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Abstract

Abstract

The technical progress in computerized spatial data acquisition and storage results
in the growth of vast spatial databases. Faced with large amounts of increasing spatial
data, a terminal user has more difficulty in understanding them without the helpful
knowledge from spatial databases. Thus, spatial data mining has been brought under

the umbrella of data mining and is attracting more attention.

Spatial data mining presents challenges. Differing from usual data, spatial data in-
cludes not only positional data and attribute data, but also spatial relationships among
spatial events. Further, the instances of spatial events are embedded in a continuous
space and share a variety of spatial relationships, so the mining of spatial patterns de-

mands new techniques.

In this thesis, several contributions were made. Some new techniques were pro-
posed, i.e., fuzzy co-location mining, CPl-tree (Co-location Pattern Instance Tree),
maximal co-location patterns mining, AOI-ags (Attribute-Oriented Induction based on At-
tributes’ Generalization Sequences), and fuzzy association prediction. Three algorithms
were put forward on co-location patterns mining: the fuzzy co-location mining algorithm,
the CPIl-tree based co-location mining algorithm (CPI-tree algorithm) and the order-
clique-based maximal prevalence co-location mining algorithm (order-clique-based algo-
rithm). An attribute-oriented induction algorithm based on attributes’ generalization se-
quences (AOl-ags algorithm) is further given, which unified the attribute thresholds and
the tuple thresholds. On the two real-world databases with time-series data, a fuzzy as-
sociation prediction algorithm is designed. Also a cell-based spatial object fusion algo-
rithm is proposed. Two fuzzy clustering methods using domain knowledge were pro-
posed: Natural Method and Graph-Based Method, both of which were controlled by a
threshold. The threshold was confirmed by polynomial regression. Finally, a prototype
system on spatial co-location patterns’ mining was developed, and shows the relative

efficiencies of the co-location techniques proposed

The techniques presented in the thesis focus on improving the feasibility, useful-

ness, effectiveness, and scalability of related algorithm. In the design of fuzzy co-location
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mining algorithm, a new data structure, the binary partition tree, used to improve the
process of fuzzy equivalence partitioning, was proposed. A prefix-based approach to
partition the prevalent event set search space into subsets, where each sub-problem can
be solved in main-memory, was also presented. The scalability of CPI-tree algorithm is
guaranteed since it does not require expensive spatial joins or instance joins for identify-
ing co-location table instances. In the order-clique-based algorithm, the co-location table
instances do not need be stored after computing the Pi value of corresponding co-
location, which dramatically reduces the executive time and space of mining maximal co-
locations. Some technologies, for example, partitions, equivalence partition trees, prune
optimization strategies and interestingness, were used to improve the efficiency of the
AOl-ags algorithm. To implement the fuzzy association prediction algorithm, the “growing
window” and the proximity computation pruning were introduced to reduce both I/O and

CPU costs in computing the fuzzy semantic proximity between time-series.

For new techniques and algorithms, theoretical analysis and experimental results
on synthetic data sets and real-world datasets were presented and discussed in the the-

Sis.
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Chapter 1. Introduction

Chapter 1

Introduction

Spatial data mining refers to the extraction of knowledge, spatial relationships, or other
interesting patterns not explicitly stored in spatial data sets. It is expected to have wide
applications in geographic information systems, geo-marketing, remote sensing, image
database exploration, medical imaging, navigation, traffic control, environmental studies,
and many other application areas where spatial data are used. A crucial challenge to
spatial data mining is the exploration of efficient spatial data mining techniques due to
the huge amount of spatial data, and the complexity of spatial data types and spatial ac-
cess methods.

The final goal of the thesis is to develop some novel theoretical concepts and
methods for spatial patterns mining, and develop a prototype system to explore the im-
plementation of a spatial data mining system. To fulfil the goal, the following work will be
carried out:

(1). Extend mining spatial co-location patterns from general spatial data sets for
mining fuzzy spatial co-location patterns from fuzzy spatial data sets.

(2) Design a new join-less algorithm for identifying co-location pattern table in-
stances.

(3) Present an order-clique-based method for mining maximal prevalence co-
location patterns.

(4). Survey the efficiency of mining correlations between attributes based on attrib-
uted-oriented induction (AOI, for short), and expand the traditional AOI, based on attrib-
utes’ generalization sequence, to upgrade.

(5). Study mining prediction technologies exhaustively, and based on the concept of
semantic proximity, employ a method, evaluating the fuzzy association degree, to solve
the problem of spatial mining prediction.

(6). Propose a cell-based spatial object fusion method in spatial data sets, which
only uses locations of objects and without distance between two objects.

(7). Investigate fuzzy clustering methods based on domain knowledge.

(8). Explore the implementation of a visual spatial co-location patterns’ mining pro-

totype system (SCPMiner).



An Investigation in Efficient Spatial Patterns Mining

1.1 Motivation

In this section, the arguments of this thesis are briefly stated.

Spatial data mining has attracted a great deal of attention from not only the spatial
information industry but also the whole society in recent years, due to the wide availabil-
ity of huge amounts of spatial data and the imminent need for turning such spatial data
into useful spatial information and knowledge. The spatial information and knowledge
gained can be used for applications ranging from forestry and ecology planning, to pro-
vide public service information regarding the location of telephone and electric cables,

pipes, and sewage systems.

Spatial data, like geographic (map) data, very large-scale integration (VLSI) or com-
puted-aided design data, and medical or satellite image data contain spatial-related in-
formation. Spatial data may be represented in raster format, consisting of n-dimensional
bit maps or pixel maps. For example, a 2-D satellite image may be represented as raster
data, where each pixel registers the rainfall in a given area. Also, the data information
can be represented in vector format, where roads, bridges, buildings, and lakes are
represented as unions or overlays of basic geometric constructs, such as points, lines,

polygons, and the partitions and networks formed by these components.

Spatial data can now be stored in many different kinds of spatial databases and in-
formation repositories. A spatial data repository architecture that has emerged is the
spatial data warehouse, a repository of multiple heterogeneous data sources organized
under a unified schema at a single site in order to facilitate management decision mak-
ing. Spatial data warehouse technology includes spatial data cleaning, spatial data inte-
gration, and spatial on-line analytical processing (SOLAP), that is, analysis tech-
niques with functionalities such as summarization, consolidation, and aggregation as
well as the ability to view information from different angles. Although SOLAP tools sup-
port multidimensional analysis and decision making, additional spatial data analysis tools
are required for in-depth analysis, such as spatial data classification, spatial co-location
mining, and spatial outlier detection. In addition, huge volumes of spatial data can be ac-
cumulated beyond spatial databases and spatial data warehouses. How to analyse spa-

tial data in such different forms effectively and efficiently becomes a challenge.

The abundance of data, coupled with the need for powerful data analysis tools, has
been described as a data rich but information poor situation, especially for the spatial
data field. The fast-growing, tremendous amount of spatial data, collected and stored in

large and numerous spatial data repositories, has far exceeded human ability for com-
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prehension because powerful tools are lacking. As a result, spatial data collected in re-

positories become “spatial data tombs”----spatial data archives that are seldom visited.

The tools for spatial data mining perform spatial data analysis and may uncover im-
portant spatial data patterns, contributing greatly to business strategies, ecology plan-
ning, and scientific and medical research. The widening gap between spatial data and
spatial information calls for a systematic development of spatial data mining tools that

will turn data tombs into “golden nuggets” of knowledge.

A question is raised: “What kinds of data mining methods should be performed on
spatial data sets?” Mining Spatial data is supposed to uncover spatial patterns which
may describe the characteristics of plants located near a specified kind of location, such
as an alpine terrain, the species diversity of mountainous areas located at various alti-
tudes, or the change in trend of metropolitan poverty rates based on city distances from
major highways. That is, the spatial relationships among a set of spatial objects need to
be dug out through spatial data mining in order to discover which subsets of objects are
spatially auto-correlated or associated. Besides, during a mining process, clusters and
outliers also need be identified by spatial cluster analysis, and spatial classification
should be provided to construct models for prediction based on the relevant set of fea-
tures of the spatial objects.

Data mining in spatial databases is different from that in relational databases in the
sense that attributes of the neighbours of some objects of interest may have an influence
on the object (Han and Kamber, 2006; Ester et al, 1999; Lee et al, 2007). The explicit
location and extension of spatial objects define the implicit relations of spatial neighbour-
hoods (such as topological, distance and direction relations) that are used by spatial
data mining algorithms [Ester et al, 1998; Ester et al, 1999; Kriegel et al, 2004]. There-
fore, the crucial challenge in spatial data mining is the efficiency of spatial data mining
algorithms and the effective application of spatial data mining technology, due to the
huge amount of spatial data, and the complexity of spatial data types and spatial meth-

ods.

1.2 Background in Spatial Data Mining

Following the discussion of the demand on spatial data mining, and the importance
of its applications, we take a further look at the research work, done so for in this field. In
fact, spatial data mining has been studied extensively. A comprehensive survey on spa-
tial data mining methods can be found in the papers of Ester, Kriegel, Sander (1997) and
Shekhar and Chawla (2003). Lu, Han and Ooi (1993) proposed a generalization-based
spatial data mining method by attribute-oriented induction. Ng and Han (1994) proposed
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performing descriptive spatial data analysis based on clustering results instead of on
predefined concept hierarchies. Zhou, Truffet, and Han (1999) proposed efficient poly-
gon amalgamation methods for on-line multidimensional spatial analysis and spatial data
mining. Koperski and Han (1995) proposed a progressive refinement method for mining
spatial association rules. Spatial classification and trend analysis methods have been
developed by Ester, Kriegel, Sander, and Xu (1997); and Ester, Frommelt, Kriegel, and
Sander (1998). A two-step method for classification of spatial data was proposed by
Koperski, Han, and Stefanovic (1998). A spatial data mining system prototype,
Geominer, was developed by Han, Koperski, and Stefanovic [HKS97].

For further background of spatial data mining techniques explored in the thesis is

discussed in detail below.
1.2.1 Spatial Co-location Pattern Mining

Related approaches for discovering spatial co-location patterns can be classified
into two categories, in the literature, spatial statistics-based mining and data mining ap-

proaches.

(1) Spatial statistics-based mining approaches use measures of spatial correla-
tion to characterize the relationship between different types of spatial features. Measures
of spatial correlation include the cross-K function with Monte Carlo simulation and mean
nearest-neighbour distance proposed by Cressie (1991), and spatial regression models
was proposed by Chou (1997). Computing spatial correlation measures for all possible
co-location patterns can be computationally expensive due to the exponential number of

candidate subsets given a large collection of spatial Boolean features.

(2) Data mining approaches can be further classified into clustering-based map

overlay approaches and association rule-based approaches.

a. A clustering-based map overlay approach treats every spatial attribute as a
map layer and considers spatial clusters (regions) of point-data in each layer as
candidates for mining associations that was proposed by Estivil-Castro and
Lee, (2001); and Estivil-Castro and Murray, (1998). Given X and Y as sets of

0,
layers, a clustered spatial association rule is defined as X jY(CS’CCA)), for

X NY =® where cs is the clustered support, defined as the ratio of the area
of the cluster (region) that satisfies both X and Y to the total area of the study
region S, and cc% is the clustered confidence, which can be interpreted as cc%
of areas of clusters (regions) of X intersect with areas of clusters (regions) of Y.

The complexity and the efficiency are the crucial problems in the clustering-
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based approaches.

b. Association rule-based approaches can be further classified into transaction-

based approaches and distance-based approaches.

® Transaction-based approaches focus on defining transactions over space.
For example, Koperski and Han (1995) and Wang et al (2005) proposed
transactions over space defined by a reference-object centric model. Under
this model, transactions are created around instances of one user-specified
spatial object. The spatial association rules are derived using the Apriori
(Agarwal and Srikant, 1994) algorithm. However, it is nontrivial to general-
ize this paradigm to the case where no reference feature is specified. Also,
defining transactions around locations of instances of all features may yield

to duplicate counts for many candidate associations.

® The distance-based approach was first presented by Shekhar and Huang
(2001) and Morimoto (2001). Related work may be classified into three
categories, which are the join-based approach (Shekhar and Xiong, 2001;
Xiong et al, 2004; Huang et al, 2004), the partial join approach (Yoo and
Shekhar, 2004) and the join-less approach (Yoo et al, 2005). The instance
join-based co-location mining algorithm is similar to Apriori (Agarwal and
Srikant, 1994). First, after finding all neighbour pair objects (size 2 co-
location instances) using a geometric method, the method finds the in-
stances of size k (>2) co-locations by joining the instances of the size k-1
subset co-locations where the first k-2 objects are common. This approach
finds correct and complete co-location instance sets. However, the join-
based approach is computationally expensive with the increase of co-
location patterns and their instances. The partial join approach converts a
continuous spatial data into a set of disjoint clique neighbourhoods while
keeping track of the spatial neighbour relations not modelled by the transac-
tionization. This approach reduces the number of expensive join operations
dramatically in finding co-location instances. However, the performance de-
pends on the distribution of the spatial dataset, especially the number of cut
neighbour relations. Yoo, Shekhar and Celik (2005) proposes a novel join-
less approach for co-location pattern mining, which materializes spatial
neighbour relationships with no loss of co-location instances and reduces
the computational cost of identifying the instances. The join-less co-location
mining algorithm is efficient since it uses an instance-lookup scheme in-

stead of an expensive spatial or instance join operation for identifying co-
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location instances. But with the increasing size of co-location, the time of

scanning the materialized spatial neighbour relationships will increase.

1.2.2 Attribute-Oriented Induction Methods

Attribute-Oriented Induction (AOI) (Lu et al, 1993; Ester et al, 1998; Knorr and Ng,
1997) operates by generalizing detailed spatial data to a particularly high level and stud-
ies the general characters and data distributions at this level. It has been implemented in
the GeoMiner (Han et al, 1997). The goal of AQOI is to discover interesting relationships
between spatial and non-spatial data. There are two well known AOI algorithms: (1)
AOI (Attribute-Oriented Induction) proposed by Cai et al (1991), and (2) LCHR (Learn
CHaracteristic Rule ) proposed by Han (1994). Both are not incremental and do not al-
low fast re-generalization. An AOI method possessing fast re-generalization was pro-
posed by Wang (2000). But its runtime performance is not very good because it con-
sumes too much memory space.

Carter and Hamilton (1998) proposed two new algorithms. GDBR (Generalize Da-
tabase Relation) is an online algorithm, and FIGR (Fast, Incremental Generalization and
Re-generalization) has characteristics of incremental and fast re-generalization. More
importantly, the run times of the GDBR and the FIGR are less than the AOI and the
LCHR.

But there is a supposition in the FIGR. The size of attributes and the number of the
possible values in an attribute are relatively small (e.g., the size of attributes should be
less than 5). In addition, the four algorithms control generalization levels by using attrib-
ute thresholds. That is not so realistic in practice, because it is impossible to try every
possible combination of thresholds for every attribute. And the size of attributes and the
number of the possible values in an attribute are not small in a real-world environment.

So, it might not be a good idea to apply algorithms of AOI.

1.2.3 Spatial Data Fusion Methods

In the research of object fusion, Papakonstantinou, Abiteboul and Garcia-Molina
(1996) and Samet, Seth and Cueto (2004) considered that objects have identifiers (e.g.,
keys), while Beeri et al (2004) and Minami (2000) studied this problem without global
identifiers. The lack of global identifiers makes the object-fusion problem much more dif-
ficult. In addition, in the paper of Bruns and Egenhofer (1996), topological similarity is
used to find corresponding objects, while Fonseca and Egenhofer (1999), Fonseca,
Egenhofer and Agouris (2002), and Uitermark et al (1999) used ontology for that pur-
pose. Finally, the problem of how to fuse objects, rather than how to find fusion sets, was

studies by Papakonstantinou, Abiteboul and Garcia-Molina (1996).
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Since location is the only property that is always available for spatial objects, loca-
tion-based fusion problems only using object location are investigated. Minami (2000)
proposed the one-sided nearest-neighbour join, Beeki et al (2004) gives the mutually-
nearest method, the probabilistic method and the normalized-weights method. The mu-
tually-nearest method is an improvement of the one-sided nearest-neighbour join, and
the probabilistic method and the normalized-weights method are based on a probabilistic
model which are shown in (Beeki et al, 2004) achieve the best results under all circum-
stances. Although these methods are very fresh and novel, they need to compute the
distance between two objects. It is unfortunately not a simple task, because the locations

of objects are spatial attributes.

1.3 Challenges in Spatial Data mining

Spatial data mining includes mining spatial association and co-location patterns,
clustering, classification, and spatial trend and outlier analysis. The common challenges
in spatial data mining are mining methodology, user interaction, performance, data type,

and data size as discussed below:

1.3.1 Mining methodology and user interaction issues: These reflect the kinds of
spatial knowledge miner, the ability to mine spatial knowledge at multiple granularities,
the use of domain knowledge, and spatial knowledge visualization.

B Mining different kinds of knowledge in spatial data sets: Because different users
can be interested in different kinds of spatial knowledge, spatial data mining should
cover a wide spectrum of data analysis and knowledge discovery tasks, including
data characterization, discrimination, association and correlation analysis, classifi-
cation, prediction, clustering, outlier analysis, and evolution analysis (which in-
cludes trend and similarity analysis). These tasks may use the same spatial data
set in different ways and require the development of numerous spatial data mining
techniques.

B [nteractive mining of spatial knowledge at multiple levels of abstraction: The spatial
data mining process should be interactive, because it is difficult to know exactly
what can be discovered within a spatial data set. For data sets containing a huge
amount of spatial data, appropriate sampling techniques can be first applied to fa-
cilitate interactive data exploration. Interactive mining allows users to focus on the
researching patterns, providing and refining data mining requests based on re-
turned results. Specifically, knowledge should be mined by drilling down, rolling up,
and pivoting through the data space and knowledge space interactively, similar to

what OLAP can do on data cubes. In this way, the user can interact with the data
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mining system to view data and discovered patterns at multiple granularities from
different angles.

B Incorporation of background knowledge: Background knowledge, or information re-
garding the domain under study, may be used to guide the discovery process and
allow discovered patterns to be expressed in concise terms and at different levels
of abstraction. Domain knowledge related to spatial data sets, such as integrity
constraints and deduction rules, can help focus and speed up a spatial data mining
process, or judge the interestingness of discovered patterns.

B Presentation and visualization of spatial data mining results: Discovered knowledge
should be expressed in high-level languages, visual representations, or other ex-
pressive forms so that the knowledge can be easily understood and directly usable
by humans. This is especially crucial if the data mining system is to be interactive.
This requires the system to adopt expressive knowledge representation tech-
niques, such as trees, tables, rules, graphs, charts, crosstabs, matrices, or curves.

B Pattern evaluation—the interestingness problem: A spatial data mining system can
uncover thousands of patterns. Many of the patterns discovered may be uninterest-
ing to the given user, either because they represent common knowledge or lack
novelty. Several challenges remain regarding the development of techniques to as-
sess the interestingness of discovered patterns, particularly with regard to subjec-
tive measures that estimate the value of patterns with respect to a given user class,
based on user beliefs or expectations. The use of interestingness measures or
user-specified constraints to guide the discovery process and reduce the search

space is another active area of research.

1.3.2 Performance issues: These include efficiency, scalability, and parallelization of
data mining algorithms.
B Efficiency and scalability of spatial data mining algorithms: To effectively extract in-
formation from a huge amount of spatial data in spatial data sets, spatial data min-
ing algorithms must be efficient and scalable. In other words, the running time of a
spatial data mining algorithm must be predictable and acceptable in large spatial
data sets. Considering the huge size of spatial data sets, efficiency and scalability
are key issues in the implementation of spatial data mining systems. The issues
discussed above under mining methodology and user interaction must also con-
sider efficiency and scalability.
B Parallel, distributed, and incremental mining algorithms: The huge size of spatial
data sets, the wide distribution of data, and the computational complexity of some

spatial data mining methods are factors motivating the development of parallel and
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distributed data mining algorithms. Such algorithms divide the data into partitions,
which are processed in parallel. The results from the partitions are then merged.
Moreover, the high cost of some data mining processes promotes the need for in-
cremental spatial data mining algorithms that incorporate spatial data set updates
without having to mine the entire data again “from scratch”. Such algorithms per-
form knowledge modification incrementally to amend and strengthen what was

previously discovered.

1.3.3 Issues relating to the spatial data type and spatial fuzzy data types

B Handling complex spatial data types: Spatial data mining deals with not only com-
mon data types such as integers, dates and strings, but also complex spatial data
types like points, lines, and polygons. Furthermore, relationships between spatial
objects, including metric (e.g., distance), directional (e.g., north of), and topological
ones (e.g., adjacent), add new complexity to SDM.

B Mining information from spatial fuzzy data sets: If the location attribute of spatial
data in a spatial data set is described as area, the spatial data set becomes a fuzzy
spatial data set. Actually, the geographic proximity is a fuzzy concept in many real
application fields. Discovering spatial fuzzy knowledge from spatial fuzzy data sets
thus present great challenge to spatial data mining. Spatial fuzzy data mining may
help disclose interesting data regularities in spatial fuzzy data sets that are unlikely
to be discovered by traditional spatial data mining system.

The above issues are considered as major requirements and challenges for the in-
vestigations in spatial patterns mining. For the limited researching time, some of them
will be addressed in this thesis to a certain extent, while others will be studied in the fu-

ture.

1.4 Organization of the Thesis

This thesis includes the following investigations: discovering co-location patterns
from fuzzy spatial data sets, a new join-less approach for co-location patterns mining, an
order-clique-based method for mining maximal prevalence co-location patterns, an at-
tribute-oriented induction method based on attributes’ generalization sequence, re-
searching on mining prediction technologies, a cell-based spatial object fusion method, a
fuzzy clustering method based on domain knowledge, and a visual spatial co-location

patterns mining prototype system. Their relationship is shown in Figure 1.1.
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Figure 1.1 The relationship map of the contents of research in the thesis

Two types of data, fuzzy spatial data and spatial data, are the studied objects in this
thesis. For fuzzy spatial data sets, the problem of discovering co-location patterns is ex-
plored (it is denoted as number 2 in Figure 1.1. It means it will be in Chapter 2.). For spa-
tial data sets, five works are investigated. The research of the number 8 is connected to
the works of the number 2, 5, and 6 since used the fuzzy equivalence partition method in
the number 2 and 6 is the same as in the number 8, and applied the concept hierarchy
trees in the number 5 is same as in the number 8. The efficiency of each of the tech-
niques given in Chapter 2-8 is investigated in its own chapter. Chapter 9 gives a proto-
type system which incorporates the techniques for co-location patterns mining, i.e. Chap-
ter 3 and 4. In the future, the system could be extended to incorporate techniques from
other chapters, but this extension of capability is not essential to proving the efficiencies
of all the techniques described in this thesis. The visual spatial co-location patterns’ min-
ing prototype system is the number 9 in Figure 1.1.

So, the rest of the thesis is composed of nine Chapters: Discovering co-location
patterns from fuzzy spatial data sets, a new join-less approach for co-location patterns

mining, an order-clique-based method for mining maximal prevalence co-location pat-
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terns, an attribute-oriented induction method based on attributes’ generalization se-
guence, researching on mining prediction technologies, a cell-based spatial object fusion
method, a fuzzy clustering method based on domain knowledge, a visual spatial co-
location patterns’ mining prototype system, and conclusions and concluding remarks.

Chapter 2 provides how to discover co-location patterns from fuzzy spatial data
sets. A semantic proximity, SP, between spatial fuzzy instances is introduced in this
Chapter. Based on the fuzzy equivalence partition, the concept of co-location mining
from fuzzy spatial data sets (for short, called the fuzzy co-location mining) is formally
established. Further, an algorithm to discover the fuzzy co-location rules is designed. A
new data structure, the binary partition tree, to improve the process of fuzzy equiva-
lence partitioning, is proposed. A prefix-based approach to partition the prevalent event
set search space into subsets, where each sub-problem can be solved in main-memory,
is also presented. Finally, theoretical analysis and experimental results on synthetic data
sets and a real-world plant distributed data set are presented and discussed.

Chapter 3 describes a new join-less approach for identifying co-location pattern ta-
ble instances. In this Chapter, a new join-less approach for co-location patterns mining,
which based on the data structure----CPI-tree (Co-location Pattern Instance Tree), is
proposed. The CPI-tree materializes spatial neighbour relationships. All co-location in-
stances can be generated quickly with a CPI-tree. In this chapter, the correctness and
completeness of the new approach is also proved. Finally, an experimental evaluation
using synthetic datasets and a real world dataset shows that the algorithm is computa-
tionally more efficient than the traditional used algorithms.

Chapter 4 discusses an order-clique-based method for mining maximal prevalence
co-location patterns. In this chapter, Characteristic and efficiency of the approach is
achieved with three techniques: (1) the spatial neighbour relationships between in-
stances and the size-2 prevalence co-locations are compressed into extended prefix-tree
structures respectively, Neib-tree and P,-tree, which brings up an order-clique-based
approach to mining candidate maximal ordered prevalence co-locations and ordered ta-
ble instances, (2) all table instances are generated from the Neib-tree, and do not need
be stored after computing the Pi value of corresponding co-location, which dramatically
reduces the executive time and space of mining maximal co-locations, and (3) some
strategies, pruning the branches, with the number of children less than a related value,
and scanning the Neib-tree in order, are used to avoid some useless inspection in the
process of inspecting table instances.

Chapter 5 presents an attribute-oriented induction method based on the attributes’
generalization sequence. A reasonable approach of AOI (AOl-ags, attribute-oriented in-

duction based on attributes’ generalization sequence), which expands the traditional
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AOI method, is proposed in this Chapter. By introducing equivalence partition trees, an
optimization algorithm of the AOIl-ags is devised. Defining interestingness of attrib-
utes’ generalization sequences, the selection problem of attributes’ generalization se-
quences is solved. Extensive experimental results show that the AOl-ags are useful and
reasonable. Particularly, by using the AOl-ags algorithm in a plant distributed dataset,
some distributed rules for the species of plants in an area are found interesting.

Chapter 6 focuses on mining prediction technologies. Based on the concept of se-
mantic proximity, a mining method to evaluate the fuzzy association degree is given in
this chapter. Inverse document frequency (IDF) weight function has been adopted in this
investigation to measure the weights of ecological environments in order to superpose
the fuzzy association degrees. To implement the method, the “growing window” and
the proximity computation pruning are deployed to reduce both I/O and CPU costs for
the computation of the fuzzy semantic proximity between time-series. Extensive experi-
ments on real datasets are conducted, and the results show that the mining approach is
reasonable and effective.

Chapter 7 introduces a cell-based spatial object fusion method. This method only
uses locations of objects without calculating the distance between two objects. The
performance of the algorithm is measured in terms of recall and precision. This algorithm
can work well when locations are imprecise and each spatial data set represents only
some of the real-world entities. Results of extensive experimentation are presented and
discussed.

A fuzzy clustering method based on domain knowledge is described in Chapter 8.
The clustering method in this chapter is based on domain knowledge, from which the
tuples’ semantic proximity matrix can be obtained, and then two fuzzy equivalence parti-
tion methods are introduced. Both methods are started from semantic proximity matrix
so that the results of clustering can be instructed by domain knowledge. The two meth-
ods are Natural Method (NM) and Graph-Based Method (GBM), which are both con-
trolled by a threshold that is confirmed by polynomial regression. Theoretical analysis
testifies the correctness of the approaches. The extensive experiments on synthetic
datasets compare the performance of the new approaches with that of modified MM ap-
proach in Wang (2000) and highlight the benefits of the new approaches. The experi-
mental results on real datasets discover some rules which are useful to domain experts.

Chapter 9 focuses on the development of a visual spatial co-location patterns’ min-
ing prototype system (SCPMiner). The SCPMiner provides the user multiple methods of
the spatial co-location mining. The management of co-location data is given. The co-

location mining methods’ analyzing can be performed on the SCPMiner. And it provides
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co-location mining applying function as well. Visualization and simplicity are outstanding
characteristics of SCPMiner.

Finally, In Chapter 10, the most important results and contributions of the thesis are
concluded. In addition, some possible extensions based on current achievements are

discussed. Further investigations which need to be carried out are indicated.

13



An Investigation in Efficient Spatial Patterns Mining

Chapter 2
Discovering Co-location Patterns from Fuzzy Spatial Data Sets

This Chapter extends mining spatial co-location patterns from general spatial data sets to mining

spatial co-location patterns from fuzzy spatial data sets and makes the following contributions. A

concept of semantic proximity SP over fuzzy spatial instances is defined. The concept of fuzzy
spatial co-location mining is given based on the fuzzy equivalence partition. An algorithm for min-
ing fuzzy spatial co-location rules is designed. A new data structure, the binary partition tree, to
improve the process of fuzzy equivalence partition, is proposed. A prefix-based approach to parti-
tion the prevalent event set search space into subsets is also presented, where each sub-problem
can be solved in main-memory. Finally, the time complexity and correctness of the algorithm are
analyzed and experiments are conducted using synthetic data sets and a real-world plant distrib-
uted data set. A case study on real-world data sets shows that our method is effective for mining

co-locations from fuzzy spatial data sets.
2.1 Overview

Spatial co-location patterns represent subsets of spatial events whose instances
are often located in close geographic proximity. Spatial events describe the presence or
absence of geographic object types at different locations in a two-dimensional or three-
dimensional metric space, such as the surface of the earth. Examples of spatial events
include plant species, animal species, business types, mobile service requests, disease,
crime, climate, etc. Spatial co-location patterns may yield important insights for many
applications. For example, Botanists may be interested in symbiotic plant species in a
special area. E.g., “Picea Brachytyla”, “Picea Likiangensis” and “Tsuga Dumosa” grow
frequently in an alpine terrain of the “Three Parallel Rivers of Yunnan Areas” zone. Co-
location rules are used to infer the presence of some events (e.g., plants or animals) in

the neighbourhood of instances of other spatial events. For example, “Picea Brachytyla’
— ‘Picea Likiangensis’ and ‘Tsuga Dumosa’ ” predicts the presence of ‘Picea Likiangen-
sis’ and ‘Tsuga Dumosa’ plants in the areas with ‘Picea Brachytyla’.

In a plant distributed dataset, discovering spatial co-location patterns is quite a sig-
nificant task. We know that plants grow in a tuft, so, the location of certain plant species
is not a point but a probability area. If we approximately describe the location of plants as
areas, the spatial datasets we face become fuzzy spatial datasets. How do we discover
co-location patterns from a fuzzy spatial dataset while geographic proximity is not an ab-

solute concept? For instance, if you say that certain plant is in close proximity to other
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plant which is 5 meters away from it, then what is the relationship with the third plant
which is 5.01 meters away? Based on the discussion above, the problems of co-location
mining from fuzzy spatial datasets are investigated in this chapter (for short, called the
fuzzy co-location mining).

The problem of fuzzy co-location mining can be formalized as follows: Given 1) A

set Eof K spatial event types E ={e,,e,,---e,} and their instances | ={i ,i,,---iy},
each ii e | is a vector <instance-id, spatial event type, location>, where locations are

fuzzy data and they belong to a spatial framework F, and 2) A semantic proximity SP
over instances in | and a fuzzy equivalence partition of instances in | based on SP, all

the fuzzy co-location rules can be efficiently found.
2.1.1 Background of Fuzzy Co-location Mining

In previous work on mining co-location patterns, Morimoto (2001) defined distance-
based patterns called k-neighbouring class sets. In his work, the number of instances for
each pattern is used as the prevalence measure, which does not possess an anti-
monotone property by nature. However, Morimoto used a non-overlapping instance con-
straint to get the anti-monotone property for this measure. In contrast, Shekhar & Huang
(2001) developed an event centric model, which does away with the non-overlapping
instance constraint, and a new prevalence measure called the participation index (Pi) is
defined. This measure possesses the desirable anti-monotone property. At the same
time, Huang, Shekhar & Xiong (2004) proposed a general mining approach: Join-based
approach mining co-locations. This approach is good on sparse spatial data sets. How-
ever, in dealing with dense data sets, it is inefficient due to the computation time of the
join is growing with the growth in co-locations and table instances. Yoo and Shekhar
proposed two improved algorithms (called partial-join approach and join-less approach
respectively) to conquer the disadvantage of the full-join approach on efficiency in (Yoo
and Shekhar, 2004) and (Yoo et al, 2005).

Huang, Pei and Xiong address the problem of mining co-location patterns with rare
spatial events in (Huang et al, 2006). In this paper, a new measure called the maximal
participation ratio (maxPR) was introduced and a week monotonicity property of the
maxPR measure was identified. And in paper (Huang and Zhang, 2006), Huang and
Zhang proposed a new approach to the problem of mining co-location patterns using
clustering techniques. Therefore, clustering techniques can be applied to reveal the rich

structure formed by co-located spatial events in spatial data.
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In summary, the problem of mining spatial co-location patterns is being widely in-
vestigated from the measures, algorithms to application domains, but not in fuzzy co-

location mining.
2.1.2 Organization of the Chapter

The remainder of the Chapter is organized as follows: Section 2.2 presents basic
concepts of the fuzzy co-location mining. In Section 2.3, an algorithm for fuzzy co-
location mining is presented. Section 2.4 provides an analysis of the algorithms in the
area of correctness, completeness and computational complexity. Experimental evalua-
tions are given in Section 2.5. The conclusion and discussing future work are given in
Section 2.6.

2.2 Definitions of Basic Concepts

This section defines the basic concepts of the fuzzy co-location mining. Figure 2.1
is used as an example to illustrate these concepts. In Figure 2.1, each instance is
uniquely identified by E.i, where E is the spatial event type, and i is the unique id in-

side each spatial event type, i.e., A2 represents the second instance of spatial event

type A.
1077 - : g “:  Table 2.1 An example of spatial instances
oif | B. il cbHz (Instances set sorted by spatial event
gt . — types and instance-id)
'. £ Instance-id  Spatial event type Location
Ti e . i 1 A ([2_5], [2_5])
6 2 A ([7-101, [7-9])
C. 3 A ([6-8], [3-6])
5 4 A ([8-10],[ 1-3])
. = 1 B ([1-3], [1-3])
S Y I I U Y B 2 B ([2-4],0 7-9])
31 Al c1 3 3 B ([6-8], [2-4])
4 B ([7-9] .[8-10])
28] BT A4 5 B ([1-3], [8-10])
S B 1 c ([4-7], [2-5])
~~~~~~~~~~~~~~~~~~~ 2 C ([6-8],[ 8-10])
1 2 3 4 5 6 7 8 9 10 3 c ([5-71, [5-7])

Figure 2.1 An example of spatial event instances

Instances can be described as a vector <instance-id, spatial event type, location>
(see the Table 2.1). The location of an instance is a fuzzy value and belongs to a spatial
framework F.

Zadeh provides the requisite mathematical framework for handling fuzzy data val-

ues in (Zadeh, 1965). A fuzzy subset )?i in F is characterized by a membership function
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Hg F —[0.1]. My, (x), for each x € F, denotes the grade of membership of X in the

fuzzy subset )?i .

The interval number description and centre number description are the two most
common examples of Zadeh’s descriptions (Liu, 1993).

The interval number description:
A fuzzy subset )?i is characterized by an ordered couple [a—Db]/J. [a—Db] is

called an interval number. It expresses the fact that this fuzzy subset lies between a and
b. 6(0< 5 <1) is the degree of confidence. The subsets are stacked according to the

confidence degrees.

The centre number description:
A fuzzy subset )?i is characterized by [c,r]/ ¢ . It expresses that this fuzzy subset

lies in a spherical region. ¢ is the centre of a sphere, r is its radius, 6 as above. For in-
stance, we say the length of a string is 10.17+0.03cm.

The interval number description is selected in this chapter. However, the same
method can be used to deal with the centre number description and the Zadeh descrip-
tions.

For the sake of convenience, the confidence degree of fuzzy values is sometimes
omitted. It means that the confidence degree of each fuzzy value is united into 1. For ex-

ample, suppose the probability distribution of values is a normal distribution. Since
30
L f(x)dx=0.99, [a—Db]/ & is simplified by [-30 — 3], where o is the standard devia-

tion (Amstader, 1979). Suppose the probability distribution of values is evenly distrib-
uted. [a—Db]/0 is simplified by [(a—f3/2)—(b+ £/2)], where 6/(b—a)=1/f. In case
the probability distribution of values is unknown, for convenience, it is regarded as
evenly distributed. The confidence degree of a classical value is 1. For example, 2.7 is
denoted [2.7—2.7]. This is a simple and intuitive method. The exact method is not dis-
cussed in this chapter.

How to define the proximity between spatial instances which’s locations are pre-
sented by a fuzzy value as shown in table 2.1 is an important issue in fuzzy co-location
mining. Based on the concept of the interval number of fuzzy values, the semantic prox-

imity SP is introduced to define the geographic proximity between instances.

2.2.1 The semantic proximity SP and the fuzzy equivalence partition

17
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The semantic proximity is the degree of proximity between instances f, and f,
(their locations are f =([a —a’],[b/-b’]) and f,=([a-aj],[b-Db;]), written
SP(f,, f,) (0<SP(f,, f,)<1), can be defined as

SP(f,, f,)=(Area(f,n f,)/ Area(f, U f,)) (1)

where Area(h) is the area of rectangle h.

Example 2.1. Suppose f, =([2-5],[2-5]), f, =([1-3],[1-3]). Then

SP(f,, f,)=(1/12)=0.083

The semantic proximity (SP) between two fuzzy values defined by formula (1) satis-
fies the following properties.

(1). If fy, f, are two equal fuzzy values then the SP of f; and f; is 1.

(2). If f,, f, are two locations that do not intersect, then the SP of f; and f; is 0.

(3). If the area of the location f; is equal to the area of the location f, and the area of
f: /19, is greater than the area of f, /79, then SP(f1,9:) is greater than SP(f,,9,).

(4). If the area of the f, /7 is equal to the area of the f-/7g and the area of f, Ug; is
greater than the area of f, Ug, then SP(f;,0,) is smaller than SP(f,,0,).

There are many expressions of the proximity from various angles (He, 1989; Liu,
1993; Liu and Song, 2001; Schwartz, 1989; Ziarko, 1991). Which one you choose de-
pends on your applications. The different expression would not affect the following dis-
cussion.

Considering the proximity does not satisfy transitivity, the fuzzy equivalence parti-

tion method is introduced in geographic proximity instances. Assume that i,--,i is a

SP(i,,i;) =1

sequence of instances of events. From the above points, and

SPAL,1;) =SP(. 1) hold. Using the semantic proximity between spatial instances, a simi-

larity matrix S =(s;)y.n can be built up in (2):
1 i=j

SI\phi) i) @

2 _
The matrix S is multiplied by itself repeatedly, where ()" = MAX (MIN (s 3 )),

k k
until Sh =S, She is called a fuzzy equivalence matrix (i.e.,

k k k o2k k
Sij =1, Sij = Sjias =S ) (Wang, 2000; Huo, 1989).

Based on the level value matrix of the fuzzy equivalence matrix, the classifications

..,l

of > N can be obtained (Wang, 2000; Huo, 1989).
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Example 2.2. Based on the definition of SP of two spatial instances, the similarity

matrix S can be obtained as (3) from Figure 2.1.

1 0
0 1
0 0
0 0
0.083 0
s 0 0
0 0
0 0.25
0 0
0.2 0 0.154
0 0.111
0 0 0.111

0.083

0
0
0
1
0
0
0
0
0
0
0

(=]
OOOEOO'—‘OOOOO

(=)

e

o0
[\

S O

W

§ =
W o o= OO0 O O O uw o

(=]
(98]
W

S

W

(=]
OOO'—‘OOEOOOOO

Applying S self-multiply repeatedly, the obtained matrix is shown in (4):

0.182

0.083
EM=8"=5"=
0.182
0
0
0.2
0
[0.111

0.

0
0
0
0
0
1
0
0
14
0
0
0

0.182

0.111

=]

W o o~ o000 oo

(98]
W

=]

W

02 0 0
0 0111 0
0.154 0 0.111
0 0 0
0 0 0
0 0 0
0.182 0 0 @
0 0333 0
0 0 0
1 0 0
0 1 0
0 0 1]
0 02 0 0111
0 0 025 0
0 0154 0 0111
o 0 0 0
0 0083 0 0083
0143 0 0 0
0 0182 0 0111 @
0 0 0333 0
I T
o 1 0 ol
o 0 1 0
0o ol 0 1 |

Then, S*is the fuzzy equivalence matrix EM of the similarity matrix S. If selecting

level value 1=0.09, the level value matrix S, is obtained as (5) (the value becomes 1

if it is greater than A otherwise zero).

4 _
Song -

—_ 0 = O O = O O O = O =

S = O O = O O O O O = O

—_ o = O O = O O O = O =

SO O O O O O o o~ O o O

S O O O O O O = O O o O

S O O = O O = O O O o o

—_ 0 = O O = O O O = O =

S = O O = O O O O O = O

S O O = O O = O O O o <o

—_ o = O O = O O O = O =
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A partition of spatial instances in Figure 2.1 can be obtained from 3309: lo.oo={(A.1,

A3, B.3, C.1, C.3), (A.2, B4, C.2), (A.4), (B.1), (B.2, B.5)}. This result is described by

the dashed circles in Figure 2.1.
2.2.2 Further Definitions Based on the SP and fuzzy equivalence partition

Based on the concepts of the fuzzy semantic proximity SP and fuzzy equivalence
partition, other concepts can be defined as follows.

Given | is an instance set of event set E, a semantic proximity neighbourhood is

aset | <1 of instances that belong to a fuzzy equivalence class.

A co-location C is a subset of spatial events, i.e., C  E. A co-location rule is of

the form: €1 = C2(P:eP)  where €1 and C: are disjoint co-locations, P is a value repre-
senting the prevalence measure, and CP is the conditional probability.

A semantic proximity neighbourhood | is a row instance (denoted by row-
instance (C )) of a co-location C if I contains instances of all the events in C and no
proper subset of | " does so. The table instance, table-instance (C ), of a co-location C
is the collection of all row instances of C .

Example 2.3. Suppose the dashed circles in Figure 2.1 represent fuzzy equiva-
lence classes. In Figure 2.1, we observe that {A3,B.3} is a row instance of co-
location {A,B} . {A3,C.1,C.3} is a semantic proximity neighbourhood, but it is not a row
instance of co-location {A,C} because its subset {A3,C.1} or {A3,C.3} contain instances
of all the events in {A C}. The table instance of {B,C} has 3 row instances{B.3,C.1},
{B.3,C.3} and{B.4,C.2}.

From the definitions above, it can be observed that the concept of semantic prox-
imity neighbourhood is not an absolute concept. The geographic proximity relationship
can be controlled by changing the fuzzy equivalence partition threshold A (the level
value A4 ). Further more, because of the fuzzy equivalence partition, the problem of high
cost that is happened during computing the table instance in traditional co-location min-
ing can be improved in fuzzy co-location mining. However, the results of a fuzzy equiva-
lence classification are not equal to that of transactions, because there are many row
instances of a co-location in a fuzzy equivalence class. So, the following definitions are

similar to the definitions given by Huang et al (2004).

The conditional probability CP(C, = C,) of a co-location rule C, = C, is the prob-

ability of finding an instance of c, in the semantic proximity neighbourhood of an in-
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|7, (table —instance({C, U C, }))
‘table —instance({C, })‘

, where 7 is the

stance of c,. Formally, it is estimated as

relational projection operation with duplicate elimination.
The participation index is used as a co-location prevalence measure. The partici-

pation index Pi(C) of a co-location C ={e,,---,¢,} is defined as min, {Pr(C.e,)}, where
Pr(C,¢,) is the participation ratio for event type €; in a co-location c. Pr(C,e) is the

fraction of instances of €; which participate in any instance of co-location C,

7, (table —instance( {C}))‘

, Where 7 is the relational projection operation with duplication
\table — instance({e, })‘

elimination.

Example 2.4. In Figure 2.1, the total number of instances of event type B is 5 and
the total number of instances of event type C is 3. The participation index of co-location
c=[B,C] is min{Pr(c,B),Pr(c,C)} =2/5, because Pr(c,B) is 2/5 and Pr(c,C) is 3/3.

In Huang’s work (Huang et al, 2004), it can be known that the participation ratio and
the participation index are monotonically non-increasing with the increase in size of the
co-location. So, the participation index can be used to effectively prune the search space

of co-location rules mining.
2.3 Algorithms for Discovering Fuzzy Co-location

In this section, an algorithm to mine fuzzy co-location rules is introduced. The inputs
of this algorithm are a set E of spatial event types, a set | of spatial instances, a user-
specified level value A as well as thresholds for interest measures, i.e., minimum preva-
lence threshold, min_prev, and conditional probability threshold, min_cond_prob. The
algorithm outputs a set of prevalent fuzzy spatial co-location rules with the values of the
interest measures above the user-defined thresholds. The detailed descriptions are
shown as follows.

Input
E: a set of K spatial event types;

I: a set of N instances <event type, event instance id, and fuzzy location>;
A : a user-specified level value for controlling the fuzzy equivalence partition;
min_prev: prevalence value threshold;

min_cond_prob: conditional probability threshold;

Output
A set of all prevalence co-location rules with participation index greater than min_prev and

conditional probability greater than min_cond_prob.
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Variables
k: co-location size;

Cy: set of candidate co-locations of size k;

Ty set of table instances of co-locations in Cy;

P«: set of prevalent co-locations of size k;

Ry: set of co-location rules of size k;

S: matrix of semantic proximity between instances;

EM: fuzzy equivalence matrix for the fuzzy similarity matrix S;

EPC: fuzzy equivalence classifications for a set | of N instances;

Steps
1) TakesE, |, A, min_prevand min_cond_prob;
2) Computing the semantic proximity between instances, a similarity matrix S = (Sj) sy CAN
be obtained, where s; = SP(€; ,saion+ € j1ocation) » Sii =1+ Sij = Sji» 1 j=12,---N;;
3) Calculate a fuzzy equivalence matrix EM from the similarity matrix S;
4) Based on user-specified level value 4, the classifications EPC = {s,,s,,--,s,} for a set |

of N instances can be obtained;

5) k:=1; Cy:=E; Py:=E;

6) T4=gen_table_instance (C4, |, EPC);

7) While (not empty P and k<K) do {

8) Ck+1=gen_candidate co-location (Py);

9) Tw.1=gen_table_instance (Cy.q, Tk);

10) Py.1=select_prevalence_co-location (min_prev, Cy.1, Tk+1);
11) Rx+1=gen_co-location_rule (min_cond_prob, Py.4);

12) ki=k+1; }

13) Return U(R,,---,R.,);

Step 1, i.e., input step, takes E, I, /1, min_prev, and min_cond_prob. Step 2, com-
pute semantic proximity between instances. A similarity matrix S is obtained. Step 3,
self-multiply the similarity matrix S repeatedly, and then obtain the fuzzy equivalence
matrix EM. The equivalence matrix EM can be computed in O(N®) time. The computa-

tional method can be expressed as:

1) Fori:=1to Ndo
For j:=1to Ndo

)
)
) If s(j,i)>0 then
)
)

A~ W N

For k:=1to N do
S(j,k):=max{S(j,k), min{S(j,i), S(i,k)}};

(9}

where the test s(j,i)>0 in Step 3 is to avoid meaningless looping. This algorithm has

high efficiency when the fuzzy similarity matrix S has many zero elements.
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The above method can be optimized. Wang (2000) proposed an algorithm to com-
pute the fuzzy equivalence matrix EM in O(M?) time (M is the number of nonzero ele-
ments in the upper-triangle of the similarity matrix S.).

Suppose the spatial event instances can correspond to integer 1~N (the N entries
instances can be stored in an array, and then the N instances will correspond to the in-

dex of the array). So, the N instances can be denoted asb2 5N

A new data structure, the binary partition tree, to store fuzzy equivalence matrix
EM, is introduced. A binary partition tree for N instances will have N leaf nodes and at
most N-1 inner nodes. The relations between nodes are joined by parents’ relations. The

leaf nodes are denoted as>2 >N N+LN+2,--2N -1

, and inner nodes are denoted as
A function FJi] is defined, which values express transitive semantic proximity between
corresponding leaf nodes.

A link is used to store the binary partition tree, and put it to an array T. Node i is put
into T[i]. So, every node has only one field, which is the parent field.

In this algorithm, 3 arrays v [N+1,N+M], w [N+1,N+M], a [N+1,N+M] are used to
store all nonzero elements in the upper-triangle of the similarity matrix S, where ‘v’ con-
tains row coordinates, ‘w’ contains column coordinates, ‘a’ contains corresponding val-

ues, and M is the number of nonzero elements. Therefore
(v, ,w;)a;)e ({l., N} {i,...N})*[0,1]

equivalence partition matrix can be designed as:

. The new algorithm for computing the

1) n1:=N+1; nm:=N+M;
2) for i:=1 to 2N-1 do T(i):=0;

3) sort((vj,wj),a) /*j=n1,...,nm; take nonzero elements in upper-triangle by aaj.+, j=n1,..., nm-1*/
4) k:=n1;
5) for i:=n1 to nm do
{

6) Pv:=v(i);
7) While T(Pv)>0 do Pv:=T(Pv); [*tracing its parents®*/
8) Pw:=w(i);
9) While T(Pw)>0 do Pw:=T(Pw);
10) if Pv=Pw then

{
11) T(Pv):=T(Pw):=k; /*if they have no common parent, then produce a parent and
give it a transitive semantic proximity*/
12) F(k):=a(i);
13) k:=k+1

}

}

Example 2.5. An example to illustrate the algorithm above
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After the algorithm carrying out step 1),

M

0
0
0

0.

0

[=EN =l e

Suppose a similarity matrix S is as (6).

0.71 0 0 036 0 0 0
7101 0 036 0 036 036 0
0 1 0 071 0 0 036 036 0.79
036 0 1 0 042 059 0 024 0
36 0 071 0 0 0 0 0 0.71
0 0.71 0
036 0 0.59 042 1 0 024 0

1
0 (6)
0

0 03 0 0 0 0 0.36 0.36
0
0

036 0 0.42 1 0.42

—_

0 036 0.24 0.71 024 036 1 0.36
0 079 0 710 0 036 036 1

2) and 3), the results of the arrays v, w, a

and the link T are shown in Figure 2. 2. Figure 2.3 demonstrates that the changing situa-

tions of Pv and Pw, and the content of the link T, when the loop iterating step 5) is per-

formed. Figure 2.4 is the binary partition tree in the end (it is stored by a link T).

n n1
1 2 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
0 0 ©o 00000 O O O O O O O 0 0 0 0 0
v=-|3 1 3 5 6 4 4 6 1 2 2 2
w=[10 2 5 10 9 7 6 7 5 4 & 7
a= | 079 071 071 071 071 059 042 042 036 036 036 036
Figure 2.2 The result after implementing the step 1), 2) and 3)
Pl X evlPw ik 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16
L L B S AT T=|12 12 11 15 13 14 15 14 11 13 16 16
212 |,
1313 5| 5
11
114 5 | 0 F(11)=0.79 F(12)=071  F(13)=0.71  F(14)=0.71 F(15)=0.59
13| 13 F(16)=0.42
15 14| o | o
16 15| , |
17016 | , | 6
15 | 14
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19 @ F(19)=036

18 G F(18)=0.36 8
17 @ F(17)=0.36 16F(16)=0,42

—

F(14) =0.71
F(12)=0.71 12
F(13)= 071

& S3hd b

Figure 2.4 The binary partition tree corresponding to the matrix S in Example 2.5

F(15)=0.59

Based on the fuzzy equivalence matrix EM or the binary partition tree, the equiva-

lence partition classifications EPC for user-specified level value A will be obtained in
step 4.

Step 5 is the initialization step that assigned starting values to various data struc-
tures used in the algorithm. It can be noted that the set C, of candidate co-location of
size 1 as well as the set P, of prevalent co-locations are initialized to E, the set of spatial
event types. Because the value of the participation index is 1 for all co-location of size 1,
the set T4 of table instances of size 1 co-location is created by sorting the class-id in
EPC and the set | of spatial instances by event types (see Figure 2.5 (a)).

The proposed algorithm of fuzzy co-location mining iteratively performs four basic
tasks, namely, generation of candidate co-locations, generation of table instances of
candidate co-locations, selection of prevalent co-locations, and generation of co-location

rules. These tasks are carried out inside a loop iterating over the size of the co-locations.
2.3.1 Generation of Candidate Co-locations

The apriori_gen (Agarwal and Srikant, 1994) is used for generating candidate co-
locations. Size k+1 candidate co-locations are generated based on size k prevalence co-
locations. The anti-monotonic property of the participation index makes event level prun-
ing feasible (Huang et al, 2004) (see Figure 2.5 (b) (d)).

2.3.2 Generation of Table Instances

The table instances of candidate co-locations are enumerated using the method

that is similar to the apriori algorithm. It can be described as the following join query.

Forall co-location ceC, |
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Insert into T, /* T, is the table instance of co-location ¢ */

Select p.nstance,,---, p.instance,, ¢.instance,

From c.table_instance_id, p, c.table_instance_id, q

Where p.instance =q.instance;,..., p.instancey_s=q.instancey.4,
p.instance,,g.instance, €5, i=1, ..., | /*s;is a fuzzy equivalence class*/

End

The combinatorial join predicate (i.e.,

p.nstance, = q.nstance,,--- p.nstance, , = ¢.nstance, ) can be processed efficiently us-

ing a sort-merge join strategy proposed by Graefe (1994), since the set of events is or-
dered and tables’ c.table_instance_id; and c.table_instance_id, are sorted. The resulting

P.nstance,, g.instance, €5;,i =

tuples are checked for the spatial condition Ll get the
row-instance in the result.

For accelerating the joining operations of enumerating table instances, a class-id is
added to the table instance, by which and the instance-id the set of table instances is
ordered, then the instances that belong to a fuzzy equivalence class will be joined effi-

ciently.

Example 2.6. In Figure 2.5, row instance {1,3} of Tab. 4 and row instance {1,1} of
Tab. 5 are joined to generate row instance {1,3,1} of co-location {A, B, C} (Tab. 7). Row
instance {1} of Tab. 1 and row instance {1} of Tab. 2 fail to generate row instance {1,1} of
co-location {A, B} because instance 1 of A and instance 1 of B do not belong to a fuzzy

equivalence class.
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Participation index:
min{3/4, 2/5} min{3/4, 3/3} min{2/5, 3/3}
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Figure 2.5 An illustration example of the fuzzy co-location mining algorithm

If the number of events is enormous, the limit of main-memory could be a problem.
As the number of the species of plants located in “Three Parallel Rivers of Yunnan Pro-
tected Areas” is abound, this problem must be resolved. This, thus, brings up the issue:
Can the original event set be decomposed into smaller pieces so that each partition can

be solved independently in main-memory? The related discussion is addressed below:
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Let E be a set of events. The power set P(E) of E is a complete lattice, which is

proved by Zaki (2000). Figure 2.6 shows the power set lattice P(E) of the events’ set
E={A, B, C, D}. Define a function
f:P(E)xN — P(E) (7)

f(X,k)= X[ 0

where IZk], the k lengths prefix of X. Define a relation “k on the lattice
P(E) as follows:

VXY €P(E)LX =, Y & K= Tk g

That is, two event sets are in the same class if they share a common k length pre-

, 0, . , , 0, . :
fix. Therefore “ is called as a prefix-based relation. In fact, "% is an equivalence rela-
tion, because it is a reflexible, symmetric and transitive relation. The equivalence relation

partitions a set into disjointed subsets called equivalence classes. The equivalence class
of an element X €P(E) is given as [X]={Y e P(E)| X =, Y}.

Figure 2.6 shows the equivalence classes induced by the equivalence relation ¢, on
P(E), Where all power sets of events are collapsed with a common, length one, prefix

into an equivalence class. The resulting set of equivalence classes is {[A], [B], [C], [D]}

T

Figure 2.6 The power set lattice p(E) of the events’ set E={A, B, C, D}, and

the lattice induced by equivalence relation 6, on p(E).

Lemma 2.1 Each equivalence class (%o induced by the equivalence relation O is

a sub-lattice of P(E).
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Proof. (of Lemma 2.1). Let U and V be any two elements in the class [X]. i.e., U, V

t UvV e[X]

share the common prefix X. UVV =UUV X inplies tha , and

UAV=UnV X implies that U AV e[X] Therefore, [X1s, is a sub-lattice of P(B), g

Each [X1, is itself a Boolean lattice with its own set of atoms. For example, the at-

oms of LA, are {AB, AC, AD}, and the top and bottom elements areT=ABCD ' and 1= A,

If there is enough main-memory to hold instance sets for each class, then each (X1a can
be solved independently. Another interesting feature of the equivalence classes is that
the links (including real links and dashed links) between classes denotes dependencies.
That means if you want to put pruning in to practice, then the classes have to be proc-
essed in a specific order. In particular, the classes have to be resolved from bottom to
top, which corresponds to a reverse lexicographic order, for example, in Figure 2.6, we
process them in the order of [D], [C], [B], and [A]. This guarantees that all subset infor-
mation is available for pruning.

In addition, depending on the amount of main-memory available, one can recur-

'92, 93, ...) until each class is

sively partition large classes into smaller ones (by using
small enough to be solved independently in main-memory. As it happens, according to
the sort-merge join method developed in this chapter, the joining operations for enumer-
ating table instances will be in a partition class. The real links denote join operation for

enumerating table instances in Figure 2.6.
2.3.3 Selection of Prevalent Co-locations

The participation index of co-locations is calculated by scanning the table instances
once. First, keep a bitmap of size cardinality (e;) for each event g; of co-location c. Sec-

ond, scan of the table instance of ¢, and put the table instance of c in the corresponding
bits in each bitmap. Finally, obtain the participation ratio of each event e; (divide Pe, by
instance of e;) by summarizing the total number of ones ( Pe ) in each bitmap.

Example 2.7. Computing the participation index of co-location {A, C}

First, bitmap b,=(0,0,0,0) of size 4 for A and bitmap bc=(0,0,0) of size 3 for C are
initialized to zeros (see Figure 2.5 (c) Tab. 5).

Second, scan Tab. 5 and get the following results: bx=(1,1,1,0) and bc=(1,1,1).

Finally, three out of four instances of A participate in co-location {A, C}, so the par-
ticipation ratio for A is 0.75. Similarly, the participation ratio for C is 1.00. Therefore, the
participation index is min {0.75, 1.00}=0.75.
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After the participation index for each co-location is determined, the selection of
prevalent co-location is carried out. In other words, the nonprevalent co-locations are
deleted from the candidate prevalence co-location sets. For example, if min_prev is
given as 1/2, the candidate co-location {A, B} and {B, C} is pruned in the first loop iterat-

ing because its prevalence measure is less than 1/2.
2.3.4 Generating Co-location Rules

The gen_co-location_rule function generates all co-location rules with conditional
probability above a given min_cond_prob. The conditional probability of a co-location
rule can be calculated efficiently by using bitmaps strategies that have been used in Sec-
tion 2.3.3.

2.4 Analysis for Fuzzy Co-location Mining

In this section, the completeness, correctness and computational complexity of the
algorithm are analyzed. Correctness means that the participation index values and con-
ditional probability of generated co-location rules meet the user specified threshold.
Completeness implies that no co-location rule, which satisfy given prevalence and condi-

tional probability thresholds, is missed.
2.4.1 Completeness and Correctness

Lemma 2.2. The participation ratio and the participation index are monotonically
non-increasing with increasing the size of the co-location.

Proof. (of lemma 2.2). According to the definition of semantic proximity neighbour-
hoods, row instances and table instances in Section 2, it can be known that a spatial

event instance that participates in a row instance of a co-location C also participates in a

row instance of a co-location C’, where C'cC because a subset of an instance set
that belongs to a fuzzy equivalence class must belong to this equivalence class. So, the
participation ratio is anti-monotonic. The proof of anti-monotone of the participation index

is shown as follows.

Suppose a co-location© = €157 >8]} , then

k+1 k

Pi(Cue,)= nlnln Pr(C uey,,,&); <min{Pr(Cue )}

< nifiln{Pr(c,ei)} =PiC) =&

Lemma 2.3. The Fuzzy Co-location Miner algorithm is correct.

30



Chapter 2. Discovering Co-location Patterns from Fuzzy Spatial data Sets

Proof. (of lemma 2.3). First, the value of the participation index is 1 for all fuzzy co-
locations of size 1, so it is correct that the set C; of candidate co-locations of size 1 as
well as the set P, of prevalent co-location are initialized to E in step 5.

Then, for the size greater than 2, it will only be shown that the row instances of
each co-location are correct, which will imply the correctness of the participation index

values and that each co-location meets the user specified threshold. An instance

Il :{Il,la"'ll,k} Of C] :{e],"'nek} and an instance Iz {iz,la"'iz,k} Of Cz :{els"'yekfpekﬂ} are

. . loow = 410l =g - :
joined to produce an instance "™ o hyobyd of C= 188l if 1) all elements of I;
and |, are the same except i1 and ixx; 2) iy« and ipx are in the same fuzzy equivalence

class. The schema of I, is apparently ¢, and elements in I, are in a fuzzy equivalence

class because the intersection set between fuzzy equivalence classifications is ¢, 2.k

and bl belongs to a fuzzy equivalence class, at the same time, also i>x and ik
belong to a fuzzy equivalence class. o
Please refer to Wang’s paper (Wang, 2000) for the correctness of the fuzzy equiva-

lence partition algorithm using binary partition tree.

Lemma 2.4. The Fuzzy Co-location Miner is complete.

Proof. (of lemma 2.4). It will be proved that if a fuzzy co-location is prevalent, it is
found by the algorithm. First, the monotonicity of the participation index in Lemma 2.2
ensures the completeness of the event level pruning of candidate co-location used in
step 8 of the algorithm. Second, it will be proved that the joining of the table instances of
C+ and C, to produce the table instances of C is complete in step 9. According to the
semantic proximity neighbourhood definition, any subset of a semantic proximity

neighbourhood is a semantic proximity neighbourhood too. For any instance
=1 b}l of co-location C, subsets 't =Uld gng b=l honiid g

neighbourhoods, b and hea are in the same fuzzy equivalence class, and li and !2 are
row instances of C; and C,, respectively. Join | and I, will produce I. In step 10, enu-
meration of the subsets of each of the prevalent co-locations ensures that no spatial
fuzzy co-location rules with both higher the min_prev and the min_cond _prob are

missed. m
2.4.2 Computational Complexity Analysis

The computational complexity of the fuzzy co-location mining algorithm consists of

two parts. One is outside iteration, and the other is inside iteration.
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For outer part of the iterating loops, steps 1, 5 and 6 are initialized. Their computa-
tional complexity is O(K+N). The steps 2, 3, calculate the similarity matrix S, equivalence
matrix EM and obtain fuzzy equivalence classification EPC. These can be computed in
Oo(M?) time, if the method of binary partition tree is used. So, the computational com-
plexity of this part isO(M ).

For inner part of the iterating loops, let Tim(k+1) represent the cost of iteration k of
the co-location miner algorithm.

chm (k +1) = Tgen_candi (Pk )+ T (table insts  of P+ T e (C)

2 Ty ing (table _insts  of P.)

gen _inst

In above equations, Toen_canas (B represents the cost of generating size k+1 candi-

date co-locations with the prevalent size k co-locations. Toen ing (taDle_insts —of — R)

represents the cost of generating table instances of size k+1 candidate co-locations with

size k table instances. Torune (Cica) represents the cost of pruning non prevalent size k+1
co-location.

The bulk of the time is consumed in generating table instances. For generating ta-
ble instances of size-2 co-locations, the complexity is O(N?). It is difficult to express the
time which takes to generate table instances of co-location of size-3 or more, because it
depends on the number of instances in each candidate co-location set. However, by us-
ing the sort-merge join strategy (the set of table instance is ordered by the class-id and
instance-id), the complexity is lower (as the cost time of the inside of the iterating loop is

less than the outside part in the experiment).
2.5 Experimental Evaluation

The performance of the algorithms with synthetic and real-world data sets has been
evaluated. Synthetic datasets are generated using a methodology similar to the method-
ology used in Huang et al (2004). The synthetic data generator allows us to better con-
trol the study of the algorithms and the effects of interesting parameters.

The real-world plant distributed data set used in the experiments contains distribu-
tion information of plant species in the “Three Parallel Rivers of Yunnan Protected Ar-
eas’.

The experiments were performed on a Celeron computer with a 2.40 GHz CPU and
376 Mbytes memory running the Windows XP operating system. All programs are written

in Java.
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2.5.1 Performance Studying

It is considered that computing the fuzzy equivalence matrix is an important step in
the algorithm. Therefore, two algorithms are evaluated in the performance study. One is
the algorithm that uses the general method (O(N®)) to compute the fuzzy equivalence
matrix. It is denoted as GFCG (General Fuzzy Co-location Generation). The other is the
OFCG (Optimized Fuzzy Co-location Generation). It uses an optimized method to com-
pute the fuzzy equivalence matrix (O(N?)).

The experiment is conducted using detailed simulations to answer the following
questions:

(1). How does data density in the spatial framework affect the performance?

(2). How do the algorithms behave with different prevalence thresholds?

(3).How do the algorithms behave with difference level values A of fuzzy equiva-

lence matrices?

The common parameter values used in these experiments are as follows: the spa-
tial framework is 250x250, the number of event types is fixed to 10, and the average

area of a spatial instance is 25x25.

Effect of data density in the spatial framework: The effect of data density in the
spatial framework was evaluated with spatial data sets generated by using above com-
mon parameters and spatial instances of different number, i.e., 100, 300, 500 and 700,
to control the data density in spatial framework. Figure 2.7 shows the performance gain
by two algorithms with the min_prev is set to 0.1 and the level value A is equal to 0.1.
As the density increases, the execution time of the two algorithms is dramatically in-
creased. It shows the sensitivity of the algorithm with the increase of data density. For
further investigation, Figure 2.8 shows a comparison between computing the fuzzy
equivalence matrix (steps 2-4 in our algorithm) and the rest of the algorithm. As can be
seen, the computation of fuzzy equivalence matrix consumes most of running time and
demands a significant improvement. Table 2.2 is the results of mining from these syn-
thetic data sets. It also gives a hint for what kinds of synthetic datasets are generated in

these experiments.
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Figure 2.8 Comparison of density effect for the part of generation

EPC and the rest of the part of the algorithm

Table 2.2 Mining results of synthetic data sets

ining results Maximum size of co- Number of co-
Data sets location location
Dataset_100 instances 5 64
Dataset_300 instances 5 117
Dataset_500 instances 6 201
Dataset_700 instances 7 376

Effect of prevalence threshold: the performance effect, the prevalence threshold
increases, sees Figure 2.9 (a). The experiment is conducted with the above dataset 300
instances, and A is fixed to 0.2. It can be seen that the effect of the prevalence thresh-
old for the two algorithms is almost the same. However, the execution time of algorithms
decreases with the increase of the threshold value (Figure 2.9 (b). there is a blow up in
Figure 2.9 (a)). The reason is the decrease in the number of joins of instances due
to the efficient pruning. In addition, the execution time of the algorithm is much less

than the first time, because steps 1-6 in the algorithm do not need to be run again.
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Figure 2.9  Effect of prevalence threshold

Effect of level valueZ : The effect of level value threshold 4 is evaluated with the

synthetic dataset contained 300 instances, and Min-prev is fixed to 0.2. Figure 2.10 illus-
trates the execution time of the two algorithms as a function of the level values 4. When

the level value 4 is changed, the fuzzy similarity matrix and the fuzzy equivalence ma-
trix do not need to be computed again in the two algorithms, so the execution time of the
two algorithms is much less than the first time. Figure 2.10 (b) shows the execution time

of the algorithm decreases, as the number of joins of instances decreases with the in-

crease of the value of 4 . The addition of class-id to the table does allow the set of table

instances to be ordered by both class-id and instance-id.
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Figure 2.10  Effect of level value A

2.5.2 Experiments on a Real Data Set

The algorithm is evaluated by using a plant distributed dataset of the “Three Parallel
Rivers of Yunnan Protected Areas”. The number of plant species (event types) is 29.
The total number of plant instances is 3908. When the level value A is set to 0.09, the
number of the fuzzy equivalence classifications is 252. When Min_prev is set to 0.1, the

maximum size of co-location is 9 and the total number of size 2 co-location patterns is
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167. Some selected mining results are shown in table 2.3. Table 2.4 is the correspond-

ing table of plants’ name and the ID used in table 2.3.

Table 2.3 Some selected results of mining fuzzy co-location on the “Three
Parallel Rivers of Yunnan Protected Areas”

Rule id The lef}tl_ehflrlll(i:ide of The right-}:lrlli side of the Cond_Prob’
1 0] B)(7)(14)(15) 0.92
2 (DH3) (7)(14)(15) 0.97
3 (D7) 3)(14)(15) 0.95
4 (HB)) (14)(15) 1
5 (HG)N14) (15) 1
6 ) @) 0.86
7 2)4) 5)9) 0.93
8 2)4)(5) Q) 0.99
9 3) (2)(6)(8)(10)(11)(12)(13) 0.75
10 3)(Q2) (6)(8)(10)(11)(12)(13) 0.96
11 (16) (17)(18)(19)(20) 0.80
12 (16)(17) (18)(19)(20) 0.90
13 (16)(17)(18) (19)(20) 1
14 21) (M(A1)(16)(22)(23)(24) 0.90
15 (21)(22) (7(A1)(16)(23)(24) 1
16 (21)(22)(23) (M(11)(16)(23)(24) 1

* See section 2.2.2
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Table 2.4 A correspondence table of plants’ name and their ID used in table 2.3

Plants _id Plants’ name
(1) Kobresia tunicata
2) Kobresia stiebritziana
3) Primula serratifolia
“) Vertrilla baillonii
5) Allium victorialis
6) Meconopsis venusta
@) Trollius yunnanensis
8) Juncus castaneus
) Potentilla forrestii
(10) Arenaria longistyla var. pleurogynoides
(1) Anemone demissa
(12) Chamaesium sp.
(13) Polygonum coriaceum
(14) Draba oreodoxa
(15) Saxifraga macrostigma
(16) Rhododendron cephalanthum
a7 Salix calyculata
(18) Kobresia prattii
(19) Saxifraga sp.
(20) Pedicularis sp.
21 Larix poteninii var. macrocarpa
(22) Picea likiangensis
(23) Schisandra rubriflora
(24) Rubia sp.

By discussing with an expert botanist of Yunnan University (Zhiha Hu), it has been
found from the mining results that there are three groups of co-location rules: The first
group (rule 1 to rule 10 in table 3) represents a sub-class of a plant community, the sec-
ond group (rule 11 to rule 13 in table 3) seems obvious as they belong to a plant com-
munity, and the third one (rule 14 to rule 16) is a mixed one of plant communities.

What is the information or knowledge behind the rules discovered by the algorithm?
Prof. Hu explained it using Figure 2.11. The plants involved in rules 1-10 belong to a
plant community, so they generally grow together. But if there is difference of terrain (for
example, sloping field, steep valley or stone-swept terrain), the combination of a plant
community represents that difference. The plants in rules 1-5 of table 3 are supposed to
grow in a valley which is covered by aqueous soil and some big stones. The plants in
rules 6-8 of table 3 are supposed to grow in a sloping field facing the West. The plants in

rules 9-10 of table 3 are supposed to grow in a sloping area facing North-East.
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Figure. 2.11 An explanation of plants’ distribution in fuzzy co-location patterns

In the second group of rules (rules 11-13 in table 3), plants (16) (17) belong to
Bosks, and plants (18) - (20) belong to Herbages. They belong to a form, Rhododendron
cephalanthum. Certain plants are expected to be co-located. Even if the threshold A is
set to a value which is small, it may be that the plants belonging to these communities
are still not in a co-location pattern. This is because some problems might be with this
area (or with these plant communities). For example, the ecological environment might
be destroyed.

In the third group rules (rules 14-16 in table 3), plants (21) (22) belong to Arbors,
plant (23) belongs to Frutexes, and plant (24) belongs to Herbages. They belong to the
form, Larix pataninii var. macrocarpa. But why do plants (7) (11) (16) go together with
this community, since they do not belong to the same form? Prof. Hu explained that
those rules illustrate the plants (7) (11) (16) must be planted artificially (it is proved by
the record’s information of this area). It is a rare case in mining results.

We find that some plant species (for example, Plant “Cordyceps Sinensis (Berk.)
Sacc”) appear in many co-location rules. In fact, these plants grow in various places of
this area. Our algorithm will be more efficient if these kinds of events are initialized in the
set of events.

It is worth talking a few more words about the threshold A which controls spatial
neighbour relationship in fuzzy co-location mining. First, as we change the 4 from low to
high in experiments of the plants’ dataset, the length of co-location patterns change from
long to short. And plants in the same co-location pattern always belong to a plant com-
munity, even if the A is very low. But in general co-location mining, the mining results
are sometimes difficult to understand, as a co-location pattern might contain all of plants

with the distance threshold D increased. Second, the fuzzy similarity matrix and the

fuzzy equivalence matrix do not need to be computed again when the Ais changed, but

the situation is not the same in general co-location mining.
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2.6 Summary

This chapter analyzed the fuzzy characteristics of spatial events, and studied the
problems of mining co-location patterns from fuzzy spatial datasets. Based on the con-

cepts of the proximity between spatial instances and fuzzy equivalence partition, a se-

mantic proximity neighbourhood controlled by the threshold A was introduced. A prefix-
based approach to partition the prevalent event set search space into subsets was pre-
sented, where each sub-problem can be solved in main-memory. In addition, the cor-
rectness, completeness, and computation cost of the algorithms were analyzed. An ex-
perimental study on a real plants’ dataset showed that our proposed framework is effec-
tive for mining co-location patterns to identify the subsets of spatial events with signifi-
cant spatial interactions.

In future work, how to obtain the fuzzy semantic proximity neighbourhoods and

fuzzy participation index from the fuzzy matrix will be investigated. The effective use of

the threshold 4 in general co-location mining will also be explored. Furthermore, a plan
to collaborate with domain experts to further investigate the fuzzy co-location patterns
found in our experiment will be made. Finally, as well as studying fuzzy co-location min-
ing, fuzzy spatial clusters, fuzzy spatial classification and fuzzy spatial outline detection

on fuzzy spatial datasets will be investigated.

In next Chapter, a new join-less approach for co-location patterns mining will be
presented. This work is very significant in the field of traditional spatial co-location pat-

terns mining.
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Chapter 3
A New Join-less Approach for Co-location Pattern Mining

With the rapid growth and extensive applications of the spatial dataset, it is becoming more im-
portant to solve how to find spatial knowledge automatically from spatial datasets. A spatial co-
location pattern represents the subsets of spatial events whose instances are frequently located
together in geographic space. It's difficult to discover co-location patterns because of the huge
amount of data brought by the instances of spatial events. A large fraction of the computation
time is devoted to generating the instances of co-location patterns. The essence of co-location
patterns discovery and three kinds of co-location patterns mining algorithms proposed in recent
years are analyzed in this chapter, and a new join-less approach for co-location patterns mining,
based on the data structure----CPI-tree (Co-location Pattern Instance Tree), materializing spatial
neighbour relationships, is proposed. All co-location table instances can be generated quickly with
a CPlI-tree. The correctness and completeness of the new approach are proved. Finally, an ex-
perimental evaluation using synthetic datasets and a real world dataset shows that the algorithm

is computationally more efficient than the proposed algorithms.
3.1 Overview

Spatial data mining is the process to discover interesting and previously unknown,
but potentially useful patterns from spatial datasets. Extracting interesting patterns from
spatial datasets is more difficult than extracting the corresponding patterns from transac-
tion datasets due to the complexity of spatial data types, spatial relationships and spatial
autocorrelation (Han and Kamber, 2006; Agarwal and Srikant, 1994). A spatial co-
location pattern represents a subset of spatial events which’s instances are frequently
located in a spatial neighbourhood. For example, botanists have found that there are or-
chids in 80% of the area where the middle-wetness green-broad-leaf forest grows. Spa-
tial co-location patterns may yield important insights for many applications. For example,
a mobile service provider may be interested in mobile service patterns frequently re-
quested by geographical neighbouring users. The locations which are gotten together by
people can be used for providing attractive location-sensitive advertisements, etc. Other
application domains include Earth science, public health, biology, transportation, etc.

Co-location pattern discovery presents challenges due to the following reasons:
First, it is difficult to find co-location patterns with traditional association rule mining algo-
rithms since there is no concept of traditional “transaction” in most of spatial datasets

(Agarwal and Srikant, 1994; Koperski and Han, 1995). Second, the instances of a spatial
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event distribute in spatial framework and share complex spatial neighbourhood relation-
ships with other spatial instances. So a large fraction of the computation time of mining

co-location patterns is devoted to generating the table instances of co-location pattern.
3.1.1 Basic Concepts

Given a set of spatial events F, a set of their instances S, and a spatial neighbour
relationship R over S. R could be topological relationships (e.g. linked, Intersection), dis-
tance relationships (e.g. Euclidean distance metric) and mixed relationships (e.g. the
shortest distance of two points on a map). As shown in Figure 3.1, there are 4 spatial

events A, B, C and D and their instances. A.1 stands for the first instance of A. If R is

defined as a Euclidean distance metric 5E B4
and its threshold value is d, two spatial .\, C'”ﬂ
objects are neighbours if they satisfy the g
neighbour relationship:

R(A.1,B.1) < (distance(A.1,B.1)<d) Given

a subset of spatial in-

stances | = {i,,i,,...,i, }, | €S. 7 is called

B.1

as an R-neighbour if | forms a clique un-
] ) Figure 3.1 An example of spatial event instances
der the neighbour relation R.
A co-location c is a subset of spatial events, i.e., ¢ < F . An R-neighbour | is a row
instance of a co-location c if | contains instances of all the events in ¢ and no proper
subset of it does so. The table instance of a co-location c is the collection of all row in-

stances of c. The size of a co-location c is the number of spatial events in co-location c,
it is denoted as Size(c) = c|.

The interest degree of a co-location differs from the degree of support in traditional
association rules mining. A new prevalence measure concept called the participation in-

dex is introduced by Huang, Shekhar and Xiong in (Huang et al, 2004). Participation ra-

tio will be presented before giving the concept of participation index.

The participation ratio PR(C, fi) for event type f, in a size-k co-location
c={f1... fk} is the fraction of instances of event f; which participate in any row instance
of co-location c. The participation ratio can be computed as

T _(Jtable_instance c
PR(c, f;)= fi ( )‘)

. , Where 7 is the relational projection operation with
table_instance( f, )

duplication elimination.
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The participation index of a co-location c={f,...f, } is the minimum in all PR(c, f,)

of co-location c:
PI(c)=min¥, {PR(c, f,)} -

Example 3.1. Take Figure 3.1 as an example. A has 4 instances, B has 5 instances,

C has 3 instances, and D has 2 instances. Suppose co-location c= {A,B,C}, the table

instance of co-location c is {{A.2,B.4,C.2},{A.3,B.3,C.1}}. PR(c,A)=2/4 since there are
only A2 and A3 in this table instance. Similarly, PR(c,B) =2/5, PR(c,C) =2/3.
PI(C)=min(PR(c, A), PR(c,B),PR(c,C))=2/5.

Given a minimum prevalence threshold min_prev, a co-location c is a prevalent co-

location if PI(c)>min_prev holds.

Lemma 3.1. The participation ratio and the participation index are monotonically
non-increasing with the size of the co-location increasing.
Proof: Suppose a spatial instance is included in the row instance of co-location c.

For co-location c'c c, this spatial instance must be included in the row instance of c'.

The opposite is not true. Therefore, the participation ratio is monotonically non-
increasing.
Suppose c={e,,-,e,}»

k+1 k k
Pilcue,))=miniPrcue,.e)} < miln{Pr(C Ue,,8)} < miln{Pr(C,ei )} =Pi(c)
i=1 ! !

Therefore, the participation index of co-location is also monotonically non-increasing.
Lemma 3.1 ensures that the participation index can be used to effectively prune the

search space of co-location pattern mining.
3.1.2 Problem Definition

The co-location mining problem is formalized as follows:

Given:
1) A spatial framework 77
2) A set of spatial events F={f,.,f} and a set of their instances
S=5,US,U..US,, S,(1<i<n) is the set of instances of the event f,, and each in-
stance is a vector <feature type, instance id, location>, where location€ 7.
3) A spatial neighbour relation R over S.
4) A minimum prevalence threshold min_prev
Find:
A set of co-location patterns with participation index > min_prev
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3.1.3 Background for Mining Co-location Patterns

In previous work on mining co-location patterns, Morimoto (2001) defined distance-
based patterns called k-neighbouring class sets. In his work, the number of instances for
each pattern is used as the prevalence measure, which does not possess an anti-
monotone property by nature. However, Morimoto used a non overlapping instance con-
straint to get the anti-monotone property for this measure. In contrast, Shekhar and
Huang (2001) developed an event centric model, which does away with the non-
overlapping instance constraint. They also defined a new prevalence measure called the
participation index. This measure possesses the desirable anti-monotone property. The
related work in the approach proposed by Shekhar and Huang can be classified into
three kinds for identifying co-location instances: the full-join approach, the partial-join

approach and the join-less approach.

(1). The full-join approaches: The full-join approach is mainly based on the com-
putation of the join operation between table instances for identifying co-location in-
stances. First, the spatial neighbour relations between spatial instances are found out,
and all the tables instance of size-2 co-location pattern are generated; second, generate
the size-3 co-location table instances by joining size-2 table instances. Size-k+1 co-
location table instances are generated by joining size-k co-location table instances. This
approach is similar to Apriori method and it could generate correct and complete co-
location sets. However, scaling the algorithm to substantially large dense spatial data-

sets is challenging due to the increasing number of co-locations and their table instances.

(2). The partial-join approaches: The algorithm proposed by Yoo and Shekhar in
(Yoo and Shekhar, 2004) is to build a set of disjoint cliques in spatial instances to identify
the intraX instances of co-location (belonging to a clique) and interX instances of co-
location (belonging to between two cliques), and join the intraX instances and interX in-
stances respectively to calculate the value of Pl (The participation index). This approach
reduces the number of expensive join operations dramatically in finding co-location in-
stances. However, the key of this algorithm is to find cliques as big as possible, which
could cut down the spatial neighbour relationships between two cliques. Besides building
cliques is time-consuming, if the correct cliques could not be identified, and the number
of cut neighbour relations would not be decreased, the partial-join algorithm of mining

co-location pattern would be similar to the full-join algorithm.

(3). The join-less approaches: The algorithm proposed by Yoo, Shekhar and Ce-
lik in (Yoo et al, 2005) puts the spatial neighbour relationships between instances into a

compressed star neighbourhood. All the possible table instances for every co-location
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were generated by scanning the star neighbourhood, and by 3-time filtering operations.
The join-less co-location mining algorithm is efficient since it uses an instance-lookup
scheme instead of an expensive spatial or instance join operation for identifying co-
location table instances. However, the star neighbourhood structure is not an ideal struc-
ture for generating table instances, for the table instances generating from this structure
have to be filtered. Therefore, the computation time of generating co-location table in-

stances will increase with the growing of length of co-location patterns.

3.1.4 Motivation

Let us see the spatial instances in Figure 3.1. If a pair of spatial instances satisfy
neighbour relationship R, connect them with a solid line (as seen in Figure 3.1), then a
graph G (E, V) can be obtained. Each co-location instance is a complete graph (clique)
in G. Mining co-location patterns is equal to the process of mining all cliques in G and
calculating the Pl value of each co-location pattern. However, such process has been
proved as a NP-Hard problem (Alsuwaiyel, 2004). In fact, in the process of discovering
cliques, according to the definition of co-location pattern, the same spatial events cannot
appear in a clique, and according to the anti-monotonic property of Pl value (Lemma 3.1),
not all the cliques should be calculated. The available 3-kind of mining co-location pat-
tern algorithms is based on the two properties and similar to Apriori approach.

Can all the cliques be calculated through simply scanning G? Can a structure which
contains the information of co-location table instances be built? In this Chapter, a new
structure called CPI-tree (Co-location Pattern Instance Tree), which is similar to FP-tree,
will be introduced in here. It could materialize the neighbour relationships of a spatial
data set, and find all the co-location table instances recursively from it. Different from the
star neighbourhood structure in the join-less approach, all information of the neighbour
relationships in a spatial dataset is organized together by the CPI-tree. So, the third
phase filters in the join-less algorithm, which might be an expensive step, need not be
performed. Meanwhile, some filtering methods appeared in the join-less algorithm, which
can filter candidate co-locations without finding exact co-location instances, will be re-
served. Some new filtering methods will be considered in the new algorithm. As it hap-
pens, in the CPI-tree-based approach, all co-location table instances are discovered by
scanning the CPI-tree once without candidate co-location generation. Although, in many
cases the Apriori candidate generate-test method reduces the size of candidate sets
significantly and leads to performance gain. However, it may need to repeatedly scan the
star neighbourhood and check a large set of candidates by pattern matching. This is es-

pecially the case for mining long patterns.
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3.1.5 Organization of the Chapter

The remainder of the Chapter is organized as follows. The CPI-tree structure and
the method to construct it are introduced in Section 3.2. Section 3.3 develops a CPI-tree-
based complete co-location-instance generating algorithm. Section 3.4 explores some
pruning strategies and optimized strategies for improving efficiency of the CPI-tree-
based algorithm. The experimental results are presented in Section 3.5. Section 3.6

summarizes the study and points out some future research work.
3.2 Co-location-Instance Tree (CPI-tree): Design and Construction

In this Section, the structure of CPI-tree and its construction method are introduced.
3.2.1 CPlI-tree

A compact data structure can be designed based on the following observations:

(1). Since spatial neighbour relations between two instances make certain all co-
location-instance, it is necessary to perform one scan of spatial datasets to identify the
set of neighbour relationships.

(2). If the set of neighbour relationships can be stored in a compact data structure, it
may be possible to avoid repeatedly scanning the set of neighbour relationships (the ap-
riori-like algorithms did so, because they have to scan all size-k co-location-instance
when they generating size-k+1 co-location-instance.)

(3). If a size-k co-location-instance is found, it may be cost-efficient to expand a
size-k+1 co-location-instance from it at once. It is easy to expand co-location-instance if
the set of neighbour relationships can be stored in a compact data structure.

(4). The recursive and hierarchical properties of the tree structure ensure the clarity
and simplicity of the algorithms’ description. If all spatial instances are sorted in ascend-
ing order (the spatial events in alphabetic order, and then the different instance of the
same spatial event in numerical order), a graph G representing spatial neighbour rela-
tionships may correspond to a unique tree structure.

With the above observations, a tree structure (called CPI-tree (Co-location Pattern
Instance Tree), for all co-location-instances can be generated from it) can be defined as

follows.

Definition 3.1 (CPI-tree). A CPlI-tree is a kind of rooted tree. The root of CPlI-tree is
labelled as “null”. A branch of the CPI-tree is constructed a corresponding connective
sub-graph in the graph G. The nodes in CPI-tree represent the spatial instance. The
node u is the parent of the node v, when there is a neighbour relationship between in-

stances u and v and the instance u is “smaller” than instance v.
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Based on this definition, there is the following CPI-tree construction approach.

1) Create the root of a CPlI-tree, and label it as “null”.

2) Push all the spatial instances into a stack T1 in alphabetic and numerical de-
scending order.

3) Pop an instance from the stack T1, create a child node of the root “null” for this
instance (e.g. A.1 in Figure 3.3). Push this instance into a stack T2.

4) Pop an instance (e.g. A.1) from stack T2. Find out all the instances which are the
neighbours of this instance (showed in Figure 3.2), the different spatial event from this
instance, and “bigger” than this instance. These instances form child nodes of this node
in ascending order. Delete all these instances from stack T1 and stack T2, and link to the
same instance-name node (except for leaf-nodes) in the CPI-tree (see dashed link in
Figure 3.3).

5) Push child node instances (they have not the same instance-name node in CPI-
tree) into the stack T2 in descending order. Then, turn to 4).

6) Repeat the operation above till the stack T2 is empty, and then turn to 3)

7) Repeat the operation above till the stack T1 is empty.

B.5 B.4

C.2
‘\. Lo 5
B.2 A2

Figure 3.2 Neighbours of the instance A.1, B.1 and C.1.

null

Figure 3.3 CPI-tree of the example in figure 3.1

The Figure 3.3 is the CPI-tree of the example in Figure 3.1. The CPI-tree of a spatial

dataset constructed by above steps will be unique. The CPI-tree materializes the
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neighbour relationships of a spatial dataset with no duplication of the neighbour relation-
ships and no loss of co-location instances, and more important thing is that it is conven-
ient and efficient to generate the co-location instances from it.

The approach of constructing a CPI-tree can be converted into the following algo-

rithm.

Algorithm 3.1 (CPlI-tree construction).

Input: S: a set of spatial instances and each instance is a vector <feature type, instance id, location>;
R: the spatial neighbour relationship (e.g. Euclidean Distance);

Variables: NT= {NTII NT,..NT,_ }: a set of spatial neighbour relationships where NT, is the set of
neighbour instances of the instance ', whose order is “bigger” than ' , and is sorted in ascending order of
instances.

Output: CPI-tree: The CPlI-tree structure of materialized spatial neighbour relationships;

Method:

1) NT=gen_neighbourhood;

2) Create the root of a CPI-Tree, and label it as “null.”

3) Push all the instances in S into a stack T1 in descending order;
4) While the stack T1 is not empty Do

5) { I< Pop an instance from stack T1;

6) create the node | which is the child of the root “null”;

7 Push instance | into the stack T2;

8) While the stack T2 is not empty Do

9) {I<Pop an instance from the stack T2;
10) For each instance fin NT, Do
11) { Create the node f which is the child of the node |;
12) Delete the instance f from the stack T1 and T2;
13) Link the node f to the same instance-name non-leaf-node in CPI-tree;
14) If there is not the same instance-name with the node f in CPI-tree thenf — NT,” }
15) Push all the instances in NT,” into the stack T2 in descending order;
}
}

16) Return the root “null”
The procedure gen_neighbourhood of this algorithm generates a set

NT= {NTll,Nle...NTlm}of spatial neighbour relationships, where NT, is the set of

neighbour instances of the instance | whose order is “bigger” than | and is sorted in as-
cending order of instances. In this procedure, all neighbour instance pairs are found

firstly according to spatial neighbour relationship R, and then the set
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NT= {NTll,Nle...NTlm} is generated by grouping the neighbour instances for each in-

stance.

In the loop of the step 4), each of which will create a branch of the root “null” in the
CPI-tree, and the loop of the step 8) generates iteratively all nodes of this branch of the
CPI-tree. As it happens, the instances are considered in ascending order in the step 10),
because the instances are sorted in ascending order in NT,. The operation deletion in the
step 12) and the operation of the step 14) are to avoid duplication of information, and the

operation linking in the step 13) is for no loss of information.
3.2.2 Complexity and Completeness of CPI-tree

Analysis. The computational complexity of the algorithm 3.1 includes procedure
Gen_neighbourhood and the rest of algorithm. Suppose the number of spatial instances

is m. In the worse case, the computational complexity of the procedure
Gen_neighbourhood will be O(m* log, m), and the rest of the algorithm will be O(m?).

It will be shown that the CPI-tree contains the complete and no redundant information for

table-instance generating in Lemmas 3.2.

Lemma 3.2. All the neighbour relationships of given spatial instances are recorded
in a CPI-tree, no one is omitted.

Proof: according to the procedure of constructing a CPI-tree, all the spatial in-
stances are scanned and their neighbour relationships are recorded in CPI-tree. There-

fore, none of the spatial instances’ neighbour relationship is omitted in CPI-tree.

Lemma 3.3. CPI-tree materializes the neighbour relationships of a spatial dataset
with no duplication of the neighbour relationships.

Proof: It is obvious because the step 12) in constructing a CPI-tree algorithm guar-
antees each spatial neighbour relationship is considered once, and the step 10) and step

14) ensure that a connective sub-graph in spatial dataset forms a branch of a CPI-tree.
3.3 Generating Complete Table-Instance Using CPI-tree

Construction of a CPI-tree which materializes the neighbour relationships of a spa-
tial dataset ensures that all table instances can be generated from this CPI-tree. How-
ever, it is not guaranteed that the process of generating table instances will be highly ef-
ficient, since one may still encounter the combinatorial problem of table instances gen-
eration if one simple uses this CPI-tree to generate all table instances.

In this section, it will be studied that how to scan the neighbour relationship stored in

a CPI-tree, develop the principles of generating table instances using CPI-tree, explore
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how to perform further optimization of generating table instances using CPI-tree, and
propose a table-instance generation algorithm, Gen_instance, for efficiently generating

the complete set of table instances using CPI-tree.
3.3.1 Principles of Table-Instance Generation from a CPI-tree

In this subsection, some interesting properties of the CPI-tree structure which will
facilitate co-location-instance generation will be examined. To facilitate properties de-
scription, data structure of node in CPI-tree is defined as follows. Each node in the CPI-
tree consists of three fields: instance-name, child-link, and node-link. Node-link links to
the non-leaf node in the CPI-tree carrying the same instance-name, or null if there is

none.

Definition 3.2 (direct-child-link). A link between two nodes in a CPI-tree is called as
a direct-child-link. A k-length direct-child-link is called as a size-k direct-child-link. The
nodes lying in middle of a size-k direct-child-link are called as intra-node. For a node in a
direct-child-link, the nodes lying in this node below are called as child-node on the direct-
child-link.

Example 3.2 Considering examples in Figure 3.3, “A.3 B.3” is a direct-child-link,
“A.3 B.3 C.1”is a size-3 direct-child-link, B.3 is the intra-node of the size-3 direct-child-
link “A.3 B.3 C.1”7, and B.3 and C.1 are the child-nodes of A.3.

Definition 3.3 (indirect-child-link). The child nodes linked out by a node-link (i.e.,
dashed link) are called as indirect-child. A size-k child-link linked out by an indirect-child

is called as a size-k indirect-child-link.

Example 3.3 D.1 is the indirect-child of the node C.1 linked to its parent by the
node-link in Figure 3.3. So, “B.3, C.1, D.1” and “A.3, C.1, D.1” are size-3 indirect-child-
link.

Definition 3.4 (all-link). If all child-nodes of each intra-node in a size-k direct-child-
link are the brothers of corresponding intra-node, then the size-k direct-child-link is called
as a size-k all-link. If the size-k direct-child-link defined above is a size-k indirect-child-

link, then it is called as a size-k indirect-all-link.

Example 3.4 In Figure 3.3, the size-4 direct-child-link “A.3 B.3 C.1 D.1” is a size-4
indirect-all-link. Because C.1 and D.1 are the brothers of B.3, and D.1 is the brother of
the node C.1. In the same way, the size-3 direct-child-link “A.3 B.3 D.1” is a size-3 direct-
all-link.

Based on the definitions above, there are the following properties.
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Property 3.1 (Child-link property). Each size-2 child-link in a CPI-tree denotes a
size-2 co-location instances.
This property can be obtained directly from the CPI-tree constructing process, and it

is the base of generating other co-location instances.

Property 3.2 (All-link property). Each size-k all-link or size-k indirect-all-link in a
CPI-tree denotes a size-k co-location table instance. (k>2)
Rationale. It is obvious that the instances satisfying all-link or indirect-all-link form a

clique in corresponding graph G.

Example 3.5 The size-3 all-link “A.3 B.3 D.1” forms a co-location instance “A.3, B.3,
D.1”, the same to the size-4 indirect-all-link “A.3 B.3 C.1 D.1” and size-3 indirect-all-link
“B.3C.1D.1".

It then will be shown that the complete set of table instances in a spatial dataset can

be generated by using corresponding CPlI-tree.

Lemma 3.4 Co-location instances generated from the CPI-tree by using properties
3.1 and 3.2 are correct and complete.

Rationale. First, it is shown that each table instance generated from properties 3.1
and 3.2 is correct and distinct. The correctness is guaranteed by property 3.1 and
property 3.2, and the distinction is guaranteed by lemma 3.3.

Second, it is shown that no co-location instance can be generated out of the CPI-
tree. Suppose a size-k co-location instance can be generated out of the CPI-tree. If this
is a size-2 co-location instance, and then there is not a child-link between the two in-
stances. According to lemma 3.2, there is not a spatial neighbour relationship between
the two instances, this reduces to absurdity. For size-k co-location instance (k>2), that
means that these instances presenting to the size-k co-location instance do not form a
all-link or indirect-all-link, and then according to the process of constructing a CPI-tree,
there at least is not a neighbour relationship between two instances among these in-

stances. This also reduces to absurdity.
3.3.2 Table-Instance Generation Algorithm

Complete co-location table instances of a spatial dataset are generated recursively
from corresponding CPI-tree in the following steps.

1) Initiate prefix pattern a= {null} (the root of CPI-tree) and the suffix pattern = {null},
search CPI-tree recursively for complete the co-location table instances.

2) If a has a child node s and s has a child node t too, then a is put by s, i.e. a={s},
search CPI-tree recursively with the new o and B; else (including the last recursion re-

turns), (1). B is put by s, i.e. B={s}, and a co-location instance o U B is generated; (2). if B
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has child node t, then (a). Generating a size-3 co-location instances if the c UB U {t} is a
all-link (i.e., the child node t of 3 is the brother node of ), examining the size-4 co-
location instances if t has child node..., ... (b). If B has indirect-child nodes, examining
indirect-all-link to generate some new co-location instances. For example, consider the
node “B.3” in Figure 3.3, when B is “B.3”, besides generating the instances “A.3, B.3,
C.1"and “A.3, B.3, D.1”, the instance “A.3, B.3, C.1, D.1” also be generated.

3) If the recursion is ended, return all the co-location table instances.

Example 3.6. Generating all co-location table instances of the CPI-tree in Figure 3.3

First level recursion (a=null, B=null): because the child node A.1 of a has children,
go to the second level recursion.

Second level recursion (a= {A.1}, p=null): because the child node B.1 of a still has
children, go to the third level recursion.

Third level recursion (a={B.1}, p=null): because the child node D.2 of a has no child,
so B={D.2}, a table instance of co-location {B, D} is a U = “B.1, D.2”. The D.2 is a leaf
node, end this recursion. When returning to the A.1, first, “A.1, B.1” forms a co-location
instance. Second, examine “A.1 B.1 D.2” is an all-link or not for determining it is a new
co-location instance or not (here, it is not). After finishing this branch, go to another
branch of A.1. A.1 has another child C.1, go to the next recursion level..., until to a leaf
node (when come to the node D.1), the table instance of co-location pattern {C, D} “C.1,
D.1"will be generated, and then return to the upper recursion level.... After the table in-
stance “A.1,C.1” of pattern {A, C} is generated, the branch A.1 finish due to the “A.1, C.1,
D.1”is not an all-link.......

The above approach can be transformed into the following algorithm.

Algorithm 3.2 (Gen_instance).

Input: CPI-tree: materialized spatial neighbour relationships in a spatial dataset and constructed ac-
cording to Algorithm 3.1;

Output: The complete set of co-location table instances.

Method: call Gen_instance (CPI-tree, null, null)

Procedure Gen_instance (CPT-Tree, «, f)

1) while a has child node s Do

2)  {if s has child node t then Gen_instance (CPI-Tree, {s}, f);

3 p={sh

4) If a<>"null”then

5) { a Upforms an instance of co-location pattern;

6) If phas a child-node or a indirect-child-node then Gen_next_instance (CPI-tree, «, f); }
7 }
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Procedure Gen_next_instance (CPlI-tree, «, )
1) { «= The last element of g,

2) while (whas a child-node or a indirect-child-node t AND Ok (t, 5) Do

3) {p=BU {t};

4) a Upforms an instance of co-location pattern;

5 If tis not a leaf then Gen next instance (CPI-tree, a, p)}
6) }

Bool Function Ok (t, §) //If the node t is the brother of g, then return true, else return false
1) {Fori=1to|f
2) If the node t is not the brother of the i-th element in gthen Return false;

3)  Return true }

Analysis. With the properties and lemmas in Section 3.2 and 3.3, the algorithm cor-
rectly finds the complete set of table instances in a spatial dataset.

From the algorithm and reasoning, one can see that the table instances generating
process is a backtracking process. Let's now examine the efficiency of the algorithm.
The algorithm scans the CPI-tree once and table instance generating is recursively per-
formed on the child-link from size 2. If a size-k table instance is not generated, then the
size-k+1 table instance derived from it will not be considered. Moreover, after generating
lower table instances, the table instances derived from them will be examined at once.
This is much less costly than traditional operation method of the full-join and the join-less.

Thus the algorithm is efficient. The real execution results will be shown in Section 3.5.

3.4. Some Optimization Strategies

3.4.1 Pruning Strategies

Although generating co-location instances from a CPI-tree will be No loss of co-
location instances and no duplication of co-location instances, the following pruning
strategies can be used to improve efficiency of generating co-location instances from
CPlI-tree.

Pruning 3.1. A node, which is the child of the root “null” and has no child, can be
pruned.
Proof. If a node is the child of the root “null” and it has not a child node, it must be

the spatial instance without neighbourhood. So it can be pruned.

Example 3.7 In Figure 3.3, the instances B.2 and B.5 can be pruned with Pruning 1.
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Pruning 3.2. By using Pruning 3.1, If the number of the pruned instances of a fea-
ture f; is greater than min_prev*| fi|, then all the instances of the feature f; and the rele-
vant edges in the CPI-tree can be pruned. (If the root node of the remaining branch is
the right brother node of the pruned node, move the remaining branch to the right
brother node and combine the same nodes; else, move the remaining branches to be-
come another branch of this CPI-tree root.)

Proof. If the number of the pruned spatial instances of a feature f; with Pruning 3.1
is greater than min_prev*| fj|, the number of the remaining instances of the feature is less
than the min_prev*| fi|. Therefore, all instances of this spatial feature might be pruned

due to the co-location containing the feature might not be prevalent.

Example 3.8 Suppose that three instances of spatial feature B was pruned with
Pruning 3.1, and there were five instances in feature B and the min_prev is 50%, then all

the instances of B and the relevant edges can be pruned with Pruning 3.2.
3.4.2 Optimization by Reducing the Depth of CPI-tree

In the algorithm Gen-instance, an all-link forms a co-location instance. One can see
that cutting a branch in a CPI-tree that may not form an all-link will not affect the results
of the algorithm Gen-instance. For example, the instance “B.3” in Figure 3.4 (a), for its
children may not form any all-link with her parent, the branch “B.3” can be cut (duplicate
exactly) and move it to the root “null” of this CPI-tree (see Figure 3.4 (b)). The same with
the branch “B.1” is. For some distribution of data sets, spatial instances are connected
by some links (they can be called as bridges). Because of these bridges, the instances,
they could not be generated a co-location instance, are connected together, that must

affect efficiency of the algorithm. So, these links are cut for optimizing the method.

null null

Figure 3.4 An Example of reducing the depth of CPI-tree

Definition 3.5 (Cut-link) A link connecting the node i; to i, in a CPI-tree is called a
cut-link if any child-node of i, is not its brother.

Figure 3.4(a) presents cut-link as dotted lines. Link {A.1, B.1} and {A.1, B.3} are cut-
links.
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Property 3.3 (Cut-link property) The child instances linked out by a cut-link cannot
form a co-location instance with its parent instance.

Rationale. First, the property 3.3 guarantees there is not any size-3 co-location in-
stance linked out by a cut-link. Second, there is not any size-k (k>3) co-location instance
linked out by this cut-link according to Property 3.2.

Therefore, for a cut-link {is, iz}, moving branch i, to the root “null” will not affect the
results of generating co-location instances from CPlI-tree (see Figure 3.4(b)). There is a
duplication of the node “i,” is generated in this optimization process, for generating size-2
co-location instance {i4, i,}.

It is obvious that the co-location instances generating from the depth-reduced CPI-
tree is better than from the original CPI-tree, but when and how the process of reducing
the depth of a CPI-tree is performed. For considering the efficiency of this process, it is
done when the CPlI-tree is building. It means that the process of constructing a CPI-tree
will be changed for considering optimization strategies of reducing the depth of a CPI-

tree.

Algorithm 3.3 (construction of a CPI-tree for considering optimization strategies of
reducing its depth)
Method:
1) NT=gen_neighbourhood;
2) Create the root of a CPI-Tree, and label it as “null.”
3) Push all the instances in S into a stack T1 in descending order;
4) While the stack T1 is not empty Do
5) { |<= Pop an instance from stack T1;
6) create the node | which is the child of the root “null”;
7 Push instance | into the stack T2;

8) While the stack T2 is not empty Do

D) { 1<Pop an instance from the stack T2;
10) For each instance fin NT, Do
11) { Create the node f which is the child of the node I;
12) Delete the instance f from the stack T1 and T2;
13) Link the node f to the same instance-name non-leaf-node in CPlI-tree;
14) If there is not the same instance-name with the node f in CPI-tree thenf — NT,” }
15) Push all the instances in NT,” into the stack T2 in descending order;
16) If all the instances in NT,are not the brothers of the instance | then
17) copy the node | and move the branch | to the root “null”; //branch | includes the node | and its
children//
}
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}

18) Return the root “null”

Comparing to algorithm 3.1, besides the steps 16) and 17) are added, the others
are all the same. So, when using algorithm 3.3 to build a CPI-tree, it can be seen that a
depth-reduced CPI-tree is obtained. The experiments in Section 3.5 use this optimized

algorithm.
3.5. Experimental Results

In this section, the performance of the algorithms is evaluated with the join-less ap-
proach using both synthetic and real data sets. All the experiments were performed on a
3-GHz Pentium PC machine with 2G megabytes main memory, running on Microsoft
Windows/XP. All programs are written in Java.

The experimental results are reported on two synthetic data sets. The first one is
called as sparse dataset with 26 spatial features. In this dataset, when the neighbour dis-
tance threshold d and the prevalence threshold min_prev are set to 25 and 0.15, the to-
tal number of size 2 co-locations and the maximum size of co-locations are 104 and 4,
respectively, while the number of all instances in the dataset is set to 10k. The prevalent
co-locations are short and not numerous in this dataset.

The second synthetic dataset used in the experiments is a dense dataset with 26
spatial features. The total number of size 2 co-locations and the maximum size of co-
locations are 232 and 8, when the threshold d and the min_prev are set to 25 and 0.15,
respectively. There exist long prevalence co-locations as well as a large number of short
prevalence co-locations in this dataset when the prevalence threshold Min_prev goes
down.

To test the practicability of CPI-tree, a real dataset, the plant distributed data set of
the “Three Parallel Rivers of Yunnan Protected Areas”, is used. It contains the number of
plant species (spatial event types) is 16. The total number of plant instances is 3908.
When Min_prev and distance d are set to 0.1 and 1900 respectively, the maximum size
of co-location is 4 and the total number of size 2 co-location patterns is 42. The charac-
teristic of the dataset is that there are a large number of table instances in each co-

location pattern.

1) Scalability with the neighbour distance threshold d over sparse data set

and dense data set: The runtime of CPI-tree and Join-less on the sparse and the

dense synthetic datasets, when the prevalence threshold min_prev is set as 0.5, as the
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neighbour distance threshold d increases from 15 to 25/30 is shown in Figure 3.5 (a),
(b). Since the dataset is sparse, as the threshold d is low, the prevalent co-location pat-
terns are short and the set of such patterns is not large, the advantages of CPI-tree over
Join-less are not so impressive. However, as the threshold d goes up or the dataset be-

comes dense, the gap becomes wider.
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Figure 3.5 Scalability with distance d over sparse data set and dense data set

2) Scalability with prevalence threshold Min_prev over sparse data set and
dense data set: Figure 3.6(a) shows the experimental results of scalability with
Min_prev over the sparse dataset, while the results over dense dataset are shown in
Figure 3.6(b). The neighbour distance threshold d is set as 200 in the experiments of
Figure 3.6(a), while d is 150 in the experiments of Figure 3.6(b). The advantage of CPI-
tree approach is more impressive with threshold Min_prev decrease and the dataset be-

comes dense.
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Figure 3.6 Scalability with Min_prev over sparse data set and dense data set

3) Scalability with prevalence threshold Distance d over a real data set: The
mining result over a real dataset, a plant distributed data set of the “Three Parallel Rivers
of Yunnan Protected Areas”, is shown in Figure 3.7. From the figure, one can see that
CPI-tree method is scalable even when there are many table instances. In such real

datasets, the join-less method is not comparable to the performance of CPI-tree method.
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Figure 3.7 Scalability with Distance d over a plant distributed data set
of the “Three Parallel Rivers of Yunnan Protected Areas”

4) Scalability of CPI-tree algorithm with number of instances: To test the scal-
ability of CPI-tree against the number of instances, the dense dataset is used with Min-
Prev is set to 0.3, the neighbour distance threshold d is 20, and the number of instances
ranges from 3K to 15K. The result is shown in Figure 3.8, which shows that the CPI-tree

method is the linear increase of runtime with the number of instances.
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Figure 3.8 Scalability of CPI-tree algorithm with number of instances

3.6. Summary

In this Chapter, a new join-less co-location mining algorithm, which can rapidly gen-
erate spatial co-location table instances based on the CPI-Tree construction materialized
neighbourhood relationship between spatial instances, was proposed. The algorithm is
efficient since it does not require expensive spatial joins or instance join for identifying
co-location table instances. The experimental results show the new method outperforms
the join-less method in the case of sparse and dense datasets. As future work, the appli-
cations studying of co-location patterns mining is an important work. Treating with the
redundant co-location rules and maximal co-location patterns mining will be signifi-

cant works in the future work as well.
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In next Chapter, an Order-Clique-Based Approach for Mining Maximal Co-locations
will be discussed. The purpose of the studying is to more efficiently mining spatial co-

location patterns.
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Chapter 4

An Order-Clique-Based Approach for Mining
Maximal Co-locations

Mining co-location patterns in spatial datasets have been studied popularly in spatial data mining re-
search. Most of the previous studies adopt an Apriori-like approach to generate size-k prevalence co-
locations after size-(k-1) prevalence co-locations. However, generating the prevalence co-locations
and storing the excessive table instances is costly, especially when there are a large number of co-
locations and table instances, and/or long patterns. A novel order-clique-based approach for mining
maximal co-locations, which mines maximal co-locations without storing excessive table instances, is
proposed. Characteristic and efficiency of the approach is achieved with three techniques: (1) the spa-
tial neighbour relationships between instances and the size-2 prevalence co-locations are compressed
into extended prefix-tree structures respectively, Neib-tree and P,-tree, which brings up a or-
der-clique-based approach to mining candidate maximal ordered prevalence co-locations and ordered
table instances, (2) all table instances are generated from the Neib-tree, the table instances do not
need be stored after computing the Pi value of corresponding co-location, which dramatically reduces
the executive time and space of mining maximal co-locations, and (3) some strategies, pruning the
branches whose the number of child instances is less than a related value and scanning the Neib-
tree in order, are used to stop some useless inspection in the process of inspecting table instances.
The performance study shows that the method is efficient and scalable for mining both long and short
co-location patterns, and is faster than the full-join method, the join-less method and the CPI-tree

method.
4.1 Overview

Co-location patterns mining is a new branch studied in the spatial data mining field
recently. A spatial co-location pattern represents a subset of spatial features whose in-
stances are frequently located in a spatial neighbourhood. Spatial co-location patterns
may yield important insights for many applications. For example, a mobile service pro-
vider may be interested in mobile service patterns frequently requested by geographical
neighbouring users. The locations which are gotten together by people can be used for
providing attractive location-sensitive advertisements, etc. Other application domains
include Earth science, public health, biology, transportation, etc (Huang et al, 2004;
Shekhar and Huang, 2001).
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Co-location pattern discovery presents challenges due to the following reasons:
First, it is difficult to find co-location patterns with traditional association rule mining algo-
rithms since there is no concept of traditional “transaction” in most of spatial datasets
(Koperski and Han, 1995; Wang et al, 2005). Second, the instances of a spatial feature
distribute in spatial framework and share complex spatial neighbour relationships with
other spatial instances (Chou, 1997; Cressie, 1991; Estivil-Castro and Lee, 2001; Estivil-
Castro and Murray, 1998). So a large fraction of the computation time of mining co-
location patterns is devoted to generating table instances of co-location patterns (Huang
et al, 2004; Huang and Zhang, 2006).

In previous work on mining co-location patterns, Morimoto (2001) defined distance-
based patterns called k-neighbouring class sets. In his work, the number of instances for
each pattern is used as the prevalence measure, which does not possess an anti-
monotone property by nature. However, Morimoto used a non-overlapping instance con-
straint to get the anti-monotone property for this measure. In contrast, Shekhar & Huang
(2001) developed an event centric model, which does away with the non-overlapping
instance constraint, and a new prevalence measure called the participation index (Pi) is
defined. This measure possesses the desirable anti-monotone property. At the same
time, Huang, Shekhar & Xiong (Huang et al, 2004) proposed a general mining approach:
Join-based approach mining co-locations (called join-based approach), which estab-
lished the basis of co-location mining. This approach is good on sparse spatial datasets.
However, in dealing with dense datasets, it is inefficient due to the computation time of
the join is growing with the growth in co-locations and table instances. Yoo and Shekhar
proposed two improved algorithms (called partial-join approach and join-less ap-
proach respectively) to conquer the disadvantage of the full-join approach on efficiency
in (Yoo and Shekhar, 2004) and (Yoo et al, 2005).

The partial-join approach is to build a set of disjoint clique in spatial instances to
identify the intraX instances of co-location (belonging to a clique) and interX instances of
co-location(belonging to between two cliques), and join the intraX instances and interX
instances respectively to calculate the value of the Pi. This approach reduces the num-
ber of expensive join operations dramatically in finding table instances. However, the key
of this algorithm is to find out cliques as big as possible, which could cut down the spatial
neighbour relationships between two cliques. Besides building cliques is time-
consuming, if the correct cliques could not be identified, and the number of cut neighbour
relations would not be decreased, the partial-join algorithm of mining co-location pattern
would be similar to the full-join algorithm.

The join-less approach puts the spatial neighbour relationships between instances

into a compressed star neighbourhood. All the possible table instances for every co-
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location pattern were generated by scanning the star neighbourhood, and by 3-time fil-
tering operation. The join-less co-location mining algorithm is efficient since it uses an
instance-lookup scheme instead of an expensive spatial or instance join operation for
identifying co-location table instances. So the idea of the join-less is great. However, the
star neighbourhood structure is not an idea structure for generating table instances, for
the table instances generating from this structure have to be filtered. Therefore, the
computation time of generating co-location table instances will increase with the growing
length of co-location patterns.

To summarize above, in cases with a large number of prevalence co-locations and
table instances, long co-locations, or quite low min-prev thresholds, the existing algo-
rithms may suffer from the following two nontrivial costs:

(1). It is costly to handle a huge number of candidate co-locations. For example, if
there are 10° spatial events, the algorithms will need to generate more than 10° size-2
candidates and test their occurrence prevalence. Moreover, to discover a prevalence co-
location of size-100, such as {fy,...,fi00}, it must generate 2'°°-2~10*° candidates in total.
This is the inherent cost of generating the set of all prevalence co-locations, no matter
what implementation technique is applied.

(2). It is wasteful to store excessive table instances of co-locations, which is espe-
cially true when the number of table instances is tremendous.

Can one substantially reduce the number of co-locations generated in prevalence
co-location mining while preserving the complete information regarding the set of preva-
lence co-locations? Can one develop a method that utilizes some novel data structures
and algorithms to avoid a huge number of table instances’ store? This is the motivation
on this Chapter.

In this chapter, maximal prevalence co-location mining substitutes for traditional
prevalence co-location mining in order to solve the first question listed above. Some
novel, compact data structures, P,-tree, CP,-tree, Neib-tree and Ins-tree is
constructed, which extend prefix-tree structures storing crucial, quantitative information
about size-2 prevalence co-locations, candidate maximal ordered prevalence co-
locations, spatial neighbour relationships between instances and table instances. To en-
sure that the tree structures are compact and informative, the tree nodes are arranged in
an ascending order (the spatial features in alphabetic order, and then the different in-
stance of the same spatial feature in numerical order). Based on these tree structures,
an order-cligue-based approach mining candidate maximal ordered prevalence co-
locations and generating table instances is developed, which use only the size-2 preva-

lence co-locations for generating candidate maximal co-location, while spatial neighbour
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relationships between instances for generating table instances, perform iteratively mining
maximal prevalence co-location patterns without excessive table instances’ store.

A performance study has been conducted to compare the performance of the order-
cligue-based method with two representative co-location mining methods, the full-join
and the join-less. The study shows that order-clique-based method is much faster than
full-join and join-less, especially when the spatial dataset is dense (containing many ta-
ble instances) and/or when the prevalence co-locations are long.

The remainder of the chapter is organized as follows. Section 4.2 introduces the
concepts and lemmas of maximal ordered co-locations, and proposes algorithms of min-
ing candidate maximal ordered prevalence co-locations based on ordered clique. Sec-
tion 4.3 discusses table instances’ inspection of candidate maximal co-locations based
on ordered clique. Section 4.4 is the algorithm and analysis for mining maximal preva-
lence co-locations without redundant table instances’ store. Section 4.5 presents the per-

formance study. Section 4.6 gives the conclusions and discusses future work.
4.2 Maximal Ordered Prevalence Co-locations

In this section, the concept of maximal ordered prevalence co-locations is intro-
duced, some lemmas are discussed, and algorithms for generating candidate maximal

ordered prevalence co-locations are developed.

4.2.1 Definitions and Lemmas

Definition 4.1. Glven a co-location ¢={f,,..,f,} in a set of spatial events
F= {fl,..., fn}, ke{l,2,---,n}, if f, <f,(in alphabetic order) holds for any 1<i< j<k,
the co-location c is called as an ordered size-k co-location. If c is a prevalence size-k

co-location, it is called as an ordered prevalence size-k co-location.

Definition 4.2. Given a prevalence co-location C:{fl,..., fk}, ke{l,2,---,n},

cc F, if cu f,is a non-prevalent co-location for any f, € F and f, ¢ c, the prevalent
co-location c is called as a maximal prevalence co-location. If ¢ is an ordered preva-

lence size-k co-location, it is called as a maximal ordered prevalence co-location.

Lemma 4.1. Let R be a set of all maximal ordered prevalence co-locations in finite
spatial event set F, c is an ordered prevalence co-location, then 3w e R, ¢ — w holds.

Proof. (Antinomy) Suppose dc, which is a ordered prevalence co-location, for
VYwe R, ¢z Ww holds. From this supposition and definition 4.2, one can deduce that

Ix, e F and x, ¢c, cU{X}is an ordered prevalence co-location. If the cuU {X,} is a

62



Chapter 4. An Order-Clique-Based Approach for Mining Maximal Co-locations

maximal ordered prevalence co-location, then ¢ c (cU{X,}) € R holds. That infers an-
tinomy. So, the cU{X;} is not a maximal ordered prevalence co-location. Therefore,

Ix, e F and X, ¢c, cU{X,,X,}is an ordered prevalence co-location. That c U {X,,X,}
is not a maximal ordered prevalence co-location can be inferred using the same reason.

In this way, there will be an infinite feature sequence X, X,,---. That is an antinomy due
to the spatial feature set F is finite. That is to say, dwe R, ¢ < w holds.

Lemma 4.1 points out that a set of maximal ordered prevalence co-locations con-

tains any ordered prevalence co-location in finite spatial feature set F.
Definition 4.3. Given a set of ordered prevalence size-2 co-locations P,, A set

o ={5|1,5|2,,,5|m } where 5, is the union of co-locations with the header feature | in P, and

is sorted in ascending order, is called as the size-2 co-location header relationship
set.

Example 4.1. Let an ordered prevalence size-2 co-locations set P, = {{AB}, {AC},
{AD}, {BC}, {BD}, {BF}, {CD}, {CE}, {DE}}, its size-2 co-location header relationship
set 6 ={J, = {ABCD}, o, = {BCDF},o. = {CDE}, o, ={DE}}.

Definition 4.4. Given the size-2 co-location header relationship set 6, a tree de-
signed as below is called as a prevalence size-2 co-location header relationship tree
(Po-tree, for short).

1). It consists of one root labelled as “P,”, each element of size-2 co-location
header relationship set is a sub-tree of this root.

2). A sub-tree consists of the root that is the header event and rest events as the
children of the root.

3). Each node in the HR sub-tree consists of two fields: event-name and node-link,
where event-name registers the event which this node represents, node-link links to the

next node in the P,-tree, carrying the same event-name, or null if there is none.

Example 4.2. Given a 6 ={J, = {ABCD}, o, ={BCDF},o. = {CDE},o, = {DE}}
obtained from an ordered prevalence size-2 co-location set P, = {{AB}, {AC}, {AD}, {BC},
{BD}, {BF}, {CD}, {CE}, {DE}}, the corresponding P.-tree, which is constructed accord-

ing to definition 4.4, is shown in Figure 4.1.
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CPn

Figure 4.1 The P,-tree of example 4.2 D
Figure 4.2 The CP,-tree of P,—tree infigure 4.1

Definition 4.5. Given an ordered size-k (k > 2) co-location ¢, ¢ is called as a can-

didate maximal ordered prevalence co-location if c forms a maximal clique under

the ordered prevalence size-2 co-location relationships.

Lemma 4.2. For any maximal ordered prevalence size-k (k >2) co-location ¢,
there must exist a candidate maximal ordered prevalence co-location, which is a super-
set of c.

Proof. That any sub-set of a prevalence co-location is prevalent is proved in paper
(Huang et al, 2004). So, any ordered size-2 co-location of a maximal prevalence size-k
co-location is also prevalent. Therefore, under the ordered prevalence size-2 co-location
relationships, the maximal prevalence size-k co-location forms a clique. Any clique can

be extended to a maximal clique.

Definition 4.6. A tree, whose root is “CP,,” and each branch represents a candidate
maximal ordered prevalence co-location, is called as a candidate maximal ordered

prevalence co-location tree (CP,—tree, for short).

Example 4.3. An example of the cp,-tree is shown in Figure 4.2. One can see
that each branch in the tree is a candidate maximal ordered prevalence co-location of
the order prevalence size-2 co-locations {{AB}, {AC}, {AD}, {BC}, {BD}, {BF}, {CD}, {CE},

{DE}}.

Lemma 4.3. Let a pP,-tree, the process of producing a cpP,-tree from the P,-
tree is described as below.

1). Put the rightist child of the P,-tree into H..

2). For child-node set y. of each branch in H, for each node (denoted as H.” )
linked out from the node-link of H., If some nodes (denoted as y.’' ) in y. are brother-
node of the node H.’ , then y.’ is added as child-node of the H.” .

3). Put the next child of the P,-tree into H;, go to 2), until the P,-tree has not

next child.
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4). Delete all sub-trees which high is lower than 3 in the final cp,-tree and redun-
dant sub-trees (for example, there are candidate maximal prevalence co-locations
{ABCD, ACD,...}, then “ACD” is redundant for it is contained by “ABCD".).

Proof. (a). If a candidate maximal prevalence co-location in CP,-tree looks like
‘ABC...", ‘B’ must be a child of the sub-tree A in P,-tree, ‘C’ must be a child of the sub-
tree Bin P,-tree, ...etal. So, the step 1) and step 3) is proved.

(b). First, if yy is a candidate maximal ordered prevalence co-location beginning
feature ‘X’, the second feature ‘y’ in y should be a child of the node ‘X’ in P,-tree. In
other words, how many children the node ‘X’ has, how many probability of forming
has. Second, if yy is an ordered co-location beginning feature X', and one of Tail (yy) is
not a child of ‘X’, y, must be not an ordered prevalence co-location. Here explains the
step 2) and 3).

(c). After the step 4), there are candidate maximal ordered prevalence co-locations

which size is bigger than 2 in the CP,-tree.

Example 4.4. The process of generating the CcP,-tree from a P,-tree in Figure
4.1 is described as follows.

--Beginning the node ‘D’ that is the rightist child of the root ‘P,’ in Figure 4.1

--For first node (denoted ‘D’ for conveniently) linked by ‘D’, because child ‘E’ of the
‘D’ is the sibling of the node ‘D", the node ‘E’ is added as a child of the ‘D”. For other two
nodes linked by ‘D’, nothing is done due to the condition is not satisfied.

--For branch ‘CDFE’, after executing the step 2) in Lemma 4.3, there is the result
shown in Figure 4.3 (a). There is the result shown in Figure 4.3 (b) after finishing three
children ‘D’, ‘C’, and ‘B’ of the ‘P,’.

--The final result is shown in Figure 4.2.

Figure 4.3. (a) is the result of after finishing two children ‘D’ and ‘C’ of the P,-tree in Figure 4.1.
(b) is the result of after finishing three children ‘D’ , ‘C’, and ‘B’ of the P,-tree in Figure 4.1.

4.2.2 Algorithms

Based on the definition 4.4, an algorithm generating a P,-tree from a set of or-

dered prevalence size-2 co-locations P, can be designed as below.
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Algorithm 4.1 (Gen_P,-tree)
Input: P,: a setof ordered prevalence size-2 co-locations.

Output: P,-tree: an ordered prevalence size-2 co-location header relationship tree.
Method:

1) Create a root “P,” for a new tree;

2) Let L=|P,|,; [*L is the number of co-locations in P,

3) i=1; sub-tree="null”;

4) While i< L Do; /*suppose P,(i,1) represents the first feature of the i-th co-location
in P,, and P, (i, 2) represents the second feature of the i-th co-location in P.

5) {if sub-tree#P,(i,1) then

6) {create a sub-tree “P,(i,1)” of the root “P,”;

7) the node-link of P,(i,1l) is linked to the same-name nodes
in P,-tree

8) }

9) Create a child-node P,(i,2) of the current sub-tree;

10) i=i+1;

11) }

12) Return the root ‘P,’
Lemma 4.3 gives an idea for generating Cp,-tree from the pP,-tree. The follow-

ing algorithm 4.2 is designed based on Lemma 4.3.

Algorithm 4.2 (Gen CP,-tree)
Input: P,-tree: an ordered prevalence size-2 co-locations header relationship tree.

Output: cp,-tree: acandidate maximal ordered prevalence co-locations tree.
Method:

1) Let the sequence of all children of the root ‘P,” in the pP,-tree is {H,, H._
1, .., Hi}; [*from the right child to the left child

2) i=n;

3) While i>1 Do

4) { For each branch y of H;

5) For each node H;' linked out from the node-link of H;
6) set (y)Nbrother-set (H; ') isadded as a new branch of the H;';
7) i=i-1;

8) }

9) Delete branches which level is lower than 3;
10) Delete redundant candidate co-locations from the CP,;
11) Return the root ‘CP,’

The correctness of this algorithm is guaranteed by Lemma 4.3.
4.3 Table Instances’ Inspection of Candidate Maximal Co-locations

The basic idea of inspecting table instances of candidate maximal prevalence co-
locations is similar to the idea of generating candidate maximal prevalence co-locations,
since a table instance is a clique under the spatial neighbour relationships between in-
stances. That is to say, to get candidate maximal prevalence co-locations is to compute

cliques under the ordered prevalence size-2 co-location relationships, while to get table
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instances is to compute cliques under spatial neighbour relationships between in-

stances. So, there are some definitions and lemmas that are similar to Section 4.2.
4.3.1 Definitions and Lemmas

Definition 4.7. Given a subset of spatial instances | = {il,...,ik}, ke{l,2,---,m}, If
i, < ij ( the spatial events in alphabetic order, and then the different instance of the same

spatial event in numerical order) holds for any 1<i< j<k, then | is called as an or-
dered size-k instance set. If | is a table instance, it is called an ordered size-k table

instance. If the event-name of i, is not the same as the event-name of i, and
R(i,,i,) (represents i; and i, is neighbour) holds for any 1<i<k, The | is called as or-
dered neighbour relationship set of the instance i,. The set of ordered neighbour

relationship sets of all instances of a spatial event x is denoted as 0, .

Example 4.5. Let us take Figure 4.4 as an example. In this example, spatial event
A has 4 instances, B has 5 instances, C is 3 instances, and D is 2 instances. Two in-
stances are connected if they are neighbours in Figure 4.4. Therefore, | = {A.3, B.3, D.l}
is an ordered size-3 instance set, it also is an ordered size-3 table instance. The ordered
neighbour relationship set of the instance A.3 is {A.3,B.3,C.1,C.3,D.1}. The set of or-

dered neighbour relationship sets of all instances of the event A is denoted as

5,={{A.1,B.1,C.1}, {A.2,B.4,C.2}, {A.3,B.3,C.1,C.3,D.1}, {A.4,B.3}}.

B.4

cztﬂ
B.5

[ ) A2

\. C3

B.2

Figure 4.4 An example of spatial event instances

Definition 4.8. Given a set of spatial events F ={f,,..., .} and a set of ordered in-
stance neighbour relationship of spatial events 6 =6, Ud; U..Ud; , J; (I<i<n)is
the set of ordered neighbour relationship sets of all instances of the event f,, a tree de-

signed as below is called as a neighbour relationship tree (Neib-tree, for short).
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1). It consists of one root labelled as “Neib”, a set of the spatial event sub-trees as

the children of the root.

2). The spatial event f; sub-tree consists of the root f; and each subset of 5fi as a

branch of the root. Each branch records ordered neighbour relationship set of corre-

sponding instance.

Example 4.6. Figure 4.5 is the Neib-tree of the example in Figure 4.4. The event
‘A’ sub-tree consists of the root ‘A’ and branches A.1, A.2, A.3, and A.4. The branch A.1
records the content of ordered neighbour relationship set of the instance A.1, i.e., there
are R(A.1,B.1) and R(A.1,C.1).

Neib

Figure 4.5 The Neib-tree of the example in figure 4.4

Definition 4.9. A tree, which root is “Tns”, and each branch represents a candidate
maximal ordered co-location’s table instance, is called as a table instances’ inspection

tree (Ins-tree, for short).

Example 4.7. An example of the Tns-trees is shown in Figure 4.6. It is Tns-
tree of the candidate maximal ordered co-location {ABC} (suppose {ABC} is a candi-
date maximal ordered co-location of the example in Figure 4.4) of the Neib-tree in
Figure 4.4. One can see that two table instances “A.2, B.4, C.2” and “A.3, B.3, C.1” are

inspected in the Tns-tree of candidate maximal ordered co-location {ABC}.

Ins Ins

X1
X2

B.4
X

2 Xt Xy

Figure 4.6 The Ins-tree of the candidate maximal prevalent  Figure 4.7 An explanation of Step 3) and 4)
co-location {ABC} of the Neib-tree in figure 4.5 in Lemma 4.3

Lemma 4.4. Given a Neib-tree, the process of generating an Ins-tree from

the Neib-tree is described as below.
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1). Create a root “Ins” for inspecting a candidate maximal ordered co-location
c={f1fp,....fk}, k €{3,4,---,n}. Copy sub-trees f; f,,...,fc.1 in Neib-tree to the tree “Ins”, at
the same time, delete child-nodes that event-names of instances do not belong to
{f.f>,....fc }, and delete branches of f; (1<i <k ) which child-nodes’ number is less than
(k-i).

2). For each child-node vy, of the branch L. in the sub-tree f; of the tree “Ins”, find
out the same-name node .’ (denoted it as ', for distinctively) of the sub-tree ‘v’
whose event-name is the same as the ..

3). For child-nodes set H. of y.’ , If some of H. are brother-nodes of the ., the
some of H. can be moved to become child-nodes of the y. from brother-nodes of the vy,
and y. becomes a extra-child of the L. for the next loop. If the branch L. still has child,
go to 2).

4). Put the next branch to L., go to 2), until there is not next branch in the sub-tree f;
of the tree “Ins”.

5). Delete all sub-trees f; (2 <i <k ) and all branches which high is lower than k.

Proof. (a). The instances of event f must be in sub-tree f, and if

i={i;,i,..I; } (i;is a instance of event f, ) is a ordered table instance of the
c={ff2,....fi}, there exist R(i;,i; ) (1<1<k,I#1i), that is to say that i; at least has (k-i)
children (they are {i; ,i; ....i; }). So, there is the step 1).

(b). Because any ordered table instance that starts an instance x must be by way of
instances that they are child-node (neighbour) of the instance x. So, the step 2) is
proved.

(€). If X1 X2,...% X" @and “X1 Xo,...X Xg" is two ordered table instances (cliques) (shown

in Figure 4.7), and R(xf,xg) holds, then the “x; X,,...X X; X3” must be an ordered table

instance (clique) (that principle is the same with the join principle of generating table in-
stances in full-join method (Huang et al, 2004)). That is why here has the step 3) and 4).
(d). There is Step 5) just because one are just interesting in ordered table instances

of the candidate maximal ordered co-location c={f, f,,....f}, k € {3,4,---,n}.

Example 4.8. The process of generating the Tns-tree of a candidate maximal
ordered co-location c={ABC]} from the Neib-tree in Figure 4.5 is described as follows.

-- Create a root “Ins” for inspecting a candidate maximal ordered co-location
c={ABC}. Copy sub-trees A and B in Figure 4.5 to the tree “Ins”, at the same time, delete

child-nodes that event-names of instances do not belong to {A,B,C}, and delete
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branches of A and B which child-nodes’ number is less than 2 and 1 respectively. The
result is shown in Figure 4.8 (a).

-- For child-node B.1 of the branch A.1 in the sub-tree A of the tree “Ins”, there is
not a same-name node in child-nodes of the sub-tree B. So, let us to handle the next
child-node C.1 of the branch A.1, there still nothing is done to the C.1 for the same rea-
son. Then, go to the next loop (the branch A.2 is considered).

-- In the branch A.2, first, for child-node B.4 of the A.2, C.2 is copied to become a
child-node of the B.4 due to C.2 (the child of B.4" is brother-node of the B.4. Second, for
the next child-node C.2 of the A.2, nothing is done for C.2’ is not in the tree “Ins”. Third,
after finishing all children of A.2, the branch A.3 is considered.... after finishing the child-
node B.3 of the A.3, the result shown in Figure 4.8 (b) will be obtained.

--The final result is shown in Figure 4.6.

Figure 4.8 Two middle results in the process of generating Ins-tree of the co-location {ABC} from the Neib-tree in figure 4.5

4.3.2 Algorithms

According to the definition 4.8, an algorithm generating a Neib-tree from a set of
ordered spatial neighbour relationships between spatial instances ¢ and a set of spatial

events F = {f,,..., f.} may be designed as below.

19°+*s In

Algorithm 4.3 (Gen Neib-tree)
Input: F = {fl,..., fn}i a set of spatial events.
o= bf. ={6, "8 1.8 =10, "8 S, =4S, Sy }}: a set of spatial ordered neighbour

relationships between instances, where 5, (1 <i< n)is the set of the set §, i of ordered neighbour in-

stances (they are “bigger” than the instance |i ) of instances Ii of feature fi , whose order is sorted in ascend-

ing order.

Output: Neib-tree: anordered instance neighbour relationship tree.
Method:

1) Create a root “Neib” for Neib-tree;

2) i=1;

3) While i<n Do;

4) { create a sub-tree f; of the root “Neib”;
5) Create a branch é}h for sub-tree f,;

6) For each é}_li (l<i£ki)0f 5, in o
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7) create a child-node of the branch é}_ll;
8) i=i+1;
9) 3}

10) Return the root ‘Neib’

Lemma 4.4 gives an idea for generating ordered table instance of a candidate
maximal ordered prevalence co-location C,, from corresponding Neib-tree, SO an al-

gorithm generating Tns-tree of the C,is design as below.

Algorithm 4.4 (Gen Instance)

Input: Neib-tree: anordered instance neighbour relationship tree. C,: a candidate maximal
ordered prevalence co-location;

Output: Ins-tree of the Cy;

Method:
1) k=|Cul; /I Nisthe number of features in Cn

2) Create aroot “Ins” for a Ins-tree ;

3) For i=1 to k-1 Do [* C,(1i) represents the i-th feature in C,

4)  {copy sub-tree C, (i) in Neib-tree to be a sub-tree of the root “Ins™ ;
5) Delete instance-nodes whose feature do not belong to C,;

6) Delete branches whose child-nodes’ number is less than (k-i) }

7) For each branch L. in the sub-tree C,(1)

8) {For each child-node vy, of I,

9) If find out the same-name-branch .’ in the sub-tree feature-name (y.) then
10) If some-child-nodes (y;' )= some-brother-nodes (y.) then

11) {the some-brother-nodes (y.) is moved to become child-nodes of the .;
12) the first child of the y. becomes a child-node of 1.. }

13) }

14) Delete branches whose level is lower than k+1;

15) Return theroot ‘Ins’

The correctness of Algorithm 4.4 is guaranteed by Lemma 4.4.

4.4 Algorithm and Analysis for Mining Maximal Ordered Prevalence Co-

locations

Algorithms in Section 4.2 present candidate maximal ordered prevalence co-
locations mining, while algorithm 4.3 and algorithm 4.4 in Section 4.3 generate table in-
stance tree (Ins-tree) for a candidate maximal co-location. The algorithm and analysis

for mining maximal ordered prevalence co-location are given in this section.
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4.4.1 Algorithms

Based on algorithms presented in Section 4.2 and Section 4.3, the idea of mining
maximal ordered prevalence co-locations is described in below.

(1). Computing spatial neighbour relationships between instances (the set of spatial
neighbour relationships between instances is denoted as ¢ ), and then the set of preva-
lent size-2 co-locations P, is generated.

(2). Based on the P, the P,-tree is built by using Algorithm 4.1, and then the CP,,-
tree, which contains the set of candidate maximal ordered prevalence co-locations CP,,
is generated by using Algorithm 4.2.

(3). Based on the 0, the Neib-tree is built by calling Algorithm 4.3

(4). Sorting CP, in long descending order (in alphabetic order when their long are
the same).

(5). For each candidate maximal ordered prevalence co-location C, in CP,,, accord-
ing to the value of C,,, the corresponding Tns-tree is generated by calling Algorithm
4.4, and then the value Pi of the C,, is computed. If C,, is not a prevalence co-location,
the content of CP,, is changed (for a candidate maximal prevalence co-location set
{ABCD, CDE,...}, if “ABCD” is not prevalent, it will be replaced by “ABC”, “ABD”, “ACD”
and “BCD”). If C,, is prevalent, it is put to the set of maximal prevalence co-locations P,.

(6). Return P,

The idea above is transformed to the algorithm 4.5.

Algorithm 4.5 (Gen_Py).

Input: A set of spatial dataset (including a set of spatial events F = {fl,..., fn }), a spatial neighbour dis-
tance threshold d, and a minimum prevalence threshold Min-prev.

Output: A set of maximal ordered prevalence co-locations with participation index is greater than Min-
prev.

Method:
1) o0 = gen_neighbourhood(a spatial dataset); P,=null;

2) P,=gen_size-2_colocation(o);

3) Pytree=Gen P,-tree (P,); //calling algorithm 4.1

4) CP,-tree=Gen CP,-tree (P,-tree) // calling algorithm 4.2

5) Neib-tree =Gen Neib-tree (J,F); // calling algorithm 4.3
6) For each C, in CP,

70 { Ins-tree=Gen Instance(Neib-tree,C,); [l callingalgorithm 4.4

8 Compute Pi (C,) from the Ins-tree;,
P If Pi (C,) > Min-prev then
10) { Pn=Pn{C.}; delete the C, from the CP,, }
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1) Else the C, in the CPy, is replaced by its sub-patterns;
12>}
13) Return P,

4.4.2 Analysis

Time complexity: The time complexity of algorithm 4.5 includes procedure
Gen_neighbourhood, procedure gen_size-2_colocation, algorithm 4.1-3, and the loop 6)
in algorithm 4.5. Suppose m is the total number of instances of all events and k is the

number of intersections. In the worst case, the computational complexity of the proce-

dure Gen_neighbourhood will beO(m®log, m), and the procedure gen_size-2-

_colocation is O(mlog, m+Kk) if the geometric approach proposed by Huang et al in
(Huang et al, 2004) is used. For algorithm 4.1 (Gen P,-tree), if P, is sorted in alpha-

betic order, and n is the number of events, the complexity isO(| P, | +n* log, n) (where
O(n*log, n)is the cost of generating node-link of P,-tree in the worse case). For al-

gorithm 4.2 (Gen CP,-tree), the cost isO(| P, |) due to the number of branches in P,
just be the number of co-locations in P,. For algorithm 4.3 (Gen Neib-tree), if Niys is

the number of spatial neighbour relationships between instances, the cost isO(N. ). For

ins
the loop of the step 6) in algorithm Gen P, The cost consists of generating Ins-tree
of a candidate maximal ordered prevalence co-location ¢, by calling the algorithm 4.4
and calculating the participation index of C,.

Let us suppose that a set of spatial events F = {f f } a set of spatial ordered

.
neighbour relationships between instances
o ={5fl = {8, "0 1 = {00 2 Oy =10, "8 }}, where s (1<i<n)is the set of
the set 5f.|' of ordered neighbour instances of instances | of event f,. If the longest can-
didate maximal ordered prevalence co-location is C,, in the CP,,, and the first event in
the Cr is f;, then, under the worse case, the cost of algorithm 4.4 is O(|5; |*[C,, |),
while the cost of calculating the participation index of ¢, is O(] 5fj |*]C, |). The total
cost of the loop of the step 6) in algorithm 4.5 Gen P, is less than
O( &;, [*[Cpyy [*[CP, ) <O(Nip, ) -
Summarizing above, the cost of algorithm 45 Gen P, is Teen n

O(m? log, m) +O(mlog, m+k)+O(| P, | +n” log, n)+O(| P, ) + O(N,.) + O(N,,)

Ins
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~0(m’ log, m+n?log, n+| P, |+N,.) ~O(m’ log, m)due to n<<m, |P,|<n*, and

Ins

N, <m”hold.

It means that the efficiency of the algorithms depends on the number of spatial in-
stances, the number of events, the number of size-2 co-locations, and the number of
spatial neighbour relationships between instances, while the complexity mainly depends
on the number of spatial instances. But by sorting spatial instances and co-locations,
and using reasonable tree structures, which dramatically reduces the cost of algorithms.

The real performance of algorithms is shown in Section 4.5.

Space complexity: The store space of the tree Neib-tree is the most costly in

the algorithm, if it is always in the main memory, the space cost of the algorithm is

O(N, ) <O(m?). But a method which partial sub-trees of the Neib-tree are remained

Ins
to reduce the need of the space can be adopted, because in one iterative of inspecting a
candidate maximal ordered prevalence co-location C,,, the instances of events related to

the C, only need to be in the main memory.
4.5 Performance Study

In this section, the performance of the order-clique-based approach presented in
this chapter is evaluated with the CPI-tree approach discussed in the last chapter, the
join-based approach and the join-less approach using both synthetic and real data
sets. All the experiments were performed on a 3-GHz Pentium PC machine with 2G
megabytes main memory, running on Microsoft Windows/XP. All programs are written in
Java.

The experimental results are reported on two synthetic data sets. The first one is a
sparse dataset with 26 spatial event types, when the neighbour distance threshold d and
the prevalence threshold min_prev are set to 25 and 0.15, the total number of size 2 co-
location patterns and the maximum size of co-location is 104 and 4, respectively, while
the number of all instances in the dataset is 10k. The prevalent co-location patterns are
short and not numerous in this dataset.

The second synthetic dataset used in the experiments is a dense dataset with 26
spatial events, the total number of size 2 co-location patterns and the maximum size of
co-location is 232 and 8, respectively, when the threshold d and the min_prev are set to
25 and 0.15. There exist long prevalence co-locations as well as a large number of short
prevalence co-locations in this dataset when the prevalence threshold Min_prev goes

down.

74



Chapter 4. An Order-Clique-Based Approach for Mining Maximal Co-locations

To test the feasibility of the order-clique-based approach, a real dataset, the plant
distributed data set of the “Three Parallel Rivers of Yunnan Protected Areas”, is used. It
contains the number of plant species (feature types) is 16. The total number of plant in-
stances is 3908. When Min_prev and distance d are set to 0.2 and 1700 respectively,
the maximum size of co-location is 4 and the total number of size 2 co-location patterns
is 39. There are a huge number of spatial neighbour relationships between instances

due to the plants’ particularity of growing in groups.

1) Performance with the neighbour distance threshold d over sparse data
set and dense data set: The runtime of the order-clique-based approach, CPI-tree, join-
based and Join-less on the sparse synthetic data set, when the prevalence threshold
min_prev is set to 0.15, as the neighbour distance threshold d increases from 15 to 30 is
shown in Figure 4.9(a), while the results of the four methods on the abundant mixtures of
short and long prevalence co-locations is shown in Figure 4.9(b) (the prevalence thresh-
old min_prev is set as 0.15 in these experiments). Since the dataset is sparse, as the
threshold d is low, the prevalent co-location patterns are short and the set of such pat-
terns is not large, the advantages of order-clique-based over CPlI-tree, join-based and
join-less are not so impressive. However, as the threshold d goes up or the dataset be-
comes dense, the gap becomes wider. In fact, the number of co-location patterns of size
2 generated from the sparse data set is 75 when the threshold d is given 22 in the ex-
periments. But the number has gone to 166 when the threshold d goes just to 22 in the

dense data set.
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(a) Over a sparse dataset
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Figure 4.9 Scalability with distance d over a sparse dataset and a dense dataset

2) Performance with prevalence threshold Min_prev over sparse data set and
dense data set: Figure 4.10(a) shows the experimental results with Min_prev over the
sparse dataset, while the results over the dense dataset are shown in Figure 4.10(b).
The neighbour distance threshold d is set to 25 in the experiments of Figure 4.10(a),
while d is 22 in the experiments of Figure 4.10(b). In figures, it can be seen that the or-
der-clique-based method has its advantage in most time. But it can also be found that
sometimes it is not better than others, since the maximal co-location mining method

might not be the best way in the case of shorter maximal co-locations.
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Figure 4.10 Scalability with Min_prev over a sparse dataset and a dense dataset

3) Performance with threshold Distance d over a real data set: The advantage
of the order-clique-based method is dramatic in datasets with pretty long frequent co-
location patterns, a large number of short frequent co-location patterns as well as a large
number of table instances, which is challenging to the algorithms that mine the complete
set of co-location patterns. The results over this real data set, a plants distributed dataset
of the “Three Parallel Rivers of Yunnan Protected Areas”, are shown in Figure 4.11.
From the Figure 4.11, one can see that the new method is scalable even when there are
many spatial neighbour relationships between instances due to the plants’ particularity of
growing in group. Without the excessive table instances’ store and maximal ordered
prevalence co-locations mining, the order-clique-based method and CPI-tree method are
very efficient over real spatial datasets. In such datasets, the join-less method is not
comparable to the performance of the order-clique-based method, and it is not even

comparable to the performance of the join-based method.

—e— join—based —#— join—less — M CPI-tree —a—order—clique—based
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Figure 4.11 Scalability with Distance d over a plant distributed data set of the “Three

Parallel Rivers of Yunnan Protected Areas”
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4) Scalability of the order-clique-based method with number of instances: To

test the scalability of the order-clique-based method against the number of instances, the
dense dataset is used with Min-Prev is set to 0.3, the neighbour distance threshold d is
20, and the number of instances ranges from 3K to 15K. The result is shown in Figure
4.12, which shows that the new method is the linear increase of runtime with the number
of instances. At the same time, it shows that as the number of instances goes up, the
join-less method is not comparable to the performance of the order-clique-based

method.
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Figure 4.12 Scalability of the order-clique-based algorithm with number of instances

4.6 Summary

In this chapter, an order-clique-based method for mining maximal prevalence co-
location, which can rapidly mining maximal ordered prevalence co-locations by adopting
data structure P,-tree, CP,~-tree, Neib-tree and Ins-tree to store related data
information, and by sorting data in these tree, is proposed. The new approach is efficient
since it does not require expensive table instances’ joining and excessive table in-
stances’ storing operations to identify next level table instances. The experimental re-
sults show the order-clique-based method outperforms the CPI-tree, the full-join and the
join-less methods in the case of sparse, dense datasets and real-world datasets. As fu-
ture work, the applications studying of maximal co-location patterns mining is an impor-
tant work. And mining close co-location patterns will be a significant work in the future

works as well.
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In next Chapter, A reasonable new approach of AOI (attribute-oriented induction),
attribute-oriented induction based on attributes’ generalization sequences (AOIl-ags),

which expands the traditional AOI method, is proposed (Wang et al, 2007(a)).
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Chapter 5

AOl-ags Algorithms and Applications

The attribute-oriented induction (AOI, for short) method is one of the most important data mining
methods. In this chapter, a reasonable approach of AOI (AOl-ags, attribute-oriented induction
based on attributes’ generalization sequence), which expands the traditional AOI method, is pro-
posed. By introducing equivalence partition trees, an optimization algorithm of the AOl-ags is de-
signed. Defining interestingness of attributes’ generalization sequences, the selection problem of
attributes’ generalization sequences is solved. Extensive experimental results show that the AOI-
ags are feasible. Particularly, by using the AOl-ags algorithm in a plant distributed dataset, some

distributed rules for the species of plants in an area are found interesting.
5.1 Overview

The general idea of attribute-oriented induction (AOI) is to abstract each attribute of
each record in a relation from a relatively low conceptual level to higher conceptual lev-
els by using domain knowledge(Concept Hierarchy Trees), in order to discover rules
among attributes from multilevel or higher level. The AOI approach to concept descrip-
tion was first proposed by Cai, Cercone, and Han in (Cai et al, 1991), a few years before
the introduction of the data cube approach, and further extended by Han, Cai, and Cer-
cone in (Han et al, 1993), Han and Fu in (Han and Fu, 1996), and Carter and Hamilton in
(Carter and Hamilton, 1998). The data cube approach is essentially based on material-
ized views of the data, which typically have been pre-computed in a data warehouse. In
general, it performs off-line aggregation before an OLAP or data mining query is submit-
ted for processing. On the other hand, the attributed-oriented induction approach is basi-
cally a query-oriented, generalization-based, on-line data analysis technique.

There are two common ways to control a generalization process:

The first technique, called attribute generalization threshold control, either sets
one generalization threshold for all of the attributes, or sets one threshold for each attrib-
ute. If the number of distinct values in an attribute is greater than the attribute threshold,
further attribute generalization should be performed. If a user feels that the generaliza-
tion reaches too high a level for a particular attribute, the threshold can be increased.
Also, to further generalize a relation, the user can reduce the threshold of a particular

attribute. But selecting an idea threshold for each attribute is not simple work.
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The second technique, called generalized relation threshold control, sets a
threshold for the generalized relation. If the number of (distinct) tuples in the generalized
relation is greater than the threshold, further generalization should be performed. Other-
wise, no further generalization should be performed. Such a threshold may also be pre-
set in the data mining system by an expert or user, and should be adjustable. But the
low-efficiency of AQOI algorithms becomes the main problem in the relation threshold con-
trol, for it has to be considered that all combinations of attributes which satisfy the rela-
tion threshold in an attribute-oriented generalization process, and the results of generali-
zation (or rank them for user) should be explained.

These two techniques can be applied in sequence: first apply the attribute threshold
control technique to generalize each attribute, and then apply relation threshold control
to further reduce the size of the generalized relation. No matter which generalization
control technique is applied, the user should be allowed to adjust the generalization
thresholds in order to obtain interesting concept descriptions. But it is still an intractable
task to set the attribute thresholds in this combination of two techniques.

In this chapter, by introducing the concept of attributes’ generalization se-
quences, the attribute threshold control technique and the relation threshold control
technique are unified, and a new approach of AOI—AOQOI-ags (Attribute-Oriented Induc-
tion based on Attributes’ Generalization Sequences), which expands the traditional AOI,
is proposed. Some technologies, for example, partitions, equivalence partition trees,
prune optimization strategies and interestingness, are used to improve the efficiency of
the algorithm. It is shown that the AOl-ags algorithm has special advantages.

The rest of the chapter is organized as following. Section 5.2 formally defines the
concept of the degree of relation generalization, and introduces the method of AOI
based on attributes’ generalization sequence (AOl-ags). In Section 5.3, by introducing
equivalence partition trees, an optimization algorithm of AOl-ags is designed. Interest-
ingness of attributes’ generalization sequences is discussed in Sect. 5.4. Section 5.5
presents correctness, completeness and complexity of the algorithms. Performance and

application results of algorithms are evaluated in Sect. 5.6. The last section is summary.

5.2 Attribute-Oriented Induction Based on Attributes’ Generalization Se-

guences (AOIl-ags)

AOI generalizes each attribute of each record in dataset from the lower conceptual
levels up to the higher conceptual levels according to concept hierarchy trees and
thresholds, to discover rules from multi-levels or higher levels. The concept hierarchy

tree is an important part in AOI process. Some concept hierarchy trees can be obtained
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from domain experts. But some concept hierarchy trees can be produced automatically
from datasets by using hierarchical clustering approach (Lin and Chen, 2005).

For conveniently, some concepts about the concept hierarchy trees are defined as
follows. The Depth of a certain node V in a tree is defined as the path length from root to
V, the Height of V is the length of the longest path in the tree whose root is V. The
Height of the tree is the Height of its root. The Level of V is its Depth more 1.

Example 5.1 Suppose the concept hierarchy tree of an attribute “elevation” in a re-
lation table is shown in Figure 5.1, the Height of the concept hierarchy tree is 4. The
Height of the node “[1500, 2400]” is 0, its Depth is 4, its Level is 5. While the Height

of node “[800, 2400]” is 1, its Depth is 3, its Level is 4, and so on.

Level

. [800, 40001
) [800,30080"" [3000,‘%‘“)\

3 [800, 2400 [2000, 300012 [3000, 37002 [3000, 4000]°>”

4 [1000, 1500]%-) [800, 240011 [2000, 30001V [2400, 3000]**?

5 [800, 2200121 [1500, 2400]*?
Figure 5.1 An example of a concept hierarchy tree

In traditional AOI algorithms, the generalization process is controlled by setting a
threshold for each attribute. But in some applications, user does not want to consider
each attribute for generalization threshold, so the degree of relation generalization is in-
troduced.

Definition 5.1 Given a relation "h---%) and the generalization relation” (==,

then the rate of reserved tuples is defined asZ=n'/n, so the degree of relation generaliza-

tion is defined asZ =1-2=1-("/n)_

Z is a measure for the degree of relation generalization. The higher the value of Z
is, the greater the degree of generalization. The value Z meets0<Z=M-1/n

Z cannot confirm certain generalization result. That is to say, given a relation
threshold control Z, some generalization relations that satisfy this threshold Z will be ob-
tained. But analyzing the process of AQI, it can be found that generalization for each at-
tribute is independent, that is to say, an attribute is generalized earlier or latter will not
affect the final generalization result. Further to say, a generalization result is the same no

matter that it is obtained by generalizing gradually or directly up to the k-th level, so at-
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tributes’ generalization sequences (“AGS” for short) is introduced in this chapter. One

AGS confirms certain generalization relation.

Definition 5.2 Given a relation pattern®A--A)  attributes’ concept hierarchy

trees™ M the Heights of treesh I, sequence”” A" Aris called an AGS of AOI,

where (1<9 <h+1),

. . T+
Property 5.1 The number of all AGS in a relation pattern |sli_:1[ ' o

Proof. “~One sequence % "9 "I can only confirm one AGS A" A" A
Meanwhile,s1<g, <l +1 .. |g; =l +1 (1<i<m)
.. The number of attributes’ generalization sequences is:
(|1+1)><-~><(|i+1)><~~><(|m+1)=f[(|i+1) o
Definition 5.3 Given the relation threshold control Z. If the generalization rela-
tion AUIRRAY which are confirmed by the AGS A AP "'Amm(l <g <l +1) satisfies

1-('/M=Z  and if increasing any 9 <1< it will not satisfy! = (""/M2Z  then Al A

r'(r/,..

is called an AGS which satisfies the Z, and 1) is called a generalization result

9 ... A9m
underAl An .

From Definition 5.3, it can be concluded that the AOI method of using attribute
thresholds is a special case of using the relation thresholds. It means that the attribute
thresholds and the relation thresholds are unified under the concept of AGS. The AOI
based on AGS (for short, call it AOI-ags) is an extension to the traditional approach.

An ordinary AOIl-ags algorithm is designed as follows.

Algorithm 5.1 The ordinary AOI-ags algorithm

Input:

e An un-generalized dataset (relation) r, which has m attrib-
utes {A;,As..AL}.

e Attributes’ concept hierarchy trees MMl ang the height of
trees th

e The relation threshold control Z

Output: Generalization rules which meet the Z

Description:

1) Gen seqg(relation,1,m,L;,S,Gs); //computing all attributes’ generalization se-
quences GS which meet the Z. the initial values are S="null”, Gs=.

2) Selecting a sequence from the set Gs of AGS and returning a
generalization relation;

3) Producing generalization rules from the generalization rela-
tion.
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Procedure Gen seq(r,i,m, L,,s, Gs) ; //Sisan attributes’ generalization sequence, GS is a

collection of attributes’ generalization sequences which meet the Z

(1) For k=L,+1 downto 1 Do

(2) Begin If k<L,+1 then

(3) Gen r < generalize(r, i, k)
(4) Else Gen r <r

Endif;
If i<m then
Gen_seq (Gen r,i+l,m,L_,SU A%, Gs)

If |Gen-r|<n(l-Z) then
Gs < GsU {su A}
endif

Endif

(5)
(6)
(7) Else
(8)
(9)

End

When the number of attributes (m) is larger, in order to obtain all attributes’ gener-

Td,+1)
alization sequences which meet the Z in algorithm, times - must be searched, and

it will waste much time. So, how to efficiently compute all AGS which meet the Z is the
chief problem in this algorithm. Further more, how to quickly calculate generalization re-
lations that are related to AGS is another problem need to be solved. To solve these
problems efficiently, an optimization AOIl-ags algorithm is presented by introducing

equivalence partition trees according to the property of AGS.
5.3 An Optimization AOIl-ags Algorithm

5.3.1 AOIl-ags and Partition

Let "(">Mis a relation in relation pattern R(A- A X <R VET €T 'roang 1 are

equal with respect to X if and only if "AI="ilAd for YA €X which is denoted as" = "i. X

ner

partitions the rows of r into equivalence classes. The equivalence class of with

respect to X <R can be denoted by [v ]:X. The quotient set 7x = {r], v erf

of equiva-
lence classes is an equivalence partition of r under X.

Given two partitions X :{717"'=Tk}, 7y ={71,>"'77k"}, Ty ®7Z-Y ={Ti ﬁT} |Ti 672',(,1'; e”y}is

called intersection partition of #x and #v, %x ®7¢ isa partition of I'.

Property 5.2 Fxur = 7x ® 7y

Proof. (1) 7y, and 7, ®7x, are partitions
(2) Vrenm,, and Vr,rier, r[XUY]=r,[XUY] holds.
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S E[X]=1[X] and r[Y]=r;[Y] hold.
Therefore 37/ ez, and 7y erx , I, €7/ and r,r; e7; hold.
So, dt"en, ®x, , 1,r,er"holds.

(3) For Vr"er, ®x, and Vr,r,ez’,

Jrier, and 7;ex,, I, €7 and I,r; er; hold.

S R[X]=1[X] and R[Y]=r[Y] o[ XOY]=r,[XUY]

SLdrern li,I; €T holds.

xUy »

In fact, the equivalence class R = ia-Anlis the relation T . According to the prop-

=7y Qrm,

erty of “Fxuy , there is a one-one correspondence from the records of I' to

Tipy @@y

. (1<i< <i<l .
equivalence classes of If o (Aisml< j<l+1) denotes equivalence

partition which attribute A; generalizes up to the j-th level along with the concept hierar-

9 ... A%
chy tree, then the generalization relation and AGS A Ay is corresponding one by one.

This leads to a new partition-based approach of AOIl-ags:

<i <I
(1) Compute all *a-0 (I<isml<g, <l H).

(2) Obtain all AGS which meet the Z.

9 ... m
(3) Select a sequence A A , and then calculate generalization relation

,_ e
r - ﬂAIgI ® <>97Z.Amgrn .

(4) Produce generalization rules from the generalization relation.

5.3.2 Search Space and Pruning Strategies

m

(
Definition 5.4 The Grid that is constituted by 1_1[

following properties is called the search space.

1)
possible AGS and satisfies the

(1) There are AGS that satisfy 9 * "+ 9n =K+1 iy the k-th level.

(2) Each sequence is connected to any sequence A" A" AV of the (k-1)-th

level.

Example 5.2 Given two attributes A; and A,, the Heights of the concept hierarchy

trees are |, = 2,1, =3, then the search space is showed in Figure 5.2.
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AA KA AR
S AA AAL 4
NA; AA :

Af A; 6

Figure 5.2 An example of the search space

The search space will increase rapidly with the increasing of m and |;. By introduc-

ing the concept “refinement”, some pruning is executed for reducing search space.

Definition 5.5 Given a relation and its two partitions”x ={end myo =l

. . T T . .
ifvzrierx 35 €7 LS Tinolds, then 7xis called as a refinement of 7v .

Ty

. . X Ta .
Obviously, is the refinement of7xand”v, and®i refines™Ax,

I<isml<k<j<l+1

Property 5.3 If Zxrefines”, then!™ = holds.
Proof. " V7, ey, 37, €7y, 7; =7, holds,

And because 7x and 7Y are partitions.

|7rX | 2 |7rY| a

— A% ... AGn T A% A
Definition 5.6 Given two sequencesA_A‘1 AmandA A An |fVAi,

9, 29(1<i<m) phoigs, and then A is called a sub-sequence of A', denote as A=S0(A)

and A'is the parent-sequence of A, denoted as A= Ta(A)

If A:sq(A), then“arefines 7~ . Therefore, what the pruning strategies can get

are the following.

(1) If there exists a’ e , and [raal>n0-2) holds, then any sequence which includes

Ok
A" or its sub-sequence A (%29 cannot meet the Z.

9 ... A -
(2) If there is a sequence™ A and 1740 YV h PNO-2) o1ds  then any se-

9i

g ...
quence which includes AT A or its sub-sequence may not meet the Z.
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(3) If a sequence”=A"""A"meets the Z, then all parent-sequences of A will not
meet the Z, so it can be pruned.

The pruning strategies above, on the one hand, can form search lower bound in the
search space, which reduces the search space, on the other hand, they can prune the
attributes’ generalization sequence which do not meet the threshold Z as early as possi-

m
ble, which avoids searching H(Ii +1) times.
i=1

5.3.3 Equivalence Partition Trees and Calculating”Awga

By introducing the concept of equivalence partition trees, ae can be calculated
efficiently. At first, each node (i.e., concept) in a concept hierarchy tree is assigned to a
concept’s code. As shown in Figure 5.1, the unary concept’s codes (the numbers in
bracket, “3” only represents the difference from other attributes) represent the first level
in the concept hierarchy tree (i.e., the root of the tree). The binary codes represent the

second level, etc.

Definition 5.7 The equivalence partition tree of the attribute A, each branch is a
concrete value of A, which is concept’s code with respect to the value in the concept hi-

erarchy tree, each node in the tree is a value in concept’s code.

Example 5.3 Take table 5.1 in Section 5.6.2 as an example, the equivalence parti-

tion tree of the attribute “elevation” is showed as Figure 5.3.

4 1 2 2 1
{ti} (b}
5 1 2

. 7y {ts)
Partition level o} Y

Figure 5.3 The equivalence partition tree of the attribute “elevation” in Table 5.1

An equivalence partition tree can be constructed by the following steps:

(1) Create the root of the tree, labelled with “null”.

(2) For each value of the attribute, a branch is created.

(3) Note down the corresponding Row-id under the corresponding leaf node. The
set of the Row-Id noted down is called the identity of the leaf-node.

Scanning a dataset once, the equivalence partition trees for each attribute can be

constructed.
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Definition 5.8 the partition level with respect to an equivalence partition tree is de-
fined as follows. Define the root “null” as level 0, the following is level 1, .. till the leaf
node. The identity of node on an equivalence partition tree is the union of the identity of
all leaf-nodes of the sub-trees with this node as their root.

It is not difficult to see that the partition level of the equivalence partition tree corre-
sponds to the concept level of the concept hierarchy tree. The partition level with respect

to equivalence partition tree of example 5.3 is shown in the left side of the Figure 5.3.

Property 5.4 the set of equivalence partition class with respect to attribute A at level
| is the set of the identity of nodes of the I-th partition level in equivalence partition tree
with respect to the attribute A (including leaf-nodes whose partition level is smaller than

).

Example 5.4 Considering the equivalence partition tree in Figure 5.3, the partition
result in the third level is {{t;,t7,ts}, {t2,ts}, {t3}, {t5.ts}}, which is the same as the equivalence

partition result after “elevation” is generalized to the third level.
5.3.4 Algorithms

Introducing partition and refinement, the AOI process can be speeded up efficiently.
Introducing equivalence partition trees, equivalence partition results of attributes in any
level can be quickly obtained. So an optimization algorithm of AOl-ags is designed as

below:

Algorithm 5.2: An optimization algorithm of AOI-ags

Input:

e An un-generalized dataset r, which has m attributes {A ,A.A}.

e Attribute’s concept hierarchy tree ol 2ng their
heights““””h}.

e The relation threshold control Z

Output: generalization rules which meet the Z

Description:

1) creation partition tree(r); //producing each attribute’s equivalence partition
tree

2) computing lower bound L(A,) which attribute A, is generalized;
3) Gen(™®,1,m,L(A),S,Gs); //the initial values are S=“null”, Gs=®. Obtain all
AGS (Gs) which meet the Z

4) Selecting a generalization sequenceAF“A?from Gs, computing

. . . ==z, ®--Qr
generalization relation Agi Anlm

5) Producing generalization rules from the generalization rela-
tion.

Procedure creation _partition tree(r)
Var item: Item; record: The set of item; T;,..Tn: Tree;
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Begin create m root-nodes of m trees T,,..T,, it 1is noted by
“null” respectively;
While record:=get next record( r);
For i:=1 to m do
{ item:=get next item (record);
insert tree (item,T;); }
End {while}
Return equivalence partition trees Ti,..Th.
End;

The get_next_record procedure reads a record and converts the attribute values to
concepts. The get_next_item procedure gets an item (i.e., a concept) in the record, and
converts the concept to concepts’ code. And the insert_tree (item, T;) procedure is per-
formed as follows: Let the item be [E|item’], where E is the first element in the item. If T;
has a child N such that N.value=E.value, then it shares the node N; else create a new
node N, its parent link to be linked to T;. If item’ is nonempty, call insert_tree (item’, N)

recursively. When the recursion procedure finishes, the Tuple-id is added to the identity

of corresponding leaf-node.

Procedure Gen(r,i,m,L(A,),S,Gs);

i

(1) For k= L(A4,) downto 1 Do
(2) Begin If i=1 and k < L(A)) then
(3) Gen r <A«
(4) Else 1If i=1 and k= L(A)) then
(5) Gen r <r
(6) Else Gen r S OTn Endif
Endif;
(7) if | Gen r| > n(1-Z) then
(8) exit for
endif
(9) If i<m then
(10) Gen (Gen_r,i+1,m,L(Abl),SLJAi,Gs)
(11) Else If |Gen-r|<n(l1-Z) then
(12) Gs < GsU {SURA"};
(13) Exit for
Endif

Endif
End
In the optimization algorithm of AOI-ags, the recursive times are efficiently con-
trolled by computing each attribute’s lower limit L(A;), and consider whether AGS can be
pruned or not in a recursive process according to Pruning Strategies. In fact, many re-

cursive steps will be jumped over using pruning strategies in algorithm 5.2.
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5.4 Interestingness of Attributes’ Generalization Sequences

The method of attributed-oriented induction based on attributes’ generalization se-
quence extends traditional AOI method, but which now induce a new problem: how to
choose attributes’ generalization sequence which have the same degree of generaliza-
tion? So, the interestingness of attributes’ generalization sequences is introduced.

Motivation example: For the plant “Magnolia sieboldii” in a plant distributed dataset,
suppose the following rules have been obtained.

(1) Plant “Magnolia sieboldii” = 50% grows in the conifer forest and scrub whose
elevation is from 2600 to 4100 meter of Lijiang, and 50% grows in the forest,
scrub and meadow whose elevation is from 2400 to 3900 meter of Weixi.

(2) Plant “Magnolia sieboldii” = 90% grows in the conifer forest and scrub whose
elevation is from 2600 to 4100 meter of Lijiang, and 10% grows in the forest,
scrub and meadow whose elevation is from 2400 to 3900 meter of Weixi.

The rule (2) is more meaningful than the rule (1), because the growth characteris-

tics of plant “Magnolia sieboldii” are more obvious in the rule (2).

Definition 5.8 In a generalization relation, the t-weight of the i-th generalization re-

cord t; is defined as formula (1).

count (i)
> count (j) M
j=1

In formula (1), count (i) is the number of repeated records of the i-th generalization

t =

record in generalization relation, N'is the number of records in generalization relation.

. oy o _ 9 ... ASn
Definition 5.9 Given "("-T)is a generalization relation under =/

(1=9 <li+1) then interestingness o9 of A" A is defined as formula (2).

n' 1 5
izzl:(ti - W)

When the number of repeated records for each generalization record in a generali-

@)

91 Om -

!
r,..

! !
. . ! | . I
zation relation " (1) gets average value, "¢ % achieves the minimum 0. The farer

t-weight of generalization records in a generalization relation is from average value, the
larger the contribution to interestingness. The larger the value of'gr"gm, the more interest-

ing the rule expressed by the attributes’ generalization sequence At A
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Therefore, after obtaining sequences which meet the Z, computing their interesting-
ness, and ranking the generalization sequences with the decline of interestingness, the

generalization relation and rules can be produced.
5.5 Analysis

In this section, the algorithms are analyzed for completeness, correctness and
computational complexity. Correctness means that the generalization rules meet the
user specified threshold. Completeness implies that no AGS that satisfies the given

threshold is missed.
5.5.1 Completeness and Correctness

Lemma 5.1 Algorithm 5.1 is correct.

Proof. The algorithm 5.1 uses very simple way to get generalization rules. It is ob-
vious that algorithm 5.1 is correct if it can be proved that the recursive procedure
Gen_seq is correct. That means the Gen_seq will return the AGS that satisfy the Z. It is
guaranteed by step (8) in Gen_seq, because this step will check whether every se-

quence satisfies the Z or not.

Lemma 5.2 Algorithm 5.2 is correct.

Proof. The pruning strategy (1) guarantee the step 2) in algorithm 5.2 will return the
low boundary of every attributes. If the return of step 3) is correct, then the Section 5.3.1
ensures the generalization relation computed by the step 4) is correct.

For step 3) (i.e., the recursive procedure Gen), the property of 7xor =7x®7y and
Section 5.3.2 ensure the correctness of the step (3)-(6) in Gen. The step (3)-(6) ensures
the correctness of the step (11). And the step (11) guarantees every AGS satisfies the
threshold Z.

Lemma 5.3 The algorithms are complete.

Proof. It will be proved that if a sequence satisfies the Z, it is found by the algo-
rithms. In the recursive procedure Gen_seq of algorithm 5.1, the step (1) iterates all
generalization levels of an attribute and the step (6) recursively perform Gen_seq. So the
combine of step (1) and step (6) ensures the Gen_seq will check all possible candidate
sequences.

For algorithm 5.2, the pruning strategy (1) guarantee the step 2) of algorithm 5.2 will
return the low boundary of every attributes. In the recursive procedure Gen, The step (7)

and (8) is because the pruning strategy (2) and the step (11) and (13) are just because
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the pruning strategy (3). The combine of step (1) and step (10) guarantee the Gen will
check all possible candidate sequences.

5.5.2 Computational Complexity

Suppose the number of records in the relation T is N, the number of attributes in T
is m, and the height of attribute i-th concept hierarchy tree is I, In the worse case, the

O(N *lﬂ[(l‘ +1))

computational complexity of the algorithm 5.1 will be . And the algorithm 5.2 will

be o1t » Theoretically speaking, the computational complexity of the two algorithms

seems not very distinctive. But many recursive steps will be jumped over using pruning
strategies in algorithm 5.2, so the complexity will be much lower than algorithm 5.1. The

real execution results will be shown in the Section 5.6.
5.6 Performance Evaluation and Applications

The performance of the algorithms is evaluated by synthetic datasets and a real-
world dataset (a plant distributed dataset of “The Three Parallel Rivers in Yunnan Pro-
tected Areas”). The experiments are performed on a Celeron computer with a 2.40 GHz

CPU and 256 Mbytes memory running the Windows XP operating system.
5.6.1 Evaluation Using Synthetic Datasets

The experiments using synthetic data sets are aimed at answering the following
questions. (1) How does the size of dataset affect the two algorithms? (2) How do the
Algorithm 5.1 and the Algorithm 5.2 behave with the Z is changed?

A series of experiments are run with increasing number of spatial data points. The
results are showed in Figure 5.4 (a). It can be seen that the algorithm 5.2 is almost linear

and much faster than the algorithm 5.1.

z=0.8, m=2 n=200, z=0.8
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Figure 5.4 Performance of algorithms using synthetic datasets

Fixed on the number of records, the number of attributes is an important parameter.

The detailed comparative results are showed in Figure 5.4(b). It can be seen that the
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performance of Algorithm 5.1 is very bad when m=5. The results indicate that the prun-
ing strategies and equivalence partition trees used in Algorithm 5.2 are very efficient.
Now let us look at the characteristic of fast re-generalization of the two algorithms.
The results are shown in Figures 5.5(a) (b). The 6 different settings of the thresholds Z
are used in the experiments. It can be seen from the results that the Algorithm 5.2 pos-

sesses the characteristic of fast re-generalization.
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Figure 5.5 Characteristic of fast re-generalization for the two algorithms

5.6.2 Applications in a Real Dataset

A plant distributed dataset, which involves 29 plant species which are very valuable
and rare in “The Three Parallel Rivers in Yunnan Areas” and 319 instances (tuples), is

used in the experiments. Table 5.1 is some tuples of the dataset.

Table 5.1. Some tuples of a plant distributed dataset

Tuple-ID | Plant-name Veg-name | Elevation /m Location
t Orchid meadow [1000, 1500] Lijiang

t Fig scrub [2400, 3000] Weixi

t3 Magnolia scrub [3000, 3700] Lijiang

ty Calligonum | taiga [2000, 3000] Jianchuan
ts Magnolia meadow [3000, 4000] Lanping
te Agave taiga [3000, 4000] Lanping
t; Yucca forest [1500, 2400] Weixi

tg Waterlily meadow [800, 2200] Jianchuan

The experiments using this dataset are aimed at checking the usefulness of the
AOl-ags algorithms. Can they discover valuable patterns? Are the rules discovered by
the algorithms interesting towards geographers and botanists?

34 AGS are obtained when the threshold Z is set to 0.8, and 57 plant distributed
rules are discovered when one of the 34 AGS is chosen according to their interesting-
ness. When the threshold Z is set to 0.85, the number of AGS is 28 and the number of
rules is 19. When the Z is set to 0.9, the number of AGS and rules is 22 and 16 respec-
tively.
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Some rules discovered by the algorithms are really attractive to geographers and

botanists. The following are some examples:

— “Tricholoma matsutake” = 40% grows in the forest and meadow whose elevation
is from 3300 to 4100 meter of Lijiang.

— “Angiospermae” = 80% grows in the forest. scrub and meadow whose elevation
is from 2400 to 3900 meter of Lijiang and Weixi.

— Lijiang = There are a plenty of plants species in severe danger such as

“Tricholoma matsutake”, “Angiospermae”, “Gymnospermae”, and so on.

5.7 Summary

Related approaches for mining the associations of attributes can be divided into the
clustering-based approach, the association rule-based method and the approach of AOI.
Clustering-based approach treats every attribute as a layer and considers clusters of
point-data in each layer as candidates for mining associations (Estivill-Castro and
Murray, 1998; Estivill-Castro and Lee, 2001). The complexity and the low-efficiency are
the crucial problems of this method. The association rule-based approach is divided into
the transaction-based method and distance-based method again. The transaction-based
method computes the mining transaction (two-dimension table) by a reference-object
centric model, so one can use the method which is similar to Apriori for mining the rules
(Koperski and Han, 1995; Wang et al, 2005). The problem of this method is that a suit-
able reference-object is required to be specified. The distance-based method was pro-
posed by Morimoto in (Morimoto, 2001), and Shekhar together with Huang in (Xiong et
al, 2004; Huang et al, 2004; Yoo and Shekhar, 2004) did further research. Because of
doing a plenty of join operations, executing efficiency is the key problem of this method.
The approach of AOI is presented firstly by Cai, Cercone, and Han in (Cai et al, 1991). It
is a simple and understandable method. But it is inconvenient because setting each at-
tribute threshold is required.

The AOIl-ags proposed in this chapter can obtain automatically rules under setting a
threshold Z. Particularly, by using the AOIl-ags algorithm in a plant distributed dataset,
some distributed rules for the species of plants in “Three Parallel Rivers of Yunnan Pro-
tected Areas” are found interesting. The advantage of AOI method is that domain knowl-

edge (concept hierarchy trees) is used in the process of data mining.
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In next Chapter, A valuable Fuzzy Data Mining Prediction Technology, the degree
of fuzzy association based on the distribution of the variables for the prediction object
and the concept of semantic proximity (SP) between two prediction objects, is discussed.
Particularly, by using this technology in a system of predicting plant species in an eco-
logical environment and a prediction system of shovel hoist cable service lifespan, the
applied value of this method is verified (Wang et al, 2007(b); Wang et al, 2007(c)).
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Chapter 6

Fuzzy Data Mining Prediction Technologies
and Applications

Based on a concept of fuzzy association degree, a data mining prediction method is proposed in
this chapter. Inverse document frequency (IDF) weight function has been adopted in this investi-
gation to measure the weights of conditional attributes in order to superpose the fuzzy association
degrees. To implement the method, the “growing window” and the proximity computation pruning
are introduced to reduce both I/O and CPU costs in computing the semantic proximity between
time-series data. By applying the approach in a plant species and ecological environment dataset
and a dataset for predicting shovel cable lifespan, one can see that the approach is reasonable

and effective.
6.1 Overview

Databases are rich with hidden information that can be used for intelligent decision
making. Data mining prediction is a form of data analysis that can be used to predict fu-
ture data trends. There are a great number of methods in the mining prediction, such as
statistical learning (Hastie et al, 2001), machine learning (Witten and Frank, 1999), deci-
sion tree (Alsabti et al, 1998), and fuzzy method (Liu and Song, 2001). Further more,
many algorithms have been proposed that adapt association rule mining to the task of
prediction. The CBA algorithm for associative classification was proposed by Liu, HSU,
and Ma (1998). CPAR (Classification based on Predictive Association Rules) was pro-
posed in Li, Han, and Pei (2001). Carter and Hamilton (1998) handle data generalization
by the attribute-oriented generalization method. Wang (2000) proposes a fuzzy equiva-
lence partition method to handle data generalization. A data reduction technique based
on attribute-oriented generalization is presented in paper (Wang and Chen, 2005). Shi et
al (2003) presents a novel data pre-processing technique called shrinking inspired by the
Newton’s Universal Law of Gravitation in the real world, which optimizes the inner struc-
ture of data.

But no prediction method is superior over all others for all data types and domains.
When a real application problem faced, any method mentioned above may be inapplica-
ble to it. In this chapter, starting at a discussion of the two application problems, a rea-
sonable and effective fuzzy data mining prediction approach is proposed, in order to re-

solve similar problems.
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6.2 Preparing the Data for Prediction

This section describes issues regarding preparing the data for prediction by analyz-

ing two practical application problems.
6.2.1 Preparing the Data for Predicting the Shovel Cable Lifespan

Electric cable shovels are the workhorses of ore-pit mining, each shovel handling
mineral ore of many thousand tons per day. Ore is scooped into a shovel’s bucket with
digging energy supplied by motors pulling on cables of large diameter attached to the
shovel’s bucket. Cables (also called ropes) are expected to last for approximately 2000
hours of operation. However, current shovel cable lifespan can range from 400 to over
1800 hours over an entire shovel fleet.

Our goal is to predict the shovel cable lifespan. How the shovel is used for the most
part determines cable’s lifespan. From the shovel telemetry data, the information about
shovel work status can be obtained. The sequence of activities in an ideal simple shovel
duty cycle consists of digging, hoisting, swinging the dipper towards the truck, dumping
and swinging back to the ground.

Several variables are believed to contribute to a cable’s lifespan, and these vari-
ables are described as shovel dispatch data, shovel dig energy (energy expended within
dig cycles), other shovel energy (energy expended outside dig cycles) and shovel-id
(because it represents different shovel and different working site). There is intuitively a
correlation between shovel dig energy and shovel cable lifespan. However the shovel dig
energy alone cannot determine the exact shovel lifespan, nor can the shovel lifespan
determine shovel dig energy. The same can be said for shovel dispatch data and other
shovel energy. By analyzing the shovel motor performance data during shovel operation,
the dig cycles of a shovel can be identified. So the dataset to predict the shovel cable

lifespan is organized as Table 6.1.

Table 6.1. The dataset for predicting shovel cable lifespan

Tuple- . . Shovel- | shovel
shovel dispatch data shovel dig energy other shovel energy .

No ID lifespan

I 127.3285,128.3771,137.5078, ... | 3437972,6070928,6087400, ... | 9102248,9471670,10623427, ... | 78 703.6

I 123.8424,127.9197,119.3427, ... | 3646337,3927044,4339156, ... | 10649652,8565822,8153072, ... | 78 1213.6

Iy 130.0234,128.3092,126.7473, ... | 4090329,4411364,3239778, ... | 9820630,9797128,10519956, ... | 84 639.2

In the dataset, there are two kinds of data. One is relatively static data that is stable

and constrained to a finite number of values, for example, ‘Shovel-ID’ and “shovel life-
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span”. Others are time-series data. They change over time. If data were collected at a
one-second time interval, then the quantity of data to be handled is huge. For example,
the quantity of data of the shovel 78 in a lifespan (2005-04-24 to 2005-05-30) is
9*703.6*3600=22,796,640. So, obtaining a reduced representation of a time-series,
comparing the similarity between two time-series, and partitioning the set of time-series,
will be the works have to study in initial data exploration (IDE) for predicting the shovel

cable lifespan.

6.2.2 Preparing the Data for Predicting Plant Species in an Ecological Envi-

ronment

“Three Parallel Rivers of Yunnan Protected Areas”, confirmed as the World Heri-
tage on July 2, 2003 by UNESCO (United Nations Educational, Scientific and Cultural
Organization), is the one of the most important researching areas for rocksy and botanist
(Guo, 2004).

The ecological environments are believed to contribute to the plant species,
distribution and diversity in Three-Parallel-River zone, which include climates (e.g., mean
temperature, mean precipitation), elevation, topography, etc. So the data listed in Table
6.2 will be used in the chapter.

The ultimate goal of data mining in this plant species and ecological environment
dataset is to discover the association pattern between plants and ecological environ-
ments in Three-Parallel-River Zone. Then it can be predicted that there might be some
plant species in an ecological environment. Discovering correlations between the plant
