted in Fig. 4.4. For the first mode shown in Fig. 4.4(a), currents on
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Figure 4.4: Simulated modal current distributions of (a) mode 1 at 370 MHz,
(b) mode 2 at 700 MHz, (c) mode 3 at 1080 MHz, (d) mode 4 at
1010 MHz, and (e) mode 5 at 1300 MHz on the proposed antenna
(current indicators on the U-shaped radiator are noted by solid
lines, while those on the ground are noted by dashed curves).

the radiating body and the feeding strip have the same direction, while in Fig. 4.4(b)

a current null appears on the feeding strip in the second mode. The third mode has a

null at the bottom of the radiating body and another on the feeding strip as Fig. 4.4(c)

shows. For the fourth mode illustrated in Fig. 4.4(d), there are nulls at the middle of

the radiating body and around the junction of the feeding strip and the radiating body.

In Fig. 4.4(e), two nulls emerge on the radiating body in the fifth mode and its feeding
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Figure 4.5: Simulated characteristic angles of modes 1-5 on the proposed
antenna.

strip also sees one current null. On the radiating body, all the five significant modes

have currents along its long axis as expected.

The proposed antenna is simulated with 10 MHz frequency interval over 300-1300

MHz, and characteristic angles of the five significant modes are plotted at Fig. 4.5,

in which some markers are removed to ensure they do not overlap with each other.

According to Fig. 4.5, except for mode 1 whose characteristic angle passes through 180o

steeply at 370 MHz, all other modes present wideband potential. It is also noticed that

characteristic angles of mode 3 and mode 4 are very close to each other at around 1100

MHz, and they seem to be mixed up. Therefore, to avoid unreliable mode tracking

due to similar current distributions, the proposed antenna is simulated again over a

narrower frequency range (1050-1150 MHz) and with denser frequency interval (2 MHz).

The recalculated characteristic angles of mode 3 and mode 4 from 1050 MHz to 1150

MHz are the same as those given in Fig. 4.5 within the same frequency range, and

current distributions of each mode are checked manually to make sure the same current

distribution exists at each frequency.

Subsequently, modal VSWRs of the five modes are plotted in Fig. 4.6 together with

the total VSWR simulated by FEKO. Based on Fig. 4.6, antenna performance over
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Figure 4.6: Simulated modal VSWRs of modes 1-5 and the total VSWR on
the proposed antenna.
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Figure 4.7: Simulated characteristic angles of modes 1-5 after reducing Lrect
used in Fig. 4.5 by 8 mm.

600-1000 MHz is determined mainly by mode 2. Mode 3 and 4 are dominant within

1000-1150 MHz. And the highest resonance is contributed by mode 5. However, the

VSWR between 450 MHz and 600 MHz is worth a discussion. Within this frequency

range, modal VSWRs of all the five modes are inferior, but the total VSWR is less than

3. Observing modal currents (αnJn) of all modes at frequencies within this region, it

is found that the imaginary part of the modal current of the dominant mode, which is
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mode 1 at frequencies lower than 485 MHz and mode 2 within 485-600 MHz, is far from

0, but multiple non-radiating modes (whose eigenvalues are far from 0) contribute to

obtain an imaginary part of the cumulative current close to 0, and as a result, good total

impedance matching and low overall VSWR are achieved.

The five significant modes are analyzed again with different sizes of the notch. Cha-

racteristic angles of modes 1-5 are plotted in Fig. 4.7 after reducing Lrect by 8 mm and

keeping Lground invariant. Comparing modal characteristic angles given in Fig. 4.5 and

Fig. 4.7, it is noticed that characteristic angles of the second mode have a significant fre-

quency shift, and its resonance moves from 700 MHz to 735 MHz. Observing the current

distribution on the radiating body of this mode, it can be found that the distribution is

the same as that of mode 1 labeled in Fig. 4.1(b) whose resonance is c0/2L, which is 1034

MHz when L is 145 mm, according to the discussion in the Section 4.2.1. Hence, the

presence of the ground and the substrate affect modal resonances, and the resonances

are also affected by size of the notch.

4.3 Parametric Study and Measurement

4.3.1 Parametric Study

After understanding the operating mechanisms of the proposed structure, all parameters

are optimized through simulation in the CST Microwave Studio. The width of the feeding

strip is set to Wm = 1.6 mm at the bottom of the antenna to match with the 50 Ω SMA

connector, and it tapers to 1.1 mm (Wf = 1.1 mm) to match with the impedance of the

radiating body. Significant parameters are discussed in this part to obtain the optimal

Table 4-A: Dimensions of the proposed antenna.

Parameter L W H Lrect Lground g

Value (mm) 145 35 0.8 58 85 1

Parameter W1 W2 W3 W4 Wm Wf

Value (mm) 14 14 6 19.4 1.6 1.1
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Figure 4.8: Simulated VSWRs for different widths of the slit between the radi-
ating body and the ground.

antenna performance.

1) Slit between the radiating body and the ground

According to current distributions shown in Fig. 4.4, currents of all dominant modes

are concentrated near the slit (noted by g in Fig. 4.3) between the radiating body and

the ground. The effect of adjusting width of the slit is indicated in Fig. 4.8. When

increasing g, the V SWR < 2 impedance bandwidth starts from slightly lower frequency,

but VSWRs at high frequencies of the UHF TV spectrum deteriorate. Consequently, the

antenna exhibits multiband instead of UWB property as expected. However, an excessive

narrow slit results in shrinking of the antenna bandwidth and unsatisfying performance

at low frequency band of the UHF TV spectrum. After extensive simulation, a 1 mm-

wide slit is chosen to enable the antenna to cover all channels of the UHF TV spectrum

and to realize the widest bandwidth.

2) Size of the notch

Based on analyses in Section 4.2.2, the notch on the ground affects resonances of

modes exhibiting wideband potential, and hence it plays a crucial role for the proposed

antenna to achieve UWB performance. The ground can be regarded as a combina-
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Figure 4.9: Simulated VSWRs for different dimensions of the notch on the
ground.

tion of a rectangular having length Lrect and two truncated 1/4 ellipses. Keeping total

length Lground of the ground constant, portions of the rectangle and truncated 1/4 ellip-

ses decide depth and width of the notch and, as a result, affect impedance matching. As

Fig. 4.9 illustrates, increasing Lrect, which makes the rectangle part take higher propor-

tion, leads to better matched impedances at low frequencies of the UHF TV spectrum,

and hence lower VSWRs. But VSWRs become worse at high frequency bands of the

UHF TV spectrum due to poorer matching. Increasing the proportion of the truncated

1/4 ellipses by decreasing Lrect causes opposite results to appear. Ultimately, a trade-off

is made to set Lrect as 58 mm, and the widths of upper and lower edges of the notch W4

and W3 are 19.4 mm and 6 mm, respectively.

4.3.2 Antenna Measurement

With the optimized parameters indicated in Table 4-A, a prototype is fabricated and

measured in QMUL. Photos of the antenna prototype are shown in Fig. 4.10. The

simulated and measured VSWRs are depicted in Fig. 4.11. As shown in the figure, the

simulated V SWR < 2 impedance bandwidth is from 474 MHz to 1260 MHz, and it is

from 474 MHz to 1212 MHz in measurement. Measured VSWRs agree well with those
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(a) (b)

Figure 4.10: Prototype of the proposed antenna (a) top view and (b) back
view.

in simulation, and differences could be introduced from the cable loss and fabrication

imperfections. Table 4-B compares the impedance bandwidth and the size of the propo-

sed antenna with those of other antenna designs operating over the UHF TV spectrum.

And according to the table, the proposed antenna exhibits strong competitiveness on

the compactness and the bandwidth.

To observe radiation patterns of the proposed antenna over the UHF TV spectrum,

radiation patterns at three significant frequencies 474 MHz, 630 MHz, and 786 MHz,

which are central frequencies of the first, the middle, and the last channels of the UHF TV

spectrum, were simulated in the CST Microwave Studio and measured inside an anechoic

chamber. Radiation patterns of the proposed antenna on both electric field and magnetic

field planes at these frequencies are shown in Fig. 4.12. It is noticed that radiation
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Figure 4.11: Simulated and measured VSWRs of the proposed antenna.

patterns on the H-plane correspond well to those obtained in simulation, and they are

omnidirectional at all these frequencies. Two radiation nulls appear on the E-plane

like patterns of a traditional monopole. Small discrepancies between measurement and

simulation results could be caused by the effects introduced by cables and unavoidable

scatterings in the chamber.

Realized gain and radiation efficiency of the proposed antenna over the UHF TV

spectrum are then measured to evaluate its performance at the maximum radiation

direction and all areas surrounding it, respectively [96].

The gain-transfer method is used during measurement in the anechoic chamber to

Table 4-B: Bandwidths and sizes of antennas covering the UHF TV spectrum
(λL is the wavelength of the lowest operating frequency).

