13 research outputs found

    Analysis of Alternatives: Multivariate Considerations

    Get PDF
    The Aeronautical System Center (ASC) is developing a Simulation and Analysis Facility (SIMAF) that will link models, simulations, hardware-in-the-loop, and system-in-the-loop resources to create a robust virtual environment supporting assessment of alternate systems in the defense acquisition process. ENS is assisting ASC with scenario development, experimental design, and battleroom visualization efforts for a SIMAF capability demonstration. This thesis uses multivariate analysis and visualization tools to develop an approach for reducing the dimensionality of multiple campaign level measures of effectiveness for a notional Analysis of Alternatives (AoA) study. Additionally, the thesis advances an AoA visualization paradigm for the SIMAF capability demonstration. The results of this study suggest that multivariate data reduction techniques and user interactive visualization of multivariate analysis results can be employed to combine multiple MOEs into a reduced set of interpretable factors capturing the operational effectiveness performance of competing acquisition alternatives. The thesis research also successfully demonstrated a visual data mining approach applied to the visualization of campaign level analysis results and the cost/effectiveness integration of an AoA effort

    Pattern Discovery in Time-Ordered Data

    Full text link

    Mining climate data for shire level wheat yield predictions in Western Australia

    Get PDF
    Climate change and the reduction of available agricultural land are two of the most important factors that affect global food production especially in terms of wheat stores. An ever increasing world population places a huge demand on these resources. Consequently, there is a dire need to optimise food production. Estimations of crop yield for the South West agricultural region of Western Australia have usually been based on statistical analyses by the Department of Agriculture and Food in Western Australia. Their estimations involve a system of crop planting recommendations and yield prediction tools based on crop variety trials. However, many crop failures arise from adherence to these crop recommendations by farmers that were contrary to the reported estimations. Consequently, the Department has sought to investigate new avenues for analyses that improve their estimations and recommendations. This thesis explores a new approach in the way analyses are carried out. This is done through the introduction of new methods of analyses such as data mining and online analytical processing in the strategy. Additionally, this research attempts to provide a better understanding of the effects of both gradual variation parameters such as soil type, and continuous variation parameters such as rainfall and temperature, on the wheat yields. The ultimate aim of the research is to enhance the prediction efficiency of wheat yields. The task was formidable due to the complex and dichotomous mixture of gradual and continuous variability data that required successive information transformations. It necessitated the progressive moulding of the data into useful information, practical knowledge and effective industry practices. Ultimately, this new direction is to improve the crop predictions and to thereby reduce crop failures. The research journey involved data exploration, grappling with the complexity of Geographic Information System (GIS), discovering and learning data compatible software tools, and forging an effective processing method through an iterative cycle of action research experimentation. A series of trials was conducted to determine the combined effects of rainfall and temperature variations on wheat crop yields. These experiments specifically related to the South Western Agricultural region of Western Australia. The study focused on wheat producing shires within the study area. The investigations involved a combination of macro and micro analyses techniques for visual data mining and data mining classification techniques, respectively. The research activities revealed that wheat yield was most dependent upon rainfall and temperature. In addition, it showed that rainfall cyclically affected the temperature and soil type due to the moisture retention of crop growing locations. Results from the regression analyses, showed that the statistical prediction of wheat yields from historical data, may be enhanced by data mining techniques including classification. The main contribution to knowledge as a consequence of this research was the provision of an alternate and supplementary method of wheat crop prediction within the study area. Another contribution was the division of the study area into a GIS surface grid of 100 hectare cells upon which the interpolated data was projected. Furthermore, the proposed framework within this thesis offers other researchers, with similarly structured complex data, the benefits of a general processing pathway to enable them to navigate their own investigations through variegated analytical exploration spaces. In addition, it offers insights and suggestions for future directions in other contextual research explorations

    Predictive trend mining for social network analysis

    Get PDF
    This thesis describes research work within the theme of trend mining as applied to social network data. Trend mining is a type of temporal data mining that provides observation into how information changes over time. In the context of the work described in this thesis the focus is on how information contained in social networks changes with time. The work described proposes a number of data mining based techniques directed at mechanisms to not only detect change, but also support the analysis of change, with respect to social network data. To this end a trend mining framework is proposed to act as a vehicle for evaluating the ideas presented in this thesis. The framework is called the Predictive Trend Mining Framework (PTMF). It is designed to support "end-to-end" social network trend mining and analysis. The work described in this thesis is divided into two elements: Frequent Pattern Trend Analysis (FPTA) and Prediction Modeling (PM). For evaluation purposes three social network datasets have been considered: Great Britain Cattle Movement, Deeside Insurance and Malaysian Armed Forces Logistic Cargo. The evaluation indicates that a sound mechanism for identifying and analysing trends, and for using this trend knowledge for prediction purposes, has been established