species and ecological environments will be very significant for retaining rare and en-

dangered plants in Three-Parallel-River Zone.

Table 6.2. Plant species and ecological environment dataset

Tuple-ID mﬁﬁg r};r{;pg.rfggge rTE;aonn%rs c(')?;t;tﬁr; elevation (m) | topography | plant species
r 90, 100, 108, 130, ... | 0,7, 21, 21, 307, ... [900,2000] ascent Camellia

r 80, 111,130,102, ... | 12,13, 133, 55, ... [500,900] ascent Water-lily

rs 99, 100, 144,142, ... | 71, 205, 502, 330, ... [700,1100] valley Camellia

rs 93, 115, 141, 165, ... | 0,98, 171, 793, ... [200,700] ascent Camellia

rs 77,68, 116, 113, ... 17,228, 212, 453, ... [120,400] valley Water-lily

I 93, 105, 130, 145, ... | 36, 228, 679, 190, ... [200,800] valley Orchid

ry 93, 103, 120, 151, ... | 40, 882, 46, 899, ... [600,1200] basin Orchid

rs 67, 84, 81, 105, ... 7,62,68, 184,734, ... | [1000,2000] | ascent Water-lily

Prior to Table 6.2, data analysis is carried out as follows.
1). Climate data: there are two groups of time-series data for mean temperature
and mean precipitation. These data change over time.

2). Elevation data: it is the interval values.
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3). Topography data: it may have the following values: peak, valley, ascent, terrace,
and basin..., all of them are used to describe the location of the plants growth.

There is hopefully a correlation between plants and ecological environments in
Three-Parallel-River Zone. But a single ecological environment (e.g., elevation) cannot
determine the exact plants growing; nor can the plants determine ecological environ-
ments. The same are climates and topography. The relationship between plants and the
ecological environments in Three-Parallel-River Zone is a fuzzy association relationship.

The degree of fuzzy association represents the intensity of correlation between at-
tributes in a data set. Therefore, in this chapter, the following problems need to be dis-
cussed:

1). How to explore the initial data? For example, the mean temperature of climate
data is a time-series data.

2). How to evaluate the fuzzy association degree between the conditional attribute
and the predicted attribute?

3). How to superimpose fuzzy association degrees?
6.3 Initial Data Exploration — IDE

In the light of the datasets above two applications, the key following issues are go-
ing to tackle in the study of IDE:
® Comparing the similarity between two time-series

® Approximately partitioning them
6.3.1 Comparing the Similarity of Two Time-Series

A time-series is a sequence of real numbers representing values at specific points

in time. We start by defining time-series.

Definition 6.1 A time-series T of length n is an ordered set (1, t,, ... , t,) withti €%,
I<i<n_|T|is the length of T.

For comparing similarity of two time-series, the degree of proximity will be defined.
The Euclidean distance, a popular similarity measure that has been extensively used in
comparing time-series (Shi et al, 2003; Hastie et al, 2001; Witten and Frank, 1999), is

adopted in this definition.

Definition 6.2 Given two time-series, T[1...n] and Q[1...n], the degree of proximity
between T and Q (denoted PD (T, Q), 9=<PP(.Q)<l) s defined as
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\/n— (1)
PD(T,Q)=1//>"(t ~g,)* +1

Simple, yet important, a property held by the PD is described by the Lemma 6.1.
This property will be useful in improving the performance of computing PD. Simply put
the Lemma 6.1 states that if two time-series are in close proximity, then all their prefix

subsequence of equal length are also in close proximity.

Lemma 6.1. If PPOI.NLQMI.NY>& for time-series T[1...n] and Q[1...n],
PD(T[1..k],Q[l..k]) > ¢ holds, for 1<k<n,

Proof. (By contradiction) If for a particular k, 1<k<n, PD(T[L..kLQIL.. kD =& how-
ever, PD(T[L.n],Q[L..n)) < PD(T[1..kL.Q[L..kKD) and therefore PPTI-NLQI.ND<s 5 contradic-

tion, since the PP(T[..nL.QlL..nD)>¢ was assumed. 0

Using a “growing window” to scan the time-series, the computation of PD(T, Q) can
be done recursively by adding the remaining terms to the previously sums, thus the
number of necessary computations are reduced. For example, if the values:
PD(T[1...300], Q[1...300]) have been computed, then the values of PD(T[1...301],
Q[1...301]) can be computed directly using Equation (2).

1 ()

(PD(T[L...300], Q[1..3001))°

PD(T[I...301],Q[1...301])—1/\/ +(T[301] - Q[301])>

This allows people to perform a “growing window” algorithm. For example, if we
compute the arguments in (1) for a window of size m in T and Q, i.e., PD(T[1...m],
Q[1...m]), we can compute the same arguments for the “growing” window
PD(T[1...m+1], Q[1...m+1]) in O(1) time.

Using the “growing window” and Lemma 6.1, there is an efficient pruning strategy.
When a value of PD from a growing window is less than ¢, it can be considered as zero,
and no more further computation.

In the above discussion, it is supposed that two time-series have the same length.
However the situation is not always like this and the data one face are usually long and
have noise. So, beside Lemma 6.1 and the “growing window”, here want to optimize the
computation of PD by employing a method of scaling.

Let T [1..n] be a large time-series and m be an integer with 0<m<n. One wants to
compress T from n to m points. By intuition, one can group sequential points of T and
take their averages in order to form the smaller sequence. Figure 6.1 is an example for

grouping a time-series. It presents a scaling of a 24-point time-series into 4 points.
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WA amvi| IV
v mean

L=6

N=24 =4
Figure 6.1 Scaling of a 24-point time-series into 4 points

Definition 6.3 Let T[1...n] be a time-series, m be an integer such that I<m<n,

SERsE
L" , m] and F=NnmodM The scaling of T to size m, a time-series T¢[1...m] , is

defined, where

1 A .
— T[] 1<i<r
T [i]= A j(i—z_l):-AH (3)
S 1 r+i-B . .
— > TIi] r<i<m
B j=r+(@i-1)-B+1

In the above definition, if n/m is not an integer, here take the first Nmodm points of

n
the scaled sequence to be averages of A ( [ml) points, and the rest to be averages of

=y
B( LMy points of T. Iff =Nmodm = 0peids, then the scaling will be consist of n/m

points averages, as expected.

Taking averages has been used successfully as an approximation and dimensional-
ity reduction technique in time-series (Witten and Frank, 1999; and Alsabti, 1998). This
type of scaling that here used is robust to noise, which means that even small variances
of the time sequence do not alter the scaled sequence. Moreover, it can be implemented
in a computationally efficient way and transform the time-series to the same length. After
all, the scaling procedure in this method is also similar to the human’s nature under-

standing of “scaling”.

6.3.2 Fuzzy Equivalence Partition for the Set of Time-Series

Once the value of PD between two time-series obtained, the remained issue is how
to partition the set of time-series. Fuzzy equivalence partition method (Wang, 2000; Huo,
1989; and Zadeh, 1965) is used as follows.

Assume that v is a set of time-series. From Definition 6.2, there is a relation-

PD(T;,T))=1 _ 4 PD(T,.T)=PD(,.T,

ship n ). Using the degree of proximity between two

S= (Sij)NxN >

time-series, a similarity matrix can be built up, where
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1 i— |
% :{PD(Ti,TJ.) i @

(8;)7 = MAX, (MIN(s,, S, )), until

S can be multiplied by itself repeatedly, where
$* =8 $™is called a fuzzy equivalence matrix EM. Based on the fuzzy equivalence

matrix EM, the classifications of T Ty will be obtained for user-specified level value 2.
The equivalence matrix EM can be computed in O(N®) time from a similarity matrix

S. The computational method can be expressed as follows:

1l For i:=1 to N do

For j:=1 to N do

3 If s(j,1)>0 then

4 For k:=1 to N do

5 S(j,k):=max{S(j,k), min{s(j,1i), S(i,k)}};

N

This algorithm is very efficient if the fuzzy similarity matrix S has many zero ele-
ments, due to step 3.

The above method can also be optimized through computing the fuzzy equivalence
matrix EM in O(M?) time (M is the number of nonzero elements in the upper-triangle of
the similarity matrix S.) (Wang, 2000).

6.3.3 An Example

Example 6.1 Let T be the set of the given time-series data T, — T4 (see Table 6.3).

Table 6.3 A simple example of 4 time-series data

T Time-series data

176.7289,137, 176.7289, 104, 120.9448, 137, 149.0745, 109.667,137, 137, 137, 170.2474, 108.6299,
T, | 163.7659, 181.9141, 160, 137, 85.5126, 160, 163.7659, 114.6793, 185.3709, 160, 180.1857, 137

177.5931, 104, 160, 144.7535, 107.7657, 140.0436, 160, 94.241, 160, 154.2597, 140.0004, 160, 160,
T 96.3151, 160, 158.5807, 133.0868,160

93.3336, 104, 160, 137, 156.8523, 100.6361, 160, 104, 137, 137, 133.0868, 158.1486,89.099, 160,
T 104, 120.988, 137, 137, 128.7658, 128.7658

181.9141, 104, 159.877, 160, 178.0252, 158.5807, 160, 137, 104, 137, 185.803,104, 137, 149.5066,
T, | 153.8276, 137, 160, 178.4573, 150.4572, 160, 186.6672, 176.2968, 137, 106.5127, 160, 160,
160,158.1486, 176.2968

Assuming ¢ =0.00001and m is 12 for this example. Then, from Definition 6.3, can
get

Ts1={163.4859, 112.4724, 143.0373, 123.3335, 137, 139.4387, 172.8400,
148.5000, 122.7563, 139.2226, 172.6855, 158.5929};

Ts2={140.7966, 152.3768, 123.9047, 127.1205, 157.1299, 150.0002, 160, 96.3151,
160, 158.5807, 133.0868, 160};

Ts3={98.6668, 148.5, 128.7442, 132, 137, 145.6177, 124.5495, 112.494,137, 137,
128.7658, 128.7658};
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T.={148.597, 165.5353, 133.6667, 142.2677, 146.7781, 148.5, 164.4572,
173.3336, 156.6484, 133.2564, 160, 167.2227}

From Definition 6.2, s1,=PD (T, Ts2)=1/[(163.4859-140.7966)*+...+(158.5929-160)>
+1]"2=0.0237, 513=0.1282, ... .

1 0.0237 0.1282 0.0243
Thus, ¢_[00237 1 00200 0.0120
0.1282 0.0200 1 0.0300
0.0243 0.0120 0.0300 1
1 0.0237 0.1282 0.0300
AppIyingSseIf—muItipIe repeatedly, can obtain §i_s? 0.0237 1 0.0237 0.0237

TT 710.1282  0.0237 1 0.0300
0.0300 0.0237 0.0300 1

Then, S* is the fuzzy equivalence matrix of the S. When the level value Ais se-

lected as 0.025, the level value matrix of the fuzzy equivalence matrix

1 011

Sool = 0 100 can be obtained.
‘ 1 011
1 01 1

The classification of Ty — T4 is To025={(T4, T3, Ta), (T2)}. By the same method,
To.1={(T1, T3), (T2), (T4)} could be obtained.

6.4. Mining Prediction

6.4.1. Degree of Fuzzy Association

Let R={r,, ..., rp} be a finite set of objects, A={A4, ..., A,, B} be a set of attributes
over R. The attributes in A are classified into disjoin conditional attributes C={ A, ..., An }
and the predicted attribute D={B}. The equivalent class L in the set of the equivalent
classes for the conditional attributes A, is denoted by Ay, and for predicted attribute B,
the B,, means the m" equivalence class. The intersection of A, and B, is denoted by
POS(A«, Bm). The number of objects in POS(A«., Bn) is called the distribution of Ay to
Bm, written as K(POS(Ax., Bm)).

The degree of fuzzy association between A, and B, is determined as follows.
Once the value of the conditional attribute Ay is Ay, the value of the predicted attribute B
must be B, then A, is in close association with B,,. In another condition, the conditional
attribute A¢ is Ay, and the predicted attribute B is By, or By, then the fuzzy association
degree between Ay and B, can be decided depending on the proximity between B, and

Bh. The greater the proximity between B,, and By is, the higher the fuzzy association de-
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gree between A, and B, If the B is B, By, or B; when the A, has the value Ay, it is
unlikely to have a relationship between A, and By,.

Definition 6.4 Given a weight wj,, for measuring the proximity between the two val-
ues B; and B, of the predicted attribute B, the fuzzy association degree from Ay to By, is

defined as p (0<p<1)

P(A.B,) = (K(POS(A,B,)) *w,,
+ K (POS (A, B,) *W,,
+ee 4 K(POS (Ag, B,)) * Wy, )/ K(Ay)

®)

The weight w;,, , written as w(B;, Bn), represents the degree of proximity between B;
and Bn. W(By, Bm)=1 and w(B;, By)=w(Bm, Bj) are held. The weight w;, can be obtained
from domain expert (for example botanists), or by mining the co-location relation be-
tween plants (Huang et al, 2004; Yoo and Shekhar, 2004; and Xiong et al, 2004). The

following two methods are adopted in the study.

1). Method for the plant data
Plants can be organized to a plant family tree, named as the conceptual hierarchy
tree, with its leaf nodes describing an association relationship of plants. Figure 6.2 is an

example of a plant family conceptual hierarchy tree

Height: 4 LNO
Depth: 0
spermatophyta { P 4
P Pt INO: 4
angiosperm gwsperm 3
Theaceae /\Ranuncul aceae Pinaceae T,
Camellia L. Michelia Linn ~ Paeonia L. |
Camellia Caniellia Paeonia Height: 0
reticulata japonica suffruticosa Depth: 4 0
Lindl. Linn. o Andrews INO: 0

Figure 6.2 A concept hierarchy tree of plant species

Definition 6.5 The Depth of the node v in the concept hierarchy tree is the length of
path form the root to this node v. The height of the node v is the length of the longest
path in the subtree that the node v is the root. The height of the tree is defined as the
height of the root. The level number INO of the node v is the height of this tree minus the

depth of v.

Example 6.2 Consider the concept hierarchy tree in Figure 6.2. Its height is 4. The

height, depth and INO of the nodes “Camellia japonica Linnn” and “spermatophyta” in
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the concept hierarchy are shown in Figure 6.2 respectively. It can be seen that the INO
of nodes are given on the right side in Figure 6.2.

Definition 6.6 Given a conceptual hierarchy tree, f, and f, are two leaves of this
tree, the value of weight w (f;, f,) is defined as:

1 f, =1, Q)
1-1(P(f,, f,))/H f, % f,

w( f] > fz) ={
Where, P(f,,f;) returns the node of the common parent, I(f) gets the level number of

node f and H is the height of the tree.

Example 6.3 In the concept hierarchy shown in Figure 6.2,
w(Camellia reticulata Lindl, Camellia reticulata Lindl) =1, and
w(Camellia reticulata Lindl, Paconia suffruticosa Andrews) =1/4

The weight w satisfies the following properties:

» Forany plant f in a tree, w(f,f)=1 holds.

For the parent of two plants f; and f, is the root in a tree, w(fy,f,)=0 holds.

>
> For any two plants f; and f, in a tree, 0= W(fi, f) <1
>

For any plants f;, f;, f3 and f; in a tree, if I(P(f,,f2))>I(P(f3, fi)), then
W(fl,f2)<W(f3,f4).

2). Method for the lifespan data

For a value of the predicted attribute B, a center number (c, r) is used, c is the cen-
ter of the sphere and r is the radius of the sphere, to describe it (e.g., a lifespan is
700 £12 hours), and the value of weight w;, between two center numbers B; and By, can

use the semantic proximity between B; and B, to measure.

Definition 6.7 The value of weight between two center numbers B; and B, can be

defined as

w(B;,B,)=Length(B; nB,)/Length(B; UB,) (7

where Length(h) is the length of h.

6.4.2 Superposition of the Degrees of Fuzzy Association
The factors affecting the value of the predicted attribute B are not just the values of

A, there are A, As.... How to superimpose them?

Definition 6.8 The superposition of 5, p,, o p,, Written as p @p, @@ p,, is de-

fined as

105



An Investigation in Efficient Spatial Patterns Mining

k @®)
POP, DD p, :[Z:uipiz]l/z

i=1
where #i is the weight on p, .

Inverse document frequency (IDF) weight function is adapted to the relational do-
main by treating each tuple as document of attribute values. The motivation for this idea
is clear from the following example. One expects the weight of attribute value ‘a;’ to be
less than that of ‘ds’ since ‘a;’ appears more frequently as a value for its attribute than

‘ds’ does.

Definition 6.9 Let the frequency of attribute value ‘a’ in the attribute A;, denoted
freq (a, A)), be the number of tuple (i.e., object) r in R such that r[Aj]="a’. The IDF value,
IDF(a, A), of an attribute value ‘a’ with respect to the attribute A; in the schema of R is
computed as Equation (9), when freq (a, A)>0, (K(R) is the number of tuples in relation
R)

9

u(a, A)=IDF(@, A) =log— D) ©
freq(a, A,)

For an attribute value ‘a’ which’s frequency in attribute A; is 0, ‘a’ is an erroneous

version of some values in the reference tuple. Since one does not know the value to

which it corresponds, the weight #@A) is defined as the average weight of all values in

this attribute of relation R.

6.4.3. An Example

Example 6.4 Suppose Table 6.4 is the result after preprocessing the data of Table
6.1 or 6.2. For Table 6.2, where A;, A,, Az, A4 represent the conditional attributes mean
temperature, mean precipitation, elevation, and topography respectively, and attribute B
is the plant species. The same lower case letter is used if rj[Ay], r[A«] belong to the same
equivalence class (For the attribute elevation (Az), it can be partitioned based on the

concept of the semantic proximity between two interval values. In this study, the seman-

fi f,

tic proximity between two interval values and can be defined as

SP(f,, f,)=(size(f, n f,)/size(f, U f,)), where size(h) is the size of interval h)y.
There is a new conditional attributes data in Table 6.5 (it has been pre-processed).
Let us predict the value of the predicted attribute B under these conditional attributes

data. The distributing table from ‘a;’, ‘b, ... to f;, f, or f; (see Table 6.7) and correspond-

ing values of w (see Table 6.6) are obtained, where for f; here have wy;= 1, wy,= 0,

w13=0, etc. In the same way, the u(a, A) is computed, the result is Table 6.8.

106



Chapter 6. Fuzzy Data Mining Prediction Technologies and Applications

Table 6.4 An example of data table for prediction

A |Az A4 | B

b1 C1q eq f1

b1 C2 eq f2

b, | ¢4 | ex | fq

b3 C2 eq f1

by | co | e | fo

b4 C2 (%) f3

b4 Cq e3 f3

Tuple-ID | A;
rq a4
r2 az
r3 a4
r4 as
I's az
l'e az
r7 a4
I'g as

b3 Cq e1 fz

Table 6.5 A new conditional attributes’ data that have been preprocessed

A new ecological environment data A A,

A, A,

T

a b,

Ci €1

Table 6.6 Weight w for the predicted attribute B

w f, (Camellia) f, (Water-lily) f3 (Orchid)
fy 1(wiy) 0(wy,) 0(wy3)
f 0(Wa1) 1(Wap) 0.6(Wa3)
fs 0 (wsy) 0.6 (W3p) 1(Ws3)
Table 6.7 The distributing table
K f, f, fs
a, 0 2 1
b, 1 1 0
C 2 1 1
€ 2 2 0
Table 6.8 Weight # for superposition
H ay b2 Cy €
0.4260 0.6021 0.3010 0.3010

Thus here have

p(@,, f,) =[K(Pos(a,, f,))xw,, + K(Pos(a,, f,))xw, + K(Pos(a,, f,))xw,,]/3=0%¥1+2*0+1*0=

p(a,, f,) =[K(Pos(a,, f))xw,, + K(Pos(a,, f,))xw,, + K(Pos(a,, f,))xw,,]/3 =(0*0+2*1+1*

0.6)/3=2.6/3=0.867

Using the same method, Table 6.9 is obtained. Superposing the data in row f;, here
have the result of association degree. It indicates the association degree of the condi-
tional attributes data with ‘a,’, ‘b,’, ‘c;’, and ‘e, to predicted attributes data f,’, ‘f,’, or ‘f5’.

It means that the value of predicted attribute f, can be predicted in the conditional attrib-

utes data with ‘a,’, ‘b,’, ‘ci’, and ‘e;’.
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Table 6.9 Mining prediction of predicted attribute

P a, b, C1 e1 The result of superposition
f, 0 0.5 0.5 0.5 0.5487
f, 0.867 0.5 0.4 0.5 0.7708
fs 0.733 03 0.4 0.3 0.5986

6.5 Algorithms

The data mining prediction algorithm works in two procedures, the Ini-
tial_Data_Exploration procedure and the Data_Mining_Prediction procedure. The Ini-
tial_Data_Exploration procedure obtains the original data and partitions them into a rela-
tion table (see Table 6.4). The Data_Mining_Prediction procedure is invoked when a
new conditional attributes data obtained. This procedure will predict the value of the pre-

dicted attribute for this new conditional attributes data.

6.5.1 IDE Algorithm

A simple yet efficient partition time-series data algorithm based on fuzzy equiva-
lence partitioning according to the proximity degree of two time-series is designed in al-
gorithm 1. It is a naive method that achieves its efficiency using “growing window”, scal-
ing of time-series and pruning. As shown in Algorithm 1, it consists of three phases. In
the first phase (line 1), it compresses and standardizes the input time-series. The case
where the size of the time-series is larger than the memory buffer is considered (see the
algorithm 1.1). In the second phase (line 2), it computes the proximity degree between
time-series and forms the similarity matrix S. In the third phase (line 3), it performs the
fuzzy equivalence partitioning process on the similarity matrix S and outputs the partition

results. These phases are described in detail in Algorithm 1.1-1.3.
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Algorithm 1 Initial Data_ Exploration_Time-series; Algorithm 1.2 Calculate_PD;

Input: A set of time series data, {T;, ...Ty}, with the

. Input: the set of time-series data each of which has m
length {ny,...ny} respectively, m: compress every

T; from n; to m points, & :0.0001, A : 0.01; points, {Ts[1...N]}, & :0.00001;

Output: fuzzy partition of its set; Output: the similarity matrix S = (sij )NXN .
Procedure brocedure

Begin
13) Scaling_Time-series; Begin
14) Calculate_PD; 1) Fori=ltoN-1do
15) Partition; 2) For j=i+1 to N do

End 3) Read the first 1/2 size of buffer from Tsi;

4) Read the first 1/2 size of buffer from Tsj;

5) ST, j1=1/ 4/ (Ts[i,]=Ts[ j,1])* +1;
Algorithm 1.1 Scaling_Time-series;

Input: A set of time-series data, {T|, ...Ty}, with the 6) K=2;
length {n,,...ny} respectively, m: compress all T; from 7) While S[i,j]> € and K <m do
n; to m points; ) If Ts[i, k] not in the buffer then
Output: the set of time-series data each of which has Read the next buffer from Tsi and Tsj;
m points, {Ts[1...N]}; 9) S{i, iy=1/1/S[i, P + (Ts[i,k] - Ts[j.k])’
Procedure 10) K=k+1
Begin Endwhile
1) Fori=1toNdo 11) Endfor
2)  r=n[ilmodm; A:P‘[i]} leﬂ]J; 12)  Endfor
m m End
3) Read the first buffer from T;;
Algorithm 1.3 Partition;
K Forj=ltordo Input: the similarity matrix S = (Sij ) NS A
3 TsLi, 11=0; Output: fuzzy equivalence matrix EM; Equivalence
6) For k=(j-1)*A+1 to j*A do partition classifications EPC;
7) If T[i, k] not in the buffer then Procedure
Read the next buffer from T; Begin
8) Ts[i, j1=Ts[i, j] + T[i, k]; 1) EMSS;
9) Ts[i, jI=Ts[i, j1/ A; 2) Fori=1toNdo
10) For j=r+1 to m do 3) Forj=1toNdo
1) Ts[i, j]=0; 4) If s(j,i)>0 then
12) For k=r+(j-1)*B+1 to r+j*B do 5) For k=1 to N do
13) If T[i, k] not in the buffer then 6) S(j,k):=max {S(j,k), min{S(j,i), S(i.k)} };
Read the next buffer from T; 7) If S # EM then
14) Ts[i, j1=Ts[i, j] + T[4, k]; EM=S goto step 2);
15) Ts[i, j]=Ts[i, j] / B; 8) getEPC for A
End End

6.5.2 Mining Prediction Algorithm

The data_mining_prediction procedure performs mining prediction of predicted at-
tribute. First, the relation table R is scanned by the Get_ Attribute Partition function to
obtain the equivalence partition for every attribute in R. The detailed design of the
Get_Attribute_Partition function is shown in Algorithm 2.1. Then all the weights w; be-

tween predicted attribute values i and j are computed. A result that looks like Table 6.6
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will be obtained. Finally, the algorithm iteratively performs the following tasks for all new
conditional attributes data. 1) Compute distributing table and weight x according to the
equivalence partition results in Step 1 of this algorithm; 2) compute the association de-
grees of this new conditional attributes data to every kind of predicted attribute value,

and superimpose them; 3) output the results of mining prediction.

Algorithm 2 Data_Mining_Prediction; Algorithm 2.1 Get_Attribute Partition
Input: A relation table R in which all the data is Input: A relation table R in which all the data is
preprocessed, con_attr_count: the number of condition preprocessed, con_attr_count: the number of condition
attributes in table R; attributes in table R;
Output: the prediction values of decision attributes for . .

. Output: the set of equivalence classes of every attribute
this new shovel data; )
Procedure nR

Begin Procedure
1) Get_Attribute Partition; Begin
2) calculate_weight @ for the decision attribute; 1) Read arecordr from R;
3) Read ‘anew ecological data’ ED; 2)  While not at end of record do
4) Transforming ED to useable form; 3) For the value r[A] of each attribute A in r do
5)  While not at end of input do 4) Replace with_integer (r[A], I[A]); // to map the
6) compute_distributing_table; original value r[A] to a integer I[A] using a data structure
7) calculate_weight £/ ;

o such as a trie or a hash table//
8) compute_assoiciation_degree O ;
9) superpose_ associatione_degree; 5) The row r goes to IND(A)[I[A]]; // The I[A]
10) output the result of prediction; equivalence class of attribute A contains the row r//
11)  Read ‘anew ecological data’ ED; Endfor
12)  Transformimg ED to useable form 6) Read arecordr;
Endwhile Endwhile
End End

The Get_Attribute_Partition function computes equivalent classes of all attributes in
relation R. A set of equivalent classes IND(A) with respect to an attribute A is computed
from the column R[A] of relation R as follows. First, the values of the column are re-
placed with integers 1, 2, 3, ... so that the equivalence relations do not change, i.e.,
same values are replaced with the same integers and different values with different inte-
gers. This can be done in linear time using a data structure such as a trie or a hash table
to map the original values to integers. After this, the value r[A] is the number of the
equivalence classes of IND(A) that contains the row r, and IND(A) is then easy to con-

struct.

6.5.3 Analysis of Algorithm Complexity

Let us analyze the 1/0O and CPU cost of the Initial_Data_ Exploration. Suppose the
number of records in R is N, the number of conditional attributes in R is Mg, (in the ap-
plication problems, it is 4), and the number of predicted attributes in R is Mg (it is one in
two applications mentioned in Section 6.2). If the number of points in every time-series

has been scaled to m then the cost of Algorithm 1.1 is O(N*m), then, for a time-series
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attribute, Algorithm 1.2 is O(N**m), and Algorithm 1.3 is O(N®) (If the optimized method is
used, the cost of algorithm 1.3 is O(N?)). It is known that the cost of pre-processing other
kind of attributes (e.g., interval values) will be much less than time-series data. So, the
total cost of Algorithm 1 is at most O(N?**m* Mc,,).

For the 1I/O and CPU cost of the Data_Mining_Prediction, In the
Get_Attribute_Partition phase (Algorithm 2.1), each of the attributes for each record is
sequentially scanned once, to get the set of equivalence classes for every attribute. The
cost is N*(M¢on +Mgec). In the calculate_weight @ phase, suppose the number of classes
in the i-th predicted attribute is C;. The number of weights need to be computed is C;*C;
for the i-th attribute. But w; is equal to w;, and the values of the classes for the corre-

sponding predicted attribute can be obtained from the previous phase, the cost of this

M““Ci x(C; -1)
phase is = 2 . In the next phase, for a new ecological data, to compute the distrib-
. Mcon X%Ci . M
uting table costs O( = ), to compute weights # costs O( M« ), to compute the de-

Maee

grees of association costs O( M“’”ch') and to superimpose the degrees of association

M geg Maec
con x Z Ci

2.C : M
costs O( = ). The total costis O ( =),

Therefore, the cost of the Data_Mining Prediction algorithm is

N* (Mcon +MdeC) ¥ Mzdecw * Mcon XMZdECCi ’
=l i=1

Since the number of predicted attributes is a small value (It is just one in two appli-
cations), and if C is the average value of C; (i=1, ..., M4ec), then the cost of the algorithm
will become O (N*M) (M is the number of attributes in R).

6.6 Results of Experiments

In this section, the experimental results of the algorithms will be presented. More
specifically, both the quality of results we came across and the performance of the algo-
rithm will be illustrated. In the experiments the following data is used:

1). Rope history data;

2). Shovel dispatch data;

3). The raw telemetry data of shovels.

Seven different shovels collected from April 2005 to Feb. 2006 as used, and there
shovel id’s are 78, 79, 80, 82, 83, 84 and 85.
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6.6.1 Estimating Error Rates

For estimating error rates, there are mainly three methods. One is called partition:
training-and-testing. This method uses two independent data sets, e.g., training set (2/3),
test set (1/3). It is usually used for data sets with large number of samples. Another
method is called cross-validation. This method divides the data set into k sub-samples,
and then, uses k-1 sub-samples as training data and one sub-sample as test data (it is
called k-fold cross-validation). It is usually used for data sets with moderate size. The
third is called bootstrapping (or leave-one-out cross-validation). It is used for small size
data sets.

In this experiment, the bootstrapping method is chosen to estimating error rates.
The first time, 13 lifespan have been chosen from shovel datasets. Then 34 lifespan
were used to predict. A shovel cable lifespan is predicted according to the degree of as-
sociation threshold. If the results of the algorithm are less than the threshold, this new
shovel will be refused to predict. In the experiments, false positives (FP%) and false
negatives (FN%) are used to evaluate the program’s error rates.

Table 6.10 and Table 6.11 show the results of FP% and FN% with given the differ-
ent thresholds of the fuzzy association degree for 13 and 34 lifespan. In the experiments,
the equivalence partition level value thresholds A, =0.00000114, A,=0.000002, A;=0.0045
is fixed for three time-series attributes respectively. It has been observed that to lower
level the thresholds of fuzzy association degree will increases the percentage of false
positive, and the result of 13 lifespan is better than 34 lifespan. Because in the experi-
mental data, there are just 4 shovel sets of data and 7 classes of lifespan data in 13 life-
span experiments, and there are 7 shovels and 16 classes of lifespan in 34 lifespan ex-
periments. The correlation of data in 34 lifespan is lower than in 13 lifespan, and the
probability of prediction error in 34 lifespan is higher than in 13 lifespan. That means the
data used in these experiments are not ideal. They are chosen just for they come from a
real application.

Table 6.10 FP% and FN9% for 13 lifespan

Thresholds of

ssociation | g5 | 05 |04 |03 |02
ree

Error rates
FP% 222|272 | 272 | 23.1 | 23.1

FN% 75 100 100 null | null

Table 6.11 FP% and FN% for 34 lifespan

Thresholds of fuzzy
Association
degree 0.6 0.5 0.4 0.3 0.2

Error rates

FP% 375 | 57.8 | 56.5 | 55.6 | 55.6
FN% 57.8 | 75 75 null | null
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6.6.2 Quality

Beside the error rate, other parameters have been used to measure the prediction perform-
ance, there are Sensitivity=t_pos/pos, Specificity=t_neg/neg, Precision=t_pos/(t_pos+t_neg), and
Accuracy=Sensitivity*(pos/(pos+neg))+Specificity*(neg/ (pos+neg)).

Table 6.12 shows all results with using different measures for both 13 lifespan and
34 lifespan. In the experiments, the equivalence partition level value thresholds are fixed
to Ay =0.00000114, A,=0.000002, A;=0.0045, and the degree of the fuzzy association
threshold is 0.4.

Table 6.12 Results of the algorithm’s quality

uality

lifespan Sensitivity | Specificity | Precision | Accuracy
13 lifespan 72.7 0 100 61.5
34 lifespan 76.9 25 90.9 40.7

The degree of fuzzy association threshold was set to 0.4, then all measures are ob-
served with different equivalence partition level value thresholds for 13 lifespan (the re-
sults is shown in Table 6.13. The settings of equivalence partition level value thresholds
are that A' means A;=0.00000114, A,=0.000002, A;=0.0045, A> means A;=0.000002,
A2=0.0000025, A\;=0.0045, and the A* means A;=0.000003, A,=0.000003, A;=0.0045). It
can be seen that the setting of equivalence partition level value thresholds is the most
important step in this method. From experiments, the value of A in row 1 of Table 6.13

produces the best outcome for the four measures given.

Table 6.13 The measure with different partition level value thresholds for 13 lifespan

Quality itivi ifioi isi
partition thresho Sensitivity Specificity | Precision | Accuracy
AL 8/11=72.7 0/2=0 1=100 8/13=61.5
A2 6/12=50 0/1=0 1=100 6/13=46.2
23 5/13=38.5 0/0=null 1=100 5/13=38.5
6.6.3 Performance of the Algorithm
The algorithm was run on artificial datasets of size 13, 24, 33, ..., 1000 lifespan.

Figure 6.3 shows that the algorithm is increasing quickly with the increasing size of data-
sets, because the large time-series data need to be dealt with for just adding a tuple into

the dataset.
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The performance of the algorithm
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Figure 6.3 The performance of algorithm

6.7 Summary

This chapter makes contribution to using data mining techniques to resolve the pre-
dicting problem. It has been found that using the fuzzy association degree with superpo-
sition approach could achieve reasonable and effective results.

For the future work, it will be carried out formally to characterize the relative
strengths and weaknesses of various prediction tests and to study the confidence of
prediction results. Other interesting directions are mining a functional dependency rela-
tionship between conditional attributes, and mining crucial factors which affect plant

growing, which could be advantageous to protect and retain rare and endangered plants.

In next Chapter, A new approach to deal with the object fusion problem, based on a
special cell with a length that is equal to the error interval, is proposed. The key idea of
this method is to find fusion sets by using cell-by-cell processing instead of object-by-
object processing, thereby avoiding the computation of distance between two objects

(Wang and Li, 2006).
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Chapter 7

A Cell-Based Spatial Object Fusion Method

The object fusion problem occurred in geographic information system is also met in spatial data
warehouses and is a very important problem in the spatial field. A cell-based spatial object fusion
method in spatial data sets, which uses only locations of objects without distance between two
objects involved, is described and its performance is measured in terms of recall and precision.
This algorithm can work well when locations are imprecise and each spatial data set represents
only some of the real-world entities. Results of extensive experimentation are presented and dis-

cussed.
7.1 Overview

With huge amounts of spatial data having been accumulated in the last two dec-
ades by government agencies and other organizations for various purposes such as land
information management, asset and facility management, resource management and
environment management, it is a pressing task to integrate information from heteroge-
neous information sources. When integrating data from heterogeneous information
sources, one is faced with the task of fusing distinct objects that represent the same real-
world entity. This is known as the object-fusion problem.

In the various researches on object fusion, some have considered that objects have
identifiers (e.g., keys) (Papakonstantinou et al, 1996; Smal et al, 2004), while in (Beeri et
al, 2004) and in (Minami, 2000) studied this problem without global identifiers. The lack
of global identifiers makes the object-fusion problem much more difficult. In addition, in
Bruns’s paper (Bruns and Egenhofer, 1996), topological similarity is used to find corre-
sponding objects, while ontology is used for that purpose in (Fonseca and Egenhofer,
1999; Fonseca et al, 2002; and Uitermark et al, 1999). Finally, the problem of how to
fuse objects, rather than how to find fusion sets, was studied in (Papakonstantinou et al,
1996).

A spatial database or data warehouse stores spatial objects, or objects for short.
Each object represents a single, real-world, spatial entity. An object has associated spa-
tial and non-spatial attributes. Spatial attributes describe the location, height, shape and
topology of the entity, while non-spatial attributes are usually place-name, temperature,
humidity, etc. Object fusion is much harder without global identifiers. When fusing ob-

jects, spatial and non-spatial attributes should be used in lieu of global identifiers. Since
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location is the only property that is always available for spatial objects, the location-
based fusion problems are investigated, assuming that each dataset has, at most, one
object per real-world entity, and locations are given as points. Thus, the fusion problem
in this research is one-to-one.

Using only object’s location, many efficient algorithms have been developed, such
as the one-sided nearest-neighbour join (Minami, 2000), the mutually-nearest method
(Beeri et al, 2004), the probabilistic method and the normalized-weights method (Beeri et
al, 2004). The mutually-nearest method is an improvement of the one-sided nearest-
neighbour join, and the probabilistic method and the normalized-weights method are
based on a probabilistic model which are shown in (Beeri et al, 2004) achieve the best
results under all circumstances. Although these methods are very fresh and novel, they
need to compute the distance between two objects. This unfortunately is not a simple
task, because the locations of objects are spatial attributes. As an alternative, a cell-
based algorithm for finding corresponding objects that should be fused is presented in
the chapter. In the approach, a special cell is defined. The cells possess some peculiar
properties used to help finding fusion objects. The results of extensive tests that illustrate
the validity and efficiency of this algorithm are also presented.

The main contribution of the work is finding corresponding objects effectively with-
out the distance between two objects. The rest of this chapter is organized as follows. In
Section 7.2, the problem is defined formally and how to measure the quality of the result
of a fusion algorithm is described. Section 7.3 describes the fusion algorithm proposed.
The testes and their results are discussed in Section 7.4. The summary is written in Sec-
tion 7.5.

7.2 Basic Definitions and Measurements

In general, a fusion algorithm may process more than two datasets, generating fu-
sion sets with, at most, one object from each dataset. In the research, the case of two
datasets and investigate the problem of finding the correct fusion sets are considered,
under the following assumptions. First, in each dataset, distinct objects represent distinct
real-world entities. This assumption is realistic, since a dataset represents a real-world
entity as a single object. Second, only locations of objects are used to find the fusion
sets. This assumption is feasible, since spatial objects always have information about
their locations. Third, obviously, corresponding objects are within a distance D, but are
not always the closest to each other, since locations are uncertain.

Az{al’..., B:{blﬂ'“abn}

The two datasets are denoted as A} and respectively.

Two objects 2 € A and beB are corresponding objects, if they represent the same en-
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tity. A fusion set that is generated from A and B is either a singleton (i.e., contains a sin-
gle object) or has two objects, one from each dataset. A fusion set {,b} is correct if &

and D are corresponding objects. A singleton fusion set a; is correct if @ does not
have a corresponding object in the other dataset.

In the absence of any global key, it is not always possible to find all the correct fu-
sion sets. So, similarly to Beeri’'s work (Beeri et al, 2004), the quality of a fusion algo-
rithm is measured in terms of recall and precision. Recall is the percentage of correct
fusion sets that actually appear in result. Precision is the percentage of correct fusion

sets out of all the fusion sets in the result. Formally, let the result of a fusion algorithm

have N’ fusion sets, and let N¢ sets be those that are correct. Let E denote the total
number of real-world entities that are represented in at least one of the two datasets.
Then the recall is N</E and the precision is Ne/N r.

Factors affecting recall and precision are various. One factor is the error interval.
The error interval is a bound on the distance between an object in the dataset and the
entity it represents. The density of a dataset is the number of objects per unit of area.
The chosen object is the number of objects in a circle with a radius that equals to the
error interval. Apparently, the chosen object is the product of the density and the area of
that circle. Intuitively, for a given entity, the chosen object is an estimate of the number of
objects in the dataset that could possibly represent that entity. It is more difficult to
achieve high recall and precision when the choice object is large.

Suppose that the datasets A and B have m and n objects, respectively. Let ¢ be the
number of corresponding objects. Then the number of distinct entities that are repre-
sented in the two datasets is m+n-(c/2). The overlap between A and B is c¢/(m+n). The
overlap is a measure of the fraction of objects that have a corresponding object in the
other set. One of the challenges one faces is to develop an algorithm that has high recall

and precision for all degrees of overlap.
7.3 A Cell-Based Method Finding Fusion Sets

In this section, a cell-based method is proposed for solving the object-fusion prob-
lem. The method is based on the intuition that two corresponding objects must be within
a distance D (it is practically the error interval D), but the two objects are not always the
closest. The recall and precision of this method depend on specific characteristics of the

given datasets, e.g., the chosen objects of the datasets, the degree of overlap, etc.
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7.3.1 The Method
The four methods discussed in (Beeri et al, 2004; Minami, 2000) all depend on the

A={a,-,a,} B:{b],...

’b"}. We can

call them distance-based methods. Computing distance between objects is an expensive

distance between two objects in two datasets and
and tedious task. So, the idea of the new method is to find fusion sets by using cell-by-
cell processing instead of object-by-object processing, thereby avoiding the computation
of distance between two objects. In addition, the method computes a confidence degree
for every fusion set. The confidence degree indicates the likelihood that the fusion set is
correct.

The final result is produced by choosing the fusion sets which confidence is above

a given threshold. The threshold 7(0<z<1) is given by the user. Typically, increasing
the threshold will increase the precision and lower the recall, while decreasing the
threshold will increase the recall and decrease the precision. Controlling the recall and
precision by means of a threshold is especially useful when the datasets have a large
number of objects.

In the following, a special cell that is used in computing fusion sets is defined, and
then the properties of this cell are discussed. For ease of presentation, suppose the data

objects are 2-D (the case of higher dimensions will be the same). Each of the two data-

D
|=—
sets A and B is quantized into cells or squares of length  2v2 (This D is the error interval
that is chosen by the user or obtained by a special process). Let C,, denote the cell that
is at the intersection of row x and column y. The layer 1 (L) neighbours of the cell Cy,

are the immediately neighbouring cells of C,,, defined in the usual sense, that is,

L (C,,))=1{C,, lu=x£Lv=y=£LC, #C, } (1)

A typical cell (except for cell on the boundary of the cell structure) has 8 L,

neighbours.

Definition 7.1 Two objects & and b are called the same cell objects, if & € A and

b e B Jie within the same cell Cyxy-

D
Property 7.1 Any pair of the same cell objects is at most distance 2 apart.

Cu,v

Definition 7.2 If C,, is a L1 neighbour of C, then any object ae (A€ A) is the

L, neighbour object with respect to any object beC,, (b B ).

The definition of P € B is the L, neighbour from &€ A can be defined similarly.
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Property 7.2 If Cy, is a Ly neighbour of C,, then any object peCy, and any object

9<C.y is at most distance D apart.

=222

Property 7.1 is valid because the length of a cell’'s diagonal is 02 2
Property 7.2 is valid too, because the distance between any pair of objects in two cells
cannot exceed twice the length of a cell’'s diagonal. From these two properties, one can
say that any pair of objects, which they are the same cell objects or one is the L,
neighbour object of other’s, may be a pair of fusion set.

The layer 2 (L,) neighbours of Cy, are those additional cells within 3 cells of Cy,,
ie.,

L,(C,,)={C,, lu=x+3,v=y+3,C,, ¢L,(C,,).C,, #C, } 2)

A typical cell (except for any cell on or near a boundary) has 72-3°=40 L, cells. Note
that layer 1 is 1 cell thick and the layer 2 is 2 cells thick. L, chosen in this way satisfies

the following property.

Definition 7.3 If C,, is a L, neighbour of C,,, then any object aeC,, (2€A)is the

L, neighbour object with respect to any object beC,, (beB),

The definition of D € B s the L, neighbour object from & € A can be defined simi-

larly.

Property 7.3 If ©w*C«w is neither a L, nor a L, neighbour of Cxy, then any object

P<Cui and any object € s must be greater than the distance D apart.

Since the combined thickness of Ly and L, is 3 cells, the distance between p and q

3D
3l=——=>D
must exceed 242 . The error interval D is a bound on the distance between an ob-

ject in the dataset and the entity it represents, so the following definition can be given.

Definition 7.4 Any object aeC,, (a€ A) is an isolated object if and only if there

is not any object be B in the same cell, L; neighbour and L, neighbour of object & .

The definition of an isolated object of P € B can be defined similarly.

The intuition behind the cell-based method is that corresponding objects are within
a distance D. So, in the cell-based method, a two-object fusion set is created for each
pair of the same cell objects and the L; neighbour objects. A singleton fusion set is cre-
ated for each isolated object.

Now, the degree of confidence of fusion sets will be defined. Consider a pair of the

same cell objects or L; neighbour objects (i.e., aeA beB and a’becx’y, or &€ A,
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beB and {aecx’y, beL,(C,,) or ae L, (nyy), becx’y}). Let Beount(Cxy) be the number

of B’s objects in Cy,, and Beuni(L1(Cx,)) be the number of B’s objects in Ly neighbours of

Cxy. The definitions of Acount(Cxy) and Acount(L1(Cxy)) are similar. The confidence degree of

the fusion set {a,b} is defined as follows.

I ) I (3)
Bcount(cx,y) + Bcount(Ll (ny)) A:ount (Cx,y) + '%ount(l-l (ny))

confidence({a,b}) = \/

The confidence is defined as the square root in order for it to be not too small. If &

is the only one of the A's object in Cy, and L4(C,) and b is the only one of the B’s object
in Cxy and L4(Cy,), then its confidence is the largest, and is equal to 1. The addition of

the same cell objects or Ly neighbour objects of A or B has reduced the confidence of the

fusion set {a,b} .

aeC,, ), i.e., any b€B is not in the C,, and

Now consider an isolated object @€ A (
L1 of Cyy. Let Beount(L2(Cxy)) be the number of B’s objects in L, neighbours of Cy,. The

confidence degree of the fusion set {2} is defined as follows.

com‘idence({zat}):\/1+B (1L o) 4)
count 2 X,y

The confidence will be the largest when the objects of L(Cy,) is null, and is equal to

1. The confidence of a fusion set with a single object from beB is defined similarly.

A threshold can be used to increase the precision of result by choosing only these
fusion sets that have a confidence above the threshold. Consequently, some objects
from given datasets may not be in the result. If the number of these objects is not so
small, one have to perform again by using a smaller D, and again if necessary. For fewer
objects, a less restrictive approach is to discard two-object fusion sets with a confidence
below the threshold, but to add their objects as singletons.

In the method, the confidence of each cell is computed by using expression (3) or
(4). When the confidence is above the threshold, the two objects in this cell or its L4
neighbour cells will be paired randomly (Because two corresponding objects must be
within a distance D, but the two objects are not always the closest).

The main advantage of the cell-based method over the traditional methods is effi-
ciency and lower sensitivity to the degree of overlap between the two datasets. In par-
ticular, it may perform well even when neither datasets is covered by the other one, be-

cause a fusion set is paired randomly within a distance D.
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7.3.2 The Algorithm
The algorithm of the cell-based method is designed as follows.

1). For g<«12,---,m Count; « 0,Count’ « 0

2). For each object € A do
a. Map a o its appropriate cell C,

A
b. Increment Count, by 1

3). For each object beB do

a. Map b to its appropriate cell C,

B
b. Increment “°" by 1

4). For g 12,m 4,

A A
. Count, < Count g + "

B B B
b Count?, < Count? + Z“ieLl(cq)Counti

A
EL](Cq)Counti

1 1

—_—X— >
Count®  Count?
c. If a2 a2 do

For each object & € A in the C,, find out an object beB i this Cqorthe L; of C, at ran-

dom and label 1a,b; as a fusion set, provided the b has not already been labeled.

B _ A _
d If Count,, =0 or Countg, =0 do

B B A A
: Count?, < ZieLz(Cq)Counti County « Z“ieLz(cq)Counti

/# .-
.. Count?®
ii. If @ do

Label each object 2€ A and
L A >7
iii. 1 V&M do
Label each object b€ B and € s as a singleton set {b 3.
5) .If there are some objects that have not been labeled, change the size of the cell and repeat the 1-4

(note steps 2) and 3) only quantize these un-labeled objects to its appropriate cell at this time),
until all objects are labeled.

3<C; 45 a singleton set {a 1.

Steps 2) and 3) of the algorithm quantize each object of dataset A and B to its ap-
propriate cell. Step 4) labels all fusion sets and singleton sets of satisfying threshold 7 .
Step 5) repeats all the processes if D is set smaller, in order to deal with unlabelled ob-

jects.

7.3.3 Complexity Analysis

Let us analyze the complexity of this algorithm. Step 1) takes O(m) time, where
m<<Na+Ns is the total number of cells (Na and Ng are the number of objects in dataset A
and B respectively). Steps 2) and 3) take O (Na) and O (Ng) time respectively. Step 4) is
the most complicated step. This step is the core of the algorithm. It divides Na+Ng ob-

jects to m cells, and conquers them. In detail, the computing of 4(a), 4(b) and 4(d)i is fi-
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nite, because a cell’s neighbours, L; and L,, are finite. For threshold 7, the number of

A B A B
A's objects and B’s objects in C4 should be less than kg and kq respectively (kq and Ky

are constants). Therefore, O (k' +kZ) time is required for each cell Cq (i.e., the time to
perform an iteration of 4(c), 4(d)ii and 4(d)iii). Here, in the worst case, step 4) takes

O(i(kiA—'—kiB)) <<O(N, +N,)- For Step 5), if suppose the number of the loop iteration by

i=1
Step 5) is k (this k will depend on the initial value of the D and the distribution of the data

sets), and the complexity of following loop iteration will not exceed the first loop, there-

fore, the complexity of the algorithm is o x(m+N, + N, + i KA+ k) = Ok x (N, +Ny))-

i=1
Note that the run-time will increase if D is reset in Step 5), although the complexity is un-

altered. In Section 7.4, experimental results will show the efficiency of this algorithm.
7.4 Testing the Method

The method is tested using synthetic datasets, because there are not a sufficient
number of real-world datasets to test our algorithm under varying degrees of density and
overlap. Moreover, in real-world datasets, it is not always possible to determine accu-
rately the correspondence between objects and real-world entities.

Following the method of the paper (Beeri et al, 2004), a synthetic dataset generator
is implemented, which is a two-step process. First, the real-world entities are randomly
generated. Second, the objects in each dataset are randomly generated, independent
from the objects in the other dataset.

In the tests, 500 real-world entities is created in a square area of 2,000 * 2,000 me-
ters, a minimal distance of 15 meters between entities, and an error interval of 30 meters
for each dataset. And then three pairs of datasets were randomly generated. The three
pairs had 100, 300, and 500 objects in each dataset, respectively (Figure 7.1 gives a
visual view of the random pairs of datasets, with 100 and 500 objects). Thus, each pair
had a different degree of overlap and density (500 objects in each dataset means a

complete overlap).
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(a) 100 objects in each dataset (b) 500 objects in each dataset
Figure 7.1 A visual view of the random pairs of datasets, with 100 and 500 objects

The recall and the precision of the method are measured for every pair of datasets.
In all tests, the initial value of D is 30 meters and the next iterative value of D is Dx0.9
When the threshold 7 was 0.0, for the datasets with 100 objects, the recall and the pre-
cision are both 0.93; for 300 objects, they are both 0.74, and for 500 objects, they were
0.68 and 0.59, respectively.

Figure 7.2 presents the recall and the precision as a function of the thresholds 7 .
From the tests, one can see that this algorithm is efficient and is insensitive to the degree
of overlap between the two datasets. In particular, it may perform well even when neither
dataset is covered by the other one (The values of the recall and the precision are all
larger than 0.5), possibly because a fusion set is paired randomly within a distance D.
One also can see that the recall and the precision have a low sensitivity to the threshold

T . This property will make the method useful in real applications.
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Figure 7.2 Recall and precision as a function of the threshold values

Analyzing the effect of the initial value of the D on the performance of the algorithm,
Figure 7.3 presents the recall and the precision as a function of the value of the D, and
Figure 7.4 presents the running time as a function of the D. These tests tell us that the
initial value D will have a significant effect on the results and efficiency of the algorithm

(for example, the running time when D is set to 120 is more then two times of the value

when D is set to

bigger than k'+2 (k' is the number of the loop iterations when D is initially set to 90)).

From Figure 7.4,
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90. This means that the loop iteration k in initial D set to 120 is at least

the best results occurred when the initial value of D is the error interval

(in these experiments, the threshold 7 is set to 0.4).

Figure 7.3 The impact for algorithm’s precision to change the size of the D
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Figure 7.4 The impact for algorithm’s time to change the size of the D

Figure 7.5 presents the impact for algorithm efficiency with changing the thresholds
T . From the tests, one can see that the running time (ms=millisecond) will increase
when the threshold values 7 is increasing, while the efficiency will be decreased when
the overlap is increasing, since the number of iterations of the algorithm is increased.

The thresholds (0.3-0.5) should be reasonable choices from Figure 7.5.

The threshold’ s impact to running time
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Figure 7.5 Running time as a function of the threshold values

7.5 Summary

A new approach to deal with the object fusion problem, based on a special cell with

D
a length that is equal to the —— (D is the error interval), is developed. The key idea of

242

this method is to find fusion sets by using cell-by-cell processing instead of object-by-
object processing, thereby avoiding the computation of distance between two objects.
Algorithm’s measures of recall, precision and running time for the various degrees of
overlap and thresholds are shown in extensive experiments.

The future work is to combine this approach with grid-clustering approach to spatial
data mining (Wang et al, 1997; Agrawal et al, 1998; and Shi et al, 2003). It will be studied
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how to utilize locations that are given as polygons (e.g., a mountain) or lines (e.g., a

river), rather than just points.

In next Chapter, a fuzzy clustering method based on domain knowledge is dis-
cussed (Lu et al, 2007). In this method, the transitive closure is not computed by recur-

sion, so the new algorithms save much time.
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Chapter 8

A Fuzzy Clustering Method Based on Domain
Knowledge

Clustering is an important task in data mining. Fuzzy clustering is on the significant status in clus-
tering, which can deal with all types of datasets. The fuzzy clustering method in this chapter is
based on domain knowledge, from which the tuples’ semantic proximity matrix can be obtained,
then two fuzzy clustering methods are introduced, which both started from semantic proximity
matrix, so the results of fuzzy clustering can be instructed by domain knowledge. The two fuzzy
clustering methods are Natural Method (NM) and Graph-Based Method (GBM), which are both
controlled by a threshold that is confirmed by polynomial regression. Theoretical analysis testify
the corrective of the new methods, the extensive experiments on synthetic datasets compare the
performance of the new approaches with that of Modified MM approach in literature (Wang, 2000)
and highlight the benefits of the new approaches, and the experimental results on real datasets

discover some rules which are useful to domain experts.
8.1 Overview

Motivation: Clustering is an important task in data mining, which can discover use-
ful information from plenty of datasets. But in practice, many types of datasets often
need to be dealt with. In this chapter, the relationships from different plant species need
to be discovered, the plant datasets are described by several data types, these kinds of
problems are often met. So the fuzzy clustering methods are studied, which can deal
with all types of datasets.

Related Works: Clustering has been studied extensively for 40 years and across
many disciplines due to its broad applications. Most books on patterns classification and
machine learning contain chapters on cluster analysis or unsupervised learning. Meth-
ods for combining variables of different types into a single dissimilarity matrix were intro-
duced by Kaufman and Rousseeuw in (Kaufman and Rousseeuw, 1990). For partitioning
methods, the k-means algorithm was first introduced by MacQueen in (MacQueen,
1967). The k-medoids algorithms of PAM and CLARA were proposed by Kaufman and
Rousseeuw in (Kaufman and Rousseeuw, 1990). The CLARANS algorithm was pro-
posed by Ng and Han in (Ng and Han, 1994). For density-based clustering methods,
DBSCAN was proposed by Ester, Kriegel, Sabdae, and Xu in (Ester et al, 1996). The
BIRCH algorithm was developed by Zhang et al in (Zhang et al, 1996). For fuzzy cluster-
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ing methods are discussed in (Kaufman and Rousseeuw, 1990; Liu and Tian, 2001;
Wang, 2000). These methods, however, are not efficient due to iteration.

Contributions: The contributions of the chapter are as follows. (1). In order to get
the tuples’ semantic proximity matrix, domain knowledge is used in fuzzy clustering. (2).
introducing two clustering methods: Natural Method and Graph-Based Method, both of
which are controlled by a threshold, and the threshold is confirmed by polynomial re-
gression. (3). the experiments are on synthetic and real datasets respectively.

Organization: The rest of the chapter is arranged as below: In Section 8.2, the
classical method for fuzzy clustering—Matrix Method is expatiated with an example. In-
troducing the two new methods, designing algorithms and confirming the threshold are
all in Section 8.3. Section 8.4 discusses correctness and complexity of the new algo-

rithms. Evaluation on experiments is in Sect. 8.5, the last is the summary.
8.2 Basic Concepts and Methods

Fuzzy clustering in this chapter has 3 steps:

(1). Reading all tuples in and replacing each attribute value by leaf concept in con-
cept hierarchy tree;

(2). Computing every two tuples’ semantic proximity and forming proximity matrix S
according to domain knowledge—Concept Hierarchy Trees;

(3). Executing clustering using the proximity matrix S.

8.2.1 Basic Concepts
Concept hierarchy tree. Each attribute A; ( 1<i<k, k is the number of attributes)

has a concept hierarchy tree H

i, which can be obtained from domain experts. The con-
cept hierarchy trees of attributes “plant” and “elevation” in the plants dataset of “Three
Parallel Rivers of Yunnan Protected Areas” are shown in Figure 8.1. The definitions of
height, depth and level of node are the same with the Chapter 6 (see Definition 6.5).

It can be seen from Figure 8.1 that the higher level concepts are the generalization
of lower level concepts, If the attribute’s value is continuous, then leaf concepts are a
interval with continuous values, one can use the method in literature (Kohavi and Sa-
hanu, 1996; Tay and Shen, 2002) to discretize them, then deal with them according to

discrete attribute values.
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Level
3 Representive plants
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0 1800.22001  T1500. 24001

Figure 8.1. Concept hierarchy trees of attributes “plant” and “elevation”

Computing the tuples’ proximity matrix S using concept hierarchy tree. Table

8.1 is parts of plants’ dataset of “Three Parallel Rivers of Yunnan Protected Areas”. At

first, each attribute value in table 8.1 is replaced by corresponding leaf concept of con-

cept hierarchy tree in Figure 8.1, and then the semantic proximity between attribute’s

values are computed using the equation (1) in definition 8.1.

Table 8.1 Plant and elevation datasets

Tuple ID [ Plant Elevation

t1 Cinnamomum bejolghota [1000,1500]
to Tsuga dumosa (D. Don) Eichler | [2400,3000]
t3 Abies nukiangensis Cheng [3000,3700]
ts Melissa axillaris [2000,3000]
ts Pincea likiangensis [2000,3000]
{6 Cyclobalaliopsis glaucoides [3000,4000]
tz Dianjing |.g [1500,2400]
ts Solanum deflexicarpum C. [800,2200]
to Tsuga dumosa (D. Don) Eichler | [2400,3000]
t1o Liushitan zhibei [2400,3000]

Definition 8.1. Attribute’s Semantic proximity (Attribute’s proximity, for short):

For two leaf concepts in concept hierarchy tree fi, f

is defined as follows:
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1, f=f, @

SP(f,,f,)=
(1. 1) {I—I(P(fl,fz))/H f, = f,

P(f,, f,)returns the common father-node of  f,; and I( f)returns the level of f:H

is the Height of the tree. So the semantic proximity between attribute values can be

computed using domain knowledge—concept hierarchy trees.

Definition 8.2. Tuples’ semantic proximity (Tuples’ proximity): Suppose there

are two tuplest, =(a,,a,,...,8,) ,t, =(b,b,,...b), the semantic proximity between tuples

Ut is defined as the equation (2).

k 12 &)
SP(t,,t,) = {ZWi x(SP(a;,h, ))2}

Where W, is the weight of attribute i.

Computing all tuples’ proximity between tuples for a dataset (for example, Table

8.1) forms a proximity matrix S (S =(s;),.,, Where s; =1 if i=j;and s; =sp(t.t,) if
i #]). S is reflexivity, symmetry but not transitive. So S is a similar matrix not equivalent

matrix.

8.2.2 Fuzzy Clustering Using Matrix Method
Using matrix method (MM, for short) to realize fuzzy clustering has been introduced
by Liu and Tian in (Liu and Tian, 2001). The process of the fuzzy clustering is: The simi-

MAX, (MIN(s;,Sy;))

2 _
lar matrix S is self-multiplied repeatedly, where (8y)" = , until

k k 2k, . .
$* =8" 87 is called as a fuzzy equivalence matrix (i.e., s =1,s =s,5% =s¥)

Example 8.1. According to concept hierarchy trees in Figure 8.1, the semantic
proximity between tuples in table 8.1 form a similar matrix S shown in Figure 8.2(a)

(Supposed weight are both 1/2):
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(1 029 024 018 029 047 059 035 029 035] 100001110 0
029 1 047 035 059 024 029 018 1 071 0111100011
024 047 1 0 047 029 023 0 047 0 011110001 1
S=l018 035 0 1 071 0 018 029 035 042 011110001 1
029 059 047 071 1 023 029 018 059 035 5:. 0111100011
047 024 029 0 023 1 047 0 023 0 11000011100
059 029 023 018 029 047 1 053 029 0.18 1000011100
035018 0 029 018 0 053 1 018 029 Loooo1r 1100
029 1 047 035 059 023 029 018 1 071 o1 1100011
1035 071 0 042 035 0 018 029 071 1 | oot
(a). the similar matrix S (b). the level value matrix 53‘44

Figure 8.2. An example of fuzzy clustering process
The similar matrix S multiplies itself repeatedly, an equivalent matrix S* (S* =S?%,
so S* is the equivalent matrix) can be obtained. The clustering result can be obtained by

setting a threshold. If the threshold 1=0.44, the level value matrix S;,, is obtained as

Figure 8.2(b) (the value becomes 1 if it is greater than A , otherwise zero). The clustering

resultis T,,, = {(t,.t,,t,t),(t,,t;,t,,ts, t,,t,,)}, and if setting the threshold is A =0.48, the

resultis T ,. = {(t,,t,t,), (4,1, 1,1, 1)(t;),(t)}.

A modified matrix method (MMM, for short) is presented in Chapter 2, and the main
modified idea is that it does not deal with the value “0” in similar matrix (i.e., to avoid
meaningless looping) and saves running time, especially when the number of 0 is very

large. The new methods of this chapter also start from the similar matrix S.
8.3 New Algorithms for Fuzzy Clustering

8.3.1 Natural Method (NM)

It is from a simple idea, which directly uses the similar matrix S to process cluster-
ing. At first, saves the nonzero elements (proximities) and their rows, columns in up-
triangular of the similar matrix in three arrays a[], v[] and w[], then scans the three arrays
to get clustering result. The method is described as below:

If two tuples (that is v[i] and w][i]) have not been searched and the proximity (al[i]) is
bigger than the threshold 4 , then putting them in a new category;

If only one tuple has been searched, and proximity is bigger than i, put the tuple
which has not been searched into the category possesses the other tuple.

If two tuples have been both searched and the proximity is bigger than i, then

combining the two categories which the two tuples belonged to into one.
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So, the clustering result can be obtained by scanning three arrays a[], v[] and w[]

once. The algorithm is given in following.

Algorithm 8.1 Natural Method for Fuzzy Clustering (NM)

Input: the nonzero elements (proximities) and their rows, columns in up-triangular of
similar matrix a[], v[], w[]

Output: classifications

Method:
(1) Fori:=1to n do //n is the number of tuples
Cla[i]:=0; //the classification values of tuple i are initialized to 0
t:=0;
(2) Fori:=1to m do // mis the number of the nonzero elements in similar matrix S
(3) Ifa[i]>= Athen

{
(4) If Cla[v[i]]=0 and Cla[w][i]]=0 then
{t:=t+1; Cla[v[i]]:=t; Cla[w][i]]:=t}
(5) Else if (Cla[v[i]]=0 and Cla[w][i]]<>0) then
Cla[v[i]]:= Cla[w([i]]
Else if (Cla[v[i]]J<>0 and Cla[w][i]]=0) then
Cla[w[i]]:= Cla[v[i]]
(6) Else //the two tuples have been scanned
Changing the classification values of the tuples that they has the
classification values Cla[v[i]] and Cla[w]i]] into the same one;

8.3.2 Graph-Based Method (GBM)

A graph (G (V, E)) can be stored by a matrix or adjacent table. It is expressed with
an adjacent table here. Taking the tuples as vertexes of graph, and the proximity is as
the weight of arcs. The table head Header is a dynamic array, which stores the tuple id
of each tuple in sequence. Each node of links has three fields: node.col, node.value and
node.next, and they store column, proximity and pointer points to the next node respec-
tively. When constructing adjacent table, the arcs which’s weights smaller than A can be
directly deleted (the proof will be in section 8.4). Therefore, a collection of non-
connective sub-graphs, these sub-graphs are equivalent partition to original graph (see
the proof in section 8.4), is obtained.

The algorithm is as follows:

Algorithm 8.2. The Graph-Based Method for Fuzzy Clustering (GBM)

Method: 1) Create( ); // Construct adjacent table only to the arc whose weight is bigger

than 4
2) Depth_Scan(1,1); // Start from the first element of Header, execute depth
first search to the adjacent table
3) Execute depth first search to the node that has not been searched, and
stopping search until all nodes have been searched.
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The step 2) in algorithm 8.2 only scanned (searched) one sub-graph, and

searched all sub-graphs in step 3). The procedure Create() is designed as below.

Procedure Create()
(1) for i:==1 to m do //m the number of the nonzero elements in similar matrix S
begin
(2) new node node1;
(3) new node nodez;
node1.col := w[i]; node1.value := a[i]; node1.next := null;
node2.col :=Vv[i]; node2.value := a[i]; node2.next := null;
4) if a>A then
begin
(5) if (Header][v][i]].next=null) /lto insert the node1
Header[Vv][i]].next:=node1
(6) else
insert the node1 into the header[v][i]] link;
if (Header[w[i]].next=null) / to insert the node2
Header[w][i]].next:=node2
else
insert the node2 into the header[w[i]] link;
end;
end.

8.3.3 Confirming the Threshold 4

Carefully analyzing Matrix Method you will find, it implements equivalent partition
according to A after having obtained equivalent matrix, so you can change Ato get a
reasonable result. While the threshold A is used in the beginning of the new algorithms,
the whole clustering process has to be performed again if A changed. Therefore, confirm-
ing the threshold Ais a very important task in the new methods. Here confirms A by
polynomial regression, which is enlightened by the method in (Zhang et al, 2004). The

main steps are as below.

(1). Confirming alby Polynomial Regression. Arraying the nonzero elements
(proximities) in up-triangular of similar matrix by descent, then executing thrice-

polynomial regression to points who's Y-coordinates are these proximities, the inflexion

of curve is the threshold 4.

(2). Computing the nearest k entries values from the former 4 and choosing a 4.
Computing the nearest k entries values from the 1 obtained in step (1) and saving them,
which are a possible scopes of final 1, then choosing a given 1 from the scopes to per-

form clustering according to the need of user.
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The matrix method has not any indication to confirm A, so user can only try one by
one, while the new algorithms firstly confirm a possible scope of threshold A, user can
choose A from the scope. If it is not reasonable, one can choose over again from the
scopes, and two clustering algorithms in this chapter are not time-consuming (O(n*m))),

which will be better than trying one by one in practice (It will be shown by experiments in
Section 8.5.1).

8.4 Algorithm Analysis

8.4.1 Correctness Analysis

Illustration. For the similar matrix S in example 8.1, the fuzzy clustering is exe-
cuted using GBM with the threshold 4 =0.44 and A =0.48. Figure 8.3(a), Figure 8.3(b)
shows the sub-graphs after deleting the arcs whose weights are smaller than A . After
depth first search, the partition results can be obtained, which are the same as the re-

sults of the MM. The NM can obtain the same results too.

Figure 8.3(a) Sub-graph when 4 = 0.44 Figure 8.3(b) Sub-graph when A4 =0.48

Theoretical analysis. Analyzing the Matrix Method or Modified MM in section 8.2,
the following rules will be found:

(DThe matrix multiplies itself in fact computes the transitive closure.

2Given a threshold /1, the values smaller thanﬂcan be replaced by zero, which

cannot affect the equivalent matrix .

Proof. Supposeds[i’j]ands[i’j]are values in similar matrixS and equivalent

matrixsrespectively, s[i. j] can be obtained by performing the following compution

from S[i’ j]:
gfi, j] = max(min(Sy, S)) = max(...,min(S; S )....)
=min(S; S

S

'J')(suppose i and Svare the maximal values currently)
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S[i,j]zmin(sil,slj)

So may be two kinds of values: bigger than /1, smaller than or
equal tol.
@S[i’ il= min(Sy, Sy) > 4 ,whethers[i’ j]is zero or not, S[i’ j]wiII replaces[i’ j]

@S[" J]: min(S;.,Sy) < 4 ,whethers[i’ j]is zero or not, the value which is smaller than

or equal to 4 will be replaced by zero in the level value matrix.

(®As one has known, computing the transitive closure to a graph is adding to some
arcs. The arcs are defined as follows: If node 1 and node 2 are connected by an arc,
node 2 and node 3 are connected by an arc, then add an arc between node 1 and node
3.

In this chapter, although GBM does not compute the transitive closure by recursion,
but the set of non-connective sub-graphs is gotten after getting rid of some arcs. Even if
computing transitive closure, the non-connective sub cannot become connective, the
transitive closure is in fact only executed in each sub-graph, which will not affect

clustering result.

8.4.2 Time Complexity

Comparing with MMM, all of the new algorithms need confirm 4 at first. Although
the computation of confirming will cost some time, the running time is fixed with use

thrice-polynomial regression. Only the time of sorting will increase with the increasing of

datasets, so the time complexity of confirming/1 is O(m*logm) . Table 8.2 shows the time

complexity of the three algorithms. From Table 8.2 one can see NM and GBM are
obvious better than MMM.

Table 8.2. The comparison of time complexity
Algorithm | Time Complexity

MMM O(n3)
NM [ O(n*m+m*logm) (n<m)
GBM [ O(n*m+m*logm)

8.5 Experiments

The performance of the new algorithms was evaluated with synthetic datasets and
real-world datasets. The experiments were performed on a Celeron computer with a 2.60

GHz CPU and 512 Mbytes memory running the Windows XP operating system.
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8.5.1 Evaluation Using Synthetic Datasets
The experiments using synthetic datasets want to answer the following questions.

(1) How does the size of the dataset affect the three algorithms? (2) How is the three al-

gorithms’ performance with changing A9

The experiments are executed on the matrix of 50x50 100x100  and 500x500,
comparing the performance of MMM, NM and GBM as function of matrix size respec-
tively (see the Figure 8.4). When the matrix size is larger than 300, MMM cannot process
due to lack of memory. From Figure 8.4 one can see that the new algorithms are better
than MMM.

—— VMM —m—GBM M|

250000
200000 /

150000 a
100000 / /

50000 / '/

50 100 150 200 300 400

runtime (ms)

Figure 8.4. The performance of MMM, NM and GBM as function of matrix size n

With the fixed size of datasets, comparing the performance of NM with MMM by
changingﬂb untill the reasonable clustering result gained. The experiments are executed

on 100x100 matrix, table 8.3 shows the results. Yet, the experiments are only one ex-

ample. From table 8.3 one can see that, because the cardinal number of MMM (the cost

of first time) is very large, to get a reasonable result it must adjust thresholds A many
times, which means the total running time of MMM is larger than that of NM, and the per-

formance of MMM declines very sharply with the increasing size of datasets.

Table 8.3. Runtime and total time of NM and MMM by changing A

NM A 0.37 10.4(0.54]0.6 Total
Runtime [ 894 |48 [46 [40 1028
MMM | A 0.1 10.2(0.3 [0.4]|0.5|0.6|Total
Runtime [4281] 28 | 32 [24 ] 20 [ 25 | 4410
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8.5.2 Evaluation Using a Real Dataset

The performance of the algorithms is evaluated using a real dataset. Can they dis-
cover useful information?

The real dataset used in experiments involves 16 plant species in “The Three Paral-
lel Rives in Yunnan Areas”. There are 254 instances extracting from satellitic telemetric
data. Some rules discovered by the algorithms are really interested by geographers and
botanists. The followings are some examples:

Figure 8.5(a) is one of figures which have dealt with using some methods, which
shows the 16 plant species with different colours respectively, and Figure 8.5(b) shows
the clustering results using the new algorithms. Some rules discovered by the algorithms
are useful. For example: Cordyceps sinensis (Berk.) Sacc is a kind of plant coloured with
orange in Figure 8.5(a), but in Figure 8.5(b), they are divided in 3 categories with differ-
ent colours respectively, which is due to the different growth environments, which ex-
plains the three kinds of environments are suitable for Cordyceps sinensis (Berk.) Sacc
in “The Three Parallel Rives in Yunnan Protected Areas”.

On the other hand, some of Pseudotsuga forrestii Craib and Taxus wallichiana are
in the 2-th category, which grow in the Cool temperate conifer forest whose elevation is
from 3000 to 3400 meter of Lijiang (showed in Figure 8.5(b)), which explains these plant
species can coexist in the same environment, and they may have some common char-
acteristics. From plant hierarchy one can see that these plant species are all belonged to

Gymnospermae, so domain knowledge validates the efficiency of the new algorithms.
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Figure 8.5(a).Before clustering Figure 8.5(b). After clustering
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8.6 Summary

The two fuzzy clustering methods—Natural Method and Graph-Based Method in

this chapter are based on domain knowledge. After confirming threshold A at the begin-
ning of executing the new algorithms, the transitive closure does not need be computed
by recursion and correct clustering results can be obtained, so the new algorithms save
much time. The theoretical analysis and experimental results on synthetic and real data-
sets show that the new approaches are corrective and efficient, and some rules discov-
ered by the new algorithms are useful to domain experts.

In experiments, it is found that the performance of algorithms will decline with the

increasing of datasets. Further more, because GBM stored the whole adjacent table,

when the experiment is executed on 500x500 matrix, it cannot be performed due to
lack of memory. Therefore, how to solve the memory problems and realize data ex-

change between memory and storage are the future works.

A number of new techniques in the area of spatial data mining have been devel-
oped in previous chapters. These techniques can be incorporated into one software
package, so that efficiencies and effect can be compared. In next Chapter, as an exam-
ple, a prototype system of visual spatial co-location patterns mining is developed. In this

system, the new techniques in Chapter 3 and 4 can be compared in any way you like.
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Chapter 9

A Visual Spatial Co-location Patterns’ Mining
Prototype System (SCPMiner)

This chapter introduces a visual spatial co-location patterns’ mining prototype system (SCPMiner).
Visual spatial data mining is an effective way to discover knowledge from huge amounts of spatial
data. The systematic study and development of visual spatial data mining techniques will facilitate

the promotion and use of spatial data mining as a tool for spatial data analysis.
9.1 Overview

The purpose of studying spatial data mining is to support and improve spatial data-
referenced decision-making in the real world. To reach this, the development of spatial
data mining products and efforts toward the visualization studying is a very important re-
searching direction. Although spatial data mining is a relatively new field with many is-
sues that still need to be investigated in depth, some mining methods, for example, spa-
tial co-location patterns mining, have been researched fully in this thesis. As a mining
technique possessing broadly applied values, Research and development of a visual
spatial co-location patterns’ mining prototype system (SCPMiner) will facilitate the broad
application of spatial co-location patterns’ mining technique.

Mentioning the development of spatial data mining prototype system, there are the
GeoMiner (Han and Kamber, 2006; http://db.cs.sfu.ca//GeoMiner) and the MultiMedia-
Miner (Zaiane et al, 1998) developed by Simon Fraser University in Canada, and the
RSImageMiner developed by Wuhan University in China (Li et al, 2006). These systems
have little in common with respect to data mining functionality or methodology, may in-
cluding association mining, classification, prediction, clustering, outline detection, et al,
but they work with different kinds of data sets and could not be used in spatial co-

location patterns’ mining.
9.2 Analysis and Design of SCPMiner

Spatial data mining functions form the core of a spatial data mining system. In the
SCPMiner, only one data mining function, spatial co-location patterns’ mining, is pro-
vided. But the extensible property is considered in designing of SCPMiner, it can be-

come a system supported multiple spatial data mining functions. Because the methods
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of co-location mining have advantages respectively for different kinds of data, the
SCPMiner that supports multiple methods of the spatial co-location mining provide the
user with greater flexibility and analysis power. Thus SCPMiner should also provide nov-
ice users with convenient access to the most suitable method, or to default settings. Fig-

ure 9.1 shows the basic architecture of SCPMiner.

Visual user’s interface

A

I

Co-location

I

Co-location mining

A\ 4

™~ Co-location

mining

Interesting
data

mining analysis

application

GIS information
base

Applying

Spatial data management

Synthetic Real spatial
spatial data data

Management of spatial data

Co-location rules
obtained

Co-location rules
base

Mining Analysing

Figure 9.1 Basic architecture of SCPMiner

SCPMiner is divided into four parts in Figure 9.1. First (left side) is the management
of co-location spatial data, second is the discovery of spatial co-location rules, third is co-
location mining methods’ analysis, and the fourth (right side) is the applications of co-
location mining.

Before mining co-location knowledge, users could select interesting data from spa-
tial dataset (synthetic or real) by using the co-location data management procedure.
This is an interactive and visualization process. Co-location mining procedure accepts
a command to mining co-location from user. According to the user’'s demand of knowl-
edge mining, the co-location mining procedure discover knowledge from the interesting
data. The co-location rules obtained is provided to user or added into the co-location
rules base for users to query, analyze and apply them. Co-location mining analysis
procedure includes efficiency analysis of mining methods and the characteristic analysis
of mining data. Some application functions of co-location rules discovered are provided
by co-location mining application procedure. In general, co-location mining process

needs to be performed repeatedly to get satisfied results.
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9.3 Implementation of SCPMiner

According to the designed architecture of SCPMiner in Figure 9.1, the SCPMiner
was developed, under the operating system Window XP, by using JDK 1.4.2_5, Eclipse
3.2.2, adobe SVG Viewer tool, Macromedia Dreamweaver MX2004, and SQL
Server2000 database management system. The main interface of SCPMiner is shown in
Figure 9.2.
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Figure 9.2 Main interface of SCPMiner

It can be seen that there are four main menus in SCPMiner. They are co-location
data management, co-location rules mining, co-location mining analysis, and co-location

mining applying.

9.3.1 Co-location Data Management (CDM)

The unitive management of spatial data is a feature of the SCPMiner. There are two
kinds of spatial data in SCPMiner. One is synthetic spatial, another is real-world spatial
data. One can browse the spatial data stored in the system, generate new synthetic data
and delete data from the system. For real-world spatial data, there is a plants’ distribu-
tion data of the “Three Parallel Rivers in Yunnan Protected Areas” in the system. One
can load new real-world spatial data by CDM. Spatial data is stored in link structure. The
real plants’ distribution data of the “Three Parallel Rivers in Yunnan Protected Areas” is

managed by SQL server 2000 database.
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The interface of CDM is shown in Figure 9.3.
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Figure 9.3 The interface of CDM

The main functions in CDM include:

(1) Data selection: selecting spatial data from exited spatial data set (synthetic or
real) for co-location mining. The processing of selecting data is visual which means one
can see the distribution of the data you want to select. Figure 9.4 is a result in the proc-
ess of data selection. The selected spatial data will be stored in a data file for co-location

mining.
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Figure 9.4 A result of selecting a plant distribution dataset
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(2) Data generation: including synthetic spatial data generation and real spatial
data input. The left side in Figure 9.5 is for setting parameters area. After setting suitable
parameters, one can run the procedure of synthetic data generation. If you satisfy the
result of data generation (the distribution of generated data is shown in right side area as
showing the right side area of Figure 9.5), one can give a name to it and store it. For in-

putting real spatial data, the system can read file data and image data.
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Figure 9.5 Processing of data generation

(3) Data deletion: deleting a selected synthetic spatial data or real spatial data

from the system.

9.3.2 Co-location Patterns Mining (CPM)

Figure 9.6(a) is the interface of CPM. The parameters of co-location patterns’ min-
ing include spatial neighbour distance D, minimum prevalence threshold min_prev, and
conditional probability threshold min_cond_prob. The system provides the inter-interface
(as shown in Figure 9.6(b)) to user to select values of these parameters. The scope of
each parameter is computed according to the interesting data for co-location mining.
CPM provide four algorithms for co-location mining: join-based method proposed by
Huang et al (Huang et al, 2004), join-less method proposed by Yoo et al (Yoo et al,
2005), CPI-tree method proposed in this thesis, and order-clique-based method also
proposed in here. One can choose any one of them to mining co-locations. But for differ-
ent interesting data and different mining parameters setting, the system can guide you to
choose a suitable method to mining co-locations. Figure 9.6(c) is a mining result of the

size-3 co-location rules.
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Figure 9.6 The procession of co-location patterns mining

9.3.3 Co-location Mining Analyzing (CMA)

In four co-location mining methods provided by the SCPMiner, different method
represents its advantage under different spatial dataset. So, in CMA, two functions are
provided for analyzing mining methods. One is mining’s efficiency analyzing, and an-

other is mining’s datasets analyzing. Figure 9.7 is the interface of CMA.
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Figure 9.7 Interface of CMA

(1) Mining’s efficiency analyzing: In this function, first, you select a dataset

(sparse dataset or dense dataset). Second, you choose methods you want to compare.

Third, spatial neighbour distance D, minimum prevalence threshold min_prev, or the

number of instances N can be chosen one to analyzing efficiency of the mining method.

Then, running results with D, min_prev or N over a dataset you selected will be obtained.
Figure 9.8 is one result.
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Figure 9.8 An example of mining’s efficiency analysis
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(2) Mining’s dataset analyzing: If the analysis results above are not what you ex-
pected, you can analyze the dataset using this function. You can look at how distribution
of this dataset, how many size-2 prevalence co-location patterns in this dataset. How
long the maximal prevalence co-location pattern is in this dataset, and et al. The results

of the size-2 prevalence co-location patterns in the dataset of Figure 9.8 are shown in
Figure 9.9.

A data generation - Wicrosoft Internet Fxplorer 3]
v

e wdE #Eo ERe TAM W

Qm-O HRG Pmdromx @ 2-5 5-JCKE S

1@l hip i v Ewa wm

Co-location Mining Analying(CMA)

Mining's datatet analying

e s prevalent colocations

shov prevalent cole of &
the total rumber ig:32

| | 1 k& OC .22

2 kA D .20

3 AR Q 33

4 B C .33

5 B E .23

5 60 .51

TBR.22

2B 5 .38

96 T.33

jlog U .31

11 BB M .33

12CE .33

13CR .23

14 C 5 .42

15 CC G .35

16 CC 2 .22
1TDP.23

18 0§ .20

o -

= N T Tobr asal

[ [9o (G [ =8 ¢ &fEmns

Figure 9.9 The results of the size-2 prevalence co-location pat-
terns in the dataset of figure 9.8

9.3.4 Co-location Patterns Applying (CPA)
For there is a real plants distribution dataset of the “Three Parallel Rivers of Yunnan

Protected Areas”, the CPA provide two functions, rules’ plants growth environment

query and visualization of a set of co-location rules. Figure 9.10 is the interface of
CPA.
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(1) Rules’ plants growth environment query: selecting a co-location rule from

mining results, you can see corresponding plants’ instances distribution map, then, you

can add contour line, longitude, woof or the humidity information of the area on the map.

The visualization results will be significant for analyzing and researching the relationship

between plants and ecological environments. Figure 9.11 is an example of rules’ plants

growth ecological environment (longitude and woof) query.
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Figure 9.11 An example of rules’ plants growth environment query

(2) Visualization of a set of co-location rules: Visualization of a sub-set of min-

ing results is the presentation of co-location rules obtained from co-location mining in

visual forms. Figure 9.12 gives visualization of size-2 and size-3 co-location rules mined

from the plants distribution dataset of the “Three Parallel Rivers of Yunnan Protected Ar-

147



An Investigation in Efficient Spatial Patterns Mining

eas”. Figure 9.12 (a) uses a two-dimension matrix method to describe a set of size-2 co-
location rules. In this figure, the row and the column of the matrix represent the anteri-
ority and the posterior of the rules respectively. In matrix unit, using difference colours
represent the difference degree of prevalence and the conditional probability of corre-
sponding rule. For size-3 rules and above, a parallel coordinate method is generally
used. Figure 9.12 (b) is a visual result of parallel coordinate method of size-3 co-location
rules mined from the plants distribution dataset of the “Three Parallel Rivers of Yunnan
Protected Areas”.
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(b). Visualization of size-3 co-location rules

Figure 9.12 Visualization of co-location rules in the plants’ distribution dataset
of the “Three Parallel Rivers of Yunnan Protected Areas”
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9.4 Summary

Data mining products, for example Intelligent Miner (an IBM data mining product),
Microsoft SQL Server 2005, MineSet, Clementine (from SPSS), and et al. are fast evolv-
ing. But for spatial data mining, it is in stage of researching prototypes. In this chapter, a
visual spatial co-location patterns mining prototype system (SCPMiner) is investigated.

In SCPMiner, there are not only data management function and four co-location
mining methods, but also co-location mining methods analysis and co-location mining
applications. This work will be a significant step towards to develop spatial data mining

products.

149



An Investigation in Efficient Spatial Patterns Mining

Chapter 10

Concluding Remarks

Based on studying the evolution of spatial data mining, the thesis mainly proposed the following
new techniques: the fuzzy co-location mining, CPI-tree (Co-location Pattern Instance Tree)
which materializes spatial neighbour relationships for co-location mining, maximal co-locations
mining, attribute-oriented induction based on attributes’ generalization sequences (AOIl-ags),
data mining prediction, a cell-based spatial object fusion, and a fuzzy clustering based on do-

main knowledge. A prototype system of mining spatial co-location patterns was developed.
10.1 Contributions and Conclusions

First, the new concept of fuzzy co-location mining was proposed. Based on study-
ing the fuzzy properties of spatial objects and spatial relationship, the motivation, basic
concepts, and algorithms of discovering fuzzy co-location were expounded. In the design
of algorithm, a new data structure, the binary partition tree, improving the process of
fuzzy equivalence partitioning, was proposed. A prefix-based approach to partition the
prevalent event set search space into subsets, where each sub-problem can be solved
in main-memory, was also presented. Finally, theoretical analysis and experimental re-
sults on synthetic data sets and a real-world plant distribution dataset were presented
and discussed.

Second, a new join-less method for co-location mining was proposed. A new struc-
ture called CPI-tree (Co-location Pattern Instance Tree) was introduced in the thesis. It
could materialize the spatial neighbour relationships of a spatial data set, and find all the
co-location table instances recursively from it. The algorithm is efficient since it does not
require expensive spatial joins or instance join for identifying co-location table instances.
The experimental results showed the new method outperforms the join-less method in
the case of both sparse and dense datasets.

Third, an order-clique-based method for mining maximal co-location patterns was
proposed. Two extended prefix-tree structures, Neib-tree and P,-tree, which the spatial
neighbour relationships between instances and the size-2 prevalence co-locations are
compressed into them respectively, were introduced. A method of generating all the
candidate maximal ordered prevalence co-locations from the P,-tree was presented. An
algorithm of inspecting all table instances from the Neib-tree was given. In this algorithm,

the table instances do not need be stored after computing the Pi value of corresponding
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co-location, which dramatically reduces the executive time and space of mining maximal
co-locations. A performance study has been conducted to compare the performance of
the order-clique-based method with three representative co-location mining methods, the
full-join, the join-less and the CPI-tree. The study shows that order-clique-based method
is much faster than full-join, join-less and the CPI-tree, especially when the spatial data-
set is dense (containing many table instances) and/or when the prevalence co-locations
are long.

Fourth, by introducing the concept of the attributes’ generalization sequence, the at-
tribute thresholds and the tuple thresholds were unified, and a reasonable approach of
AOI—AOQI-ags (Attribute-Oriented Induction based on Attributes’ Generalization Se-
quences), which expands the traditional AOI, was proposed. Some technologies, for ex-
ample, partitions, equivalence partition trees, prune optimization strategies and interest-
ingness, were used to improve the efficiency of the algorithm. It was shown that the AOI-
ags algorithm has its advantages.

Fifth, based on the semantic proximity, a mining prediction method to evaluate the
fuzzy association degree was given. Inverse document frequency (IDF) weight function
has been adopted in this investigation to measure the weights of conditional attributes in
order to superpose the fuzzy association degrees. To implement the method, the “grow-
ing window” and the proximity computation pruning were introduced to reduce both I/O
and CPU costs in computing the fuzzy semantic proximity between time-series. Exten-
sive experiments on real datasets were conducted, and the results showed that the min-
ing prediction approach is reasonable and effective.

Sixth, a cell-based spatial object fusion method was proposed. The main contribu-
tion of this work is in showing that corresponding objects can be effectively found without
distance between objects.

Seventh, In order to get the tuples’ semantic proximity matrix, domain knowledge
was used in fuzzy clustering. Two clustering methods: Natural Method and Graph-Based
Method, both of which is controlled by a threshold, and the threshold is confirmed by
polynomial regression, were proposed.

Finally, a prototype system of spatial co-location patterns mining was described. In
this system, experimental data and real-world data were managed. A user-friendly inter-
face of mining was developed. The mining results could be checked conveniently. This

work is a significant step for investigating of spatial patterns mining products.

10.2 Forecasting Perspectives
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Spatial data mining is a rising field in spatial information science. Some achieve-
ments in this area have been gained, many challenges, however, still remain. Where,
mainly including the following directions: multirelational and multidatabase spatial data
mining, uncertain spatial data mining, multilevel spatial data mining, parallel spatial data
mining, the investigation of new methods and efficient algorithms, the design of spatial
data mining languages, and the effective application of spatial data mining techniques.
More investigations are required, especially toward the integration of spatial data mining
methods with object-oriented spatiotemporal databases, spatial index, spatial reasoning,
spatial data warehouses, and GIS.

Spatial data mining, which could change the limited spatial data into unlimited spa-
tial knowledge, has extensive forecasting perspectives and potential general benefits.
Today, as spatial information increasing and development of software and hardware
techniques, spatial data mining has infiltrated into GIS, information fusion, preprocessing
of remote sensing data, medical imaging processing, navigation, robot, et al. It will be-
come an actual that using the discoverable spatial knowledge accelerates researching

on automatization and intelligentize of these subjects.

152



References

References

Agarwal, R. and Srikant, R. (1994) Fast Algorithms for Mining Association Rules, In:
Proc. 1994 Int. Conf. Very Large Data bases (VLDB’94), Santiago, Chile, Sept.
1994, pp. 487-499

Agrawal, R., Gehrke, J., Gunopulos, D. and Raghavan, P. (1998) Automatic subspace
clustering of high dimensional data for data mining applications, In: Proceed-
ings of the ACM SIGMOD Conference on Management of Data, Seattle, WA,
1998, pp. 94-105

Alsabti, K., Ranka, S. And Singh, V. (1998) CLOUDS: A Decision Tree Classifier for
Large Databases. In: Proceedings of the 4™ Intl. Conf. on Knowledge Discov-
ery and Data Mining, New York, August 1998, pp. 2-8.

Alsuwaiyel, M. H. (2004) Algorithms Design Techniques and Analysis. Publishing House
of Electronics Industry, Beijing, 2004

Amstader, B.L. (1979) Reliability Methematics, McGraw-Hill, New York, 1979

Beeri, C., Kanza, Y., Safra, E. and Sagiv, Y. (2004) Object Fusion in Geographic Infor-
mation Systems, In: proceedings of the 30th VLDB Conference, Toronto,
Canada, 2004, pp. 816-827.

Bruns, T. and Egenhofer, M. J. (1996) Similarity of spatial scenes, In: Proceedings of the
7th International Symposium on Spatial Data Handling, Delft (Netherlands),
1996, pp. 31-42

Buckles, B.P. and Petry, F.E. (1982) ‘A fuzzy representation of data for relational data-
bases’ Fuzzy Sets and Systems, 7, (3) pp. 213-226

Cai, Y., Cercone, N. and Han, J. (1991) Attribute-Oriented Induction in Relational Data-
bases, Piatetsky-Shapiro, G. and Frawley, W.J. eds, Knowledge Discovery in
Databases, AAAI/MIT Press, Menlo Park, Calif., pp. 213-228

Carter, C. L. and Hamilton, H. J. (1998) ‘Efficient attributed-oriented generalization for
knowledge discovery from large databases’ IEEE Trans. on Knowledge and
Data Eng., 10, (2) pp. 193-208

Celik, M., Kang, J. M. and Shekhar, S. (2007) Zonal Co-location Pattern Discovery with
Dynamic Parameters, In: Proc. of the Seventh IEEE International Conference
on Data Mining (ICDM’07), Omaha, United States, 2007, pp.433-438

Chou, Y. (1997) Exploring Spatial Analysis in Geographic Information System. Onward
Press

Cressie, N.A.C. (1991) Statistics for Spatial Data. Wiley and Sons

Ester, M., Kriegel, H. -P., Sander, J., and Xu, X. (1996) A Density-Based Algorithm for
Discovering Clusters in Large Spatial Databases, In: Proc.1996 Int. Conf.
Knowledge Discovery and Data Mining (KDD’96). pp: 226-231, Portland, OR,
Aug. 1996

Ester, M., Kriegel, H.-P., and Sander, J. (1997) Spatial Data Mining: A Database Ap-
proach, In: Proc. 5th Int. Symposium on Large Spatial Databases (SSD'97),
Berlin, Germany, 1997, pp. 47-66

Ester, M., Kriegel, H.-P., Sander, J. and Xu, X. (1997) Density-connected sets and their
application for trend detection in spatial databases, In: Proc. 1997 Int. Conf.
Knowledge Discovery and Data Mining (KDD’ 97), Newport Beach, CA, Aug.

153



An Investigation in Efficient Spatial Patterns Mining

1997, pp. 10-15

Ester, M., Frommelt, A., Kriegel, H.-P., and Sander, J. (1998) Algorithms for Characteri-
zation and Trend Detection in Spatial Databases, In: Proc. 4th Int. Conf. on
Knowledge Discovery and Data Mining (KDD'98), New York, NY, 1998, pp.
44-50

Ester, M., Kriegel, H.-P., and Sander, J. (1999) Knowledge Discovery in Spatial Data-
bases, In: invited paper at 23rd German Conf. on Atrtificial Intelligence (Kl '99),
Bonn, Germany, Lecture Notes in Computer Science, Vol. 1701, pp. 61-74.

Estivill-Castro, V. and Murray, A. (1998) Discovering Associations in Spatial Data—An
Efficient Medoid Based Approach, In: Proc. Second Pacific-Asia Conf. Knowl-
edge Discovery and Data Mining, PAKDD-98, Springer-Verlag, Berlin. pp.110-
121.

Estivill-Castro, V. and Lee, L. (2001) Data Mining Techniques for Autonomous Explora-
tion of Large Volumes of Geo-Referenced Crime Data, In: Proc. Sixth Intll
Conf. Geocomputation, 2001.

Fonseca, F. T. and Egenhofer, M. J. (1999) Ontology-driven geographic information
systems, In: Proceedings of the 7th ACM International Symposium on Ad-
vances in Geographic Information Systems, Kansas City (Missouri, US), 1999,
pp. 14-19

Fonseca, F. T., Egenhofer, M. J. and Agouris, P. (2002) ‘Using ontology for integrated
geographic information systems’ Transactions in GIS, 6, (3) pp. 231-257

Graefe, G. (1994) Sort-Merge-Join: An Idea Whose Time Has (h) Passed? In: Proc.
IEEE Conf. Data Eng., 1994, pp. 406-417

Guo, L. (2004) Geological Dividing of Forests at Three Parallel Rivers of Yunnan Pro-
tected Areas, Journal of West China Forestry Science, 33 (2) (2004) 10-15

Han, J., Cai, Y. and Cercone, N. (1993) Data-driven discovery of quantitative rules in re-
lational databases. IEEE Trans. Knowledge and Data Engineering, 5:29-4-,
1993

Han, J. (1994) Towards Efficient induction mechanisms in database systems, Theoreti-
cal Computing Science, 1994, 133, pp. 361-385

Han, J. and Fu, Y. (1996) Exploration of the power of attribute-oriented induction in data
mining. In U. M. Fayyad, et al, editors, Advances in Knowledge Discovery and
Data Mining, pp. 399-421, AAAI/MIT Press, 1996

Han, J., Koperski, K. and Stefanovic, N. (1997) GeoMiner: A system prototype for spatial
data mining, In: Proc. 1997 ACM-SIGMOD Int. Conf. Management of Data
(SIGMOD’97), Tucson, AZ, May 1997, pp.553-556

Han, J. and Kamber, M. (2006) Data mining: concepts and techniques (Second Edition),
China Machine Press, Beijing

Hastie, T., Tibshirani, R. and Friedman, J. H. (2001) The Elements of Statistical Learning:
Data mining, Inference, Prediction, Springer, New York, 2001

He, X. (1989) ‘Semantic distance and fuzzy user's view in fuzzy database’ Chinese J.
Comput, 10, (1989) pp. 757-764

Huo, Z. (1989) Fuzzy Mathematics and its Applications, Tianjin Science and Technology
Press, Tianjin, China

Huang, Y., Pei, J. and Xiong, H. (2006) ‘Mining Co-location Patterns with Rare Events
from Spatial Data Sets’, Geoinformatica (2006) 10:239-260.

154



References

Huang, Y., Shekhar, S. and Xiong, H. (2004) ‘Discovering Colocation Patterns from Spa-
tial Data Sets: A General Approach’ IEEE Transactions on Knowledge and
Data Engineering, 16, (12) pp. 1472-1485

Huang, Y. and Zhang, P. (2006) On the Relationships between Clustering and Spatial
Co-location Pattern Mining, In: Proc. of the 18™ IEEE Int. Conf. on Tools with
Artificial Intelligence (ICTAI 06), Washington D.C., Nov. 2006, pp: 513 — 522.

Kaufman, L. and Rousseeuw, P. J. (1990) Finding Group in Data: An introduction to
cluster analysis, John Wiley & Sons, 1990.

Knorr, E. M. and Ng, R. T. (1997) Extraction of spatial proximity patterns by concept
generalization, In: Conf. on spatial information theory (COSIT), 1997, pp. 15-
33

Kohavi, R. and Sahanu, M. (1996) Error-based and Entropy-based Discretization of Con-
tinuous Features, In: Proc. of the 2nd International Conference on Knowledge
Discovery and Data Mining, Portland, Oregon: AAAI Press, 1996-08: 114-119

Koperski, K. and Han, J. (1995) Discovery of Spatial Association Rules in Geographic
Information Databases, In: Proc. 1995 Int. Symp. Large Spatial Databases
(SSD'95), Portland, ME, Aug. 1995, pp. 47-66

Koperski, K., Han, J. andStefanovic, N. (1998) An efficient two-step method for classifi-
cation of spatial data, In: Proc. gt Symp. Spatial Data Handling, Vancouver,
Canada, 1998, pp. 45-55

Kriegel, H.-P., Pfeifle, M. and Schénauer, S. (2004) ‘Similarity Search in Biological and
Engineering Databases’ IEEE Data Engineering Bulletin, 27, (4) pp. 37-44

Larsen, H. L. and Yager, R. R. (1990) ‘Efficient computing of transitive closures’ Fuzzy
Sets and Systems, 38, (1) pp. 81-90

Lee, A. J. T., Hong, R., Ko, W., Tsao, W., and Lin, H. (2007) ‘Mining spatial association
rules in image databases’ Information Sciences, 177 (2007) 1593-1608.

Li, D., Wang, S. and Li, D. (2006) Spatial Data Mining Theories and Applications, Sci-
ence Press, Beijing, 2006

Lin, C. and Chen, M. (2005) ‘Combining Partitional and Hierarchical Algorithms for Ro-
bust and Efficient Data Clustering with Cohesion Self-Merging’ IEEE Trans.
Knowl. Data Eng. 17(2): 145-159 (2005)

Liu, W. (1993) ‘The fuzzy functional dependency on the bases of the semantic dis-
tance‘ Fuzzy Sets and Systems 59 (2) (1993) 173-179

Liu, W. and Song, N. (2001) ‘The fuzzy association degree in semantic data models’
Fuzzy Sets and Systems, 117, (2001) pp. 203-208

Liu, W. and Tian, W. (2001) Data model, Science Press, Beijing, 2001.

Lu, J., Wang, L., Li, Y. (2007) A Fuzzy Clustering Method Based on Domain Knowledge.
In: Proceedings of the Eighth ACIS International Conference on Software En-
gineering, Artificial Intelligence, Networking, and Parallel/Distributed Comput-
ing (SNPD2007), Qingdao, China, July30-Aug.1, 2007, pp.297-302.

Lu, W., Han, J. and Ooi, B.C. (1993) Discovery of general knowledge in large spatial da-
tabases, In: Proc. Far East Workshop on Geographic Information Systems,
Singapore, June 1993, pp. 275-289

MacQueen, J. (1967) Some methods for classification and analysis of multivariate ob-
servations. In: Proc. 5th Berkeley Symp. Math. Statist. Prob., 1: 281-297, 1967

Minami, M. (2000) Using ArcMap, Environmental Systems Research Institute, Inc., 2000.

155



An Investigation in Efficient Spatial Patterns Mining

Morimoto, Y. (2001) Mining Frequent Neighbouring Class Sets in Spatial Databases, In:
Proc. ACM SIGKDD Int’l Conf. Knowledge Discovery and Data Mining, 2001.
pp. 353-358

Ng, R. and Han, J. (1994) Efficient and effective clustering method for spatial data min-
ing, In: Proc. 1994 Int. Conf. Very Large Data Bases (VLDB'94), Santiago,
Chile, Sept. 1994, pp. 144-155

Papakonstantinou, Y., Abiteboul, S. and Garcia-Molina, H. (1996) Object Fusion in Me-
diator Systems, In: proceedings of the 22nd VLDB Conference, Mumbai
(Bombay), India (1996), pp. 413-424

Samal, A., Seth, S. and Cueto, K. (2004) ‘A feature based approach to conflation of geo-
spatial sources’ International Journal of Geographical Information Science, 18,
(00) (2004), pp. 1-31

Schwartz, D.G. (1989) ‘Fuzzy inference in a formal theory of semantic equivalence’
Fuzzy Sets and Systems, 31, (2) pp. 205-216

Shekhar, S. and Chawla, S. (2003) Spatial Databases: A Tour, Prentice Hall, 2003

Shekhar, S. and Huang, Y. (2001) Co-location Rules Mining: A Summary of Results, In:
Proc. of International Symposium on Spatio and Temporal Database (SSTD),
2001

Shenoi, S. and Melton, A. (1989) ‘Proximity relations in the fuzzy relational database
model’ Fuzzy Sets and Systems, 31, (3) pp. 285-296

Shi, Y., Song, Y. and Zhang, A. (2003) A Shrinking-Based Approach for Multi-
dimensional Data Analysis, In: proceedings of the 29" International Confer-
ence on Very Large Data Bases (VLDBO03), Berlin, Germany, 2003, pp.440-
451

Tarjan, R. E. and Leeuwen, T. (1984) ‘Worst-case analysis of set union algorithms’ J.
ACM, 31, (2) pp. 245-281

Tay, F. E. F. and Shen, L. (2002) ‘A Modified Chi2 Algorithm for Discretization’ , IEEE
Transactions on Knowledge and Data Engineering, 2002, 14(3): 666-670

Uitermark, H., Oosterom, P. V., Mars, N. and Molenaar, M. (1999) Ontology-based geo-
graphic data set integration, In: Proceedings of Workshop on Spatio-Temporal
Database Management, Edinburgh (Scotland), 1999, pp. 60-79

Wang, W., Yang, J. and Muntz, R. (1997) STING: A Statistical Information Grid Ap-
proach to Spatial Data Mining, In: proceedings of the 23rd VLDB Conference,
Athens, Greece, 1997, pp. 186-195

Wang, L. (2000) A method of the abstract generalization on the bases of the semantic
proximity, CHINESE J. COMPUTERS, 23, (10) pp. 1114-1121

Wang, L. and Chen, H. (2005) Record Reduction Based on Attribute Oriented Generali-
zation, In: Proceedings of the Fourth International Conference on Machine
Learning and Cybernetics (ICMLCO05), Guangzhou, China, 2005, pp. 1693-
1700

Wang, L., Xie, K., Chen, T. and Ma, X. (2005) ‘Efficient discovery of multilevel spatial
association rule using partition’ Information and Software Technology (I1ST), 47,
(13) pp. 829-840

Wang, L. and Li, H. (2006) A Cell-Based Spatial Object Fusion Method, In: Proceedings
of the International Conference on Complex Systems and Applications (IC-
CSA06), Huhhot, China, June 16-18, 2006, pp.106-110

Wang, L., Lu, J., Yip, J. (2007) AOG-ags Algorithms and Applications, ADMA 2007, LNAI

156



References

4632, pp. 323-334, 2007.8

Wang, L., Lu, J., Yip, J. (2007) An Effective Approach to Predicting Plant Species in an
Ecological Environment, In: Proceedings of the 2007 international Conference
on Information and Knowledge Engineering (IKE’ 07), June 25-28, 2007, Las
Vegas Nevada, USA, pp. 245-250

Wang, L., Yang, A., Zhang, H. (2007) Data Mining Prediction of Shovel Cable Service
Lifespan. SNPD 2007 (Eighth ACIS International Conference on Software
Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Com-
puting) , Qingdao, China, July 30-Aug.1, 2007, pp.233-238

Xiong, H., Shekhar, S., Huang, Y., Kumar, V., Ma, X. and Yoo, J. S. (2004) A Framework
for Discovering Co-location Patterns in Data Sets with Extended Spatial Ob-
jects, In: Proc. 2004 SIAM International Conference on Data Mining (SDM),
2004, pp. 1-12

Yoo, J. S. and Shekhar, S. (2004) A partial Join Approach for Mining Co-location Pat-
terns, In: Proc. of the 12th annual ACM international workshop on Geographic
information systems, 2004, pp. 241-249

Yoo, J. S., Shekhar, S. and Celik, M. (2005) A Join-Less Approach for Co-Location Pat-
tern Mining: A Summary of Results, In: Proc. of the 5th IEEE Int. Conf. on
Data Mining, ICDM 2005, Houston, November 2005, pp. 813-816.

Zadeh, L.A. (1965) ‘Fuzzy sets’ Inform. and Control, 8, (3) pp. 338-353

Zaiane, O. R. et al., (1998) Multimedia-miner: a system prototype for multimedia data
mining, In: Proceedings of 1998 CMSIGMOD Conference on Manegement of
Data, (system demo), Seattle, Washington, June

Ziarko, W. (1991) The discovery, analysis and representation of data dependency in da-
tabases, In: G.P. Shapiro (Ed.), Knowledge Discovery in Databases, Benja-
min/Cummings, Menlo Park, CA, 1991, pp. 213-228

Zaki, M. J. (2000) ‘Scalable Algorithms for Association Mining’ IEEE Transactions on
Knowledge and Data Engineering, 12, (3) pp. 372-390

Zhang, M., Wang, D., and Yu, G. (2004) ‘A Text Clustering Method Based on Auto Se-
lected Threshold’, Journal of Computer Research and Development, 2004,
41(10): 1748-1753

Zhang, T., Ramakrishnan, R., and Livny, M. (1996) BIRCH: an efficient data clustering
method for very large databases, In: Proceedings of 1996 ACM-SIGMOD Int.
Conf. Management of Data (SIGMOD’96), Pages 103-114, Montreal, Canada,
June 1996

Zhou, X., Truffet, D. and Han, J. (1999) Efficient polygon amalgamation methods for spa-
tial OLAP and spatial data mining, In: Proc. 1999 Int. Symp. Large Spatial Da-
tabases (SSD’99), Hong Kong, China, July 1999, pp. 167-187

157



An Investigation in Efficient Spatial Patterns Mining

Appendix 1
The Partial Codes of SCPMiner

/[The following codes is for generating data of co-location data management function:
Left.jsp

<%@page contentType="text/html;charset=gb2312"%>

<%@ page import="java.sql.*" %>

<IDOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=gb2312">
<title>no title file</title>

<style type="text/css">

<l--

.style11 {font-size: 16px; color: #0000FF; font-weight: bold; }

-—->

</style>

</head>

<body bgcolor="#D6ECD5">
<form name="form1" method="post" action="show.jsp" target="main" onsubmit="return check-
Login();">
<table width="100%" border="2" cellspacing="5" bordercolor="#0000FF">
<tr>
<td><table width="100%" border="0" cellspacing="0">
<tr>
<td height="25"><span class="style11">feature:</span> </td>
</tr>
<tr>
<td height="25"><span class="style11">from:
<select name="start"; id="start">
<jsp:useBean id="RegisterBean" scope="page" class="colocation.Opendb" />
<%
String sql="select * from type";
ResultSet rs=RegisterBean.executeQuery(sql);
while (rs.next()
String s1,s2;
s1=rs.getString(1);
s2=rs.getString(2);

%>

<option value="<%=s1%>"><%=s2%></option>
<%

}

rs.close();
%>
</select>
</span></td>
</tr>
<tr>
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<td height="25"><span class="style11">to:
<select name="end"; id="end">

<%
String sql2="select * from type";
ResultSet rs2=RegisterBean.executeQuery(sql2);
while (rs2.next(){
String s1,s2;
s1=rs2.getString(1);
s2=rs2.getString(2);

%>

<option value="<%=s1%>"><%=s2%></option>
<%

}

rs2.close();
%>
</select>
</span></td>
</tr>
</table></td>
</tr>
<tr>
<td><table width="100%" border="0" cellspacing="0">
<tr>
<td height="25"><span class="style11">max number of instance:</span></td>
</tr>
<tr>
<td height="25"><span class="style11">
<input name="maxCount" type="text" id="maxCount" value="100" size="10" max-
length="10">
</span></td>
</tr>
</table></td>
</tr>
<tr>
<td><table width="100%" border="0" cellspacing="0">
<tr>
<td height="25"><span class="style11">scop:</span></td>
</tr>
<tr>
<td height="25"><span class="style11">width:</span><span class="style11">
<input name="width" type="text" id="width" value="1000" size="10" maxlength="10">
</span></td>
</tr>
<tr>
<td height="25"><span class="style11">height:</span><span class="style11">
<input name="height" type="text" id="height" value="1000" size="10" maxlength="10">
</span></td>
</tr>
</table></td>
</tr>
<tr>
<td><table width="100%" border="0" cellspacing="0">
<tr>
<td height="25"><span class="style11">move:</span></td>
</tr>
<tr>
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<td height="25"><span class="style11">x:</span><span class="style11">
<input name="startX" type="text" id="startX" value="0" size="10" maxlength="10">
</span></td>
</tr>
<tr>
<td height="25"><span class="style11">y:</span><span class="style11">
<input name="startY" type="text" id="startY" value="0" size="10" maxlength="10">
</span></td>
</tr>
</table></td>
</tr>
<tr>
<td><table width="100%" border="0" cellspacing="0">

<tr>
<td height="25"><span class="style11">file name: </span></td>
</tr>
<tr>
<td height="25"><input name="filename" type="text" id="filename" value="eventlx
size="30" maxlength="30"></td>
</tr>
</table></td>
</tr>
<tr>
<td><input type="submit" name="Submit" value="gen data">
<input type="reset" name="Submit2" value="result"></td>
</tr>

</table>

</tr>

</table>
</form>
</body>
</html>

Show.jsp

<%@page contentType="text/html;charset=gbk"%>

<jsp:useBean id="gendata" scope="session" class="gendata.genData" />

<jsp:useBean id="svg" scope="session" class="SVG_ScatterGraphExample.SvgScatterSjk1" />

<%

/I out.print("<h3>runing....... </h3>");
request.setCharacterEncoding("GBK");

%>

<%!

String start=null;
String end=null;
String maxCount=null;
String width=null;
String height=null;
String startX=null;
String startY=null;
String filename=null;
%>

<%

start=request.getParameter("start");
end=request.getParameter("end");
maxCount=request.getParameter("maxCount");

160



Appendix 1 The Partial Codes of SCPMiner

width=request.getParameter("width");
height=request.getParameter("height");
startX=request.getParameter("startX");
startY=request.getParameter("startY");
filename=request.getParameter("filename").trim();
%>
<html>
<body>
<%

gendata.mainProg(Integer.parselnt(start),Integer.parselnt(end),Integer.parselnt(maxCount),
Integer.parselnt(width),Integer.parselnt(height),
Integer.parselnt(startX),Integer.parselnt(startY),filename);

String ss=filename+".svg";
svg.mainProg(filename,filename);

[lout.print("<h3>run over!</h3>");
%>
<embed name="svg" type="image/svg+xml" src="../brow/<%=ss%>" width="700"
height="700">
</body>
</html>
genData.java
package gendata;
import java.io.lOException;
import java.sqgl.Connection;
import java.sql.DriverManager;
import java.sqgl.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;
import java.util.Random;

public class genData {
String filename;
String[] type;

/**
* Read data from the file, and then put the events and instances into a two-dimensional array
respectively
* @throws java.io.lOException the exceptions thrown by the file processing
*/
public void readData(Statement stmt,int start,int end) throws IOException,SQLException {
[[start; The number of the start type
/lend: The number of the end type
int k=end-start+1;
this.type=new String[k];
String typeTemp="";
int idTemp=0;

String sqlStr="select id,type from useType order by 1,2";
ResultSet rs = stmt.executeQuery(sqlStr);

int i=0;

while (rs.next()) {
idTemp=Integer.valueOf(rs.getString(1));
typeTemp=rs.getString(2).trim();

System.out.printin(typeTemp+idTemp);
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if (idTemp>=start && idTemp<=end){
type[il=typeTemp;
++i;

}

}
}

public void randomSj(String type,int maxCount,int width,int height,
int startX,int startY,Statement stmt) throws SQLException{
/ImaxCount: The maximal count of each type
/Iwidth:
//height:
[IstartX:
[IstartY:
Random ranint=new Random();
String s3;
int ix,iy,j,gs;
gs=ranint.nextInt(maxCount);
while(gs==0){
gs=ranint.nextInt(maxCount);

for(int i=0;i<gs;i++)X{
=it
s3="insert into "+filename+"(type,id,x,y) values("+type+","+j+
ix=ranint.nextInt(width)+startX;
iy=ranint.nextInt(height)+startY;
§3=s3+ix+","+iy+" )";

nun,
L]

//System.out.printin("s3="+s3);
stmt.executeUpdate(s3);
//Add some tuples into the instance-table
}

}

public void genTable(Statement stmt) throws SQLException{
//stmt.executeUpdate("CREATE TABLE col_link (sitename varchar (20) NULL ,siteurl varchar
(50) NULL) ");
String createP="create table "+filename+"( type char(10),id decimal(9),x decimal(9),y deci-
mal(9))";
/[System.out.printin(createP);
ResultSet rt=stmt.executeQuery("select count(*) as n from sysobjects where name
="+filename+"");
if (rt.next()) {
int num=Integer.valueOf(rt.getString("n"));
if (num>0)
stmt.executeUpdate("drop table "+filename);
}
}

stmt.executeUpdate(createP);

}

public void mainProg(int start,int end,int maxCount,
int width,int height,int startX,int startY,
String filename) throws IOException,SQLException{
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/[The number of points, the dimensionality of points generated and the bound of the points
gererated
this.filename=filename;

String url = "jdbc:odbc:sqglFullJoin";
Connection con;
Statement stmit;

try {
Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

catch(java.lang.ClassNotFoundException €) {
System.err.print("ClassNotFoundException: ");
System.err.printin(e.getMessage());

}

try

{
con = DriverManager.getConnection(url, "sa", "75");
stmt = con.createStatement();
genTable(stmt);
readData(stmt,start,end);
for(int i=0;i<type.length;i++){

randomS;j(type[i],maxCount,width,height,
startX,startY,stmt);

stmt.close();
con.close();

}
catch(SQLException ex) {
System.err.printin("SQLException: " + ex.getMessage());
}
}

public static void main(String args[]) throws IOException,SQLException{

int start=1;

int end=4;

int maxCount=10;

int width=100;

int height=20;

int startX=20;

int startY=20;

String filename="eventIx";
genData Ix=new genData();
/I Integer.parselnt("1");
Ix.mainProg(start,end,maxCount,width,height,startX,startY flename);
System.out.printin("Running finished!");

*hkkkkkkkkkkkkhkkkkhhkhkhkhkhkkhkkhhhhhhhkhkhkhhhhhhhhkhhhhhhhhhhkkhhhhhhhkkkkhhkhkhhhkkkkkx

FullJoin.java //Join-based algorithm
package SFullSjk;

import java.io.BufferedReader;

import java.io.FileNotFoundException;
import java.io.FileReader;

import java.io.lOException;
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import java.util.*;
import java.sql.”;

public class FullJoin {

private LinkedHashMap<String,List<Instance>> eventmap=new LinkedHash-
Map<String,List<Instance>>() ;

private LinkedHashMap<Model,List<Modellnstance>> distancePair;

private LinkedHashMap<Model,List<Modellnstance>> Ic; //The set Ic of candidate prevalence
co-location patterns

private LinkedHashMap<Model,List<Modellnstance>> Ic2; // The set Ic2 of candidate preva-
lence co-location patterns

private LinkedHashMap<Model,Double> Ik;// The set Ik of the size-k candidate prevalence co-
location patterns

private LinkedHashMap<Model,Double> |k2;// The set k2 of the size-k+1 candidate prevalence
co-location patterns

private String filename;

Ik Ic ->1k2,Ic2

double distance;//The distance D
private double minSup;//The min_prev
private String eTime;

int k;

public void read(Statement stmt,String filename) throws |OException,SQLException {
eventmap=new LinkedHashMap<String,List<Instance>>();
String eventType;
String eventTypeTemp="";
int instanceNumber=0;
double x=0;
double y=0;
List<Instance> listinstance;
listinstance=new ArrayList<Instance>();
String sqlStr="select * from "+filename.trim()+" order by 1,2";
ResultSet rs = stmt.executeQuery(sqlStr);
/I Return a set of results
/ISystem.out.printin("the event originality data:");
//System.out.printin("type "+" "+"id"+"x"+"y");

while (rs.next()) {
eventType=rs.getString(1).trim();
String bl=rs.getString(2);
instanceNumber=Integer.valueOf(bl);
x=Double.valueOf( rs.getString(3));
y=Double.valueOf(rs.getString(4));
/*
* eventType=rs.getString("event_type").trim();
String bl=rs.getString("event_id");
instanceNumber=Integer.value Of(bl);
x=Double.valueOf( rs.getString("x"));
y=Double.valueOf(rs.getString("y"));
*/

Instance instance1=new Instance(instanceNumber,x,y);
//System.out.printin(eventType + " " + instanceNumber+" "+x+" "+y);
if (eventmap.keySet().contains(eventType)==false{
listinstance=new ArrayList<Instance>();
eventmap.put(eventType, listinstance);

eventmap.get(eventType).add(instance1);
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Ylend file
}/end FileReadIn

public LinkedHashMap<Model,List<Modellnstance>>
caculateDistance(double disParameter){

LinkedHashMap<Model,List<Modellnstance>> distancePair=new LinkedHash-
Map<Model,List<Modellnstance>>();

Model joinEvent;

List<Modellnstance> listModellnstance;

List<String> eventList=new ArrayList<String>();
String eventOne,eventTwo;

List<Instance> instanceListOne,instanceListTwo;
eventList.addAll(eventmap.keySet());
/ISystem.out.printin("the eventlist is:"+eventList);
for(int i=0;i<eventList.size()-1;i++)
eventOne=eventList.get(i);
instanceListOne=eventmap.get(eventOne);

/[The following is to print event1 and its instances
/ISystem.out.printin("The following is to print event1 and its instances ");
//System.out.printin("The instances are:"+eventOne);

/*

System.out.printin("the one instance list is:");

for(int k=0;k<instanceListOne.size();k++)

instanceListOne.get(k).printinstance();

}

*/
for(int j=i+1;j<eventList.size();j++)
listModellnstance=new ArrayList<Modellnstance>();
eventTwo=eventList.get(j);
instanceListTwo=eventmap.get(eventTwo);

if(distance(listModellnstance,
instanceListOne,
instanceListTwo,
disParameter)
X
joinEvent=new Model();
joinEvent.list.add(eventOne);
joinEvent.list.add(eventTwo);
distancePair.put(joinEvent,listModellnstance);
/ISystem.out.println (" xxxxxxrrremy,
/*
joinEvent.printList();
for(int k=0;k<listModellnstance.size();k++)

System.out.printin(listModellnstance.get(k).toString());

*/

}

return distancePair;
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}

/lcomputing the distances

public boolean distance(List<Modellnstance> listModellnstance,
List<Instance> instancelList1,
List<Instance> instanceL.ist2,
double disParameter){

Instance instance1,instance2;
double result;
Modellnstance modellnstance;
for(int i=0;i<instancelList1.size();i++){
instance1=instancelL.ist1.get(i);
for(int j=0;j<instanceList2.size();j++){
instance2=instanceList2.get(j);
result=Math.sqrt(
(instance1.getX()-instance2.getX())*
(instance1.getX()-instance2.getX())+
(instance1.getY()-instance2.getY())*
(instance1.getY()-instance2.getY()) );

if (result<=disParameter){
[/System.out.printin(result);
modellnstance=new Modellnstance();
modellnstance.add(instance1.getNumber());
modellnstance.add(instance2.getNumber());
listModellnstance.add(modellnstance);

if(listModellnstance.size()>0)
return true;
return false;

/lprinting the originality data
public void printEvent(){
Set s1=eventmap.keySet();
Iterator<String> itEvent=s1.iterator();
while(itEvent.hasNext()){
String event=itEvent.next();
System.out.printin("the key is:"+event);
List<Instance> listinstance1=eventmap.get(event);
System.out.printin("listinstance.size():"+listinstance1.size());
Iterator<Instance> itInstance=listinstance1.iterator();
while(itinstance.hasNext()){
System.out.printin(itinstance.next().toString());

}

}

public void printPK(LinkedHashMap<Model,List<Modellnstance>> pk,int i,String message){
System.out.printin(message+i+" the start of printing");
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Set s1=pk.keySet();

Iterator<Model> it=s1.iterator();

while(it.hasNext() X
Model model=it.next();
List<Modellnstance> listinstance1=pk.get(model);
System.out.print(model);
System.out.printin(" length="+listinstance1.size());
Iterator<Modellnstance> itinstance=listinstance1.iterator();
while(itinstance.hasNext()){

System.out.printIn(itinstance.next().toString());

}
}

System.out.printin(message+i+"the end of printing");

}

/[Printing the Pi values of the co-locations

public void printSup(LinkedHashMap<Model,Double> Ik,int i){
System.out.printin("The Pi value"+i+"is:");
System.out.printin(lk.keySet().toString());
System.out.printin(lk.values().toString());

}

//Computing the Pi values of the co-locations
public LinkedHashMap<Model,Double> calculateSup
( LinkedHashMap<Model,List<Modellnstance>> Ic,int k,Statement stmt)
throws SQLException {

Ik=new LinkedHashMap<Model,Double>();

Set s2=lIc.keySet();

List listDistinct;

Integer sz;

double supTemp=1.0;

double supNow=1.0;

double everyCount=1.0;

double everyOCount=1.0;

String eventType;

/IGenerating an instance-table
IIstmt.executeUpdate("CREATE TABLE col_link (sitename varchar (20) NULL ,siteurl varchar
(50) NULL) ");

String createP="create table p"+k+"(INum decimal(10),";
for(int i=1;i<=k;i++){

createP=createP+"type"+i+" char(10),";
}

ResultSet rt=stmt.executeQuery("select count(*) as n " +

"from sysobjects where name ='p"+k+"");

if (rt.next()) {

int num=Integer.valueOf(rt.getString("n"));

if (num>0)

stmt.executeUpdate("drop table p"+k);

}

}

createP=createP+"pi decimal(10,2))";
/[System.out.printin(createP);
stmt.executeUpdate(createP);

Iterator<Model> it2=s2.iterator();
int INum=0;
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while(it2.hasNext() X
Model key2=it2.next();//eg. AB
//System.out.printin("the key is:"+key2);
List<Modellnstance> value2=lc.get(key2);
supTemp=1.0;// Computing the Pi values of the co-locations again
//System.out.printin("value.size():"+value2.size());
[/System.out.pringln(**# s xxrm),
for(int i=0;i<k;i++){
listDistinct=new ArrayList<Integer>();
/[System.out.printin( +i);
for(int j=0;j<value2.size();j++X
sz=value2.get(j).get(i);
/[System.out.printin(sz);
if (listDistinct.contains(sz)==false){
listDistinct.add(sz);

}
}lend for
everyCount=listDistinct.size();
//System.out.printin("distinct count: "+everyCount);
eventType=key2.get(i);
everyOCount=eventmap.get(eventType).size();
/[System.out.printin("Object count: "+everyOCount);
supNow=everyCount/everyOCount;
//System.out.printin("supNow: "+supNow);
if (supTemp>supNow){

supTemp=supNow;

}

Y/endfor
/ISystem.out.printin("supTemp: "+supTemp);
if (supTemp>=minSup){
INum++;
Ik.put(key2, supTemp);
/Istmt.executeUpdate("insert into col_link values('ASP Chinese Network
''http://www.aspcn.com/')");
String s3="insert into p"+k;
String s4="INum,";
String s5=INum+".";
for(int m=1;m<=key2.size();m++)
s4=s4+"type"+m+",";
s5=s5+"\""+key2.get(m-1).toString().trim()+"\""+",";

s3=s3+" ("+s4+"pi ) values("+s5+supTemp+")";

/[System.out.printin("s3="+s3);
stmt.executeUpdate(s3);

for(int i=0;i<value2.size();i++)X
s3="insert into t"+k;
s4="INum,";
s5=INum+",";
for(int j=0;j<k;j++){
s4=s4+"id"+(j+1);
s5=s5+value2.get(i).get(j);
if (j<k-1)
s4=s4+"";
s5=s5+",";

}

$3=53+" ("+s4+" ) values("+s5+")";
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/[System.out.printin("s3="+s3);
stmt.executeUpdate(s3);

}

}
Ylend while

return Ik;
I

public void generateModel(
LinkedHashMap<Model,List<Modellnstance>> Ic,
LinkedHashMap<Model,Double> Ik,
LinkedHashMap<Model,List<Modellnstance>> distancePair,
int index,
LinkedHashMap<Model,List<Modellnstance>> Ic2
X
I/ lc Ik distancePair k ->Ic2
Model source,target;
List<Model> keys=new ArrayList<Model>();/
//System.out.printin("generateModel");
/ISystem.out.printin(lk.keySet());
keys.addAll(lk.keySet());
for(int i=0;i<keys.size()-1;i++)}
source=keys.get(i);
//System.out.printin("source:"+source);
/ffor(int k=0;k<source.size();k++)
//System.out.print(source.list.get(k));
/[System.out.printin("");
for(int j=i+1;j<keys.size();j++X
target=keys.get(j);
//System.out.printin("target:"+target);

if(source.partialEqual(target, index) X
Model searchModel=new Model();
searchModel.add(source.get(source.size()-1));
searchModel.add(target.get(source.size()-1));
/[System.out.printin("searchModel:"+searchModel);
Model newModel=new Model();
newModel.addPartialValue(source, index);
newModel.addPartialValue(searchModel, searchModel.size());

int k=index+2;/

int m=0;
boolean xhbl=true;
while(xhbl==true && m<k-2)}{
Model zh=new Model();
for(int n=0;n<k;n++)
if (n'=m)

zh.add(newModel.get(n));

}
}

m++;
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if(Ik.containsKey(zh)==false {
xhbl=false;//

}
Y/end while
if (xhbl==true{
Ic2.put(newModel, new ArrayList<Modellnstance>());
//Generating table-instances
generatelnstance(lc.get(source),
Ic.get(target), index,searchModel,newModel);

public void generatelnstance(List<Modellnstance> sourceList,
List<Modellnstance> targetList,int index,
Model searchModel,Model newModel){
/[distancePair,index,
/l[searchModel BC,newModel ABC

Modellnstance sourcel,targetl;
List<Modellnstance> distancelnstance;/
for(int i=0;i<sourcelList.size();i++)X
sourcel=sourcelList.get(i);//eg 11
for(int j=0;j<targetList.size();j++){
targetl=targetList.get(j);//eg 12
if(sourcel.partialEqual(targetl, index) ¥
Modellnstance searchinstance,newlnstance;
searchlnstance=new Modellnstance();
newlnstance=new Modellnstance();
searchlnstance.add(sourcel.get(sourcel.size()-1));
searchlnstance.add(targetl.get(targetl.size()-1));

/[System.out.printin("searchl:"+searchinstance);

distancelnstance=distancePair.get(searchModel);

if (distancelnstance.contains(searchinstance)){
newlnstance.addPartialValue(sourcel, index);
newlnstance.addPartialValue(searchinstance, searchinstance.size());
Ic2.get(newModel).add(newlnstance);

Ylendif
Ylendif

}/endfor
YI end for

public java.util.Date accountTime(java.util.Date nowTime1,String message){
java.util.Date nowTime2=
new java.util.Date(System.currentTimeMillis());
long hms2 = nowTime2.getTime();
long hms1 = nowTime1.getTime();
long jg_hms = hms2 - hms1,;
System.out.print(message);
[[System.out.printin("The last running time: " + nowTime1);
[[System.out.printin("The running time of this work: " + nowTime2);
[[System.out.printin("Conversing it to milliseconds: " + hms1);
[[System.out.printin("Conversing it to milliseconds: " + hms2);
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System.out.printin(" : " + jg_hms+"milliseconds");
return nowTime2;

}
public void genPT(int k,Statement stmt) throws SQLException{

IIstmt.executeUpdate("CREATE TABLE col_link (sitename varchar (20) NULL ,siteurl varchar
(50) NULL) ");

String createP="create table t"+k+"(INum decimal(10),";
for(int i=1;i<=k;i++){

createP=createP+"id"+i+" decimal(10)";

if (i<k){

createP=createP+",";

}

}

createP=createP+")";
//System.out.printin(createP);
ResultSet rt=stmt.executeQuery("select count(*) as n from sysobjects where name
=HKH);
if (rt.next()) {
int num=Integer.valueOf(rt.getString("n"));
if (num>0)
stmt.executeUpdate("drop table t"+k);
}
}

stmt.executeUpdate(createP);

public void genTable(Statement stmt) throws SQLException{
String createP="";
for(int i=1;i<=k;i++){
createP="create table t"+i+"(INum decimal(2))";
//System.out.printin(createP);

stmt.executeUpdate(createP);

}

public void mainProg(double m,double d,String filename) throws |OException,SQLException{
this.minSup=m;
this.distance=d;
k=2;

java.util.Date startTime=
new java.util.Date(System.currentTimeMillis());

String url = "jdbc:odbc:sqglFullJoin™;

Connection con;

Statement stmt;

try {
Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");/

} catch(java.lang.ClassNotFoundException e) {
System.err.print("ClassNotFoundException: ");/
System.err.printin(e.getMessage());//

}

try {
con = DriverManager.getConnection(url, "sa", "739555");//

stmt = con.createStatement(); //
read(stmt,filename);
/lprintEvent();
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java.util.Date t2=accountTime(startTime,"Input the data");
java.util.Date t1=t2;

distancePair=caculateDistance(distance);
t2=accountTime(t1,"Computing the distances");
t1=12;

genPT(2,stmt);
Ik=calculateSup(distancePair,k,stmt);
/lprintSup(lk,2);

t2=accountTime(t1,"The size-2 co-locations");
t1=t2;

Ic=distancePair;

for(int i=2;i<eventmap.size();i++){
if (Ik.isEmpty()X
System.out.printin("The end of the program!");
break;

}

Ic2=new LinkedHashMap<Model,List<Modellnstance>>();
generateModel(lc,lk,distancePair,i-1,lc2);

genPT((i+1),stmt);
Ik=calculateSup(lc2,i+1,stmt);/

Ic=lc2;
t2=accountTime(t1,"The size"+(i+1)+"prevalence co-locations");
t1=12;

}

stmt.close();
con.close();

} catch(SQLException ex) {
System.err.printin("SQLException: " + ex.getMessage());

}

java.util.Date endTime=accountTime(startTime,"the whole time ");

}

/*
public static void main(String args[]) throws IOException,SQLException{
FullJoin event=new FullJoin();

event.mainProg(0.2,3000,"event300");

}

*/

public static void main(String[] args) throws IOException,SQLException {
double r,minprev;
String filename;
FullJoin colocation=new FullJoin();

if(args.length 1= 3){
System.out.printin("Please input parameters: The first one is the distance D, the second
is the min-prev, and the third is the name of the file ");
return;

}
try{
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r = Double.valueOf(args[0]);
minprev = Double.valueOf(args[1]);
filename=args[2].trim();
}catch(Exception e){
System.out.printin("The parameters inputted by you are wrong, please input them again!");
return;
}
System.out.printin("full join" );
System.out.print("R: " +r);
System.out.print(" min Prev:" + minprev);
System.out.printin("  file name:" + filename);

colocation.mainProg(minprev,r.filename);

Y/ end main

*hkkkkkkkhkkkkkhkkhkkkhhkhkhkhkkhkkhkkhkhhhhhkhkhkkhkhkkhkhhhhhhkhkhkhkhhhhhhhhhhkhhhhhhhhkhhkhhhhkhkkkkkkx

LessJoin.java //Join-less algorithm
package SFullSjk;

import java.io.lOException;
import java.util.”;
import java.sql.”;

public class LessJoin {
private LinkedHashMap<String,List<Instance>> eventmap=new

LinkedHashMap<String,List<Instance>>() ;
private LinkedHashMap<Model,List<Modellnstance>> distancePair;
private LinkedHashMap<String,Sneighber> starN;
private LinkedHashMap<Model,List<Modellnstance>> Ics1;
private LinkedHashMap<Model,List<Modellnstance>> Ic;
private LinkedHashMap<Model,Double> lks1;
private LinkedHashMap<Model,Double> Ik;
private int iNum=0;

double distance;
private double minSup;

int k;
public void read(Statement stmt,String filename) throws

IOException,SQLException {
eventmap=new LinkedHashMap<String,List<Instance>>();
String eventType;
int instanceNumber=0;
double x=0;
double y=0;
List<Instance> listinstance;
listinstance=new ArrayList<Instance>();
String sqlStr="select * from "+filename.trim()+"

order by 1,2";
ResultSet rs = stmt.executeQuery(sqlStr);
while (rs.next()) {
eventType=rs.getString(1).trim();
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String bl=rs.getString(2).trim();
instanceNumber=Integer.valueOf(bl);
x=Double.valueOf( rs.getString(3));
y=Double.valueOf(rs.getString(4));

Instance instance1=new Instance
(instanceNumber,x,y);

if (eventmap.keySet().contains(eventType)==false){
listinstance=new

ArrayList<Instance>();
eventmap.put(eventType,

listinstance);

}

eventmap.get(eventType).add(instance1);

Ylend file
}/end FileReadIn

/IGenerating the set of the star neighborhoods
public LinkedHashMap<String,Sneighber> genStarN(double disParameter){

starN=new LinkedHashMap<String,Sneighber>();
Sneighber sneighber;

Sevent sevent;

List<Integer> slist;

List<String> eventList=new ArrayList<String>();
String eventOne,eventTwo;
Instance instance1,instance2;
List<Instance> instanceListOne,instanceListTwo;
eventList.addAll(eventmap.keySet());
for(int i=0;i<eventList.size()-1;i++){
eventOne=eventList.get(i);
instanceListOne=eventmap.get(eventOne);
sneighber=new Sneighber();
starN.put(eventOne, sneighber);
for(int m=0;m<instanceListOne.size();m++){
instance1=instanceListOne.get(m);
sevent=new Sevent();
sneighber.put(instance1.getNumber(), sevent);
for(int j=i+1;j<eventList.size();j++)
eventTwo=eventList.get(j);
instanceListTwo=eventmap.get(eventTwo);
slist=new ArrayList<Integer>();
for(int n=0;n<instanceListTwo.size();n++){
instance2=instanceListTwo.get(n);
double jl=distance

(instance1,instance2);
if(jl<=disParameter){
slist.add

(instance2.getNumber());

Ylendif
Y/endfor instanceListTwo
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if (slist.size()>0)
{

sevent.put(eventTwo, slist);

Ylend for eventList
Ylend for eventList
Ylend for
return starN;

}

public double distance(Instance instance1, Instance instance2 ¥
double result;
result=Math.sqrt(
(instance1.getX()-instance2.getX())*
(instance1.getX()-instance2.getX())+
(instance1.getY()-instance2.getY())*
(instance1.getY()-instance2.getY()) );
return result;

public void printEvent(}{

Set s1=eventmap.keySet();

Iterator<String> itEvent=s1.iterator();

while(itEvent.hasNext()){
String event=itEvent.next();
System.out.printin("the key is:"+event);
List<Instance> listinstance1=eventmap.get(event);
System.out.printin("listinstance.size

():"+listinstance1.size());
Iterator<Instance>

itinstance=listinstance1.iterator();
while(itinstance.hasNext()){
System.out.printin(itinstance.next

()-toString());
}

}

public void printPK(LinkedHashMap<Model,List<Modellnstance>> pk,int i,String message){
System.out.printin(message+i+"The beginning of printing");
Set s1=pk.keySet();
Iterator<Model> it=s1.iterator();
while(it.hasNext()§
Model model=it.next();
List<Modellnstance> listinstance1=pk.get(model);
System.out.print(model);
System.out.printin(" length="+listinstance1.size());
Iterator<Modellnstance>

itinstance=listinstance1.iterator();

while(itinstance.hasNext()){
System.out.printin(itinstance.next
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().toString());
}

}

System.out.printin(message+i+"The end of printing");

}

/[Printing the Pi values

public void printSup(LinkedHashMap<Model,Double> Ik,int i)
System.out.printin("The Pi value of"+i+"co-location:");
System.out.printin(lk.keySet().toString());
System.out.printin(lk.values().toString());

}
1lp1

public LinkedHashMap<Model,Double> p1()
Ik=new LinkedHashMap<Model,Double>();

Model model1;
List<String> eventList=new ArrayList<String>();
eventList.addAll(eventmap.keySet());
String event1;
for(int i=0;i<eventList.size();i++){
event1=eventList.get(i);
model1=new Model();
model1.add(event1);
Ik.put(model1, 1.0);

}

return Ik;

}
public void genP( int k,Statement stmt) throws SQLException

//stmt.executeUpdate("CREATE TABLE col_link (sitename varchar (20) NULL ,siteurl varchar
(50) NULL) ";

String createP="create table pl"+k+"(INum decimal(10),";
for(int i=1;i<=k;i++){

createP=createP+"type"+i+" char(10),";
}

ResultSet rt=stmt.executeQuery("select count(*) as n " +

"from sysobjects where name ='pl"+k+"");

if (rt.next()) {

int num=Integer.valueOf(rt.getString("n"));

if (num>0)

stmt.executeUpdate("drop table pl"+k);

}

}

createP=createP+"pi decimal(10,2))";
stmt.executeUpdate(createP);

public void supExact( int k,Statement stmt,double supTemp,Model key,
List<Modellnstance> value) throws SQLException

{
if (supTemp>=minSup){
iNum-++;
Ic.get(key).addAll(value);
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Ik.put(key, supTemp);
String s3="insert into pl"+k;
String s4="INum,";
String s5=iNum+",";
for(int m=1;m<=key.size();m++){
s4=s4+"type"+m+".";
s5=s5+"\""+key.get(m-1).toString().trim()

+ll\l|l+|l,";

s3=s3+" ("+s4+"pi ) values("+s5+supTemp+")";
stmt.executeUpdate(s3);

for(int i=0;i<value.size();i++){
s3="insert into tI"+k;
s4="INum,";
s5=iNum+",";
for(int j=0;j<k;j++X
s4=s4+"id"+(j+1);
s5=s5+value.get(i).get(j);
if (j<k-1)%
s4=s4+"";
s5=s5+",";

}

§3=s3+" ("+s4+" ) values("+s5+")";
stmt.executeUpdate(s3);
}
}

}

public double sup( int k,Model key,List<Modellnstance> value){
List listDistinct;
Integer sz;
double supTemp=1.0;
double supNow=0.0;
double everyCount=0.0;
double everyOCount=0.0;
String eventType;
if(value.size()==0){
supTemp=0.0;
return supTemp;
}elsef

for(int i=0;i<k;i++)}{
listDistinct=new ArrayList<Integer>();
for(int j=0;j<value.size();j++)
sz=value.get(j).get(i);
if (listDistinct.contains(sz)

==false){
listDistinct.add(sz);
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Ylend for
everyCount=listDistinct.size();

eventType=key.get(i);
everyOCount=eventmap.get(eventType).size();
supNow=everyCount/everyOCount;

if (supTemp>supNow){

supTemp=supNow;

}

Y/endfor
return supTemp;
Ylend if

public boolean supCoarse( Model key,double supTemp){
if (supTemp<minSup){

Ic.remove(key);
/ISystem.out.printin("coarse delete!"+key);
return true;

Yelse{
return false;

}

}
public List<Modellnstance> filterClique(int k,Model

key,List<Modellnstance> value){
/I 3 abc,111 242 331 Ics1
Model checkKey=new Model();
Modellnstance checkValue;
List<Modellnstance> valueNew=new ArrayList<Modellnstance>();
List<Modellnstance> cliqueValue=new

ArrayList<Modellnstance>();
for(int i=1;i<k;i++){
checkKey.add(key.get(i));
}

cligueValue=Ics1.get(checkKey);
for(int i=0;i<value.size();i++){
checkValue=new Modellnstance();
for(int j=1;j<value.get(i).size();j++)
checkValue.add(value.get(i).get()));

if (cliqueValue.contains(checkValue)==true){
valueNew.add(value.get(i));

}

return valueNew;

}
public void genModel(int index ){
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Model source,target;
List<Model> keys=new ArrayList<Model>();
keys.addAll(lks1.keySet());
for(int i=0;i<keys.size();i++){
source=keys.get(i);
for(int j=i+1;j<keys.size();j++){
target=keys.get(j);
if(source.partialEqual(target, index) X
Model searchModel=new Model();
searchModel.add(source.get

(source.size()-1));
searchModel.add(target.get

(source.size()-1));
/ISystem.out.printin

("searchModel:"+searchModel);
Model newModel=new Model();
newModel.addPartialValue(source,

index);
newModel.addPartialValue

(searchModel, searchModel.size());

int k=index+2;

int m=0;
boolean xhbl=true;
while(xhbl==true && m<k-2)}{
Model zh=new Model();
for(int n=0;n<k;n++){
if (n!I=m)

zh.add
(newModel.get(n));
}
}

m++;
if(lks1.containsKey(zh)
==false){

//System.out.printin(newModel);
//System.out.printin(zh);
xhbl=false;/

}

Y/end while

if (xhbl==true{
lc.put(newModel, new

ArrayList<Modellnstance>());
}
}
}
}
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}

public void geninstance(int k,Statement stmt) throws SQLException{
/l'lc(k)+starN->Instance of Ic(k)
List<Model> keys;
List<Integer> keys2;
Sevent sevent;
List<Modellnstance> list1,list3,list;
List<Integer> list2;
Modellnstance id1;
keys=new ArrayList<Model>();
keys.addAll(lc.keySet());
int centerld;

for(int i=0;i<keys.size();i++){
Model model=keys.get(i);
[INum++;

String center,neighber;
center=model.get(0);
Sneighber sneighber=starN.get(center);

keys2=new ArrayList<Integer>();
keys2.addAll(sneighber.map.keySet());
list=new ArrayList<Modellnstance>();
for(int n=0;n<keys2.size();n++){
centerld=keys2.get(n);//1
id1=new Modellnstance();
id1.add(centerld);
list1=new ArrayList<Modellnstance>();
list3=new ArrayList<Modellnstance>();
list1.add(id1);
sevent=sneighber.get(centerld);
boolean kg=true;
for(int j=1;j<model.size();j++){
neighber=model.get(j);

if (sevent.containsKey(neighber)X{
/lif (center.equals("AA") &&

neighber.equals("CC"))
[System.out.printin

(neighber);}
list2=sevent.get(neighber);
Nist1*list2->list3
list3=geninstance2

(list1,list2);
list1=list3;
}
else{
kg=false;
break;

}
Ylend keys2
/Imodel list3
if(kg==true){
list.addAll(list3);
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}

}/end model
if(k>2){

double sup1=sup(k,model,list);
if (supCoarse(model,sup1)==false){

list=filterClique(k,model,list);

double sup3=sup(k,model,list);
supExact( k,stmt,sup3,model,list);

Yelse{

double sup2=sup(k,model,list);
supExact( k,stmt,sup2,model,list);

}
YI end for
}

public List<Modellnstance> geninstance2(List<Modellnstance>, list1,List<Integer> list2){
List<Modellnstance> list=new ArrayList<Modellnstance>();
Modellnstance modell;
int id;
for(int i=0;i<list1.size();i++){
for(int j=0;j<list2.size();j++)
modell=new Modellnstance();
modell.addAll(list1.get(i));
id=list2.get(j);
modell.add(id);
list.add(modell);
Y/ end list2
Ylend list1
return list;

}

public java.util.Date accountTime(java.util.Date nowTime1,String, message){
java.util.Date nowTime2=
new java.util.Date(System.currentTimeMillis());
long hms2 = nowTime2.getTime();
long hms1 = nowTime1.getTime();
long jg_hms = hms2 - hms1;
System.out.print(message);

System.out.printin(" : " + jg_hms+"milliseconds");
return nowTime2;

}
public void genT(int k,Statement stmt) throws SQLException{

/Istmt.executeUpdate("CREATE TABLE col_link (sitename
varchar (20) NULL ,siteurl varchar (50) NULL) ");

String createP="create table tI"+k+"(INum decimal(10),";
for(int i=1;i<=k;i++){

createP=createP+"id"+i+" decimal(10)";

if (i<k){

createP=createP+",";

}

}

createP=createP+")";

181



An Investigation in Efficient Spatial Patterns Mining

ResultSet rt=stmt.executeQuery("select count(*) as n

from sysobjects where name ='tI"+k+"");
if (rt.next()) {
int num=Integer.valueOf(rt.getString("n"));
if (num>0)
stmt.executeUpdate("drop table tI"+k);
}
}

stmt.executeUpdate(createP);

public void mainProg(double m,double d,String filename) throws

IOException,SQLException{
this.minSup=m;
this.distance=d;
java.util.Date startTime=
new java.util.Date(System.currentTimeMillis());

String url = "jdbc:odbc:sqlFullJoin™;

Sqldsn is the name of the dsn

Connection con;

Statement stmt;

try {
Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

} catch(java.lang.ClassNotFoundException e) {
System.err.print("ClassNotFoundException: ");
System.err.printin(e.getMessage());/

}

try {
con = DriverManager.getConnection(url, "sa",

"739555");
stmt = con.createStatement();

read(stmt,filename);//printEvent();//
java.util.Date t2=accountTime(startTime,"Input the data");
java.util.Date t1=t2;
starN=genStarN(distance);//
t2=accountTime(t1,"generating the set of the star neighborhoods");
t1=t2;
lks1=p1();

for(int k=2;k<=eventmap.size();k++){
if (Iks1.isEmpty()){
System.out.printin("The end of the program!");
break;

}

lc=new

LinkedHashMap<Model,List<Modellnstance>>();
Ik=new LinkedHashMap<Model,Double>();
genModel(k-2);
genP( k,stmt); genT(k,stmt);
geninstance(k,stmt);
IprintPK(Ic,k,"The set of the candidate co-locations ");
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/lprintSup(lk,k);
lks1=Ik;
Ics1=Ic;
t2=accountTime(t1,"The size"+k+"co-locations");
t1=t2;
}
stmt.close();
con.close();

} catch(SQLException ex) {
System.err.printin("SQLException: " + ex.getMessage());

java.util.Date endTime=accountTime(startTime,"the whole time");

public static void main(String args[]) throws
public static void main(String[] args) throws

IOException,SQLException {
double r,minprev;
String filename;
LessJoin colocation=new LessJoin();
if(args.length 1= 3){
System.out.printin("Please input the parameters: The distance D, the min-prev and the
name of the file. ");
return;
}

try{
r = Double.valueOf(args[0]);
minprev = Double.valueOf(args[1]);
filename=args[2].trim();
}catch(Exception e){

System.out.printin("Your input is wrong, please input again!");
return;

}

System.out.printin("less join" );
System.out.print("R: " +r);
System.out.print(" min Prev:" + minprev);
System.out.printin("  file name:" + filename);
colocation.mainProg(minprev,r.filename);

}/ end main
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AOG-ags Algorithms and Applications”
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1
Department of Computer Science and Engineering, School of Information, Yunnan Uni-

versity. Kunming, 650091, P. R. China
Lzhwang @ vou.edu.cn
? Department of Informatics, School of Computing and Engineering, University of Hudders-
field, Huddersfield, UK, HD1 3DH

Abstract. The attribute-oriented generalization {AOG for short) method is one
of the most important data mining methods. In this paper, a reasonable ap-
proach of AOG (AOG-ags, attribute-oriented generalization based on attrib-
utes” generalization sequence), which expands the traditional AOG method ef-
ficiently, 1s proposed. By miroducing equivalence partition frees, an optimiza-
tion algorithm of the ADG-ags 15 devised. Defining interestingness of attrib-
utes’ generalization sequences, the selection problem of attributes’ generaliza-
tion sequences 1s solved. Extensive experimental results show that the AOG-
ags are useful and efficient. Particularly, by using the AOG-ags algorithm in a
plant distributing dataset, some distributing rules for the species of plants in an
area are found interesting.

Keywords: Attribute-oriented generalization (AOG); Concept hierarchy trees;
Attributes” generalization sequences (AGS); Equvalence partition trees; Inter-
estingness of AGS.

1 Introduction

The general 1dea of Attribute-oniented generalization (AOG) 1s to abstract each attrib-
ute of each record in a relation from a relatively low conceptual level to higher con-
ceptual levels by usmg domaimn knowledge(Concept Hierarchy Trees), in order to
discover rules among attributes from multilevel or lugher lever. Two AOG algonithms
are well-known: AQI [1] and LCHR [2]. Both are not incremental and also don't
allow fast re-generalization. An AOG method possessing fast re-generalization was
proposed in literature [3]. However, 1t 1s not perfect m efficiency and occupies too
much memory space.

C. L. Carter and H. J. Hanulton proposed two new AQOG algonthms (the GDBR
and the FIGR) 1n literature [4]. The GDBRE. 1s an online algorithm. while the FIGR has
charactenistics of incremental and fast re-generalization. One important thing 1s that
the mantime of the GDBR and the FIGR is less than the AOI and the LCHE. But there
15 a supposition m the FIGR. That 1s that the size of attributes and the number of the
possible values m an attribute are relatively small. In addition, the four algorithms

* Supported by the Naticnal Natural Science Foundation of China under Grant No. 60463004
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control generalization levels by using attribute thresholds. That 1s not so practical in
some applications, because it 1s impossible to tryv every possible combination of
thresholds for every attribute, and the size of attributes and the number of the possible
values of an attribute are not small in some practical applications.

Considering the generalization threshold, besides the attribute thresholds, Chen [3]
and Han [6] discussed the degree of tuple (record) generalization (1e. tuple thresh-
olds), and the problem of combining the attribute thresholds and the tuple thresholds.
Under the tuple thresholds, it 15 convenient to control the process of AOG. But the
low-efficiency of AOG algorithms becomes the main problem in 1ts applications, for
we have to consider all combinations of attributes which satisfy the tuple threshold in
an attribute-oriented generalization process, and explain the results of generalization
(or rank them for user).

In this paper, by introducing the concept of the attributes” generalization sequence,
the attribute thresholds and the tuple thresholds are unified. and a reasonable ap-
proach of AOG—AOG-ags (Attribute-Onented Generalization based on Attributes’
Generalization Sequences), which expands the traditional AOG efficiently, 15 pro-
posed. Some technologies, for example, partitions, equivalence partition trees, prune
optimization strategies and interestingness, are used to improve the efficiency of the
algorithm. It 1s shown that the AQG-ags algorithm has special advantages.

The rest of the paper is organized as following Section 2 formally defines the con-
cept of the degree of tuple generalization. and mntroduces the method of AOG based
on attributes” generalization sequence (AOG-ags). In Section 3, by mtroducing the
equivalence partition trees, an optimization algorithm of AQG-ags is devised. Inter-
estingness of attributes’ generalization sequences 15 discussed i Sect. 4. Section 3
discusses correctness, completeness and complexity of our algorithms. Performance
and application results of algorithms are evaluated i Sect. 6. The last Section 15 con-
clusions.

2 AOG-ags

In traditional AOG algorithms, the generalization process 1s controlled by setting a
threshold for each attribute. But in some applications, user does not want to consider
each attribute for generalization threshold, so the degree of tuple generalization is
introduced.

. - . (7 . L N
Definition 1 Given a relation "%~~") and the generalization relation Vi ﬂ),

then the rate of reserved tuples is defined as Z=#"/% g0 the degree of tuple
generalization is defined asZ =1-Z=1-(7"/n)_

Z 1s a measure for the degree of tuple generalization. The higher is the value of Z,
the greater the degree of generalization. The value £ meetsp< 7 < (n—1)/n-

Z cannot confirm certain generalization result. That is to say, given a tuple thresh-
old Z. we will get some generalization relations that satisfy this threshold Z. But ana-

lyzing the process of AQG, we find that generalization for each attribute 1s independ-
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ent, that 1s. an attribute 1s generalized earlier or latter will not affect the generalization
result. Further to say, generalization result 1s the same no matter that it 1s obtained by
generalizing gradually or directly up to the k-th level, so attributes’ generalization
sequences (AGS for short)is introduced in this research. One AGS confirms certain
generalization relation.

The Depth of certain node V in the tree is defined as the path length from root to 'V,
the Height of V is the length of the longest path in the tree whose root 18 V. The
Height of the tree 1s the Height of its root. The Level of V 1s 1ts Depth more 1.

Definition 2 Given a relation pattern R4 -4 aptributes” concept hierarchy

P | 1B, A%, fl= . .
12" sequence™™ " “w"is called an AGS of

!

trees ="M the Heights of trees

AOG, where (1 <& =l +1}.

i {,+1)
Property 1 The number of all AGS 1n a relation pattern isl;l -

Proaf. “* One sequence g ...g,...g can only confirm one AGS
Af AR AR
Meanwhile,'.' 1 < g <h+1 lg, =L +1 (1si<m)

.. The number of attributes” generalization sequences 1s:

(41 + Do (L + D =TT +D) =

Definition 3 Given the tuple threshold Z. If the generalization relation’ (o7}
which are confirmed by the AGS 4% 4% +Ar (128 2L 1y qatisfies 1-00/m 22 and if

(1=iZm)

) N . . : % " B, A¥s
increasing any & . it will not satisfy ! /M2 then A4 ig called an

AGS which satisfies the Z. and () 15 called a generalization result
under & A

From Defimition 3. we can conclude that the AOG method of using attribute
thresholds 15 a special case of using the tuple thresholds. That 1s to say, the attribute
thresholds and the tuple thresholds are unified under the concept of AGS. The AOG
based on AGS (for short, call it AOG-ags) 1s an efficient extension to the traditional
approach.

An ordinary AOG-ags algorithm 1s devised as follows.
Algorithm 1: The ordinary AOCG-ags algorithm

Input: The un-generalized dataset (relaticon) ¥, which has m
attributes{ A,,RA...R, },Attributes’ concept hierarchy
[T o , | _
trees V'l m}and the height of trees{- ”}.T:e tuple
threshold Z
Cutput: Generalization rules which meet the Z
Llgorithm description
1) Gen seg{relation,l,m,L,,5,Gs);
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2) Selecting a segquence from the set Gs of AGS and returning
a generalization relaticn;

3) Preoducing gensralization rules frem the generalization re-
latiom.

Procedure Gen seqir,i,m,Li, 5,Gs);
(1) For k=Li+l downto 1 Do

(2] Begin If k< Li+l then

(3) Gen r - generalize (r,1i,k)

(4) Else Gen r «r Endif;

=y If i«m then

(&) Gen seq (Gen r,i+l,m,Li+l,SU RAki,Gs)

(7 Else

(8] If |Gen-r|=n(l-Z) then

(9) Gs —GsU {SU Aki)

endif
Endif
End

When the number of attributes (m) 1s larger. in order to obtain all attributes’ gener-

alization sequences which meet the Z in algorithm, we must se aﬂ:h]:I - l}times_ and
bl
]

it will waste much time. So, how to efficiently compute all AGS which meet the Z 15
the chief problem in this algorithm. Further more, how to quickly calculate generali-
zation relations that are related to AGS is another solving problem. To solve these
problems efficiently, an optimization AOG-ags algorithm 1s presentsd by introducing
equivalence partition trees according to the property of AGS.

3 An Optimization AOG-ags Algorithm

3.1 AOG-ags and partition

Let "nis a relation in relation pattern &4 LR T ET s and Fj are
equal with respect to X if and only if nAd=nld] g0 45X which is denoted
as” ~x i X partitions the rows of » into equivalence classes. We can denote the

equivalence class of ST with respect to LS8 by [r-']-*. The quotient set

1
v, ={nL,Iner] of equivalence classes 1s an equivalence partition of r under X
i » To=1r .. g o= - g Tl R, T ER, |
Given two partitions ™+ . =r'=}, Ty = *}? Ty @A, =N IL ST S0, s called

intersection partition of T+ and T, T, ®m, is a partition of 7. We know that

Tyoy =Tx @Iy polds.

=

In fact, the equivalence class Te =T is the relation’ . According to the prop-

; =7, @y - :
of Trwr =Tx @7y there is a one-one correspondence from the records of 7 to

@By, Ifng;ﬂifimlijiﬁ+ﬁ

erty

equivalence classes of i denotes equivalence
partition which attribute A; generalizes up to the j-th level along with the concept
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. i . . ! B, 8= .
hierarchy tree, then the generalization relation and AGS AP A 5 corresponding one

by one. This leads to a new partition-based approach of AOG-ags:
(1) Compute all T, zizml=g = +1) _

(2) Oktain all LG5 which mest ths Z.
. 4 ... 4B _
(3) Select a ssgusnce’™ m  and then calculate generaliza-
'
Y =T . T
ticn relation’ s @ 3“"'*?-'.

i4) Preduce generalization rules from the generaliza-
tion relation.

3.2 Pruning Strategies

Definition 4 The Grid that is constituted by % possible AGS and satisfies the
following properties 1s called the search space.

(1) There are AGS that satisfy 5775 =5%1 i the k-th level.

(2) Each sequence is connected to any sequence 4 44" of the (k-1)-th level.

The search space will increase with the increasing of m and /;. By introducing the
concept “refinement”, some pruning is executed for reducing search space.

T o= 1"'.'I
Definition 5 Given a relation and 1ts two partitions 7= *}? tr. L

if7nET 2L L ST holds, then Tris called as a refinement of 77 .

Ty By

- : ol T T T
Obviously, 15 the refinement of “r and ®r | and "4/ refines "4

IEEEFH,IE.E*QJ"EL’, +1 . If Eﬁ'fﬁﬂﬂﬂgfr. thenl'?-'-'lzl""fl hﬂldﬁ.

ES

APl A = A L T szElZizm)

Definition 6 Given two sequence';’{=
holds, then 4is called a sub-sequence of 4", denote as =147 and A'is the parent-
sequence of 4 | denote as =fal4)

If 4= 5'3":"F:', then 7 refines 7 . Therefore, what the pruming strategies we can get
are the followings.

L As
_7) heolds, then any sequence which includes *  or

(1) If there exists a Tas  and |r _—
E B!

. Ei >
its sub-sequence " (& Z &) cannot meet the Z.

I
4" and |7, Ueeud,  pal-Z) holds, then any sequence
T, . Pnll-Z)

“"3- e L

(2) If there is a sequence "

L

which includes or its sub-sequence may not meet the Z.

(3)Ifa sequence"{ = 4" 47 meets the Z. then all parent-sequences of A will not meet the Z,
50 it can be pruned.
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3.3 Calculating ™=

By introducing the concept of equivalence partition trees, Taz can be calculate
efficiently. At first, we assign each node (1.e., concept) 1 a concept hierarchy tree to
a concept’s code. It 1s shown as the numbers of bracket in Fig. 1. The unary con-
cept’s codes represent the first level in the concept hierarchy tree (1.2, the root of the
tree). (737 1s the code of the root, which only represents the difference from other
attributes). The binary codes represent the second level, etc.

Level .
[800. 400077
1
2 [300,3000]% [3000,4000]%%
3 [800, 2400130 [2000, 300077+  [3000, 37001737 [3000, 40007752

N

4 [1000, 1500]%"7 [500, 240017110 [2000, 30001720 [2400, 30007313

N

5 [800, 22001311 [1500, 24007712

Fig. 1. A concept hierarchy tree of an attribute “elevation”™ and its concept’s codes

Definition 7 The equivalence partition tree of the attribute A, each branch 1s a
concrete value of A which 1s concept’s code with respect to the value in the concept
hierarchy tree, each node in the tree 15 a value in concept’s code.

The equivalence partition tree of the attribute “elevation™, which values are from
the Table 1 in Section 6.2, 1s showed as Fig. 2.

0
2
3 & S
4 15 2 > :
{ti} Pt o
: 2
Partition level {ta sl

Fig. 2. The equivalence partition tree of the attribute “elevation™ in Table 1

An equivalence partition tree can be constructad by the following steps: (1) create
the root of the tree, labeled with “null”. (2) for each value of the attribute, a branch 1s
created. (3) note down the corresponding Row-Id under the corresponding leaf node.
The set of the Row-Id noted down 15 called the identity of leaf-node.

The partition level of an equivalence partition tree 15 defined as follows. The root
node “null” is the level 0, the following 1s level 1, . till the leaf nodes. The identity
of a node in an equivalence partition tree 1s the union of the identity of all leaf-nodes
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of the sub-trees with this node as their root. The set of equivalence partition class
with respect to attribute A at level [ 1s the set of the identity of nodes of the /-th parti-
tion level 1n equivalence partition tree with respect to the attribute A

Considening the equivalence partition tree in Figure 3. the partition result in the
third level 1s {{t;.t7.tg}. {t2.ta}. {ts}. {ts.ts}}. which 1s the same as the equivalence
partition result after “elevation” 15 generalized to the third level

3.4 An optimization AQG-ags algarithm

Introducing partition and refinement, we can efficiently speed the AOG process up.
Introducing equivalence partition trees, we can quickly obtain equivalence partition
results of attributes in any level. So we have an optimization algorithm of AOG-ags
as below:

Algorithm 2: An optimization algorithm of ACG-ags
Input: The un-generalized dataset r. which has m attrib-

utes{A ,A.A}; Attribute’s concept hierarchy tree Uil

and their heightsﬂ”“h}; The tuple threshold Z
Output: generalization rules which meet the Z
Algorithm description:
1) creation partiticon tree (r);
2) computing lower bound L(A,) which attribute A is=s
generalized;

ED Genl{'T*-'-'*i-,l,m,L(I-Ll]l,S,st; f/the initial walues are
S="mull", Ge=d Obtain all AGS (Gs) which meet the Z

4) Selecting a generalization seq‘uence"{'g"”'iﬁ'from Ga,

; . . . V=g, ®..871
computing generalization relation o o

5) Producing generalization rules from the generaliza-
tion relaticon.

Procedure Gen(r,i,m,L(A),S,Gs);
(1) For k= L(A,) downto 1 Do

2) BEegin If i=1 and k = L{A)) then

(2) Gen_r - 4#

(4) Else If i=1 and k= L(A,) then

(5 Gen r =—r

(6) Else Gen r </ O74% Endif
Endif;

if | Gen r| = n(l-Z) then
exit for

(7)
(8)

endif
(9] If i«<m then
(107 Gen (Gen r,i+l,m,Li{& ) ,SU I-LK“GE!-:I
(11) Else If |Gen-r|=n(l-Z) then
(12) Ge —GsU {SURL"};
(13 Exit feor

Endif
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Endif
End

In the optinuzation algorithm of AOG-ags, we efficiently control recursive times
by computing each attribute’s lower limit L{4;), and consider whether AGS can be
pruned or not in a recursive process according to Pruning Strategies. In fact, many
recursive steps will be jumped over using pruning strategies in algorithm 2.

4 Interestingness of AGS

Motivation example: For the plant “Magnolia sieboldit™ m a plant distnibuting
dataset, suppose the following rules have been obtained.

(1) Plant “Magnolia sieboldii™ = 50% grows in the conifer forest and scrub whose ele-
vation 1s from 2600 to 4100 meter of Lijiang, and 50% grows in the forest, scrub
and meadow whose elevation 15 from 2400 to 3200 meter of Weixi.

(2} Plant “Magnolia sieboldii”™ = 20% grows in the conifer forest and scrub whose ele-
vation 1s from 2600 to 4100 meter of Lijiang, and 10% grows in the forest, scrub
and meadow whose elevation is from 2400 to 3900 meter of Weixi.

The rule (2) 15 more meamingful than the rule (1). because the growth charactens-
tics of plant “Magnolia sieboldii™ are more obvious in the rule (2).

Definition 8 In generalization relation. the t-weight of the i™ generalization record t;
15 defined as formula (1).

count (i) (1)

> count ()

i

i =

In formula (1), count (i) is the number of repeated records of the i generalization

record in generalization relation. ' is the number of records in generalization relation.

. . L L . . B, = e
Definition 9 Given " ""%)is a generalization relation under 4" 4" (128 =L+l

>

then interestingness Ly s, of 4" 4= 5 defined as formula (23

|[ ER 1 ) 12}
g = 26— 5)

Tl i

I

e
=1

When the number of repeated records for each generalization record in a generali-

zation relation 7 (i-+75) gets average value, “a-f. achieves the munimum 0. The farer

t-weight of generalization records in a generalization relation from average value, the

larger the contribution to interestingness. The larger the value ofj-?" = the more in-

. . . . . 181, J¥=
teresting the rule expressed by the attnnbutes’ generalization sequence ™ 40

Therefore, after obtaining sequences which meet the Z, computing their interest-
mgness, and ranking the generalization sequences with the decline of interestingness,
we can produce generalization relation and rules.
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S Analysis

In this section, we analvze our algorithms for completeness, correctness and computa-
tional complexity. Correctness means that the generalization rules meet the user
specified threshold. Completeness implies that no AGS that satisfies the grven thresh-
old Z 1s nussed.

— The algorithm 1 is correct.

Proof. The algorithm 1 uses very simple way to get generalization rules. It is obvi-
ous that this algorithm 1s correct if we can prove the recursive procedure Gen_seq 1s
correct. That means the Gen_seq will return the AGS that satisfy the Z. It 15 guaran-
teed by step (8) in Gen_seq. because this step will check whether every sequence
satisfies the Z or not.

— The algorithm 2 is correct.

Proof. The pruning strategy (1) guarantee the step 2) in algorithm 2 will rerurn the
low boundary of every attributes. If the return of step 3) 1s correct, then the Section
3.2 ensures the generalization relation computed by the step 4) 1s correct.

For step 3) (ie.. the recursive procedure Gen), the property of Tror = Ty DT and
Section 3.2 ensure the correctness of the step (3)-(6) i Gen. The step (3)-(6) ensures
the correctness of the step (11). And the step (11) guarantees every AGS satisfies the

threshold Z.

— The algorithms are complete.

Proof. We prove if a sequence satisfies the Z. 1t 1s found by our algorithms. In the
recursive procedure Gen seq of algorithm 1. the step (1) iterates all generalization
levels of an attribute and the step (6) recursively perform Gen_seq. So the combine of
step (1) and step (6) ensures the Gen_seq will check all possible candidate sequences.

For algorithm 2, the pruning strategy (1) guarantee the step 2) of algorithm will re-
turn the low boundary of every attributes. In the recursive procedure Gen, The step (7)
and (8) 1s because the pruming strategy (2) and the step (11) and (13) are just because
the pruning strategy (3). The combine of step (1) and step (10) guarantee the Gen will
check all possible candidate sequences.

— Computational Complexity Analysis
Suppose the number of records 1 the relation T i1s N, the number of attributes i T
15 m, and the height of attribute 1-th concept hierarchy tree 1s /i In the worse case, the
: : . : OV T =1) .
computational complexity of the algorithm 1 will be I . And the algorithm 2

qI0+

will be o . Theoretically speaking, the computational complexity of the two
algorithms seems not very distinctive. But we will jump over many recursive steps
using pruming strategies in algorithm 2. so the complexity will be much lower than
algorithm 1. We will show the real execution results 1n the experiments.
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6 Performance Evaluation and Applications

The performance of our algorithms 1s evaluated by synthetic datasets and a real data-
set (a plant distributing dataset in “The Three Parallel Rivers in Yunnan Area” zone).
The experiments are performed on a Celeron computer with a 2 40 GHz CPU and 256
Mbytes memory running the Windows XP operating system.

6.1 Evaluation Using Synthetic Datasets

The experiments using synthetic data sets are aimed at answering the following ques-
tions. (1) How does the size of dataset affect the two algorithms? (2) How do the
Algornithm 1 and the Algorithm 2 behave with the Z 1s changed?

We ran a series of experiments with increasing number of spatial data points. The
results are showed in Fig. 3. (a). We can see that the algorithm 2 1s almost linear and
much faster than the algorithm 1.

z=0_B, ==2 n=20d, r=0.8
% 150 Ci =
g o0 s —+—az " i 2
=500 a =t g I 7 -
] . o 3 7
ﬂ 0 _H_H_I_Ll—._ = : - N .

100 o 0o 1000 3000 2 = g T g 10
The n wvalus= The = value
(a) (1)

Fig. 3. Performance of algorithms using synthetic datasets

Fixed on the number of records, the number of attributes 1s an important parameter.
The detailed comparative results are showed as Fig. 3. (b). We can see that the per-
formance of Algorithm 1 1s very bad when m=3. The results indicate that the pruning
strategies and equivalence partition trees used in Algorithm 2 are very effective.

MNow we look at the characters of fast re-generalization of the two algorithms. The
results are shown in Fig. 4(a) (b). We used 6 different settings of the thresholds Z.
We can see the Algonithm 2 possesses the character of fast re-generalization.

=300, m=3 n=1000, m=5
200 23
3 . 520 |
_—I" a0 __,.Q—F"'"r 4 = = “‘\ - pr—
R _ a L i - ——a 2
3 100 r s — ——a 1 z 1 2
z 200 Z 03
o 1 L L L L a
0.4 0.5 0.6 0.7 0.8 0.9 0.4 0.5 0.6 0.7 O0.E 0.9
the I wvalue the z value
(a) (b)

Fig. 4. Characters of fast re-generalization for the two algorithms
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6.2 Application in a Real Dataset
A plant distributing dataset, which mvolves 29 plant species which are very valu-
able and rare i “The Three Parallel Rivers in Yunnan Area™ zone and 319 mstances

(tuples). 1s used m our experiments. Table 1 1s some tuples of this dataset.

Table 1. Some tuples of a plant distributing dataset

Tuple- Plant-name Veg-name Elevation/'m Location
ID

f Orchid meadow  [1000, 1500] Lijiang

th Fig scrub [2400, 3000] Wexi

t3 Magnolia scrub [3000,3700] Lijiang

ty Calligonum taiga [2000, 3000] Jianchuan
ts Magnolia meadow  [3000, 4000] Lanping
ts Agave taiga [3000, 4000] Lanping
t7 Tucca forest [1300, 2400] Weixi

tg Waterlily meadow  [800, 22001  Tianchuan

The experiments using this dataset are aimed at checking the usefulness of the
AOG-ags algornithms. Can they discover valuable patterns? Are the rules discovered
by our algorithms interesting towards geographers and botanists?

34 AGS are obtamed when the threshold Z 15 set 0.8, and 57 plant distributing
rules are discovered when one of the 34 AGS 1s chosen according to their interesting-
ness. When the threshold Z is set 0.83, the number of AGS 1s 28 and the number of
rules 15 19. When the Z 15 set 0.9, the number of AGS and rules 1s 22 and 16 respec-
tively.

Some rules discovered by our algorithms are really attractive to geographers and
botanists. The followings are some examples:

— “Tricholoma matsutake”™ = 40% grows in the forest and meadow whose elevation
15 from 3300 to 4100 meter of Lijzang.

— “Angiospermae’ = 80% grows in the forest. scrub and meadow whose elevation
15 from 2400 to 3900 meter of Lijtang and Wex1.

— Lijjang = There are a plenty of plants species in severe danger such as
“Tricholoma matsutake”, “Angiospermae”, “Gymnospermas”, and so on.

7 Conclusions

Felated approaches for nuning the associations of attributes can be divided into the
clustering-based approach. the association rule-based method and the approach of
AOG. Clustering-based approach treats every attribute as a layer and considers clus-
ters of point-data in each layer as candidates for mining associations [7, 8]. The com-
plexity and the low-efficiency are the crucial problems of this method. The associa-
tion rule-based approach is divided into the transaction-based method and distance-
based method again. The transaction-based method computes the mining transaction
(two-dimension table) by a reference-object centric model, so one can use the method
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which 1s sumilar to Apriori for miming the rules [9,10]. The problem of this method 1s
that a suitable reference-object 1s requured to be specified. The distance-based method
was proposed by Mormmoto [11]. and Shekhar together with Huang [12-14] did fur-
ther research. Because of doing a plenty of join operations, executing efficiency 1s the
kev problem of this method. The approach of AOG 15 presented firstly by Can [1]. It
15 a simple and understandable method. But it 1s inconvenient because setting each
attribute threshold 1s required.

The AOG-ags proposed 1n this paper can obtain automatically rules under setting a
threshold Z. Particularly, by using the AOG-ags algonthm i a plant distributing
dataset, some distributing rules for the species of plants in “Three Parallel Fivers of
Yunnan Protected Areas™ zone are found interesting. The advantage of AOG method
15 that expert knowledge (concept hierarchy trees) is used in the process of data min-
ing.
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An Effective Approach to Predicting Plant Species in an
Ecological Environment

Lizhen Wang’

Department of Computer Science and Engineering,
School of Information Science and Engineering
Yunnan University
Kunming, 650091, China

Abstract - Using data mining method in the ecosystem
modeling, the correlation between a plant and certain
ecological environment can be discovered. This is helpful
Jfor the reconnaissance and the exploitation of rare plants.
Based on the semantic proximity, a mining method fo
evaluate the fuzzy association degree is given in this paper.
Inverse document frequency (IDF) weight fumction has
been adopted in this investigation to measure the weights
of ecological environments in order to superpose the fuzzy
association degrees. To implement the method, the
“growing window” and the proximity computation
pruning are introduced to reduce both I'O and CPU costs
in computing the fuzzy semantic proximity between time-
series. Extensive experiments on real datasets are
conducted, and the results show that the mining approach
is reasonable and effective.

Keywords: Data mining; Fuzzy association degree; Time-
sertes data; Fuzzy equivalence partition: Three-Parallel-
River zone.

1 Introduction

An important task m data mining 1s to nune the correlation
among entities. Data mining is suitable for exploring large
dataset for patterns and systematic relationships between
varables [3, 4].

In this paper, data mining 15 emploved to explore a plant
species and ecological environment dataset compiled from
plant species data, climate data (mean temperature, mean
precipitation), elevation data, and topography data (eg.
peak, valley, ascent, terrace, and basin) (see Table 1). The

Joan Lu, Jim Yip
Department of Informatics, Schoel of Computing and
Engmeering
University of Huddersfield
Huddersfield. UK., HD1 3DH

ultimate goal of this investigation 1s to discover the
association pattern between plants and  ecological
environments, and then to predict certain plant species in
an ecological environment.

There are number of methods in the muming prediction,
such as statistical learning method [10]. maclmne learming
[11]. decision tree method [12]. and fuzzy method [13].
Further more, Carter [7. 8] handles data generalization by
the attribute-oriented generalization method. Wang [5]
proposes a fuzzy equivalent partition method to handle data
generalization. A data reduction techmique based on
attribute-onented generalization 1s presented n paper [6].
Shi [9] presents a novel data preprocessing technique
called shrinking mspired by the Newton’s Universal Law
of Gravitation in the real world, which optimizes the inner
structure of data.

In this research, based on the semantic proximity
expression, the fuzzy association degree with superposition
approach can be evaluated It is shown that these
approaches are reasonable and effective.

2 Methods employed

2.1 Dataset preparation

It 15 believed that the ecological environments. including
climates (eg.. mean temperature, mean precipitation),
elevation, soil, topography, etc, contribute to the
distribution and diversity of plant species in Three-Parallel-
River zone [1, 2]. Discovering correlations between the
plant species and ecological environments 15 significant for
retaming rare and endangered plants. The data listed in
Table 1 will be used in the research. The atiributes are
relevant to the problem stated here.

_' Supported by the National Natural Science Foundation of China under Grant No.60463004.
° PhD student in Department of Informatics. School of Computing and Engineering, University of Huddersfield, Huddersfield, UK, HD1

iDH.
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Table 1 Plant species and ecological environment dataset

Tuple-ID ns;ﬂ:;ﬁ_p;rlﬂoge ?;lifﬁ]icg’i:ﬁ? elevation (m) | topography | plant species
1] 90, 100, 108, 130, .. 0,7.21,21, 307, .. [900,2000] ascent Camellia

5 80, 111,130,102, ... 12,13, 133,55, .. [500.900] ascent Water-lily
Ie] 99,100, 144 142 ... 71,205, 502,330, ... [700.1100] valley Camellia

Iy 93, 115, 141, 163, ... 0,98, 171,793, ... [200,700] ascent Camellia

I3 77,68, 116,113, .. 17,228 212 453 [120.400] valley Water-lily
5 93, 105, 130, 145, ... 36,228, 679, 190 [200.800] valley Orchid

17 93, 103, 120, 151, ... 40, 882, 46, 899, .. [600,1200] basin Orchid

13 67, 84, 81, 105, ... 7,62, 68 184 734, ... [1000,2000] ascent Water-lily

2.2 Predicting processes

There are two processes involved in the investigation: 1)
the initial data exploration and 2) the muming prediction.
The initial data exploration process converts the original
data into mining data for prediction. The mining prediction
performs the predicting results.

2.2.1 Initial data exploration - IDE

The Initial Data Exploration (IDE) usually starts with data
preparation that may involve data cleanng, data
transformation, and data generalizations that can be applied
to obtain a reduced representation of the data set that 1s
much smaller in volume, yet closely maintains the integrity
of the onginal data. Pror to IDE, data analysis 1s carmed
out as follows.

1) Climate data: there are two groups of time-series data
for mean temperature and mean precipitation. These data
change over time.

2) Elevation data: 1t 1s the mterval values.

3) Topography data: 1t may have the following values:
peak. valley, ascent, terrace, and basin. _, all of them are

used to describe the location of the plants growth.

In the light of above. the key following 1ssues are going to
tackle i the study:

» Comparng the similarnty between two time-series
= Approximately partitioning them

a. Comparing the similarity of two time-series

A time-series 15 a sequence of real numbers representing
values at specific pomnts 1n time. We start by defining time-
series.

Definition 1. A time-series T of length n 1s an ordered set
(tp. to. .. to) with® =% 1ZiZn |T| s the length of T.
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Definition 2. Given two time-senies, T[1...n] and Q[1...n],
the degree of proximity between T and Q (denoted PD (T,

Q). 0= PD(T.0) =1y 15 defined as

PD(T. O)=1/ /3 (r, ~g)" =1 D
¥iml

Simple, vet mmportant, tlus propertv held by the PD 13
described by the lemma 1. This property will be useful in
improving the performance of computing PD. Simply put
the lemma 1 states that if two fime-series are m close
proximity, then all theiwr prefix subsequences of equal
length are also in close proxinmty.

Lemma 1. f PDUITL.nLO[.n])

T[1..n] and Q[l..n] then

€ for time-series

for any l=k=n

Proof. (By contradiction) If for a particulark, 1S4 =0
PD(T[1..k].O[l..&k]) = £ however,

PD(ITL..al. Q. .n]) = PD(ITL.. XL O[1._&]) . and therefore

FDITNL-n].O-AD=¢ 3 contradiction, since we assumed
that PDIN-n].0fl.n]) > e H

Using a “growing window”™ to scan the time-series, the
computation of PD(T, Q) can be done recursively by
adding the remaining terms to the previouslv sums. thus
the number of needed computations are reduced. For
example, if the values: PD(T[1...300]. Q[1...300]) have
been computed, then the walues of PD(T[1...301],
Q[1...301]) can be computed directly using Equation (2).

@

PD(IL. 301 g1 301 =17 | L

o s T Bl

This allows us to perform an efficient “growing window™
algorithm. For example, if we compute the arguments in (1)
for a window of size m in T and Q, e, PD(T[1...m].
Q[1l...m]). we can compute the same arguments for the
“growing” window PD{T[l._.m+1], Q[1...m+1]) in O(1)
time.

Using the “growing window” and Lemma 1, there 1s an
efficient pruning strategy. When a value of PD from a
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growing window 1s less than & | it can be considered as
zero, and no further computation is needed.

b.Fuzzy equivalence partition for the set of time-
series

Once the value of PD between two time-series obtained,
the remained 1ssue 1s how to partition the set of time-series.
Fuzzy equivalence partition method [5, 14, 15] 1s used as
follows.

LoTv is a set of time-series. From the

ED(T,T)=1

Assume that

Defimtion 2, there 15 a relationship and

PD{I,.T,)=FD(@T,.T) Using the degree of proxmmty

S=

between two time-series. a snmlarlt}-’ matrix Wy Y can

be built up, where

s, =11 =7 3)
sTIPDTLT)  is)

itself repeatedly, where

15 called,
which 1s a fuzzy equivalence matnix EM. Based on the
fuzzy equivalence matrix EM. the classifications of

A P
1 ¥ will be obtained for user-specified level value #

S can be multplied by
(5,07 = MAX, (MIN(s,,.5,))

. ountil S =50 5%

The equivalence matrix EM can be computed in O(A\°) time
from a similarity matrix S The computational method can
be expressed as follows:

1 For i:=1 to N de

2 For j:=1 to N do

3 If 2(j,1)=0 then

4 For k:=1 to N do

5 2(j, k) :=max{8{j, k), min{&{j, 1),
ai{i, k) }}:

This algonthm 1s very efficient if the fuzzy simlanty
matrix § has many zero elements, due to step 3.

The above method can also be optimzed through
computing the fuzzy equivalence matrix EM in O(N°) time
(the exact time 15 O(M"), O(M7) = O(N"), M is the number
of nonzero elements in the upper-triangle of the simularity
matrix 5.) [5].

2.2.2 Mining prediction

a. Fuzzy association degree between plants and
ecological environments

Let R={r}, ..., 15} be a finite set of objects. 4={4,, .., 4,, B}
be a set of attnbutes over R. The attmbutes m 4 are
classified o disjomn conditional attributes C={ 4;, ., 4, }
and the decision attribute D={B}. The equivalence class L
in the set of the equvalence classes for the conditional
attributes .4 1s denoted by Ay, and for decision attribute B,
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the B,, means the " equivalence class. The intersection of
Ay and By, 15 denoted by POS{dy, By). The number of
objects 1n POS{4g, Byl 15 called the distribution of 4y to
B, wntten as K(POS{Ay, B,J).

The degree of fuzzy association between 4y and By 1s
determined as follows. Suppose 4y represents a monthly
mean temperature time-series data, and By, shows the type
of plant. Once the mean temperature is Ay, the plant
species must be By, then 4y 1s mn close association with B,
In another condition, the mean temperature 1s 4;;, and the
plant species 1s By, or By, then the fuzzy association degree
between 4 and B, can be decided depending on the
proximity between B, and B;. The greater the proxinuty
between B,, and B, the higher the fuzzy association degree
between 4, and B, If the plant species are B, B,. or B,
when the mean temperature has the value 4y 1t 15 unlikely
to have a relationship between 4y and By,

Definition 3 Given a weight Wy for measuring the
proximity between equivalence class B; and equivalence
class B,, i decision attribute B, the fuzzy association

degree from A4y to By, 1s defined as {0 =421y

Aldy. B,) = (K(POS(4y. Bi)) = wy, @
+K(POS (4,.B))*w,,
+o+ E(POS(4,. 8,0 " w, ) E(4,)

The weight wj, . written as w(B;, By, represents the degree
of proxmmity between B; and B, w(B,, B,/=1 and w(B;
By/=w(B,, Bj) are held. The weight Wiy can be obtamed
from botanists, or by mimng the co-location relation
between plants [16-18]. The following method 1s adopted
1 this study.

Plants can be organized to a plant family tree as its leaf
nodes describe an association relationship of plants. It 1s
called as the conceptual hierarchy tree.

Definition 4 Given a conceptual hierarchy tree, f; and f; are

two leaves of this tree, the value of weight w (. /) 15
defined as:

| 1
R SR
Where, P(f;,/5) returns the node of the common parent, /(f)
gets the level number of node f and H is the height of the
tree.

fi=1 (3

The weight w satisfies the following properties:

(1) For any plant {1 a tree, w(f/)=1 holds.

(2)  For the parent of two plants 7 and £ 1s the rootm a

tree. h'ﬂﬂj}}=ﬂ holds.
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3} For any two plants f; and /5 m a tree,

0<w(f. fr) <1

t4)  For any plants f, fz f5 and f; in a tree, 1f
IP(LLN=HP(H F). then wifi f)=w(fifyl.

b. Superposition of the degrees of fuzzy association

The factors affecting the plant species B, are not only the
values 4 of conditional attribute 4;. but also Az Az ..
which are superposed as follows:

A

Definition 5 The superposition of 1 %2, written as

LABLS-B j'i'_ 1s defined as

E o 6
LA 884 =3 AT (©)
I

Where “' is the weight on %3

Inverse document frequency (IDF) weight function 1s
adapted to the relational domain by treating each tuple as
document of attribute values. The weight of attribute value
‘a,” 15 expected to be less than that of “d,, since ‘ay’
appears more frequently as a value for 1ts attribute than a5’
does.

Let the frequency of attribute value ‘@’ in the attribute 4;,
denoted freq(a, 4;), be the number of tuples (1.e., objects)
in R such that #[4;/= ‘a’. The IDF value, IDF(a, 4. of an
attribute value ‘@’ with respect to the attribute .4; in the
schema of R is computed as Equation (7), when freg (a,
A)=0,

K(T 7
Iu(a.A,)=IDF(n.A,)=logi‘7) (7
fregla.d,)
For an attribute value ‘a’ whose frequency in attribute 4; 1s
0, ‘@’ 1s an erroneous version of some values in the

reference tuple. Since we do not know the value to which 1t

- q
corresponds, the weight A% 4) is defined to be the
average weight of all values in this attribute of relation R.

¢. An example

Example 1 Suppose Table 2 1s the result after
preprocessing the data of Table 1, where 4, 4, A; 4y 1s
the attribute mean femperature, mean precipitation,
elevation, and topography respectively. Attribute B 15 the
plant species. We use the same lower case letter 1f 7 4],
Fildy belong to the same equivalence class (For the
attribute elevation (4s). 1t can be partitioned based on the
concept of the semantic proximity between two interval
values. In this study, the semantic proximity between two

interval  values f and f can be defined as
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SP(f. f2) = (size(f, ~ fu) i size(f, U £2)) - Where size(h) 1

the size of interval 7 ).

There 1s a new ecological environment data in Table 3 (1
has been preprocessed). Let us predict the species of plan
under this ecological environment. We obtamn th
distributing table from ‘ay’, *by". .. to fi. f> o1 f; (see Tabl
5) and corresponding values of w (see Table 4). where fo
Jrwe have wy;= 1, w= 0, wy=0, etc. In the same way, w
compute the f#(a, 4.) . We obtain Table 6.

Table 2 An example of data table for prediction

Tuple-ID Ay Ay Ay Ay B
1] aj by C] B f]
13 a3 by [ ) fa
13 a) by ci e f
1y a; by [ e f
i3 a2 b2 [ e fa
15 a3 by [ e f3
i7 aj b4 C] €3 f;
13 a3 bz C] ) fa

Table 3 A new ecological environment data that have
been preprocessed

A new ecelogical

. Ay A [ A [ A
environment data L ! 3 1

T a ||| e

Table 4 Weight w for the decision attribute B

w I Ji(Water- i
(Camellia) lily) (Orchid)
fi 10w11) O(wi2) O(wys)
i 00wz} 1{w30) 0.60w25)
i 0 (wsp) 0.6 (w31 1(waz)

Table 5 The distributing table

K |filfH|f
a |0]2]1
b | 1] 10
e 211
e |22 0

Table 6 Weight H for superposition

i a3 b! L €1
0.4260 | 06021 | 03010 | 03010

Thus we have
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Ala,, £)=[K(Pos(a,. f,))=w,
+ K (Pos(a,, f2))=<wy, + K(Pos(a,. f;))<w;1/3=0%1+2
#0+1%0=0

Alay. i) =[K(Pos(a,. f,)) % wy
+ K(Pos(a,. f )% wy, + K(Pos(a,. f5)) % wy; 1/ 3 =(0%0
+2¥1+1%0.6)/3=2.6/3=0.867

-

Using the same method, we obtain Table 7. Superposing
the data in row 77, we have the result of association degree.
It indicates the association degree of the ecological
environment data with ‘a,”. ‘&7, “c;’. and ‘e;” to plant
spectes f1’. f7°, or °f7. It means we can predict that the
plant /7 (Water-lily) mught grow in the ecological
environment with ‘a>", *bs". ‘c;’. and ‘e;.

3.2 Quality

Beside the error rate, other parameters have been used to
measure the prediction performance, 1.e.
Sensitivity=t_pos/pos, Specificity=t_neg/neg,
Precision=t_pos/(t_pos+t_neg), and
Aecuracy=Sensitivity"(pos/{pos+neg))+Specificity *(neg/
(pos+neg))

Table 9 shows all results with using different measures for
both 15 plants and 34 plants. In the expenments. the
equivalence partition level value thresholds p,=0.000224,
p=0.0045, have been fixed and the threshold of the fuzzy
assoctation degree 15 0.4

Table © Results of the algorithm’s quality

T Quality PP e i I
Table 7 Mining prediction of plant species Plants Sensitivity | Specificity | Precision | Accuracy
a i gp p P 15 plants 1/3=333 9/10=00 66.7
7 The result of 34 plants 1/4=25 22/23=05. | 616
A ay b, € € i 7
superposition
f 0 0.5 0.5 0.5 0.5487
f2 | 0.867 0. 0.4 0.5 0.7708 .
A 0733 | 03 04 | 03 05035 3.3 Performance of the algorithm

3 Results and discussion

3.1 Estimating error rates

The bootstrapping method was performed to estimate the
error rates. In expeniments, 34 kinds of plant species were
selected from the plant dataset. The species of plants have
been predicted according to the fuzzy association degree
threshold. If the results of the algorithm are less than the
threshold, the ecological environment would be refused to
be predicted. False positives (FP%) and false negatives
(FIN%) are used to evaluate the algorithm’s error rates.

Table 8 shows the results of FP% and FIN% with given the
different thresholds of the fuzzy association degree for the
34 plant species. In the experiments. we fixed the
equivalence partition level value thresholds p;=0.000224,
£:=0.0045, for two tume-series attributes respectively. It has
been observed that to lower level the thresholds of fuzzy
association degree will increase the percentage of false
positive.

Table 8 FP% and FN% for 34 plants

\"‘Hf[ﬂhresholds of fuzzy
-Association 06 | 05 | 04 | 03 | 02

~.gegree

Error rates H“"n__
FPl 214 267 | 267 | 265 | 265
FN% 30 735 75 null | awil

The program was run on artificial datasets of size 15, 30,
50, .... 1000 plants. Fig. 1 shows that this program 1s
mcreasing quickly with the increasing size of datasets,
because the large time-series data need to be dealt with for
just adding a tuple into the dataset.

The performance of algeritha

g

15 0 0 0 100 250 500 1090

The size of plants

Figure 1 The performance of algorithm

4 Conclusions and future work

This research makes contribution to using data mining
techniques to resolve the problems in predicting plant
species i an ecological environment in Three-Parallel-
River zone. It has been found that usmg the fuzzy
association degree with superposition approach could
achieve reasonable and effective results.

For future works, 1t will be carmed out formally to
characterize the relative strengths and weaknesses of
various prediction tests and to study the confidence of
prediction results. Other iteresting directions are mining a
functional dependency relationship between condition
attributes, and mining crucial factors wluch affect plant
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growing, which could be advantageous to protect and
retain rare and endangered plants.
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Abstract

With the rapid growth and extensive applications of
the spatial dataset, it’s getting more important to solve
how to find spatial kmowledge automatically from
spatial datasets. Spatial co-location patterns represent
the subsets of features whose instances are frequently
located together in geographic space. It's difficult to
discoverv co-location patterns because of the huge
amount af data brought by the mstances of spatial
features. A large fraction of the computation time is
devoted to generating the table instances of co-
location patterns. The essence of co-location patterns
discovery and three kinds of co-location patterns
mining algorithms proposed in recent vears are
analvzed, and a new join-less approach for co-location
patterns mining, which based on a data structure----
CPl-tree (Co-location Pattern Instance Tree), is
proposed. The CPl-tree materializes spatial neighbor
relationships. All co-location table instances can be
generated quickly with a CPl-tree. This paper proves
the correctness and completenass of the new approach.
Finally, an experimental evaluation using symthefic
datasets and a veal world dataset shows that the
algorithm is computationally more efficient than the
Jjoin-less algovithm.

1. Introduction

Spatial data mumng is the process to discover
mteresting and previous unknown, but potential useful
patterns from spatial datasets ] Extracting
mteresting patterns from spatial datasets 1s more
difficult than extracting the corresponding patterns
from fransaction datasets due to the complexity of
spatial data types, spatial relatiomships and spatial
autocorrelation Pl A spatial co-location pattern

represents a subset of spatial features whose instances
are frequently located m a spatial neighborhood.
Spatial co-location patterns mav wvield important
insights for many applications. For example. a mobile
service provider may be interested mn mobile service
patterns  frequently requested by geographical
neighboring users. The locations which are gotten
together by people can be used for providing attractive
location-sensitive  advertisements, etc. Other
application domains include Earth science, public
health, biology, transportation, etc.

In previous work on mining co-location patterns,
Morimoto™! defined distance-based patterns called k-
neighboring class sets. In his work, the number of
instances for each pattern 1s used as the prevalence
measure, which does not possess an anti-monotone
property by nature. However., Morimoto used a non
overlappmng mstance constramt to get the anfi-
monotone property for this measure. In contrast,
Shekhar & Huang ! developed an event centric model,
which dees away with the non-overlappmng mstance
constramt. The related works in the approach proposed
by Shekhar & Huang can be classified mto three kinds
for identifying co-location table instances: the full-join
approach . the partial-join approach ! and the join-
less approach 1%L

The fulljoin approach 1s mamly based on the
computation of the join operation between table
instances for identifying co-location mstances. This
approach 1s simmlar to Apriori method and 1t could
generate correct and complete prevalent co-location
sets. However, scaling the algorithm to substantially
large dense spatial datasets is challenging due to the
increasing number of co-locations and their table
instances.

The partial-join algorithm proposed by Yoo and
Shekhar m [9] 1s to buld a set of disjoint clique in

* Supparted by the National Natural Science Foundation of China under Grant No 60463004,
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spatial mstances to identify the mtraX mstances of co-
location (belonging to a clique) and interX instances of
co-location (belonging to between two cliques). and
join the mtraX mstances and wmterX instances
respectively to calculate the walue of PI (The
participation index). The key of this algorithm is to
find out cliques as big as possible, which could cut
down the spatial neighbor relationships between two
cliques. Besides building cliques 1s time-consuming, if
the correct cliques could not be identified, and the
number of cut neighbor relations would not be
decreased, the partial-jomn algorithm of mining co-
location pattern would be similar to the fulljoin
algorithm.

The join-less algorithm propesed by Yoo, Shekhar
and Celik i [10] puts the spatial neighbor relationships
between instances mto a compressed  sfar
neighborhood. All the possible table instances for
every co-location were generated by scannimng the star
neighborhood, and by 3-time filtering operations. The
join-less approach 1s efficient since 1t uses an mstance-
lockup scheme instead of an expensive spatial or
nstance join operation for identifying table instances.
However, the star neighborhood structure is not an
ideal structure for generating table mstances, for the
table instances generating from this structure have to
be filtered. Therefore, the computation time of
generating table instances will merease with the
growing of length of co-location patterns.

In the paper. a new structure called CPl-free (Co-
location Pattern Instance Tree) 1s mtroduced. It could
materialize the neighbor relationships of a spatial data
set, and find all the table mnstances recursively from 1t
Dhfferent from the star neighborhood structure m the
join-less approach. all information of the neighber
relationships i a spatial dataset 15 organized together
by the CPI-tree. So, the third phase filters in the join-
less algorithm, which might be an expensive step, need
not be performed. Meanwhile, some filtering methods
appeared in the jomn-less algonthm, which can filter
candidate co-locations without finding exact co-
location instances, will be reserved. Some new filtering
methods will be considersd m our new algorithm.
Although. in many cases the Apriori candidate
generate-test method reduces the size of candidate sets
significantly and leads to performance gam However,
it may need fo repeatedly scan the star neighborhood
and check a large set of candidates by pattem
matching. This 15 especially the case for mining long
patterns.

The remunder of the paper 1s organized as follows.
The CPl-tree structure and its construction method are
mtroduced in Section 2. Section 3 develops a CPI-tree-
based complete table mstances generating algorithm.
The experimental results are presented m Section 4.
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Section 5 summarizes our study and points out some
future research issues.

2. Colocation-pattern Tree (CPI-tree):
Design and Construction

2.1. CPI-tree

A compact data structure can be designed based on
the following observations:

(1). Since spatial neighbor relationships between
instances make certain all table instances, it is
necessary to perform one scan of spatial datasets to
identify the set of spatial neighbor relationships.

(2). If the set of neighbor relationships can be stored
in a compact data structure, it may be possible to avoid
repeatedly scanning the set of neighbor relationships.
(apriovi-like algorithms did so, because they have to
scan all size-k table mnstances when they generating
size-k+1 table mstances.)

(3). If a size-k table instance is found, it may be
cost-efficient to expanding a size-k+l table instance
from 1t at once. It 15 easy to expand table mstance 1f the
set of neighbor relationships can be stored m a
compact data structure.

(4). The recursive and hierarchical properties of tree
sttucture makes the clearness and smmpleness of
describing algorithms based on the tree structure. If all
spatial mstances are sorted m ascending order (the
spatial features i alphabetic order. and then the
different mstance of the same spatal feature m
numerical order), a graph G representing spatial
neighbor relationships may correspond to a unique tree
structure.

With the above observations, a tree structure (called
CPl-tree (Co-location Pattern Instance Tree). for all
table mstances can be generated from it) can be defined
as follows.

Definition 1 (CPl-tree). A CPl-ree is a kind of
rooted tree. The root of CPI-tree 1s labeled as "null”. A
branch of the CPl-tree 1s constructed a correspondmng
connective sub-graph m the graph G. The node m CPI-
tree represents the spatial mstance. The node u 1s the
parent of the node v, when there 1s a neighbor
relationship between instances u and v and the nstance
i 15 “smaller” than mstance v.

Based on this definition. there 1s the following CPI-
tree construction approach.

1) Create the root of a CPl-tree, and label 1t as
“null”.

2) Push all the spatial instances into a stack T1 i
alphabetic and numerical descending order.
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3) Pop an mstance from the stack T1, create a child
node of the root “null” for this mstance (e g Al m
fig 2). Push this mstance mto a stack T2

4) Pop an instance (e.g. A1) from stack T2. Find
out all the mstances which are the neighbors of this
mstance (showed m Fig 1), the different spatial
features from this instance. and “bigger” than this
mstance. These instances form child nodes of this node
in ascending order. Delete all these instances from
stack T1 and stack T2. and link to the same mnstance-
name node (except for leaf-nodes) mn the CPl-tree (see
dashed hink in Fig.2).

5) Push child node mstances mto the stack T2 i
descendmg order. Then, turmn to 4).

6) Repeat the operation above till the stack T2 is
empty, and then turn to 3).

7) Repeat the operation above till the stack T1 1s
empty.

ES

Fig. 1CPree of the easyle in 61

smpleaf spatial Fotere intance
of thet stance AL B 1 and

of rmwind itsgecs satifio wsksl aagthx
Je—

q

£

The Fig. 2 1s the CPl-tree of the example 1 fig 1.
The CPI-tres of a spatial dataset constructed by above
steps will be umque The CPl-tree matenalizes the
neighbor relationships of a spatial dataset with no
duplication of the neighbor relationships and no loss of
co-location mstances, and more important thing 1s that
it 15 convenient and efficient to generate the co-
location instances from if.

The approach of constructing a CPl-tree can be
converted mto the following algorithm.

Algorithm 1 (CPI-tree construction).

Input: S a set of spatial instances and each instance is a
vector <feature type, instance id, location=; R: the spatial
neighbor relationship (e g Euclidean distance);

Variables: NI'= {NTI'\«T\T }: a set of spatial

NT,
neighbor relationships where ~ T is the set of neighbor

stances of the instance ', whose order 1s “bigger” than i
and is sorted in ascending order.

Qutput: CPl-free :  the CPltree structure of
materialized spatial neighbor relationships;
Method:

1) NT=gen neighborhood;

20 Create the root of a CPI-Tree, and label it as “null.™
3) Push all the instances in § mnto a stack T1 in
descending order;
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4)  While the stack T1 1s not empty Do
5)  { I= Popan instance from stack T1:
6 create the node [ which is the child of the root “mull”
7) Push instance [ into the stack T2:
8) While the stack T2 15 not empty Do
a) { I=-Pop an instance from the stack T2;
100 For each instance f1n N7; Do
113 {Create the node fwhich is the child of the node
I
. 123 Delete the mstance f from the stack T1 and T2;
130 Link the node f to the same instance-
name non-leaf-node in CPl-tree; }
140 Push all the instances in NT; into the stack

T2 1n descending order;

}

15 Return the root “null™

The procedure gen_neighborhood of this algorithm
generates a set NT= {:\T,JNI,_V]} }of spatial

neighbor relationships, where L js the set of

neighbor mstances of the mstance 7, whose order 1s

“bigger” than E*' and 1s sorted m ascending order of
instances.

In the loop of the step 4). an iteration will create a
branch of the root “null” in the CPl-tree, and the loop
of the step 8) generates iteratively all nodes of this
branch of the CPI-tree. As it happens, the instances are
considered 1 ascending order in the step 10), because
the instances are sorted in ascending order in NT,. The
operation delettion m the step 12} 15 to avoid
duplication of mformation, and the operation linking
the step 13) 1s for no loss mformation.

2.1, Complexity and completeness of CPI-tree

Analysis. The computational complexity of the
algonithm mcludes procedure Gen neighborhood and
the rest of algorithm. Suppose the number of spatial
instances is m. In the worse case, The computational
complexity of the procedure Gen neighborhood wall

be O(}HE log, i) . and the rest of the algorithm will
be O(m”). We will show that the CPI-tree contains

the complete and no redundant information for table
instances generating m the following lemmas.

Lemma 1. All the neighbor relationships of given
spatial mstances are recorded i a CPl-tree, no one 1s
omuitted.

Proof: according to the procedure of constructing a
CPI-tree, all the spatial instances are scanned and their
neighbor relationships are recorded i CPlree.
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Therefore, none of the spatial instances neighbor
relationship 1s onutted 1 CPI-tree.

Lemma 2. CPliree materializes the neighbor
relationships of a spatial dataset with no duplication of
the neighbor relationships.

Proof: It 1s obwvious because the step 12) m
constructing a CPl-tree algorithm guarantees each
spatial neighbor relationship 1s considered once, and
the step 10} and 14) ensure that a connective sub-graph
m spatial dataset forms a branch of a CPI-tree.

3. Generating complete table instances
using CPI-tree

3.1. Principles of generating table instances
from a CPI-tree

Definition 2. (direct-child-link). A link between
two nodes 1 a CPl-tree 1s called as a direct-child-link.
A k-length direct-child-link 15 called as a size-k direct-
child-link. The nodes lving m mddle of a size-k direct-
child-link are called as imfra-node. For a node m a
direct-child-link, the nodes lying in this node blow are
called as child-node on the direct-child-link.

Definition 3. (indirect-child-link). The child nodes
linked out by a dashed link are called as indirect-child.
A size-k child-link linked out by an indirect-child is
called as a size-k indirect-child-link.

Definition 4. (all-link). If all child-nodes of each
mira-node m a size-k direct-child-link are the brothers
of corresponding mtra-node, then the size-k direct-
child-lmk 1s called as a size-k all-link. If the size-k
direct-child-link defined above 1s a size-k mdirect-
child-link, then 1t 15 called as a size-k indirect-all-link.

Based on the definitions abowve, there are the
following properties.

Property 1. (Child-link property). Each size-2
child-lmk m a CPl-tree denotes a size-2 co-location
table instance.

This property can be obtamned directly from the
CPl-tree constructing process, and it 1s the base of
generating other table mstances.

Property 2. (Ali-link property). Each size-k all-link
or size-k mdirect-all-link 1 a CPI-tree denotes a size-k
co-location table mstance. (k=2)

Rationale. It 1s obvious that the mstances satisfying
all-ink or indirect-all-link form a clique
corresponding graph G.

We then show that the complete set of the table
mstances in a spatial dataset can be generated by using
corresponding CPI-tree.

Lemma 3. Table mstances generated from the CPI-
tree by using property 1 and property 2 are correct
and complete.
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Rationale. First, 1t 1s shown that each table instance
generated from property 1 and 2 1s correct and distinct.
The correctness 1s guaranteed by property 1 and
property 2. and the distinction 1s guaranteed by
lemma 2.

Second, 1t 15 shown that no table mstance can be
generated out of the CPl-tree. Suppose a size-k table
mstance can be generated out of the CPI-tree. If thus 1s
a size-2 table mstance, and then there 1s not a cluld-
link between the two instances. According to lemma 1,
there 1s not a spatial neighbor relationship between the
two instances, this reduces to absurdity. For size-k
table instances (k=2). that means that these instances
presentmg to the size-k table mstances do not form a
all-lnk or indirect-all-link and then according to the
process of constructing a CPI-tree, there at least 1s not
a neighbor relationship between two mstances among
these instances. This also reduces to absurdity.

3.2. Table instances generation algorithm

Complete co-location table mstances of a spatial
dataset are generated recursively from corresponding
CPI-tree in the following steps.

1) Lutiate prefix pattern o= {null} (the root of CPI-
tree) and the suffix pattern = {null}, search CPl-tree
recursively for complete the table mstances.

2) If o has a child node s and s has a child node ¢
too, then o 1s put by 5. 1e. o={s}, search CPl-tree
recursively with the new o and [3: else (including the
last recursion returns), (1). 3 is put by 5. i.e. f={5}. and
a table instance ctU [} 1s generated; (2). 1if B has child
node ¢, then (a). Generating a size-3 table mstances 1f
the U B U ¢} is a all-link. examining the size-4 table
instances if # has child node (b). If ( has indirect-
child nedes, examumng mdirect-all-lnk to generate
some new table mstances. For example, consider the
noede “B.37 in Fig. 2. when J is “B.3”, besides
generating the table mstances “A 3. B3, C17 and
“A3.B.3.D.17, the table instance “A3. B3, C.1,D.1™
also be generated.

3) If the recursion 15 ended, return all the co-
location table mnstances.

The above approach can be transformed into the
following algorithm.

Algorithm 2 (Gen_instance).

Input: CPltree: materialized spatial neighber
relationships in a spatial dataset and constructed according to
Algonithm 1;

Qutput:
instances.

Method: call Gen_instance (CPI-tree, null, null)

Procedure Gen_instance (CPT-Tree, a. [)

1) while c has child node 5 Do

The complete set of co-location table
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2 {if s has child nods r then Gen_instances (CPI-Tree, {s}. Bl

3y p=El

4)  If a=>= "muil"” then

3) { o U3 forms an table instance;

6) If J has a childnode or a indirect-child-node

then Gen_next_insiance (CPl-iree, o; ).}
7}

Procedure Gen_next_instance (CPI-tree, o 3)

} { o= The last element of
+ while (arhas a cleld-nods | 2 ndirect-child-nods ¢ & Ok (2, 5 Do

(B=pU fe}:
ar L3 forms an table instance;
3 If tiznotaleafthen Gan nex? fnstance (CPI-tres, @ B}

Y

Bool Function OF (t, /) //If the node t is the brothers of
[ then return true, else retum false
» {Fori=1 to |4
) If the node 7 15 not the brother of the 1-th element in
[ then Return false;
3) Return true }

Amnalysis. With the properties and lemmas m
Section 2 and 3, the algorithm correctly finds the
complete set of co-location table mnstances in a spatial
dataset.

From the algorithun and reasoning, one can see that
the table instances generation process 1s a backtracking
process. The algorithm scans the CPl-tree once and
table instances generating is recursively performed on
the child-link from size 2. If a size-k table instance 1s
not generated, then the size-k+1 table instance derived
from i1t will not be considered. Moreover, after
generating lower table mstances, the table instances
dertved from them will be examined at once. This is
much less costly than traditional methods of the full-
join and the join-less. Thus the algonthm is efficient.
The real execution results will be shown in Section 4.

i
J
5
J

1
2
3
4
6

4. Experimental Results

In this section, the performance of the algorithms is
evaluated with the join-less approach using both
synthetic and real data sets. All the experiments were
performed on a 3-GHz Pentiom PC machine with 2G
megabytes main memory, running on  Microsoft
Windows/XP. All programs are written in Java.

The experimental results are reported on two
synthetic data sets. The first one 15 called as sparse
dataset with 26 spatial features. In this dataset, when
the neighbor distance threshold & and the prevalence
threshold min_prev are set to 25 and 0.15. the total
number of size 2 co-locations and the maximmum size of
co-locations are 104 and 4. respectively. while the
mumber of all instances n the dataset 1s set to 10k The
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prevalent co-locations are short and not numerous in
this dataset.

The second synthetic dataset used m the
experiments is a dense dataset with 26 spatial features.
The total number of size 2 co-locations and the
maximum size of co-locations are 232 and 8, when the
threshold & and the min_prev are set to 23 and 0.13,
respectively. There exist long prevalent co-locations as
well as a large number of short prevalent co-locations
in this dataset when the prevalence threshold Min_prev
goes down.

To test the practicability of CPl-tree. a real dataset,
the plant distributing data set of the “Three Parallel
Rivers of Yunnan Protected Areas™ area. 1s used. It
contains the number of plant species (feature types) 1s
16. The total number of plant instances 1s 3908, When
Min_prev and distance d are set to 0.1 and 1900
respectively, the maximum size of co-location 1s 4 and
the total number of size 2 co-location patterns 1s 42.
The characteristic of the dataset is that there are a large
number of table instances i each co-location pattern.

1)  Scalability with the neighbor distance
threshold 4 over sparse data set and dense data set:
The runtime of CPl-free and Join-less on the sparse
and the dense synthetic datasets, when the prevalence
threshold min_prev is set as 0.5, as the neighbor
distance threshold & mereases from 13 to 25/30 is
shown m Fig. 3 and Fig. 4. Since the dataset 1s sparse,
as the threshold & 15 low, the prevalent co-location
patterns are short and the set of such patterns 1s not
large, the advantages of CPI-tree over Join-less are not
so impressive. However, as the threshold & goes up or
the dataset becomes dense, the gap becomes wider.
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2 ) Scalability with prevalence threshold
Min_prev over sparse data set and dense data set:
Fig. 5 shows the experimental results of scalability
with Min_prev over the sparse dataset. while the
results over dense dataset are shown m Fig. 6. The
neighbor distance threshold o 15 set as 200 m the
experiments of Fig 5, while d 1s 130 in the experiments
of Fig 6. The advantage of CPI-tree approach 1s mare
impressive with threshold Min_prev decrease and the
dataset becomes dense.
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3 ) Scalability with prevalence threshold
Distance d over a real data set: The nuning result
over a real dataset. a plant distributing data set of the
“Three Parallel Rivers of Yunnan Protected Areas”™
area, 15 shown in Fig. 7. From the figure, one can see
that CPI-tree method 1s scalable even when there are
many table mstances. In such real datasets, the join-
less method 1s not comparable to the performance of
CPI-tree method.
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4 ) Scalability of CPI-tree algorithm with
numher of instances: To test the scalability of CPI-
tree against the number of instances, the dense dataset
15 used with Min-Prev is set to 0.3, the neighbor
distance threshold & 1s 20, and the number of mstances
ranges from 3K to 15K, The result 1s shown in Fig. 8,
which shows that the CPl-tree method 1s the lmear
mcrease of runtime with the number of mstances.
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5. Conclusion and Future Work

In this paper, a new join-less co-location mining
algorithm, which can rapidly generate spatial co-
location table mstances based on the CPI-Tree
construction matenialized neighborhood relationship
between spatial instances, was proposed. The
algorithm 15 efficient since 1t does not requre
expensive spatial joins or instance join for identifying
co-location table instances. The experimental results
show the new method outperforms the join-less
method m the case of sparse and dense datasets. As
future work. the applications studving of co-location
patterns mining 1s an mmportant work. And treat with
the redmndant co-location rules and maxmmal co-
location patterns mning will be significant works m
the future work as well.
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