Antenna VSWR BW (MHz) BW (%) Size (mm3) Electrical size

[5] 2.5 : 1 470− 810 53.1% 227× 22× 0.4 0.36λL × 0.03λL × 0.001λL
[88] 3.0 : 1 470− 862 58.9% 217× 12× 8.0 0.34λL × 0.02λL × 0.010λL
[90] 1.9 : 1 459− 891 64.0% 174× 48× 1.6 0.27λL × 0.07λL × 0.002λL
[94] 2.0 : 1 458− 960 76.6% 242× 35× 0.8 0.37λL × 0.05λL × 0.001λL
[95] 2.5 : 1 463− 871 61.2% 241× 26× 0.8 0.37λL × 0.04λL × 0.001λL

Proposed 2.0 : 1 474− 1212 87.5% 231× 35× 0.8 0.36λ0 × 0.06λL × 0.001λL
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Figure 4.12: Simulated (solid curves) and measured (dashed curves) E-plane
and H-plane radiation patterns at (a) 474MHz, (b) 630MHz, and
(c) 786MHz.

measure the gain of the proposed antenna [97].

(GT )dB = (GS)dB + 20log10(
ET
ES

) (4.2)
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Figure 4.13: Simulated and measured realized gains over the UHF TV
spectrum.

where (GT )dB and (GS)dB are gains (in dB) of the antenna under test and the standard

gain antenna. ET and ES are electric field intensities of the two antennas measured in an

anechoic chamber. A discone antenna is used as the standard gain antenna and its gain

has been measured in the National Physical Laboratory in U.K. After measuring electric

field intensities of both the antenna under test and the discone antenna, the gain of the

proposed antenna over the UHF TV spectrum is calculated and plotted in Fig. 4.13.

Its simulated gain is given in the same figure for comparison. Ranging from 1.4 dBi

to 1.9 dBi, the measured gain reaches 1.7 dBi in average over 470-790 MHz, and it is

close to the simulated result. The difference could be caused by cables and unavoidable

scattering in the chamber, and the imprecise levels of height among the reference discone

antenna, the proposed antenna, and the transmitting horn antenna may also introduce

discrepancies.

Traditional radiation efficiency measurement methods include pattern integration

method, Wheeler Cap method, directivity/gain method, etc. However, these methods

are limited by high uncertainties or narrowband appliance [98, 99]. Reverberation cham-

bers, basically shielded rooms, use a metallic rotating paddle to create a continuously

changing boundary condition of the electromagnetic fields in the chambers. Offering a
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Figure 4.14: Set up of the antenna radiation efficiency measurement using
two-antenna method in a reverberation chamber.

statistical environment, the reverberation chamber is becoming popular as an alterna-

tive test facility for both electromagnetic and electromagnetic compatibility measure-

ments [100]. In recent years, different methods have been explored to measure radiation

efficiencies of antennas in reverberation chambers, e.g. the reference antenna method, the

one-antenna method, and the two-antenna method. The antenna efficiency measurement

in the reverberation chamber has its own advantages compared with other methods: it

is robust (no need for high precision mechanical system), broadband, and with no need

for a reference antenna [101].

In this work, the proposed antenna is measured in a reverberation chamber at the

University of Liverpool based on the two-antenna method [102], [103]. As Fig. 4.14

demonstrated, duplicate antennas under test are placed in the reverberation chamber at

the same time, and the radiation efficiency can be calculated from:

η =
< |S21,s|2 >

1− | < S11 > |2

√
2CRC

ωτRC < |S22,s|2 >
(4.3)
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Figure 4.15: Measured radiation efficiency of the proposed antenna over the
UHF TV spectrum.

where S11 and S22 are reflection coefficients of the the two antennas under test respecti-

vely and S21 is the transmission coefficient between them. < · > means the average

value of the S-parameters. S∗,s is the stirred part of the S-parameters and it can be

obtained by the well-known vector average subtraction S∗,s = S∗− < S∗ > [104]. τRC is

the chamber decay time and CRC = 16π2V/λ3 is the chamber constant, in which V is

the volume of the reverberation chamber.

Measured radiation efficiency over the UHF TV band is shown in Fig. 4.15, and

according to which, the radiation efficiency is between 76.2% and 92.4% across 470-790

MHz. Thus, most power delivered to the antenna is capable of being radiated. Based on

measurements and discussions above, both gain and radiation efficiency of the proposed

antenna are almost uniform over the UHF TV spectrum, and these measurement results

indicate that the proposed antenna could be a competitive antenna candidate for IoT

devices operating over TVWS.



Chapter 4. Design of an UWB U-shaped Printed Monopole Antenna 70

4.3.3 Bandwidth-Efficiency Product against Antenna Electrical Size

As discussed in Section 2.2, the maximum bandwidth of an antenna is constrained by

its electrical length. Therefore, to appraise the overall performance of the proposed

antenna, its product of bandwidth and efficiency is compared with the theoretical limit

and products of other classic designs.

For the proposed printed monopole antenna, its center operating frequency is 843

MHz and the minimum radius of the sphere enclosing the antenna is a = 116.8 mm. The

electrical size is ka = 2.06. With the measured fractional bandwidth (87.5%) and the

average radiation efficiency (86.4%), its bandwidth-efficiency product is 87.5%×86.4% =

0.756. The bandwidth-efficiency product against electrical size of the proposed antenna

is plotted in Fig. 4.16 together with those of antennas given in [2] for comparison. Since

the electrical size of the proposed antenna is 2.06, in Fig. 4.16, antennas having electrical

size smaller than 0.5 and larger than 3 are omitted. According to Fig. 4.16, performance

of the proposed antenna is very close to the theoretical limit, and its bandwidth-efficiency

product has exceeded most designs having similar electrical size. This discussion proves

that full radiation potential on the compact printed monopole antenna has been explored

by the CMA.

4.4 Summary

A novel compact antenna designed for IoT devices is proposed in this chapter. The CMA

is employed to analyze modal characteristics of a rectangular plate and to guide the slot

cutting in the middle of the plate. After applying a microstrip feed and optimizing the

ground, the proposed antenna realizes 87.5% V SWR < 2 impedance bandwidth from

474 MHz to 1212 MHz within a dimension of 0.36λ0×0.06λ0×0.001λ0 (λ0 is wavelength

of the minimum operating frequency 474 MHz). The CMA is further utilized to reveal

that the UWB behavior is achieved by exciting multiple modes able to radiate efficiently
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Figure 4.16: The measured bandwidth-efficiency product for antenna designs
summarized in [2] (noted by ’◦’) and the proposed antenna (noted
by ’+’).

over different frequency bands. It has been observed that the radiation pattern of the

antenna is omnidirectional over the UHF TV spectrum, and 1.7 dBi average gain and high

radiation efficiency are achieved within its operating frequency band. Furthermore, the

bandwidth-efficiency product reached by the proposed antenna is closer to the theoretical

limits than most of previous antenna designs. Owing to its compactness, low profile,

UWB property, high radiation efficiency and reasonable gain, the proposed antenna can

be a strong contender for smart IoT devices operating at TVWS.



Chapter 5

Design of an UWB Dual Annular

Ring Antenna

5.1 Introduction

In Chapter 4, a printed monopole antenna achieving the UWB property over UHF was

proposed and studied. It has been revealed by CMA that multiple radiating modes

contribute together to achieve the wide bandwidth. In this chapter, the TCM will be

fully applied to realize a TVWS antenna for IoT communications. The related work on

bandwidth enhancement with CMA and feeding structure design, as well as the main

contributions of this chapter are reviewed in Section 5.1. Section 5.2 carries out CMA

on an annular ring and proposes a feeding structure to excite the desired modes on the

ring. Then, both the ring and the feeding structure are modified in Section 5.3 to create

more radiating modes and excite them efficiently. The final antenna is optimized in

Section 5.4 where simulation and measurement results are also presented and discussed.

Finally, Section 5.5 concludes this chapter.

72
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5.1.1 Related Work

Since the CMA can distinguish characteristic modes on a structure and determine their

resonating frequencies, researchers have utilized multiple modes to broaden antenna

bandwidth. Adam and Bernhard [79] proposed the ”resonance-antiresonance conduc-

tance ratio” to estimate an antenna’s multiresonant potential even when the conductance

values are not centered around the desired system conductance. They then appraised

a low order TM10-like mode and a higher-order TM10-like mode to broaden bandwidth

of the original TM10 mode. Finally, the antenna’s bandwidth was nearly doubled by

combining resonances of the TM10 mode and the higher-order TM10-like mode. Shih

and Behdad [105] enhanced the bandwidth of a vehicular VHF antenna by utilizing the

vehicle platform as the major part of the radiating structure. A meandered monopole

antenna mounted on the rear operated as a capacitive coupling element to excite a desi-

red set of characteristic modes of the platform. As well as determining the modes of

interest, applying a suitable excitation is also important to enable the antenna desig-

ned through CMA. Martens et. al [106] categorized the coupling elements used for the

selective excitation of specific characteristic modes into the inductive coupling element

(ICE) and the capacitive coupling element (CCE). They demonstrated the ICE placed

at the current maxima and the CCE placed at the current minima could excite a specific

current independently. They also concluded that ICE offered advantages over CCE in

terms of mode purity. After analyzing characteristic modes of a folded radiating ground

plane, Fabrés [107] utilized a small planar monopole to excite the structure. Follow-up

analyses demonstrated that this feeding monopole behaved as a wideband impedance

transformer between the feeding port and the upper plate, providing better performance

than the classical coaxial probe that created a distributed voltage difference between the

lower and upper plates.
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5.1.2 Contributions

Motivated by the previous work, this chapter proposes a multi-mode UWB antenna

design procedure guided by the CMA. The main contributions of this chapter are sum-

marized as follows:

• Annular ring is one of the common antenna structures. With eigenvalues given

by CMA, this chapter demonstrates that its resonant frequency obtained from the

traditional estimation is not accurate enough. Therefore, a closed-form estimation

is given to clarify the relationship between dimensions of an annular ring and

resonant frequencies of the basic modes (mode 1 and mode 2) and to provide a

general design reference for annular ring-shaped antennas.

• The fitted polynomial is firstly used to determine size of the original annular ring.

Afterwards, to create new modes resonating at higher frequencies, the polynomial

is used again on a smaller ring inserted into the original one.

• Slots are cut on the annular ring to reduce modal resonant frequencies. Decisions

about positions to cut slots and the effects to different modes are analyzed with

the help of CMA.

• Rectangular metal strips are used as the feeding structure. These strips operate as

dipoles and the electromagnetic energy is coupled to the annular rings to produce

induced currents. To excite all the modes of interest to cover the whole UHF TV

spectrum, the feeding structure is carefully designed and refined.

• A prototype of the proposed antenna is fabricated and measured to verify its UWB

performance. Radiation patterns at different frequencies are presented to prove the

change of dominant resonating modes.

• Furthermore, antennas connect with other circuits or sources through coaxial con-

nectors, which are directly connected to the balanced strips on the proposed
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Figure 5.1: Geometry of an annular ring (R1=100 mm, R2=70 mm, r1=68
mm, and r2=45 mm).

antenna. Without a balun structure, leaky current on the outer surface of the

unbalanced coaxial cable may also radiate, and as a result, distort the antenna

radiation pattern. Thence, this chapter finally discusses effects of the coaxial cable

to the antenna performance when it is used for IoT devices.

5.2 Characteristic Mode Analysis on an Annular Ring and

Feeding Structure Design

5.2.1 Characteristic Mode Analysis on an Annular Ring

Before getting into details of the proposed antenna, I first perform the CMA on a metal

annular ring which is selected as the basic structure of the UWB antenna owing to

multiple modal resonant frequencies contributed by its axes with different lengths. For

a ring depicted in Fig. 5.1, modal current distributions and radiation patterns of its first

three modes are presented in Fig. 5.2. In this thesis, modal current distributions and

radiation patterns are given at resonant frequencies of the corresponding modes, which,

according to Fig. 5.3, are 708 MHz for mode 1 and 794 MHz for mode 2. As shown

in Figs. 5.2(a) and (b), the currents of mode 1 and mode 2 flow along the long and

the short axes of the ring, respectively, and corresponding to their orthogonal current

distributions, mode 1 has a donut-like radiation pattern with nulls at the x-axis, while
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Figure 5.2: Modal current distributions and radiation patterns of (a) mode 1
at 708 MHz, (b) mode 2 at 794 MHz, and (c) mode 3 at 950 MHz
on the annular ring shown in Fig. 5.1.

nulls of the radiation pattern turn 90◦ to the y-axis for mode 2. The current of mode

3 flows as a closed loop, and thus it behaves inductively, which can also be verified

from Fig. 5.3 where its characteristic angles are all below 180◦ over the entire simulated

spectrum. Because mode 3 cannot resonate, its current distribution and radiation pattern

at the centre frequency of the simulated band (i.e. 950 MHz) are given as illustrations,

which also applies to Fig. 5.5(c) and Fig. 5.7(d).

As introduced above, mode 1 and mode 2 behave like half-wave resonators whose

resonant frequencies are c0/4R, where 2R is the effective electrical length. Using R =

R1 = 100 mm for mode 1 and R = R2 = 70 mm for mode 2, the calculated resonant fre-

quencies are 750 MHz and 1071 MHz for the two modes, while their resonant frequencies

are 708 MHz and 794 MHz in CMA simulation. The significant difference between the

estimated and simulated results is because the annular ring is elliptically shaped and the

currents always concentrate near the edge, and thus the effective modal electrical lengths

used for estimation are not accurate. Moreover, these lengths also vary with geometry
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Figure 5.3: Characteristic angles of modes 1-3 for annular rings with and wit-
hout slots.

parameters of annular rings. Therefore, to provide a general design reference for annular

ring-shaped antennas, it is crucial to clarify the relationship between dimensions of the

annular ring and resonant frequencies of the basic modes (mode 1 and mode 2). Fortu-

nately, with the help of CMA, resonant frequencies of the two modes for structures with

arbitrary dimensions can be found numerically.

For a given R1, another three parameters are introduced here: the axis ratio of the

outer ellipse k0 = R2/R1, the ratio of horizonal axes of the inner and the outer ellipse

k1 = r1/R1, and the ratio of their vertical axes k2 = r2/R2 to determine dimensions of

the annual ring structure. Then resonant frequencies (in MHz) of mode 1 and mode 2

can be approximated by a polynomial of k1 and k2:

f(k1, k2) = p00 + p10k1 + p01k2 + p20k
2
1 + p11k1k2 + p02k

2
2 (5.1)

The polynomial coefficients deciding resonant frequencies of mode 1 and mode 2 for dif-

ferent k0 when R1 = 100 mm are presented in Table 5-A and Table 5-B. For different R1,

the resonant frequencies can be obtained through the scaling relation. Since modal cur-

rents have strong intensities near the inner edge of the annular ring, as k1 and k2 decrease
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Table 5-A: The polynomial coefficients of (5.1) calculating the resonant fre-
quency (in MHz) of mode 1.

Parameter k0 = 0.3 k0 = 0.4 k0 = 0.5 k0 = 0.6 k0 = 0.7

p00 818.3 806.9 894.8 924.2 1008

p10 -244.6 -202.8 -322.6 -303.6 -385.5

p01 103.3 134.7 50.48 -18.61 -139.2

p20 186.7 178.7 235.9 236.9 295.5

p11 13.89 -30.38 31.39 13.81 23.06

p02 -217.2 -250.9 -271.6 -254.4 -225

Table 5-B: The polynomial coefficients of (5.1) calculating the resonant fre-
quency (in MHz) of mode 2.

Parameter k0 = 0.3 k0 = 0.4 k0 = 0.5 k0 = 0.6 k0 = 0.7

p00 2929 2646 2580 2244 2001

p10 -4020 -3325 -3299 -2570 -2135

p01 -184 -396.6 -555.8 -525 -521.2

p20 1855 1429 1463 1015 782.8

p11 4.11 83.59 176.6 158.1 182.3

p02 192.6 311.7 368.7 339.1 322.5

dramatically, the effective electrical length also decreases, and thus the corresponding

resonant frequency increases rapidly. To preserve the accuracy of the polynomial fitting,

k1 and k2 in (5.1) are confined to be larger than 0.3.

Based on the fitted polynomial above, with geometry parameters given in Fig. 5.1

(i.e. k0 = 0.7, k1 = 0.68, and k2 = 0.64), the estimated resonant frequencies are 710

MHz and 789 MHz for mode 1 and mode 2, which are quite close to the simulated results

(708 MHz and 794 MHz).

5.2.2 Cutting Slots on the Annular Ring

As introduced in Chapter 2, cutting slots can increase the effective modal electrical

lengths and reduce modal resonant frequencies. According to Fig. 5.4(b-1), for mode



Chapter 5. Design of an UWB Dual Annular Ring Antenna 79

Figure 5.4: Current distributions of mode 1 and mode 2 on the original ring
and illustrations of different slot cuttings.

1, nulls appear at φ = 0◦ and 180◦, and its current strength gets stronger when φ is

closer to ±90◦. When slots are only cut at around φ = ±90◦ on the ring as illustrated

in Fig. 5.4(b-2), the resonant frequency of mode 1 is reduced to 614 MHz, while that

of mode 2 has a very slight reduction to 781 MHz. This verifies that cutting slots at

locations with strong currents can significantly reduce modal resonant frequencies, while

slots at locations with weak current strengths barely affect the resonances. Similarly,

the current strength of mode 2 is stronger when φ is closer to 0◦ and 180◦, and when

slots are cut as Fig. 5.4(c-2) depicted, the resonant frequency of mode 2 is reduced to

657 MHz, while that of mode 1 is 700 MHz. Resonant frequencies of mode 1 and mode

2 on the original ring and rings with different slots are summarized in Table 5-C. In

addition, current strengths for both the two modes are stronger at the inner edge of the

ring, and hence slots are cut at the inner edge to maximally increase effective modal

electrical lengths.

For the number of slots, the work aims to use the minimum number of slots and

keep symmetry of the ring (otherwise more modes will be generated which complicates
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Table 5-C: Resonant frequencies of mode 1 and mode 2 on rings with different
slot cuttings.

Structures Without slot With slots cut With slots cut With slots cut

as Fig. 5.4(a) as Fig. 5.4(b-2) as Fig. 5.4(c-2)

mode 1 708 MHz 610 MHz 614 MHz 700 MHz

mode 2 794 MHz 654 MHz 781 MHz 657 MHz

Figure 5.5: Modal current distributions and radiation patterns of (a) mode 1
at 610 MHz, (b) mode 2 at 654 MHz, and (c) mode 3 at 950 MHz
on the annular ring with slots.

the analysis). After a thorough simulation study, it is found that with dimensions of

the annular ring fixed, at least three slots at each area with strong modal currents are

needed to reach the lowest band of the desired frequency. The structure with slots is

illustrated in Fig. 5.5 where updated modal current distributions and radiation patterns

of the slotted annular ring are also provided.

Characteristic angles of modes 1-3 are simulated again for the slotted annular ring,

and results are plotted in Fig. 5.3 together with those of the ring without slots. It is

noticed that the resonant frequencies of modes 1 and 2 have reduced to 610 MHz and 654

MHz, respectively. The characteristic angle curve of mode 3 remains unchanged since
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(a)

(b)

Figure 5.6: Structure layout of the slotted annular ring with a rectangular
strip (a) top view and (b) side view.

the modal current flow is barely affected by the inserted slots, which can be seen from

current distributions of Fig. 5.2(c) and Fig. 5.5(c). Moreover, according to radiation

patterns given in Fig. 5.2 and Fig. 5.5, cutting slots on the ring has very slight effect on

modal radiation patterns.

5.2.3 Characteristic Mode Analysis with Feeding Structure

A rectangular metal strip, serving as the feeding structure, along the long axis of the

annular ring is then placed 3.1 mm below the ring as shown in Fig. 5.6. Normally, new

characteristic modes would be introduced after adding new components to the existing

structure. Thus, CMA is performed on the new whole structure whose modal currents

and radiation patterns are illustrated in Fig. 5.7.

For this new structure, modes having currents along the long axis of the ring, illus-

trated in Figs. 5.7(a) and (b), exhibit similar radiation behavior as that of mode 1 given

in Fig. 5.2(a). Therefore, the two modes are named as mode 1a and mode 1b. The diffe-

rence between these two modes is that currents on the rectangular strip and the annular



Chapter 5. Design of an UWB Dual Annular Ring Antenna 82

Figure 5.7: Modal current distributions and radiation patterns of (a) mode 1a

at 553 MHz, (b) mode 1b at 809 MHz, (c) mode 2 at 654 MHz,
and (d) mode 3 at 950 MHz on the structure containing a ring and
a rectangular strip.
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Figure 5.8: (a) Characteristic angels and (b) modal weight coefficients of

modes 1a, 1b, 2, and 3 given in Fig. 5.7.

ring have opposite directions for mode 1a, while their directions are the same for mode

1b. Radiation patterns and current distributions on the ring structure in Figs. 5.7(c) and

(d) are almost identical to those without a strip, and thus we still name them as mode

2 and mode 3.

Characteristic angles of mode 1a, mode 1b, mode 2, and mode 3 are presented in

Fig. 5.8(a). According to these characteristic angle curves, mode 1a resonates at 553

MHz, while mode 1b resonates at 809 MHz. The resonant frequency of mode 2 is 654

MHz, and characteristic angles of mode 3 are still below 180◦ over the whole simulated
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spectrum.

Applying a delta-gap source at the middle of the strip, the rectangular strip operates

as a dipole. Its maximum near-field radiation is at the direction where the annular ring

sees the maximum characteristic currents for mode 1a and mode 1b. Thence, the energy

is well coupled to the annular ring and produces an induced current, and therefore the

ring structure is excited. The modal weight coefficients of mode 1a, mode 1b, mode 2,

and mode 3 are obtained and shown in Fig. 5.8(b). As we can see from this figure, only

two modes (mode 1a and mode 1b) are significantly excited. Apparently, these two modes

are not sufficient to cover the entire UHF TV spectrum, and hence more characteristic

modes resonating in the UHF band are required to satisfy the UWB requirement.

Based on analyses above, in this work, variations of mode 1 and mode 2 will be

utilized to contribute to the total radiation. Since mode 2 behaves similar to mode 1

but with current along an orthogonal direction, mode 1 and its variations are discussed

next in detail.

5.3 Structure Modification and Feeding Refinement

5.3.1 Structure Modification

Since the resonant frequencies of modes 1a and 1b are 553 MHz and 810 MHz, respecti-

vely, to achieve a fractional bandwidth over 50% as required by the TV frequency band,

a higher resonance at around 1200 MHz is expected. Therefore, a smaller ring is inser-

ted into the original one as shown in Fig. 5.9 to generate more characteristic modes.

Choosing R1 = 50 mm and k0 = 0.6, when k1 = 0.6 and k2 = 0.83 (i.e. r1 = 30 mm

and r2 = 25 mm), the resonant frequency of mode 1 is 1287 MHz based on (4). In

addition, the final resonant frequency might be smaller than the estimation because of

the capacitance between feeding dipoles and rings.
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Figure 5.9: Modal current distributions and radiation patterns of (a) mode 1c

at 552 MHz, (b) mode 4 at 776 MHz, and (c) mode 1d at 1198 MHz
on the structure containing dual rings and a rectangular strip.

CMA simulation is then performed on the structure with dual rings and modes with

currents along the long axis of the ring are given in Figs. 5.9(a), (b), and (c), which

are named as mode 1c, mode 4, and mode 1d, respectively. All the three modes can be

regarded as variations of mode 1 owing to similar radiation patterns with that of mode

1, and their characteristic angles are presented in Fig. 5.10(a). From Fig. 5.8(a) and

Fig. 5.10(a), the characteristic angle curve of mode 1c overlaps with that of mode 1a,

which is reasonable because the two modes have almost identical current distributions

on the outer ring, and the current of mode 1c is weak on the inner ring. The reason

the mode with current distribution shown in Fig. 5.9(b) is named as mode 4 is that

its currents on the outer and inner rings have close strengths but opposite directions,

and more importantly, this is a new mode whose property is contributed by both the

two rings. Based on Fig. 5.9(c), mode 1d is mainly determined by the inner ring and it

resonates at 1198 MHz, which is close to the estimation before.

Using the thin strip as a driven element, the modal weight coefficients of modes 1c,
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Figure 5.10: (a) Characteristic angels and (b) modal weight coefficients of

modes 1c, 4, and 1d given in Fig. 5.9.

4, and 1d are plotted at Fig. 5.10(b). It can be seen that weights of mode 1c and mode 4

are high at frequencies close to their resonances, which indicates that they are properly

excited. Comparing Fig. 5.8(b) and Fig. 5.10(b), it is observed that adding an inner ring

not only creates higher resonances, but also achieves high modal weight coefficients over

wider band. However, although the design at this stage has the potential to realize a

good radiation from 1200 MHz to 1500 MHz due to the existence of mode 1d, the long

strip cannot excite this mode efficiently.
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(a)

(b)

Figure 5.11: Structure layout of dual rings with two rectangular strips (a) top
view and (b) side view.

5.3.2 Feeding Refinement

To excite mode 1d and to improve the antenna performance at the high frequency band, a

shorter strip is added to the original feeding structure as illustrated in Fig. 5.11. With the

additional strip, characteristic angles and modal weight coefficients of mode 1c, 4, and 1d

are presented in Figs. 5.12(a) and (b). Comparing results in Fig. 5.12(a) and Fig. 5.10(a),

it is noticed that adding a shorter strip has little effect to mode 1c and mode 4, while

characteristic angles of mode 1d become less flat near its resonance. Nevertheless, after

the feeding structure refinement, weights of mode 1d near its resonance are higher as

shown in Fig. 5.12(b).

5.4 Antenna Optimization and Measurement

5.4.1 Antenna Optimization

After exciting all the expected modes having currents along the long axis of the ring, two

dipoles along the short axis are used to excite variations of mode 2, and characteristic
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Figure 5.12: (a) Characteristic angles and (b) modal weight coefficients of

modes 1c, 4, and 1d corresponding to structure shown in Fig. 5.11.

modes of the whole structure are analyzed. As shown in Figs. 5.13(a) and (b), mode 2c

corresponds to mode 1c, whose radiation mainly depends on the outer ring, but currents

of mode 2c are along the short axis of the ring. Similarly, mode 5 and mode 2d are

corresponding to mode 4 and mode 1d, respectively. However, for mode 5, when the

longer vertical strip is in operation, the shorter horizontal strip begins to work with

the increase of frequency, and hence positions of current nulls are rotated. Operation

of strips orthogonal to the original modal current directions also make current nulls of

modes 1d and 2d rotate. It is worth mentioning that mode 2d has not resonated over the
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Figure 5.13: Modal current distributions on the structure containing two rings
and four strips (a) mode 1c at 546 MHz, (b) mode 2c at 581 MHz,
(c) mode 4 at 760 MHz, (d) mode 5 at 981 MHz, (e) mode 1d at
1102 MHz, and (f) mode 2d at 1500 MHz.

simulated frequency band according to Fig. 5.14(a), so its current distribution is given

at 1500 MHz where the characteristic angle is the closest to 180◦.

Characteristic angles and modal weight coefficients of modes 1c, 2c, 4, 5, 1d, and 2d

are given in Fig. 5.14. According to Fig. 5.14(a), resonant frequencies of modes 1c, 2c,

4, 5, and 1d are 546 MHz, 581 MHz, 760 MHz, 981 MHz, and 1102 MHz, respectively.
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Figure 5.14: (a) Characteristic angles and (b) modal weight coefficients of

modes 1c, 2c, 4, 5, 1d, and 2d given in Fig. 5.13.

In addition, modal weight coefficients shown in Fig. 5.14(b) indicate that the 5 modes

contribute to the final radiation in turn.

