11,517 research outputs found

    Effect of mineralocorticoid receptor antagonists on proteinuria and progression of chronic kidney disease: a systematic review and meta-analysis

    Get PDF
    Background: Hypertension and proteinuria are critically involved in the progression of chronic kidney disease. Despite treatment with renin angiotensin system inhibition, kidney function declines in many patients. Aldosterone excess is a risk factor for progression of kidney disease. Hyperkalaemia is a concern with the use of mineralocorticoid receptor antagonists. We aimed to determine whether the renal protective benefits of mineralocorticoid antagonists outweigh the risk of hyperkalaemia associated with this treatment in patients with chronic kidney disease. Methods: We conducted a meta-analysis investigating renoprotective effects and risk of hyperkalaemia in trials of mineralocorticoid receptor antagonists in chronic kidney disease. Trials were identified from MEDLINE (1966–2014), EMBASE (1947–2014) and the Cochrane Clinical Trials Database. Unpublished summary data were obtained from investigators. We included randomised controlled trials, and the first period of randomised cross over trials lasting ≥4 weeks in adults. Results: Nineteen trials (21 study groups, 1 646 patients) were included. In random effects meta-analysis, addition of mineralocorticoid receptor antagonists to renin angiotensin system inhibition resulted in a reduction from baseline in systolic blood pressure (−5.7 [−9.0, −2.3] mmHg), diastolic blood pressure (−1.7 [−3.4, −0.1] mmHg) and glomerular filtration rate (−3.2 [−5.4, −1.0] mL/min/1.73 m2). Mineralocorticoid receptor antagonism reduced weighted mean protein/albumin excretion by 38.7 % but with a threefold higher relative risk of withdrawing from the trial due to hyperkalaemia (3.21, [1.19, 8.71]). Death, cardiovascular events and hard renal end points were not reported in sufficient numbers to analyse. Conclusions: Mineralocorticoid receptor antagonism reduces blood pressure and urinary protein/albumin excretion with a quantifiable risk of hyperkalaemia above predefined study upper limit

    Steroid Receptors and Vertebrate Evolution

    Full text link
    Considering that life on earth evolved about 3.7 billion years ago, vertebrates are young, appearing in the fossil record during the Cambrian explosion about 542 to 515 million years ago. Results from sequence analyses of genomes from bacteria, yeast, plants, invertebrates and vertebrates indicate that receptors for adrenal steroids (aldosterone, cortisol), and sex steroids (estrogen, progesterone, testosterone) also are young, with receptors for estrogens and 3-ketosteroids first appearing in basal chordates (cephalochordates: amphioxus), which are close ancestors of vertebrates. An ancestral progesterone receptor and an ancestral corticoid receptor, the common ancestor of the glucocorticoid and mineralocorticoid receptors, evolved in jawless vertebrates (cyclostomes: lampreys, hagfish). This was followed by evolution of an androgen receptor and distinct glucocorticoid and mineralocorticoid receptors in cartilaginous fishes (gnathostomes: sharks). Adrenal and sex steroid receptors are not found in echinoderms: and hemichordates, which are ancestors in the lineage of cephalochordates and vertebrates. The presence of steroid receptors in vertebrates, in which these steroid receptors act as master switches to regulate differentiation, development, reproduction, immune responses, electrolyte homeostasis and stress responses, argues for an important role for steroid receptors in the evolutionary success of vertebrates, considering that the human genome contains about 22,000 genes, which is not much larger than genomes of invertebrates, such as Caenorhabditis elegans (~18,000 genes) and Drosophila (~14,000 genes).Comment: 18 pages, 5 figure

    Adipocytes, aldosterone and obesity-related hypertension

    Get PDF
    Understanding the mechanisms linking obesity with hypertension is important in the current obesity epidemic as it may improve therapeutic interventions. Plasma aldosterone levels are positively correlated with body mass index and weight loss in obese patients is reported to be accompanied by decreased aldosterone levels. This suggests a relationship between adipose tissue and the production/secretion of aldosterone. Aldosterone is synthesized principally by the adrenal glands, but its production may be regulated by many factors, including factors secreted by adipocytes. In addition, studies have reported local synthesis of aldosterone in extra-adrenal tissues, including adipose tissue. Experimental studies have highlighted a role for adipocyte-secreted aldosterone in the pathogenesis of obesity-related cardiovascular complications via the mineralocorticoid receptor. This review focuses on how aldosterone secretion may be influenced by adipose tissue and the importance of these mechanisms in the context of obesity-related hypertension

    Exclusion of the Locus for Autosomal Recessive Pseudohypoaldosteronism Type 1 from the Mineralocorticoid Receptor Gene Region on Human Chromosome 4q by Linkage Analysis.

    Get PDF
    Pseudohypoaldosteronism type 1 (PHA1) is an uncommon inherited disorder characterized by salt-wasting in infancy arising from target organ unresponsiveness to mineralocorticoids. Clinical expression of the disease varies from severely affected infants who may die to apparently asymptomatic individuals. Inheritance is Mendelian and may be either autosomal dominant or autosomal recessive. A defect in the mineralocorticoid receptor has been implicated as a likely cause of PHA1. The gene for human mineralocorticoid receptor (MLR) has been cloned and physically mapped to human chromosome 4q31.1-31.2. The etiological role of MLR in autosomal recessive PHA1 was investigated by performing linkage analysis between PHA1 and three simple sequence length polymorphisms (D4S192, D4S1548, and D4S413) on chromosome 4q in 10 consanguineous families. Linkage analysis was carried out assuming autosomal recessive inheritance with full penetrance and zero phenocopy rate using the MLINK program for two-point analysis and the HOMOZ program for multipoint analysis. Lod scores of less than -2 were obtained over the whole region from D4S192 to D4S413 encompassing MLR. This provdes evidence against MLR as the site of mutations causing PHA1 in the majority of autosomal recessive families

    Spironolactone treatment attenuates vascular dysfunction in type 2 diabetic mice by decreasing oxidative stress and restoring NO/GC signaling

    Get PDF
    Type 2 diabetes (DM2) increases the risk of cardiovascular disease. Aldosterone, which has pro-oxidative and pro-inflammatory effects in the cardiovascular system, is positively regulated in DM2. We assessed whether blockade of mineralocorticoid receptors (MR) with spironolactone decreases reactive oxygen species (ROS)-associated vascular dysfunction and improves vascular nitric oxide (NO) signaling in diabetes. Leptin receptor knockout [LepRdb/LepRdb (db/db)] mice, a model of DM2, and their counterpart controls [LepRdb/LepR+, (db/+) mice] received spironolactone (50 mg/kg body weight/day) or vehicle (ethanol 1%) via oral per gavage for 6 weeks. Spironolactone treatment abolished endothelial dysfunction and increased endothelial nitric oxide synthase (eNOS) phosphorylation (Ser1177) in arteries from db/db mice, determined by acetylcholine-induced relaxation and Western Blot analysis, respectively. MR antagonist therapy also abrogated augmented ROS-generation in aorta from diabetic mice, determined by lucigenin luminescence assay. Spironolactone treatment increased superoxide dismutase-1 and catalase expression, improved sodium nitroprusside and BAY 41-2272-induced relaxation, and increased soluble guanylyl cyclase (sGC) β subunit expression in arteries from db/db mice. Our results demonstrate that spironolactone decreases diabetes-associated vascular oxidative stress and prevents vascular dysfunction through processes involving increased expression of antioxidant enzymes and sGC. These findings further elucidate redox-sensitive mechanisms whereby spironolactone protects against vascular injury in diabetes

    Hypertension in mice lacking 11beta-hydroxysteroid dehydrogenase type 2

    Get PDF
    Deficiency of 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2) in humans leads to the syndrome of apparent mineralocorticoid excess (SAME), in which cortisol illicitly occupies mineralocorticoid receptors, causing sodium retention, hypokalemia, and hypertension. However, the disorder is usually incompletely corrected by suppression of cortisol, suggesting additional and irreversible changes, perhaps in the kidney. To examine this further, we produced mice with targeted disruption of the 11β-HSD2 gene. Homozygous mutant mice (11β-HSD2(–/–)) appear normal at birth, but ∼50% show motor weakness and die within 48 hours. Both male and female survivors are fertile but exhibit hypokalemia, hypotonic polyuria, and apparent mineralocorticoid activity of corticosterone. Young adult 11β-HSD2(–/–) mice are markedly hypertensive, with a mean arterial blood pressure of 146 ± 2 mmHg, compared with 121 ± 2 mmHg in wild-type controls and 114 ± 4 mmHg in heterozygotes. The epithelium of the distal tubule of the nephron shows striking hypertrophy and hyperplasia. These histological changes do not readily reverse with mineralocorticoid receptor antagonism in adulthood. Thus, 11β-HSD2(–/–) mice demonstrate the major features of SAME, providing a unique rodent model to study the molecular mechanisms of kidney resetting leading to hypertension. J. Clin. Invest. 103:683–689 (1999

    Repression of the Glucocorticoid Receptor Aggravates Acute Ischemic Brain Injuries in Adult Mice.

    Get PDF
    Strokes are one of the leading causes of mortality and chronic morbidity in the world, yet with only limited successful interventions available at present. Our previous studies revealed the potential role of the glucocorticoid receptor (GR) in the pathogenesis of neonatal hypoxic-ischemic encephalopathy (HIE). In the present study, we investigate the effect of GR knockdown on acute ischemic brain injuries in a model of focal cerebral ischemia induced by middle cerebral artery occlusion (MCAO) in adult male CD1 mice. GR siRNAs and the negative control were administered via intracerebroventricular (i.c.v.) injection 48 h prior to MCAO. The cerebral infarction volume and neurobehavioral deficits were determined 48 h after MCAO. RT-qPCR was employed to assess the inflammation-related gene expression profiles in the brain before and after MCAO. Western Blotting was used to evaluate the expression levels of GR, the mineralocorticoid receptor (MR) and the brain-derived neurotrophic factor/tropomyosin receptor kinase B (BDNF/TrkB) signaling. The siRNAs treatment decreased GR, but not MR, protein expression, and significantly enhanced expression levels of pro-inflammatory cytokines (IL-6, IL-1β, and TNF-α) in the brain. Of interest, GR knockdown suppressed BDNF/TrkB signaling in adult mice brains. Importantly, GR siRNA pretreatment significantly increased the infarction size and exacerbated the neurobehavioral deficits induced by MCAO in comparison to the control group. Thus, the present study demonstrates the important role of GR in the regulation of the inflammatory responses and neurotrophic BDNF/TrkB signaling pathway in acute ischemic brain injuries in adult mice, revealing a new insight into the pathogenesis and therapeutic potential in acute ischemic strokes

    3D models of lamprey corticoid receptor complexed with 11-deoxycortisol and deoxycorticosterone

    Get PDF
    The serum of Atlantic sea lamprey, a basal vertebrate, contains two corticosteroids, 11-deoxycortisol and deoxycorticosterone. Only 11-deoxycortisol has high affinity [Kd~3 nM] for the corticoid receptor [CR] in lamprey gill cytosol. To investigate the binding of 11-deoxycortisol to the CR, we constructed 3D models of lamprey CR complexed with 11-deoxycortisol and deoxycorticosterone. These 3D models reveal that Leu-220 and Met-299 in lamprey CR have contacts with the 17[alpha]-hydroxyl on 11-deoxycortisol. Lamprey CR is the ancestor of the mineralocorticoid receptor [MR] and glucocorticoid receptor [GR]. Unlike human MR and human GR, the 3D model of lamprey CR finds a van der Waals contact between Cys-227 in helix 3 and Met-264 in helix 5. Mutant human MR and GR containing a van der Waals contact between helix 3 and helix 5 display enhanced responses to progesterone and glucocorticoids, respectively. We propose that this interaction was present in the CR and lost during the evolution of the MR and GR, leading to changes in their response to progesterone and corticosteroids, respectively

    Effects of sacubitril/valsartan in the PARADIGM-HF Trial (Prospective Comparison of ARNI with ACEI to Determine Impact on Global Mortality and Morbidity in Heart Failure) according to background therapy

    Get PDF
    Background—In the PARADIGM-HF trial (Prospective Comparison of ARNI with ACEI to Determine Impact on Global Mortality and Morbidity in Heart Failure), the angiotensin receptor neprilysin inhibitor sacubitril/valsartan was more effective than the angiotensin-converting enzyme inhibitor enalapril in patients with heart failure and reduced ejection fraction. We examined whether this benefit was consistent irrespective of background therapy. Methods and Results—We examined the effect of study treatment in the following subgroups: diuretics (yes/no), digitalis glycoside (yes/no), mineralocorticoid receptor antagonist (yes/no), and defibrillating device (implanted defibrillating device, yes/no). We also examined the effect of study drug according to β-blocker dose (≥50% and <50% of target dose) and according to whether patients had undergone previous coronary revascularization. We analyzed the primary composite end point of cardiovascular death or heart failure hospitalization, as well as cardiovascular death. Most randomized patients (n=8399) were treated with a diuretic (80%) and β-blocker (93%); 47% of those taking a β-blocker were treated with ≥50% of the recommended dose. In addition, 4671 (56%) were treated with a mineralocorticoid receptor antagonist, 2539 (30%) with digoxin, and 1243 (15%) had a defibrillating device; 2640 (31%) had undergone coronary revascularization. Overall, the sacubitril/valsartan versus enalapril hazard ratio for the primary composite end point was 0.80 (95% confidence interval, 0.73–0.87; P<0.001) and for cardiovascular death was 0.80 (0.71–0.89; P<0.001). The effect of sacubitril/valsartan was consistent across all subgroups examined. The hazard ratio for primary end point ranged from 0.74 to 0.85 and for cardiovascular death ranged from 0.75 to 0.89, with no treatment-by-subgroup interaction. Conclusions—The benefit of sacubitril/valsartan, over an angiotensin-converting enzyme inhibitor, was consistent regardless of background therapy and irrespective of previous coronary revascularization or β-blocker dose

    Intramyocardial gene silencing by interfering RNA

    Get PDF
    RNAi is a widely used methodology for gene silencing. The action mechanism of siRNA molecules has been well studiedin recent years, and the technique has been optimized in terms of safety and effectiveness. Cardiovascular diseases havea high incidence in the current population, and despite of the extensive research, safe and efficient therapeutics have notyet been found, which is reflected by 17.1 million people who die each year for this cause. In this context, siRNAs arebeing considered a therapeutic tool to regulate the expression of genes involved in the generation of these pathologies.The efficacy of siRNAs entry to cardiomyocytes, the safety of the delivery process and the degree of silencing achievedare main aspects before consider it as a cardiovascular disease therapy. Presently, we will give a brief outline of thecurrent understanding of the RNAi mechanism and the delivery system to the heart. We describe the use of lentivirus fora functional silencing of cardiac proteins in the study of a pathophysiological process, the slow force response to cardiacstretch.Fil: Brea, María Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - la Plata. Centro de Investigaciones Cardiovasculares ; ArgentinaFil: Morgan, Patricio Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - la Plata. Centro de Investigaciones Cardiovasculares ; ArgentinaFil: Perez, Nestor Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - la Plata. Centro de Investigaciones Cardiovasculares ; Argentin
    • …
    corecore