    An Investigation in Efficient Spatial Patterns Mining

    Get PDF
    The technical progress in computerized spatial data acquisition and storage results in the growth of vast spatial databases. Faced with large amounts of increasing spatial data, a terminal user has more difficulty in understanding them without the helpful knowledge from spatial databases. Thus, spatial data mining has been brought under the umbrella of data mining and is attracting more attention. Spatial data mining presents challenges. Differing from usual data, spatial data includes not only positional data and attribute data, but also spatial relationships among spatial events. Further, the instances of spatial events are embedded in a continuous space and share a variety of spatial relationships, so the mining of spatial patterns demands new techniques. In this thesis, several contributions were made. Some new techniques were proposed, i.e., fuzzy co-location mining, CPI-tree (Co-location Pattern Instance Tree), maximal co-location patterns mining, AOI-ags (Attribute-Oriented Induction based on Attributes’ Generalization Sequences), and fuzzy association prediction. Three algorithms were put forward on co-location patterns mining: the fuzzy co-location mining algorithm, the CPI-tree based co-location mining algorithm (CPI-tree algorithm) and the orderclique- based maximal prevalence co-location mining algorithm (order-clique-based algorithm). An attribute-oriented induction algorithm based on attributes’ generalization sequences (AOI-ags algorithm) is further given, which unified the attribute thresholds and the tuple thresholds. On the two real-world databases with time-series data, a fuzzy association prediction algorithm is designed. Also a cell-based spatial object fusion algorithm is proposed. Two fuzzy clustering methods using domain knowledge were proposed: Natural Method and Graph-Based Method, both of which were controlled by a threshold. The threshold was confirmed by polynomial regression. Finally, a prototype system on spatial co-location patterns’ mining was developed, and shows the relative efficiencies of the co-location techniques proposed The techniques presented in the thesis focus on improving the feasibility, usefulness, effectiveness, and scalability of related algorithm. In the design of fuzzy co-location Abstract mining algorithm, a new data structure, the binary partition tree, used to improve the process of fuzzy equivalence partitioning, was proposed. A prefix-based approach to partition the prevalent event set search space into subsets, where each sub-problem can be solved in main-memory, was also presented. The scalability of CPI-tree algorithm is guaranteed since it does not require expensive spatial joins or instance joins for identifying co-location table instances. In the order-clique-based algorithm, the co-location table instances do not need be stored after computing the Pi value of corresponding colocation, which dramatically reduces the executive time and space of mining maximal colocations. Some technologies, for example, partitions, equivalence partition trees, prune optimization strategies and interestingness, were used to improve the efficiency of the AOI-ags algorithm. To implement the fuzzy association prediction algorithm, the “growing window” and the proximity computation pruning were introduced to reduce both I/O and CPU costs in computing the fuzzy semantic proximity between time-series. For new techniques and algorithms, theoretical analysis and experimental results on synthetic data sets and real-world datasets were presented and discussed in the thesis

    Semantic and Visual Analysis of Metadata to Search and Select Heterogeneous Information Resources

    Get PDF
    An increasing number of activities in several disciplinary and industrial fields such as the scientific research, the industrial design and the environmental management, rely on the production and employment of informative resources representing objects, information and knowledge. The vast availability of digitalized information resources (documents, images, maps, videos, 3D model) highlights the need for appropriate methods to effectively share and employ all these resources. In particular, tools to search and select information resources produced by third parties are required to successfully achieve our daily work activities. Headway in this direction is made adopting the metadata, a description of the most relevant features characterizing the information resources. However, a plenty of features have to be considered to fully describe the information resources in sophisticated fields as those mentioned. This brings to a complexity of metadata and to a growing need for tools which face with this complexity. The thesis aims at developing methods to analyze metadata easing the search and comparison of information resources. The goal is to select the resources which best fit the user\u27s needs in specific activities. In particular, the thesis faces with the problem of metadata complexity and supports in the discovery of selection criteria which are unknown to the user. The metadata analysis consists of two approaches: visual and semantic analysis. The visual analysis involves the user as much as possible to let him discover the most suitable selection criteria. The semantic analysis supports in the browsing and selection of information resources taking into account the user\u27s knowledge which is properly formalized