As shown in Fig. 5.15, the structure is then printed on a 3.1 mm-thick Rogers5880

PCB board (with relative permittivity of 2.2 and loss tangent of 0.0009) for easier fabri-

cation and further operating frequency reduction. The proposed structure is further

simulated and optimized in the CST Microwave Studio with substrate included, and the

final dimensions are summarized in Table 5-D.
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(a)

(b)

Figure 5.15: Structure layout of the final antenna (a) top view and (b) bottom
view.

5.4.2 Antenna Measurement

An antenna prototype is then fabricated and measured in Queen Mary University of

London. Photos of the antenna are shown in Fig. 5.16. The simulated and measured

reflection coefficients are given in Fig. 5.17(a), according to which, the proposed antenna

achieves -10 dB impedance bandwidth from 470-987 MHz in measurement, and the

simulated operation spectrum is from 470 MHz to 951 MHz. Fig. 5.17(b) gives the

peak realized gain for the proposed antenna over 470-1000 MHz. It is observed that the

measured gain is between 2.5 dBi and 3.8 dBi over the UWB operating frequency band.

The measurement results agree well with those in simulation, and small differences might
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Table 5-D: Dimensions of the proposed antenna.
Parameter R01 R02 R11 R12 R21 R22 R31

Value (mm) 30.9 21.5 55.1 31.2 73.0 49.0 100.0

Parameter R32 SI Sw gh gv L1 W1

Value (mm) 70.0 19.1 8.0 4.6 5.6 69.9 2.2

Parameter L2 W2 L3 W3 L4 W4 L5

Value (mm) 14.5 1.9 36.0 2.1 13.4 5.0 51.3

Parameter W5 L6 W6 L7 W7 L8 W8

Value (mm) 1.8 6.2 1.9 18.0 2.8 9.9 3.9

(a)

(b)

Figure 5.16: Prototype of the proposed antenna (a) top view and (b) bottom
view.

be introduced from measurement environment and fabrication imperfections.

The simulated and measured radiation patterns at 500 MHz, 600 MHz, 700 MHz,

and 800 MHz in the XZ and YZ planes are shown in Fig. 5.18. Effects of cables and
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(a)

(b)

Figure 5.17: Simulated and measured (a) reflection coefficients and (b) reali-
zed gains of the proposed antenna.

unavoidable scattering in the chamber could be the source of discrepancies between mea-

surement and simulation results. It is observed that the relative magnitudes of Eθ and

Eφ vary with frequency, which is because multiple modes having orthogonal polariza-

tion directions are excited to different extents and the dominant resonant mode changes

over the operating band. In practical, due to the random device directivities and the

multipath effects resulted from complex IoT communication environment, signals have
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Figure 5.18: Simulated and measured radiation patterns at (a) 500 MHz, (b)
600 MHz, (c) 700 MHz, and (d) 800 MHz in the xz and yz plane.
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random polarization directions. Nevertheless, a near-omnidirectional radiation pattern

over the entire operating band is advantageous for practical applications [108, 109].

5.4.3 Discussions on the Unbalanced Coaxial Cable

It is noticed that feeding coaxial cable of the proposed antenna is directly connected to

balanced strips. Since the coaxial cable is an unbalanced structure, currents on both

arms of the strips are asymmetric and the leaky current on the outside surface of the

coaxial cable will produce undesirable radiation and cause pattern distortion. In this

section, effects on antenna performance introduced from the feeding coaxial cable are

discussed in detail.

The proposed antenna is designed for IoT devices whose antennas are integrated

with devices directly rather than connected through a long coaxial cable. Therefore,

the proposed antenna is simulated with length of the coaxial cable (Len) swept as:

Len = 5 mm, Len = 25 mm, and Len = 45 mm. In addition, I delete all components

of the coaxial cable and use a discrete port to excite the antenna, which is noted as

Len = 0 mm in the following discussion.

Firstly, I compare input impedances for coaxial cable-fed and discrete port-fed struc-

tures. As a typical transmission line structure, the coaxial cable transforms the input

impedance of the proposed antenna. Thence, when comparing with the discrete port

excitation, the coaxial cable having length of Len = 5 mm is used to avoid differences

introduced by impedance transformation, and we can regard the impedance not being

transformed on a 5mm-long coaxial cable over antenna’s low operating frequency (below

1 GHz).

The complex impedance (Z = R+ jX) of an antenna includes a resistance (R) and a

reactance (X). The resistance is related to the electromagnetic energy loss from the port

including radiation loss and dissipation loss. Substrates used for antenna and coaxial

cable are Rogers 5880 with a loss tangent of 0.0009 and Teflon with a loss tangent
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Figure 5.19: (a) Resistances and (b) absolute resistances for antennas fed by
a discrete port and a 5 mm coaxial cable.

of 0.0002. Due to the very low material loss, for the sake of simplicity, I assume R

is purely radiation impedance in the following discussion. The reactance is related to

the electromagnetic energy storage in the near field region [110]. The resistances and

absolute reactance for Len = 0 mm and Len = 5 mm are plotted in Fig. 5.19.

From Fig. 5.19(a), below 740 MHz, resistances for antennas with discrete port and
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Figure 5.20: Reflection coefficients for antennas fed by a discrete port and a
5 mm coaxial cable.

coaxial cable are almost identical. As frequency goes higher, resistance of the antenna

with coaxial cable becomes larger than that of using discrete port. This indicates that the

leaky current on coaxial cable gradually contributes to radiation as frequency increases.

Based on Fig. 5.19(b), the coaxial cable also affects the reactance impedance. However,

regardless which feeding method is used, within the TVWS spectrum, the input impe-

dance of the whole structure is around 50 Ω and good impedance matching is ensured

as proved by the reflection coefficients given in Fig. 5.20.

Furthermore, the proposed antenna fed by coaxial cables having different lengths are

simulated and their reflection coefficients are given in Fig. 5.21. According to the results,

good and stable impedance matching is achieved over the required spectrum when using

short coaxial cables.

Based on the discussion about impedance, the coaxial cable does have some influence

on port characteristics. Therefore, it is important to examine the distortion level of

radiation pattern resulted from the leaky current. Radiation patterns of the proposed

antenna with different cable lengths at 500 MHz and 800 MHz are presented in Fig. 5.22

and Fig. 5.23. Compare results in these two figures, we can see minor differences in YZ
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Figure 5.21: Reflection coefficients for antennas with different cable lengths.

and XZ planes for different cable lengths. In the XY plane, at 500 MHz, the difference

between Eθ and Eφ is 34 dB when Len = 0 mm, and it grows to 30 dB when Len =

45 mm. At 800 MHz, the difference is 34 dB when Len = 0 mm and 22 dB when

Len = 45 mm. Although the difference between Eθ and Eφ in the XY plane grows

slowly as cable length increases, the cross polarizations are generally at the same level,

and the radiation pattern is barely affected by short coaxial cables.

Apparently, with the increased length of coaxial cable or frequency, the radiation

pattern of the proposed antenna would be gradually affected by the leaky current on

coaxial cable. However, this is not a severe problem in my design owing to short electrical

lengths of coaxial cables for IoT devices operating over TVWS. Therefore, there is no

need to add a special balun structure and complicate current antenna design.

5.5 Summary

This Chapter presents a design procedure of a UWB antenna for IoT devices working at

TVWS. Starting from a simple annular ring structure, the CMA is used as a powerful

tool to provide insights into generating and exciting multiple modes to achieve wideband
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Figure 5.22: Radiation patterns of the proposed antenna with coaxial cables
at different lengths at 500 MHz in (a) yz plane, (b)xy plane, and
(c) xz plane.

performance. Based on current distributions of the desired characteristic modes on the

annular ring, slots are cut on the structure to decrease modal resonant frequencies. In

addition, by inserting a smaller ring into the original one, more characteristic modes

resonating in the interested frequency band are generated and the UWB property is



Chapter 5. Design of an UWB Dual Annular Ring Antenna 100

Eθ Eφ

0

30

60

90

120

150

180

210

240

270

300

330

-40

-20

0

20

0

30

60

90

120

150

180

210

240

270

300

330

-40

-20

0

20

(a)

0

30

60

90

120

150

180

210

240

270

300

330

-40

-20

0

20

0

30

60

90

120

150

180

210

240

270

300

330

-40

-20

0

20

(b)

0

30

60

90

120

150

180

210

240

270

300

330

-40

-20

0

20

0

30

60

90

120

150

180

210

240

270

300

330

-40

-20

0

20

Len = 0

Len = 5

Len = 25

Len = 45

(c)

Figure 5.23: Radiation patterns of the proposed antenna with coaxial cables
at different lengths at 800 MHz in (a) yz plane, (b)xy plane, and
(c) xz plane.

established. By observing properties of each mode, the feeding structure is designed to

excite all the desired modes efficiently, and the UWB performance is finally achieved

through combining resonances of multiple modes. Although the final antenna structure

is complicated, the design methodology and the functionality of each component are
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clear. Furthermore, the resonant frequency of each characteristic mode can be tuned

by changing dimensions of the two rings, and the modes can be excited selectively.

Therefore, this design procedure for UWB antenna using CMA could be flexibly applied

to satisfy various antenna design requirements. For example, by tuning modal resonances

to widely separated frequencies, multi-band antennas could be achieved.



Chapter 6

System Measurement

6.1 Introduction

Both narrowband and wideband TVWS antennas have been designed and discussed in

previous chapters. However, performance of these antennas was verified by just mea-

suring themselves in anechoic or reverberation chambers. Through integrating in-house

developed antennas into IoT devices operating over TVWS, this chapter measures their

system performance in practical scenarios. Moreover, potentials of TVWS for enabling

sensor nodes and establishing network within a cluster of buildings are also explored.

Specifically, the related work on IoT and TVWS systems measurements, as well as the

main contributions of this chapter are reviewed in Section 6.1. Section 6.2 integrates

the miniaturized antenna proposed in Chapter 3 into a sensor node and measures its

system performance. The UHF TV spectrum at QMUL is monitored and discussed in

Section 6.3. Then, the UWB antenna designed in Chapter 4 and a commercial antenna

are connected to a TVWS device (TVWSD), and their system performance on different

communication links are measured and analyzed in Section 6.4. Finally, Section 6.5

concludes this chapter.

102



Chapter 6. System Measurement 103

6.1.1 Related Work

Researchers have built and evaluated various IoT systems. Alonso et. al [111] proposed

a low cost humidity sensor tag consisted of a dipole antenna and a chip. Attached the

tag to a plant pot, signal strengths received by the reader varied with different substrate

permittivities resulted from different soil humidities. System tests demonstrated that

increasing the water from 0 mL to 100 mL, the received signal strengths ranged from

-24 dBm to -31 dBm. Focused on dynamic adaptive video streaming, Luca et. al [112]

built a TVWS network to connect to the Internet. Presenting the results of field tests,

they showed that the TVWS exhibited larger communication range than other 802.11

protocols. Gao et. al [113] pointed out that TVWS approaches were very promising

means to handle the billions of connected IoT devices in a highly flexible, reliable and

scalable way. They proposed a cognitive radio enabled time division (TD)-LTE test-bed

to realize the dynamic spectrum management over TVWS. They also proposed a hybrid

framework for the dynamic spectrum management of machine-to-machine networks.

In addition, in previous research, the indoor and outdoor measurements of spectrum

utilization have been conducted with single or multiple measurement campaigns. Kliks [114]

et. al carried out indoor measurements in Barcelona and Poznan, which exhibited dif-

ferent occupations of the TV channels for heterogeneous networks (HetNets). Experi-

mental analyses of the indoor TV signals propagation characteristics were also given.

Islam et. al [115] measured the 24-hour spectrum usage ranging from 80 MHz to 5.85

GHz on the roof of Institute for Infocomm Researchs building for 12 weekday period

in Singapore. Taher et. al [116] conducted similar fixed node measurement in Spain

ranging from 75 MHz to 3 GHz in Nord campus of Universitat Politcnica de Catalunya.

6.1.2 Contribution

Most of the previous work evaluated the whole IoT/TVWS systems or communication

environments from the field tests. On the contrary, integrating predesigned antennas
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into IoT devices and testing them at different environments, this work focuses more on

assessing antennas’ characteristics from systems’ point of view. Inspired by worldwide

spectrum utilization measurements, the TV spectrum at QMUL is also measured. The

main contributions of this chapter are summarized as follows:

• The miniaturized antenna proposed in Chapter 3 is integrated into a compact

sensor node. With the node pointing in different directions, signals transmitted by

it are detected by both another node with a commercial antenna and a spectrum

monitoring system when measuring in an anechoic chamber.

• The UWB U-shaped printed monopole antenna designed in Chapter 4 is integrated

with a spectrum monitor, and the whole UHF TV spectrum at QMUL is detected

to distinguish spectrum resources for TVWS. To ensure accurate measurements,

the spectrum is detected again with the monitor being equipped with a commercial

antenna.

• Communications are established over a licensed TVWS channel. The UWB U-

shaped printed monopole antenna is connected to a TVWS client, and pointing in

different directions, its system performance is compared with that of a commercial

directional UHF antenna. Complicated transmission environments imposed by fac-

tors like communication distances (from 10 m to over 120 m), offices, construction

facilities, etc. are considered.

6.2 Sensor Node Enabled by a Miniaturized Narrowband

Antenna

6.2.1 System Description

A sensor node for the IoT applications is illustrated in Fig. 6.1. Its diameter and height

are 103 mm and 95 mm, respectively, and the battery is embedded inside of it. Operating
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(a) (b)

Figure 6.1: Sensor node with (a) a commercial spiral antenna and a serial port
extension and (b) the in-house developed antenna.

at 474 MHz, the transmitting power of this node is 17 dBm. The node in Fig. 6.1(a) uses

a spiral antenna for signal transmission and reception. In Fig. 6.1(b), the miniaturized

planar disc antenna developed in Chapter 3 is integrated into the node. According to

Chapter 3, at 474 MHz, the realized gain of the in-house developed antenna is around

-2 dBi.

Communication is set up in an anechoic chamber as Fig. 6.2 demonstrated to avoid

undesired noise like digital broadcasting signals transmitted near 474 MHz. The node

with the in-house developed antenna is placed at point P (as marked in Fig. 6.2) and

acts as a transmitter. At the other side of the chamber, another node having spiral

antenna is fixed at point Q and operates as a receiver. RS232 serial port is extended

from the receiver to enable the received data being accessible by external equipment as

shown in Fig. 6.1(a). Having the same height, the transmitter and the receiver are 4.5 m

away from each other. Since nodes are usually arbitrarily placed, which leads to signals

having random polarization directions in practical, the transmitting node is rotated in

the horizontal plane during measurement to observe system performance of the in-house

developed antenna.
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Figure 6.2: Measurement setup in an anechoic chamber.

6.2.2 Measurement Results and Discussions

After the communication between the transmitter and the receiver started, a spectrum

monitoring system provided by CRFS Limited is used to monitor the radio spectrum.

Fig. 6.3 gives the detected spectrum from 470 MHz to 480 MHz, from which it can

be observed that the signal strength at 474MHz is about 65 dBm higher than those

at other frequencies. Since the measurement is conducted in a chamber where other

electromagnetic services are unavailable, the peak signal is emitted from the sensor node.

To ensure the placement orientation of the sensor node does not significantly affect

performance of the IoT communication system, links are established with the transmit-

ter sensor node having different orientations. As a reference, angle between the line

connecting two opened loops on the in-house developed antenna and the diagonal line of

the stand holding the transmitting node is defined as θ. During measurement, the node

is adjusted to make θ equals to 45o, −45o, −135o and 135o as noted by A, B, C and D

in Fig. 6.4.

Peak signal strengths detected by the spectrum monitor are recorded every two minu-
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Figure 6.3: Detected signal intensity over 470-480 MHz.

tes and four data is recorded in total at each orientation angle. Normalized signal

strengths are plotted in Fig. 6.4 at the corresponding angles together with illustrations

of the transmitter. It is noted that data for each node orientation is separated by a small

degree to be distinguished. According to Fig. 6.4, difference of signal strengths at one

position is less than 2.5 dBm, which can come from inevitable scattering in the cham-

ber. For node placed at different θ, the maximum difference is 4.5 dBm. Eliminating

the environment effect which could lead to 2.5 dBm difference, the spectrum monito-

ring system detects signals varying within 2 dBm sent from node rotating to different

orientations. Thus, the in-house developed antenna exhibits stable performance and the

device orientation has little effect on its system performance.

The received signal strength indicators (RSSIs) given by the receiving sensor node

are summarized in Table 6-A. Based on Table 6-A, difference between RSSIs at A and D

are 4 dBm, which comes from environmental effects and gain difference introduced from

the change of transmitter orientations. These received RSSIs are in coincidence with

differences between the peak power and those over the rest of the spectrum given by the

spectrum monitor. Further measurements demonstrate that the communication distance
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Figure 6.4: Normalized peak signal strengths detected by the spectrum moni-
tor when the transmitter turns to different directions.

Table 6-A: Received RSSIs with the transmitter turning to different directions.

Transmitter orientation RSSI/dBm

A -64

B -66

C -67

D -68

between the node with a spiral antenna and the node with the in-house developed circular

antenna is up to 20 m outside the anechoic chamber.
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6.3 UHF TV Spectrum Monitoring

6.3.1 System Description

The whole UHF TV spectrum is detected at QMUL in this section to verify the abundant

spectrum resources provided by the TVWS for IoT communications. During measure-

ment, the U-shaped printed monopole antenna proposed in Chapter 4 is connected to

the RFeye system provided by CRFS Limited for intelligent spectrum monitoring [117].

The testing system consists of a RFeye node panel, a logger control box, a laptop with

the RFeyeSite software installed and a USB memory stick.

The in-house developed antenna is connected to the RFeye node as shown in Fig. 6.5(a).

On the RFeysSite software, the start and the end detection frequencies are set to 470

MHz and 790 MHz, respectively, and 320 kHz (0.1% of the bandwidth of the UHF TV

spectrum) is chosen for resolution bandwidth. When monitoring the spectrum, the whole

system is placed at Room 353 of the Engineering Building, whose floor plans will be given

in Fig. 6.11 in the following section, in QMUL.

(a) (b)

Figure 6.5: RFeye node with (a) the in-house developed antenna and (b) a
commercial antenna.



Chapter 6. System Measurement 110

6.3.2 Measurement Results and Discussions

The measured data is exported from the USB memory stick and plotted in Fig. 6.6. Using

-90 dBm signal intensity as a threshold, occupation statues of the UHF TV channels are

given in Fig. 6.7.

We can interpret from Fig. 6.6 and Fig. 6.7 that the UHF TV channels from 36 to 60

are vacant, which can result from two reasons: few signal transmission above 600 MHz

and/or poor system performance of the in-house developed antenna at high frequencies.

To prove the usability of the proposed antenna in systems, the spectrum is monitored

again at the same location with the same settings, but the antenna connected to the

RFeye node is changed to a commercial one provided by the CRFS Limited as illustrated

in Fig. 6.5(b). The commercial antenna has an omnidirectional radiation pattern with

a gain of 2 dBi and a VSWR of 1.7:1. Detected signals with the commercial antenna

is also plotted on Fig. 6.6 for easy comparison with results acquired from using the

in-house developed antenna. The two curves coincide well with each other, and small

discrepancies can be caused by variances of the noise at different time as well as the gain
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Figure 6.6: The UHF TV spectrum detected by a spectrum monitor equipped
with the in-house developed antenna and a commercial antenna.
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Figure 6.7: Channel occupation of the UHF TV spectrum.

and the VSWR difference of the two antennas. Hence, the in-house developed antenna

shows good system usability over the entire UHF TV spectrum and there are abundant

vacant channels for the TVWS.

6.4 TVWS Network Provisioning with Directional and Omni-

directional Terminal Antennas

6.4.1 System Description

After measuring TV channel occupancy at QMUL and verifying usability of the in-house

developed antenna, a communication link is established over a channel where a TVWS

spectrum license has been granted by Ofcom for real-time wireless transmissions. The

measurement set-up is based on the RuralConnect TV White Space Radio provided by

Carlson Wireless Technologies [118]. This radio follows a Carlson proprietary standard,

which is close to IEEE 802.22 in characteristics, to provide wireless network access using

TVWS. The set-up of both TVWS base station and clients is described as follows.
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Figure 6.8: Yagi-Uda antenna connected to the base station.

1) TVWS Base Station:

The base station shown in Fig. 6.8 is placed at the third floor of the Electronic

Engineering (EE) Building in QMUL. Connected to the Ethernet, the base station has

a radio frequency transmit power of 23 dBm. Signals are transmitted from a directional

Yagi-Uda antenna whose gain is 11 dBi and its feeding cable has 1 dB loss, and hence

the equivalent isotropically radiated power (EIRP) is 33 dBm. Position and direction of

the base station antenna are fixed, and its maximum radiation direction is set towards

the northwest direction and 33.25 m above the mean sea level.

Table 6-B: Comparison between antennas connected to the TVWS client: the
in-house developed printed monopole antenna and the commercial
log-periodic antenna.

Index
Antenna In-house developed Commercial

printed monopole antenna log-periodic antenna
Dimension (cm3) 23.1×3.5×0.8 38.1×35.56×10.1

Weight (Kg) 0.02 0.91
Frequency (MHz) 470-884 470-786

Beam width 80◦ vertical 35◦ vertical
(3 dB down) Horizontal omnidirectionally 30◦ horizontal
Polarization Linear Linear
Gain (dBi) 1.7 9
Interface 50 Ω female SMA connector 75 Ω Female F-type Connector
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(a)

(b)

Figure 6.9: (a) Commercial log-periodic antenna and (b) in-house developed
printed monopole antenna connected to the client.

2) TVWS Client:

RuralConnect clients use external antennas, and the U-shaped printed monopole

antenna presented in Chapter 4 is connected to the client to test its system performance.

For comparison, a commercial log-periodic antenna [7] is also connected during measu-

rement. Set-up of the client connected with the in-house developed printed monopole

antenna and the commercial log-periodic antenna is shown in Fig. 6.9. Properties and

sizes of the two antennas are listed in Table 6-B. According to Table 6-B, the in-house

developed antenna is 211.6 times smaller and 45.5 times lighter than the commercial

antenna. Owing to its large size, metallic structure and narrow beamwidth, the gain of

the commercial antenna is 7.3 dBi higher than the in-house developed antenna. Radia-

tion patterns on the elevation and the azimuth planes of the two antennas are given in

Fig. 6.10, from which it can be seen that having an omnidirectional radiation pattern,
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Figure 6.10: Radiation patterns of the commercial log-periodic antenna [7] and
the in-house developed printed monopole antenna in (a) elevation
plane and (b) azimuth plane at 630MHz.

the in-house developed antenna should see less signal strength variation when pointing

at different directions. Moreover, the about 2 dBi gain realized by the in-house deve-

loped antenna is efficient for clients in TVWS radio communication systems, and this

will be verified in results of a series of tests given in Section 6.4.3. Moreover, a laptop is

connected to the client to monitor realized wireless network speeds as shown in Fig. 6.9.

6.4.2 Measurement Location Selection

Tests are conducted among buildings of EE, Computer Science (CS), Peoples Palace

and Informatics Teaching Laboratory (ITL) at QMUL. EE building has three sections
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and Section I and Section II are connected through a corridor at the second floor. The

base station is fixed at Room 358 in the EE building as depicted in Fig. 6.11. Standing

next to base station, the sector antenna points at northwest and is 15 m higher than

the ground floor. During transmissions, signals undergo reflection, fading and multipath

interference due to people, office facilities, walls, trees, etc. Therefore, moving client to

different locations, seven links representing different communication scenarios are tested.

Up

Construction Yard

Construction Yard

Bancroft Road

EE hub

358

 353

LINK3

LINK1

LINK4

LINK5

LINK6

lab

Section III

Section II

Section I

People’s Palace

CS 
Building

LINK7

ITL
Building

EE ground

Up

357

EE Building

Link2

CS hub

Figure 6.11: Floor plans of EE building (composed of Section I, Section II and
Section III), People’s Palace, CS building and ITL building. The
ground floor is in white, the first floor is in orange, the second
floor is in yellow, and the third floor is in green.

• Link1: The client is in Room 353 and it is 12.65 m away from the base station. In

the shortest transmission path, signals go through three walls to reach the client.

• Link2: The client moves to the Electronic Lab which is just one floor below Room

358.
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• Link3: The client is in EE hub on the second floor in Section I of EE building, and

the distance between the client and the base station is 37.25 m. Although they

are located at different sections of EE building, Room 358 can be seen from the

window of EE hub.

• Link4: The client is three layers lower than the base station when being placed at

the ground floor of Section I of EE building. There are several walls and distance of

47.33 m between the client and the base station. However, space between Section

II of EE building and Peoples Palace is under construction, and signals from the

base station have to go through much metal construction site equipment to arrive

at the client.

• Link5: In the fifth link, the client is on the first floor of Peoples Palace. Distance

between the client and the base station is 56.77 m. In addition to the construction

yard, signal transmitted to and from the client situating in a corner can also be

affected by the two walls surrounding it.

• Link6: CS hub is also on the third floor and it is 78.19 m away from Room 358. CS

building is very complicated and there are many offices between the client and the

base station. Besides, tall trees are outside CS building, and the Bancroft Road

between EE and CS buildings is busy.

• Link7: This link is 127.5 m and goes through Room 358, Room 357, edge of Section

III of EE building and a busy road. The client is one floor lower than the base

station. Nevertheless, ITL building has French windows.

6.4.3 Measurement Results and Discussions

During measurement, there is an ongoing construction between the EE building and

Peoples Palace and another next to Section II of EE building as illustrated in Fig. 6.11.

The log-periodic antenna and the printed monopole antenna are connected with client
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Table 6-C: Variances of SINRs acquired when client antennas facing at diffe-
rent directions.

Links

Uplink (dB)
(log-periodic antenna)

Uplink (dB)
(printed monopole)

Downlink (dB)
(log-periodic antenna)

Downlink (dB)
(printed monopole)

Link1 1.699 0.987 2.151 0.662

Link2 2.112 1.350 1.890 0.700

Link3 1.802 1.325 0.795 1.122

Link4 3.871 1.527 2.939 1.365

Link5 1.307 1.792 2.834 1.427

Link6 4.386 1.945 7.024 2.063

Link7 2.050 1.823 2.155 0.427

respectively in each link, and both of them point at southeast, southwest, northeast and

northwest in turn. When each antenna points at one direction, signal-to-interference-

plus-noise ratios (SINRs) and speeds of both uplink and downlink are measured four

times to remove effects of environment variation during a short period of time. Measure-

ment results with antenna orientation being taken into account are plotted in Fig. 6.12,

in which blue symbols stand for SINRs acquired using the log-periodic antenna at client,

while red symbols for using the printed monopole antenna. SINRs of uplink signals are

noted by ’o’ and those of downlink are noted by ’+’.

• Link1 and Link2 are in-section transmissions. Link3 and Link4 are in-building but

between-section transmissions, and Link5, Link6 and Link7 are between-building

transmissions.

• When base station and client are close to each other, strong signals are distribu-

ted in the entire environment and according to Fig. 6.12 (a), (b) and (c), both

uplink and downlink SINRs achieved by the printed monopole antenna and the

log-periodic antenna at every direction are high and have similar values.

• Signal strengths in Link5 and Link6 degrade due to further distance between base

station and client and complex transmission environment including increased num-

ber of walls, trees, constructions and people in common areas as described in Chap-

ter 6.4.2.

• Although having the longest communication distance, signal transmission in Link7
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Figure 6.12: Link SINRs with client antenna turning to different directions.
SINRs of uplink signals are noted by ’o’ and those of downlink
are noted by ’+’. Blue symbols stand for SINRs acquired using
the log-periodic antenna at the client and red symbols are for
using the printed monopole antenna.



Chapter 6. System Measurement 119

is more direct owing to its encountering fewer obstacles. Hence less energy is

consumed due to reflection and fading.

• Variances of mean SINRs from four measurement results using two antennas poin-

ting at each direction in every link are summarized in Table 6-C. It is clear that

the printed monopole antenna sees lower SINR variations in most scenarios, which

is owing to its omnidirectional radiation pattern. SINR variations acquired from

using the printed monopole antenna in downlink of Link3 and uplink of Link5

are higher than those obtained from using the log-periodic antenna, which can be

resulted from distinct environment change occurring during tests with the printed

monopole antenna.

• Having lower gain, SINRs achieved by using the printed monopole antenna are

lower than those achieved by using the log-periodic antenna in most cases accor-

ding to Fig. 6.12. However, this can be compensated by systematically automatic

modulation methods selection and as a result reduce bit error rate. In addition,

as illustrated in Fig. 6.12 (e) and (f), when signal strengths are not strong around

the entire environment where the client with log-periodic antenna is located, poor

signal reception may arise due to coming signals are caught by weak gain direction

of the directional antenna.

• Downlink and uplink speeds are given by an online software SPEEDTEST [119],

and mean speeds with client antennas facing different directions are summarized in

Table 6-D. To reduce error, the speed is tested four times when each client antenna

is facing one direction. Realized speeds obtained from using the printed monopole

antenna are close and sometimes even faster than those from using the log-periodic

antenna.

• QMUL is covered with WiF, but when a device is at the same place where the

client is located in Link7, it is easily to lose WiFi signal. However TVWS signals

can still be detected according to Fig. 6.12(e), and uplink and downlink speed is
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Table 6-D: Realized downlink and uplink speeds.

Links

Downlink (Mbps)
(log-periodic antenna)

Uplink (Mbps)
(log-periodic antenna)

Downlink (Mbps)
(printed monopole)

Uplink (Mbps)
(printed monopole)

Link1 6.706 1.821 7.941 2.011

Link2 7.844 2.151 9.265 2.126

Link3 10.597 2.742 10.07 3.081

Link4 6.527 3.596 7.703 3.05

Link5 4.293 1.599 3.492 1.322

Link6 3.675 1.761 4.723 1.833

Link7 7.401 3.754 9.466 3.560

1.322 Mbps and 3.492 Mbps, respectively if use the printed monopole antenna.

Therefore it is verified that TVWS signals have stronger competence to bypass

obstacles than WiFi signals and a wireless network built on it is more easily to be

reachable at corners than a WiFi wireless network.

6.5 Summary

In this chapter, the in-house developed miniaturized narrowband antenna and the com-

pact UWB antenna are connected to IoT devices and their system performance is eva-

luated under real-time communications. Based on measurement results, both the two

antennas exhibit stable performance with different device orientations. And they are

easily to be integrated into IoT devices thanks to the fully planar and compact pro-

perties. Moreover, the occupancy of TV channels at QMUL is measured. Finally, the

competitiveness of TVWS signals is verified through measuring a testbed built on TVWS

under various transmission environments.
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Conclusions and Future Work

7.1 Conclusions

In this thesis, three antennas, including a miniaturized narrowband antenna and two

ultra-wideband (UWB) antennas, are designed with the characteristic mode analysis

(CMA) for Internet-of-Things (IoT) applications over the TV white space (TVWS).

Main features of these antennas are summarized in Fig. 7.1.

In Chapter 3, a miniaturized narrowband circular antenna is transformed from a

vertical monopole. With relations between dimensions of the radiator and its resonant

frequency being clarified via the CMA, the radiator can be generally designed at any

desired frequency with a specific Rogers 5880 substrate height. Afterwards, a loop struc-

ture paralleled with the proposed radiating body is adopted to excite the significant

mode through power transfer via magnetic coupling.

In Chapter 4, when designing the printed UWB monopole antenna, CMA is firstly

carried out on a U-shaped plate to distinguish the modes with the UWB potential. After

incorporating a substrate, a tapered microstrip feeding line, and a notched ground,

the CMA on the structure is carried out again with an excitation. And it is reveled

121
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Antenna design Main features 

 Circular radiating body

 Ring ground plane with a cut

 Magnetic feeding loop

 Lateral radius: 0.052λ

 Height: 0.005λ

 Resonant frequency: 474 MHz

 VSWR<2 bandwidth: 2.2 MHz

 Omnidirectional radiation
pattern

 Gain: 0.02 dBi

 U-shape printed monopole
antenna

 Tapered notch on ground

 Size: 231 × 35 × 0.8 𝑚𝑚3

 VSWR<2 bandwidth:
474-1212 MHz

 Omnidirectional radiation
pattern

 Gain over the UHF TV band:
1.4-1.9 dBi

 Radiation efficiency over the
UHF TV band: 76.2%-92.4%

 Dual Annular Ring Antenna

 Slots are cut to reduce
resonant frequency

 The inner ring is added to
create more resonating modes

 Energy coupled feeding strips

 Size: 200 × 140 × 3.2𝑚𝑚3

 S11<-10 dB (VSWR<1.9)
bandwidth: 470-987 MHz

 Omnidirectional radiation
pattern

 Gain: 2.5-3.8 dBi

Figure 7.1: Antennas proposed in this thesis and their main features.
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that multiple significant modes having wideband potential are excited to achieve the

UWB behavior. The bandwidth-efficiency product of this antenna is close to that of the

theoretical limit and it exceeds the products of most published designs having similar

electrical sizes.

In Chapter 5, the TCM is fully utilized to create multiple modes with adjacent

resonant frequencies to achieve a UWB annular ring antenna. With the CMA, this thesis

firstly quantifies the relationship between dimensions of the annular ring and resonant

frequencies of its basic two modes to provide a general design reference for annular

ring-shaped antennas. Resonant modes on the dual annular ring are excited by energy

coupled from corresponding strips operating as dipoles. Since the resonant frequency of

each mode can be tuned by changing dimensions of the two rings and these modes are

excited selectively, the proposed design procedure can be flexibly applied to design kinds

of wideband and multi-band antennas.

Finally, in Chapter 6, the monitored UHF TV spectrum at Queen Mary University

of London demonstrates the system usability of the proposed UWB printed monopole

antenna over the entire TV spectrum, as well as the abundance of frequency resource

for the TVWS. In addition, the miniaturized circular antenna and the UWB printed

monopole antenna are integrated into IoT devices, and their omnidirectional radiation

properties are verified by measuring the system performance.

7.2 Future Work

In this section, we identify the following research challenges that need to be addressed

in the future work.
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7.2.1 Time Domain Behavior of UWB Antennas

As introduced in Chapter 2, UWB systems employ very short pulses to deliver infor-

mation, in other words, enormous bandwidth is occupied. Thence, antennas in UWB

systems also act as band-pass filters. Normally, signals arrived at the receiver have

distortions in shape and sometimes present a long tail termed the ”ringing effect”. The-

refore, in the follow-up study, it is essential to study the proposed UWB antennas from

a time domain perspective to avoid introducing unwanted distortions [120]. Meanwhile,

when studying the time domain behavior, TVWS emission limits specified by regulators

should be taken into account to avoid interference to active digital broadcasting services,

which implies that an appropriate source pulse shape should be selected.

7.2.2 Variations of the UWB Annular Ring-Shaped Antenna

Although the final antenna structure in Chapter 6 is complicated, the design metho-

dology and the functionality of each component are clear. Furthermore, the resonant

frequency of each characteristic mode can be tuned by changing dimensions of the annu-

lar ring based on the close-form estimation, and the modes can be excited selectively.

Therefore, this design procedure for UWB antenna using CMA could be flexibly applied

to satisfy various antenna design requirements. For example, by tuning modal resonances

to widely separated frequencies, multi-band antennas could be achieved. Dual-polarized

antennas are realized by exciting modes having currents along the long and the short

axes separately with two ports. These variations are to be realized in the future as

examples to further prove the generalized antenna design methodology with CMA.

7.2.3 Radiation Pattern Synthesis and Stability

Work on this thesis mainly focuses on antenna miniaturization and bandwidth enhan-

cement. However, since the IoT has been applied to all kinds of fields, omnidirectional
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radiation patterns may not satisfy some applications having special requirements for

antennas’ radiation patterns. Providing far-field radiation pattern for each characteris-

tic mode, the CMA is a useful tool for radiation pattern synthesis [71]. Future work

will study how to select a number of significant modes and excite them to specific weig-

hts, and therefore obtain a designated radiation pattern. Moreover, a stable radiation

pattern can be achieved across a broad frequency band by exciting characteristic modes

sharing similar radiation patterns. With radiation patterns synthesized and stabilized

by CMA, the follow-up work will produce more competitive antennas for IoT devices.

7.2.4 Platform-Embedded Antenna Design

CMA can obtain electromagnetic properties of an arbitrary structure, including IoT

devices, without excitation. Therefore, instead of designing antennas independently, sys-

tematic antenna designs with the platform being taken into consideration are prospected

in the future work. The improved design methodology can make antennas’ simulated

results closer to their system performance in practical measurements. In addition, this

approach provides possibility to utilize devices themselves as resonators, and thence

brings significant opportunities for low frequency antenna realization within compact

devices.
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