    An investigation in efficient spatial patterns mining

    Get PDF
    The technical progress in computerized spatial data acquisition and storage results in the growth of vast spatial databases. Faced with large amounts of increasing spatial data, a terminal user has more difficulty in understanding them without the helpful knowledge from spatial databases. Thus, spatial data mining has been brought under the umbrella of data mining and is attracting more attention. Spatial data mining presents challenges. Differing from usual data, spatial data includes not only positional data and attribute data, but also spatial relationships among spatial events. Further, the instances of spatial events are embedded in a continuous space and share a variety of spatial relationships, so the mining of spatial patterns demands new techniques. In this thesis, several contributions were made. Some new techniques were proposed, i.e., fuzzy co-location mining, CPI-tree (Co-location Pattern Instance Tree), maximal co-location patterns mining, AOI-ags (Attribute-Oriented Induction based on Attributes’ Generalization Sequences), and fuzzy association prediction. Three algorithms were put forward on co-location patterns mining: the fuzzy co-location mining algorithm, the CPI-tree based co-location mining algorithm (CPI-tree algorithm) and the orderclique- based maximal prevalence co-location mining algorithm (order-clique-based algorithm). An attribute-oriented induction algorithm based on attributes’ generalization sequences (AOI-ags algorithm) is further given, which unified the attribute thresholds and the tuple thresholds. On the two real-world databases with time-series data, a fuzzy association prediction algorithm is designed. Also a cell-based spatial object fusion algorithm is proposed. Two fuzzy clustering methods using domain knowledge were proposed: Natural Method and Graph-Based Method, both of which were controlled by a threshold. The threshold was confirmed by polynomial regression. Finally, a prototype system on spatial co-location patterns’ mining was developed, and shows the relative efficiencies of the co-location techniques proposed The techniques presented in the thesis focus on improving the feasibility, usefulness, effectiveness, and scalability of related algorithm. In the design of fuzzy co-location Abstract mining algorithm, a new data structure, the binary partition tree, used to improve the process of fuzzy equivalence partitioning, was proposed. A prefix-based approach to partition the prevalent event set search space into subsets, where each sub-problem can be solved in main-memory, was also presented. The scalability of CPI-tree algorithm is guaranteed since it does not require expensive spatial joins or instance joins for identifying co-location table instances. In the order-clique-based algorithm, the co-location table instances do not need be stored after computing the Pi value of corresponding colocation, which dramatically reduces the executive time and space of mining maximal colocations. Some technologies, for example, partitions, equivalence partition trees, prune optimization strategies and interestingness, were used to improve the efficiency of the AOI-ags algorithm. To implement the fuzzy association prediction algorithm, the “growing window” and the proximity computation pruning were introduced to reduce both I/O and CPU costs in computing the fuzzy semantic proximity between time-series. For new techniques and algorithms, theoretical analysis and experimental results on synthetic data sets and real-world datasets were presented and discussed in the thesis.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    An investigation in efficient spatial patterns mining

    Get PDF
    The technical progress in computerized spatial data acquisition and storage results in the growth of vast spatial databases. Faced with large amounts of increasing spatial data, a terminal user has more difficulty in understanding them without the helpful knowledge from spatial databases. Thus, spatial data mining has been brought under the umbrella of data mining and is attracting more attention. Spatial data mining presents challenges. Differing from usual data, spatial data includes not only positional data and attribute data, but also spatial relationships among spatial events. Further, the instances of spatial events are embedded in a continuous space and share a variety of spatial relationships, so the mining of spatial patterns demands new techniques. In this thesis, several contributions were made. Some new techniques were proposed, i.e., fuzzy co-location mining, CPI-tree (Co-location Pattern Instance Tree), maximal co-location patterns mining, AOI-ags (Attribute-Oriented Induction based on Attributes’ Generalization Sequences), and fuzzy association prediction. Three algorithms were put forward on co-location patterns mining: the fuzzy co-location mining algorithm, the CPI-tree based co-location mining algorithm (CPI-tree algorithm) and the orderclique- based maximal prevalence co-location mining algorithm (order-clique-based algorithm). An attribute-oriented induction algorithm based on attributes’ generalization sequences (AOI-ags algorithm) is further given, which unified the attribute thresholds and the tuple thresholds. On the two real-world databases with time-series data, a fuzzy association prediction algorithm is designed. Also a cell-based spatial object fusion algorithm is proposed. Two fuzzy clustering methods using domain knowledge were proposed: Natural Method and Graph-Based Method, both of which were controlled by a threshold. The threshold was confirmed by polynomial regression. Finally, a prototype system on spatial co-location patterns’ mining was developed, and shows the relative efficiencies of the co-location techniques proposed The techniques presented in the thesis focus on improving the feasibility, usefulness, effectiveness, and scalability of related algorithm. In the design of fuzzy co-location Abstract mining algorithm, a new data structure, the binary partition tree, used to improve the process of fuzzy equivalence partitioning, was proposed. A prefix-based approach to partition the prevalent event set search space into subsets, where each sub-problem can be solved in main-memory, was also presented. The scalability of CPI-tree algorithm is guaranteed since it does not require expensive spatial joins or instance joins for identifying co-location table instances. In the order-clique-based algorithm, the co-location table instances do not need be stored after computing the Pi value of corresponding colocation, which dramatically reduces the executive time and space of mining maximal colocations. Some technologies, for example, partitions, equivalence partition trees, prune optimization strategies and interestingness, were used to improve the efficiency of the AOI-ags algorithm. To implement the fuzzy association prediction algorithm, the “growing window” and the proximity computation pruning were introduced to reduce both I/O and CPU costs in computing the fuzzy semantic proximity between time-series. For new techniques and algorithms, theoretical analysis and experimental results on synthetic data sets and real-world datasets were presented and discussed in the thesis.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore