
University of Huddersfield Repository

Wang, Lizhen

An Investigation in Efficient Spatial Patterns Mining

Original Citation

Wang, Lizhen (2008) An Investigation in Efficient Spatial Patterns Mining. Doctoral thesis,
University of Huddersfield.

This version is available at http://eprints.hud.ac.uk/2978/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

An Investigation in Efficient
Spatial Patterns Mining

by

Lizhen Wang

A thesis submitted to the School of Computing and Engineering
of the University of Huddersfield

for the degree of Doctor of Philosophy

School of Computing and Engineering
The University of Huddersfield
 (April 2008)

Abstract

Abstract

The technical progress in computerized spatial data acquisition and storage results

in the growth of vast spatial databases. Faced with large amounts of increasing spatial

data, a terminal user has more difficulty in understanding them without the helpful

knowledge from spatial databases. Thus, spatial data mining has been brought under

the umbrella of data mining and is attracting more attention.

Spatial data mining presents challenges. Differing from usual data, spatial data in-

cludes not only positional data and attribute data, but also spatial relationships among

spatial events. Further, the instances of spatial events are embedded in a continuous

space and share a variety of spatial relationships, so the mining of spatial patterns de-

mands new techniques.

In this thesis, several contributions were made. Some new techniques were pro-

posed, i.e., fuzzy co-location mining, CPI-tree (Co-location Pattern Instance Tree),

maximal co-location patterns mining, AOI-ags (Attribute-Oriented Induction based on At-

tributes’ Generalization Sequences), and fuzzy association prediction. Three algorithms

were put forward on co-location patterns mining: the fuzzy co-location mining algorithm,

the CPI-tree based co-location mining algorithm (CPI-tree algorithm) and the order-

clique-based maximal prevalence co-location mining algorithm (order-clique-based algo-

rithm). An attribute-oriented induction algorithm based on attributes’ generalization se-

quences (AOI-ags algorithm) is further given, which unified the attribute thresholds and

the tuple thresholds. On the two real-world databases with time-series data, a fuzzy as-

sociation prediction algorithm is designed. Also a cell-based spatial object fusion algo-

rithm is proposed. Two fuzzy clustering methods using domain knowledge were pro-

posed: Natural Method and Graph-Based Method, both of which were controlled by a

threshold. The threshold was confirmed by polynomial regression. Finally, a prototype

system on spatial co-location patterns’ mining was developed, and shows the relative

efficiencies of the co-location techniques proposed

The techniques presented in the thesis focus on improving the feasibility, useful-

ness, effectiveness, and scalability of related algorithm. In the design of fuzzy co-location

Abstract

mining algorithm, a new data structure, the binary partition tree, used to improve the

process of fuzzy equivalence partitioning, was proposed. A prefix-based approach to

partition the prevalent event set search space into subsets, where each sub-problem can

be solved in main-memory, was also presented. The scalability of CPI-tree algorithm is

guaranteed since it does not require expensive spatial joins or instance joins for identify-

ing co-location table instances. In the order-clique-based algorithm, the co-location table

instances do not need be stored after computing the Pi value of corresponding co-

location, which dramatically reduces the executive time and space of mining maximal co-

locations. Some technologies, for example, partitions, equivalence partition trees, prune

optimization strategies and interestingness, were used to improve the efficiency of the

AOI-ags algorithm. To implement the fuzzy association prediction algorithm, the “growing

window” and the proximity computation pruning were introduced to reduce both I/O and

CPU costs in computing the fuzzy semantic proximity between time-series.

For new techniques and algorithms, theoretical analysis and experimental results

on synthetic data sets and real-world datasets were presented and discussed in the the-

sis.

Acknowledgements

II

Acknowledgements

Though this research has been a mostly solitary effort during periods of the Doctor

of Philosophy Degree, there are many people to whom I am indebted for support and

assistance in various ways. Without them, this would never have been completed, and it

is appropriate that they should share in it.

I would like to express my deep gratitude to Dr. Lu for her supervision and invalu-

able suggestions. Her invaluable comments on concepts, structures and organization

have greatly enhanced any value the thesis may have. Furthermore, Dr. Lu’s expectation

and encouragement aroused me continue to do my best for my thesis.

I would especially like to thank Professor Yip for paying attention to my research.

With his recognizing and support, my thesis could come forth in such short time. My sin-

cere thanks are due to Mrs Lihong for her constant help in improving my English writing.

I would like to thank my husband, Zizhong, for his love, encouragement and under-

standing. My particular thanks are directed to my daughter, Beisi, for her love, expecta-

tions and especially the power come from her super excellence grade in Chinese admis-

sion examination.

Finally, I have to say that the happiness of success have been tasted from the proc-

essing of finishing this thesis. I will go on explore in the field of the spatial data mining.

Contents

III

Contents

Abstract

Acknowledgements………………………………………………………………...................Ⅱ

Contents……………………………………………………………………………………….. III

List of Figures…………………………………………………………………………….……Ⅷ

List of Tables…………………………………………………………………………………..Ⅺ

List of Publications…………………………………………………………………………….Ⅻ

Terminologies………………………….……………………………………………………ⅩⅢ

Chapter 1. Introduction…………………………………………………………………………1

1.1 Motivation………………………………………………………………………………..2

1.2 Background in Spatial Data Mining……………………………………………………3

1.2.1 Spatial Co-location Pattern Mining……………………………………………..4

1.2.2 Attribute-Oriented Generalization Methods……………………………………6

1.2.3 Spatial Data Fusion Methods…………………………………………………...6

1.3 Challenges in Spatial Data Mining…………………………………………………….7

1.3.1 Spatial Co-location Pattern Mining……………………………………………..7

1.3.2 Attribute-Oriented Generalization Methods……………………………………8

1.3.3 Spatial Data Fusion Methods…………………………………………………...9

1.4 Organization of the Thesis……………………………………………………………..9

Chapter 2. Discovering Co-location Patterns from Fuzzy Spatial Data Sets……………14

2.1 Overview………………………………………………………………………………..14

2.1.1 Background of Fuzzy Co-location Mining…………………………………….15

2.1.2 Organization of the Chapter……………………………………………………16

2.2 Definitions of Basic Concepts………………………………………………………..16

2.2.1 The Semantic Proximity SP and the Fuzzy Equivalence Partition………...17

2.2.2 Further Definitions Based on the SP and the Fuzzy Equivalence Parti-

tion…………………………………………………………………………………………20

2.3 Algorithms for Discovering Fuzzy Co-location……………………………………...21

2.3.1 Generation of Candidate Co-locations………………………………………..25

2.3.2 Generation of Table Instances………………………………………………...25

2.3.3 Selection of Prevalent Co-locations…………………………………………..29

Contents

IV

2.3.4 Generating Co-location Rules…………………………………………………30

2.4 Analysis for Discovering Fuzzy Co-location………………………………………..30

2.4.1 Completeness and Correctness……………………………………………30

2.4.2 Computational Complexity Analysis…………………………………...31

2.5 Experimental Evaluation………………………………………………………………32

2.5.1 Performance Study……………………………………………………………..33

2.5.2 Experiments on a Real Data Set………………………………………………35

2.6 Summary……………………………………………………………………………….39

Chapter 3. A New Join-less Approach for Identifying Co-location Pattern Table In-

stances……………………………………………………………………………………….....40

3.1 Overview………………………………………………………………………………..40

3.1.1 Basic Concepts………………………………………………………………….41

3.1.2 Problem Definition………………………………………………………………42

3.1.3 Background for Mining Co-location Patterns………………………………...43

3.1.4 Motivation……….. ……………………………………………………………...44

3.1.5 Organization of the Chapter……………………………………………………45

3.2 Co-location-Pattern Tree (CPI-tree): Design and Construction…………………..45

3.2.1 CPI-tree…………………………………………………………………………..45

3.2.2 Complexity and Completeness of CPI-tree…………………………………..48

3.3 Generating Complete Table-Instance Using CPI-tree ..48

3.3.1 Principles of Table-Instance Generation from a CPI-tree…………………..49

3.3.2 Table-Instance Generation Algorithm………………………………………...50

3.4 Some Optimization Strategies………………………………………………………..52

3.4.1 Pruning Strategies………………………………………………………………52

3.4.2 Optimization by Reducing the Depth of CPI-tree……………………………53

3.5 Experimental Results………………………………………………………………….55

3.6 Summary……………………………………………………………………………….57

Chapter 4. An Order-Clique-Based Approach for Mining Maximal Co-locations…..……59

4.1 Overview………………………………………………………………………….……59

4.2 Maximal Ordered Prevalence Co-locations………………………………….…….62

4.2.1 Definitions and Lemmas……………………………………………….....……62

4.2.2 Algorithms……………………………………………………………………….65

4.3 Table Instances’ Inspection of Candidate Maximal Co-locations………………...66

4.3.1 Definitions and Lemmas………………………………………………………..67

Contents

V

4.3.2 Algorithms………………………………………………………………………..70

4.4 Algorithm and Analysis for Mining Maximal Ordered Prevalence Co-locations...71

4.4.1 Algorithms………………………………………………………………………..72

4.4.2 Analysis…………………………………………………………………………..73

4.5 Performance Study……………………………………………………………………74

4.6 Summary……………………………………………………………………………….78

Chapter 5. AOI-ags Algorithms and Applications…………………………………………..80

5.1 Overview……………………………………………………………………………….80

5.2 Attribute-Oriented Induction Based on Attributes’ Generalization Sequences

(AOI-ags) …………………………………………………………………………………81

5.3 An Optimization AOI-ags Algorithm………………………………………………….84

5.3.1 AOI-ags and Partition…………………………………………………………..84

5.3.2 Search Space and Pruning Strategies………………………………………..85

5.3.3 Equivalence Partition Trees and Calculating ii g,Aπ ………………….…...…87

5.3.4 Algorithms……………………………………………………………….……….88

5.4 Interestingness of Attributes’ Generalization Sequences…………………………90

5.5 Analysis…………………………………………………………………………………91

5.5.1 Completeness and Correctness……………………………………………….91
5.5.2 Computational Complexity……………………………………………………..92

5.6 Performance Evaluation and Applications………………………………………….92

5.6.1 Evaluation Using Synthetic Datasets…………………………………………92

5.6.2 Applications in a Real Dataset………………………………………………...93

5.7 Summary……………………………………………………………………………….94

Chapter 6. Fuzzy Data Mining Prediction Technologies and Applications……………….96

6.1 Overview………………………………………………………………………………..96

6.2 Preparing the Data for Prediction…………………………………………………....97

6.2.1 Preparing the Data for Predicting the Shovel Cable Lifespan……………..97

6.2.2 Preparing the Data for Predicting Plant Species in an Ecological Environ-

ment ………………………………….... …………………………………........ ………98

6.3 Initial Data Exploration – IDE…………………………………................................99

6.3.1 Comparing the Similarity of Two Time-Series……………………………….99

6.3.2 Fuzzy Equivalence Partition for the Set of Time-Series…………………..101

6.3.3 An Example………………………………….... ……………………………...102

6.4 Mining Prediction………………………………….... ………………………………103

Contents

VI

6.4.1 Degree of Fuzzy Association………………………………….....................103

6.4.2 Superposition of the Degrees of Fuzzy Association……………………….105

6.4.3 An Example…………………………………..106

6.5 Algorithms………………………………….... ………………………………….......108

6.5.1 IDE Algorithm………………………………….... ……………………………108

6.5.2 Mining Prediction Algorithm………………………………….......................109

6.5.3 Analysis of Algorithm Complexity…………………………………...............110

6.6 Results of Experiments………………………………….......................................111

6.6.1 Estimating Error Rates…………………………………...............................112

6.6.2 Quality………………………………….... …………………………………....113

6.6.3 Performance of the Algorithm…………………………………....................113

6.7 Summary………………………………….... ………………………………….........114

Chapter 7. A Cell-Based Spatial Object Fusion Method………………………………….115

7.1 Overview………………………………….... ………………………………….........115

7.2 Basic Definitions and Measurements…………………………………..................116

7.3 A Cell-Based Method Finding Fusion Seta………………………………….........117

7.3.1 The Method………………………………….... ………………………………118

7.3.2 The Algorithm………………………………….... ……………………………121

7.3.3 Complexity Analysis………………………………….... …………………….121

7.4 Testing the Method………………………………….... …………………………….122

7.5 Summary………………………………….... ………………………………….........125

Chapter 8. A Fuzzy Clustering Method Based on Domain Knowledge…………………127

8.1 Overview………………………………….... ………………………………….........127

8.2 Basic Concepts and Methods………………………………….... ………………..128

8.2.1 Basic Concepts …………………………………...128

8.2.2 Fuzzy Clustering Using Matrix Method ………………………………….... 130

8.3 New Algorithms for Fuzzy Clustering…………………………………..................131

8.3.1 Natural Method (NM) …………………………………................................131

8.3.2 Graph-based Method (GBM) ………………………………….... …….……132

8.3.3 Confirming the Threshold λ …………………………………......................133

8.4 Algorithm analysis………………………………….... ……………………………..134

8.4.1 Correctness Analysis………………………………….... …………………...134

8.4.2 Time Complexity………………………………….... ………………………..135

8.5 Experiments………………………………….... …………………………………....135

Contents

VII

8.5.1 Evaluation Using Synthetic Datasets………………………………….........136

8.5.2 Evaluation Using Real Datasets…………………………………................137

8.6 Summary………………………………….... ………………………………….........138

Chapter 9. A Visual Spatial Co-location Patterns’ Mining Prototype System

(SCPMiner)………………. ………………………………….... …………………………….139

9.1 Overview………………………………….... ………………………………….........139

9.2 Analysis and Design of SCPMiner ………………………………….... …………..139

9.3 Implementation of SCPMiner ………………………………………………………141

9.3.1 Co-location Data Management (CDM) ……………………………………..141

9.3.2 Co-location Patterns Mining (CPM) …………………………………………143

9.3.3 Co-location Mining Analyzing (CMA) ……………………………………….144

9.3.4 Co-location Patterns Applying (CPA) ……………………………………….146

9.4 Summary……………………………………………………………………………...149

Chapter 10. Concluding Remarks…………………………………………………………...150

10.1 Contributions and Conclusions……………………………………………………150

10.2 Forecasting Perspectives………………………………………………………….151

References…………………………………………………………………………………….153

Appendix 1 The Partial Codes of SCPMiner……………………………………………….158

Appendix 2 The Papers Published During this Doctor of Philosophy Degree………….184

List of Figures

VIII

List of Figures

1.1 The relationship map of the contents of research in the thesis…………………….10

2.1 An example of spatial event instances…………………………………………………16

2.2 The result after implementing the step 1), 2) and 3) …………………………………24

2.3 The partial results in executing the loop iterating step 5) ……………………………24

2.4 The binary partition tree corresponding to the matrix S in example 2.5…………….25

2.5 An illustration of the fuzzy co-location mining algorithm………………………………27

2.6 The power set lattice p(E) of the events’ set E={A, B, C, D}, and the lattice induced

by equivalence relation 1θ on p(E) ……………………………………………………..28

2.7 Effect of data density……………………………………………………………………..33

2.8 Comparison of density effect for the part of generation EPC and the rest of the part

of the algorithm……………………………………………………………………………34

2.9 Effect of prevalence thresholds………………………………………………………….35

2.10 Effect of level value λ …………………………………………………………………..35

2.11 An explanation of plants’ distribution in fuzzy co-location patterns………………...38

3.1 An example of spatial event instances………………………………………………….41

3.2 Neighbours of the instance A.1, B.1 and C.1…………………………………………..46

3.3 CPI-tree of the example in Figure 3.1……………………………………………………46

3.4 An example of reducing the depth of CPI-tree…………………………………………53

3.5 Scalability with distance d over a sparse data set and a dense data set……………56

3.6 Scalability with Min-prev over a sparse data set and a dense data set……………..56

3.7 Scalability with distance d over a plant distributed data set of the “Three Parallel Riv-

ers of Yunnan Protected Areas” ………………………………………………………..57

3.8 Scalability of CPI-tree algorithm with number of instances…………………………..57

List of Figures

IX

4.1 The P2-tree of example 4.2………………………………………………………………64

4.2 The CPm-tree of P2-tree in Figure 4.1……………………………………………………64

4.3 (a) is the result of after finishing two children ‘D’ and ‘C’ of the P2-tree in Figure 4.1.

(b) is the result of after finishing three children ‘D’ , ‘C’, and ‘B’ of the P2-tree in Figure

4.1…………………………………………………………………………………………..65

4.4 An example of spatial event instances…………………………………………………67

4.5 The Neib-tree of the example in Figure 4.4…………………………………………….68

4.6 The Ins-tree of the candidate maximal prevalence co-location {ABC} of the Neib-tree

in Figure 4.5………………………………………………………………………………68

4.7 An explanation of step 3) and 4) in Lemma 4.3………………………………………68

4.8 Two middle results in the process of generating Ins-tree of the co-location {ABC}

from the Neib-tree in Figure 4.5………………………………………………………..70

4.9 Scalability with distance d over a sparse data set and a dense data set…………76

4.10 Scalability with Min-prev over a sparse data set and a dense data set…………77

4.11 Scalability with distance d over a plant distributed data set of the “Three Parallel

Rivers of Yunnan Protected Areas” ……………………………………………………77

4.12 Scalability of the order-clique-based algorithm with number of instances…………78

5.1 An example of a concept hierarchy tree…………………………………………………82

5.2 An example of the search space…………………………………………………………86

5.3 The equivalence partition tree of the attribute “elevation” in Table 5.1………………87

5.4 Performance of algorithms using synthetic datasets………………………………….92

5.5 Characteristic of fast re-generalization for the two algorithms………………………..93

6.1 Scaling of a 24-point time-series into 4 points…………………………………………101

6.2 A concept hierarchy tree of plant species……………………………………………..104

6.3 The performance of algorithm…………………………………………………………..114

List of Figures

X

7.1 A visual view of the random pairs of datasets, with 100 and 500 objects………….123

7.2 Recall and precision as a function of the threshold values…………………………..124

7.3 The impact for algorithm’s precision to change the size of the D……………………124

7.4 The impact for algorithm’s time to change the size of the D…………………………125

7.5 Running time as a function of the threshold values…………………………………..125

8.1 Concept hierarchy trees of attributes “plant” and “elevation” ………………………..129

8.2 An example of fuzzy clustering process………………………………………………..131

8.3 (a).Sub-graph when λ =0.44; (b) Sub-graph when λ =0.48…………………………134

8.4 The performance of MMM, NM and GBM as function of matrix size n……………..136

8.5 (a) Before clustering; (b) After clustering………………………………………………137

9.1 Basic architecture of SCPMiner…………………………………………………………140

9.2 Main interface of SCPMiner……………………………………………………………..141

9.3 The interface of CDM……………………………………………………………………142

9.4 A result of selecting a plant distribution dataset………………………………………142

9.5 Processing of data generation…………………………………………………………143

9.6 The procession of co-location patterns mining………………………………………144

9.7 Interface of CMA…………………………………………………………………………145

9.8 An example of mining’s efficiency analysis…………………………………………..145

9.9 The results of the size-2 prevalence co-location patterns in the dataset of Figure

9.8…………………………………………………………………………………………146

9.10 Interface of CPA………………………………………………………………………..147

9.11 An example of rules’ plants growth environment query…………………………147

9.12 Visualization of co-location rules in the plants’ distribution dataset of the “Three

Parallel Rivers of Yunnan Protected Areas” ………………………………………..148

List of Tables

XI

List of Tables

2.1 An example of spatial instances (Instances set sorted by spatial event types and in-
stance-id) ………………………………………………………………………………………16

2.2 Mining results of synthetic data sets…………………………………………………….34

2.3 Some selected results of mining fuzzy co-location on the “Three Parallel Rivers of
Yunnan Protected Areas”……………………………………………………………………..36

2.4 A correspondence table of plants’ name and their ID used in table 2.3……………..37

5.1 Some tuples of a plant distributed dataset………………………………………………93

6.1 The dataset for predicting shovel cable lifespan……………………………………….97

6.2 Plant species and ecological environment dataset…………………………….………98

6.3 A simple example of 4 time-series data………………………………………………..102

6.4 An example of data table for prediction………………………………………………..107

6.5 A new conditional attributes’ data that have been pre-processed…………………107

6.6 Weight w for the predicted attribute B………………………………………………….107

6.7 The distributed table……………………………………………………………………..107

6.8 Weight µ for superposition……………………………………………………………..107

6.9 Mining prediction of predicted attribute…………………………………………………108

6.10 FP% and FN% for 13 lifespan…………………………………………………………112

6.11 FP% and FN% for 34 lifespan…………………………………………………………112

6.12 Results of the algorithm’s quality……………………………………………………..113

6.13 The measure with different partition level value thresholds for 13 lifespan………113

8.1 Plant and elevation datasets……………………………………………………………129

8.2 The comparison of time complexity…………………………………………………….135

8.3 Runtime and total time of NM and MMM by changing λ …………………………..136

Publications

XII

Publications

The following papers are the results of the work conducted during Doctor of Phi-
losophy Degree:

[1] Wang, L., Lu, J., Yip, J. (2007) AOG-ags Algorithms and Applications. In: Proceed-
ings of the Third International Conference on Advanced Data Mining and Ap-
plications (ADMA 2007), Springer-Verlag, Berlin, LNAI 4632, pp. 323-334,
2007.8

[2] Wang, L., Lu, J., Yip, J. (2007) An Effective Approach to Predicting Plant Species in
an Ecological Environment, In: Proceedings of the 2007 international Confer-
ence on Information and Knowledge Engineering (IKE’07), Las Vegas Ne-
vada, USA, June 25-28, 2007, pp. 245-250

[3] Wang, L., Bao, y., Lu, J., Yip, J. (2008) A New Join-less Approach for Co-
location Pattern Mining, In: Proceedings of the IEEE 8th International Confer-
ence on Computer and Information Technology (CIT2008), Syney, Australia 8-
11 July 2008 (Accepted)

[4] Wang, L., Lu, J., Yip, J. (2008) An Order-Clique-Based Approach for Mining Maximal
Co-location Patterns, University of Huddersfield, Poster, 2008

The papers under review:
[5] Wang, L., Lu, J., Yip, J. Discovering Co-location Patterns from Fuzzy Spatial Data

Sets, Submitted to the International Journal of Information Sciences, Elsevier,
December, 2007.

[6] Wang, L., Zhou, L., Lu, J., Yip, J. An Efficient Approach for Mining Maximal Co-
location Patterns, Submitted to The International Journal of Information Sci-
ences, Elsevier, April, 2008.

[7] Wang, L., Bao, Y., Lu, J., Yip, J. A Visual Spatial Co-location Patterns' Mining Proto-
type System, Submitted to International Conference on Cyberworlds (CW
2008), Hangzhou, China, Sept. 22-24, 2008, April, 2008.

Terminologies

XIII

Terminologies

λ ----the fuzzy equivalence partition threshold (the level value)

AGS---- Attributes’ Generalization Sequence

AOI----Attribute-Oriented Induction

AOI-ags---- Attribute-Oriented Induction based on Attributes’ Generalization Sequence

CDM----Co-location Data Management

CMA----Co-location Mining Analysis

CP----Conditional Probability

CPm-tree----Candidate Maximal ordered Prevalence co-locations TREE

CPA----Co-location Patterns Applying

CPI-tree----Co-location Patterns Instance TREE

CPM----Co-location Patterns Mining

EM----Equivalence Matrix

EPC----Fuzzy equivalence Classifications

GBM----Graph-Based Method

GFCG----General Fuzzy Co-location Generation

IDE----Initial Data Exploration

IDF----Inverse Document Frequency

Ins-tree----table Instances’ inspecting TREE

Min-Prev----Prevalence value Threshold

Min-Cond-Prob----Conditional Probability Threshold

MMM----Modified Matrix Method

NM----Natural Method

Neib-tree----Neighbour relationship TREE

OFCG----Optimized Fuzzy Co-location Generation

Terminologies

XIV

P2-tree----Prevalence size-2 co-location header relationship TREE

PD----the Degree of Proximity between two time-series

Pi----Participation Index

Pr----Participation Ratio

S----Similarity Matrix

SCPMiner---Spatial Co-location Patterns’ Mining Prototype System

SDM----Spatial Data Mining

SOLAP----Spatial On-Line Analysis Processing

SP----Semantic Proximity

Chapter 1. Introduction

1

 Chapter 1

Introduction
Spatial data mining refers to the extraction of knowledge, spatial relationships, or other

interesting patterns not explicitly stored in spatial data sets. It is expected to have wide

applications in geographic information systems, geo-marketing, remote sensing, image

database exploration, medical imaging, navigation, traffic control, environmental studies,

and many other application areas where spatial data are used. A crucial challenge to

spatial data mining is the exploration of efficient spatial data mining techniques due to

the huge amount of spatial data, and the complexity of spatial data types and spatial ac-

cess methods.

The final goal of the thesis is to develop some novel theoretical concepts and

methods for spatial patterns mining, and develop a prototype system to explore the im-

plementation of a spatial data mining system. To fulfil the goal, the following work will be

carried out:

(1). Extend mining spatial co-location patterns from general spatial data sets for

mining fuzzy spatial co-location patterns from fuzzy spatial data sets.

(2) Design a new join-less algorithm for identifying co-location pattern table in-

stances.

(3) Present an order-clique-based method for mining maximal prevalence co-

location patterns.

(4). Survey the efficiency of mining correlations between attributes based on attrib-

uted-oriented induction (AOI, for short), and expand the traditional AOI, based on attrib-

utes’ generalization sequence, to upgrade.

(5). Study mining prediction technologies exhaustively, and based on the concept of

semantic proximity, employ a method, evaluating the fuzzy association degree, to solve

the problem of spatial mining prediction.

(6). Propose a cell-based spatial object fusion method in spatial data sets, which

only uses locations of objects and without distance between two objects.

(7). Investigate fuzzy clustering methods based on domain knowledge.

(8). Explore the implementation of a visual spatial co-location patterns’ mining pro-

totype system (SCPMiner).

An Investigation in Efficient Spatial Patterns Mining

2

1.1 Motivation

In this section, the arguments of this thesis are briefly stated.

Spatial data mining has attracted a great deal of attention from not only the spatial

information industry but also the whole society in recent years, due to the wide availabil-

ity of huge amounts of spatial data and the imminent need for turning such spatial data

into useful spatial information and knowledge. The spatial information and knowledge

gained can be used for applications ranging from forestry and ecology planning, to pro-

vide public service information regarding the location of telephone and electric cables,

pipes, and sewage systems.

Spatial data, like geographic (map) data, very large-scale integration (VLSI) or com-

puted-aided design data, and medical or satellite image data contain spatial-related in-

formation. Spatial data may be represented in raster format, consisting of n-dimensional

bit maps or pixel maps. For example, a 2-D satellite image may be represented as raster

data, where each pixel registers the rainfall in a given area. Also, the data information

can be represented in vector format, where roads, bridges, buildings, and lakes are

represented as unions or overlays of basic geometric constructs, such as points, lines,

polygons, and the partitions and networks formed by these components.

Spatial data can now be stored in many different kinds of spatial databases and in-

formation repositories. A spatial data repository architecture that has emerged is the

spatial data warehouse, a repository of multiple heterogeneous data sources organized

under a unified schema at a single site in order to facilitate management decision mak-

ing. Spatial data warehouse technology includes spatial data cleaning, spatial data inte-

gration, and spatial on-line analytical processing (SOLAP), that is, analysis tech-

niques with functionalities such as summarization, consolidation, and aggregation as

well as the ability to view information from different angles. Although SOLAP tools sup-

port multidimensional analysis and decision making, additional spatial data analysis tools

are required for in-depth analysis, such as spatial data classification, spatial co-location

mining, and spatial outlier detection. In addition, huge volumes of spatial data can be ac-

cumulated beyond spatial databases and spatial data warehouses. How to analyse spa-

tial data in such different forms effectively and efficiently becomes a challenge.

The abundance of data, coupled with the need for powerful data analysis tools, has

been described as a data rich but information poor situation, especially for the spatial

data field. The fast-growing, tremendous amount of spatial data, collected and stored in

large and numerous spatial data repositories, has far exceeded human ability for com-

Chapter 1. Introduction

3

prehension because powerful tools are lacking. As a result, spatial data collected in re-

positories become “spatial data tombs”----spatial data archives that are seldom visited.

The tools for spatial data mining perform spatial data analysis and may uncover im-

portant spatial data patterns, contributing greatly to business strategies, ecology plan-

ning, and scientific and medical research. The widening gap between spatial data and

spatial information calls for a systematic development of spatial data mining tools that

will turn data tombs into “golden nuggets” of knowledge.

 A question is raised: “What kinds of data mining methods should be performed on

spatial data sets?” Mining Spatial data is supposed to uncover spatial patterns which

may describe the characteristics of plants located near a specified kind of location, such

as an alpine terrain, the species diversity of mountainous areas located at various alti-

tudes, or the change in trend of metropolitan poverty rates based on city distances from

major highways. That is, the spatial relationships among a set of spatial objects need to

be dug out through spatial data mining in order to discover which subsets of objects are

spatially auto-correlated or associated. Besides, during a mining process, clusters and

outliers also need be identified by spatial cluster analysis, and spatial classification

should be provided to construct models for prediction based on the relevant set of fea-

tures of the spatial objects.

Data mining in spatial databases is different from that in relational databases in the

sense that attributes of the neighbours of some objects of interest may have an influence

on the object (Han and Kamber, 2006; Ester et al, 1999; Lee et al, 2007). The explicit

location and extension of spatial objects define the implicit relations of spatial neighbour-

hoods (such as topological, distance and direction relations) that are used by spatial

data mining algorithms [Ester et al, 1998; Ester et al, 1999; Kriegel et al, 2004]. There-

fore, the crucial challenge in spatial data mining is the efficiency of spatial data mining

algorithms and the effective application of spatial data mining technology, due to the

huge amount of spatial data, and the complexity of spatial data types and spatial meth-

ods.

1.2 Background in Spatial Data Mining

Following the discussion of the demand on spatial data mining, and the importance

of its applications, we take a further look at the research work, done so for in this field. In

fact, spatial data mining has been studied extensively. A comprehensive survey on spa-

tial data mining methods can be found in the papers of Ester, Kriegel, Sander (1997) and

Shekhar and Chawla (2003). Lu, Han and Ooi (1993) proposed a generalization-based

spatial data mining method by attribute-oriented induction. Ng and Han (1994) proposed

An Investigation in Efficient Spatial Patterns Mining

4

performing descriptive spatial data analysis based on clustering results instead of on

predefined concept hierarchies. Zhou, Truffet, and Han (1999) proposed efficient poly-

gon amalgamation methods for on-line multidimensional spatial analysis and spatial data

mining. Koperski and Han (1995) proposed a progressive refinement method for mining

spatial association rules. Spatial classification and trend analysis methods have been

developed by Ester, Kriegel, Sander, and Xu (1997); and Ester, Frommelt, Kriegel, and

Sander (1998). A two-step method for classification of spatial data was proposed by

Koperski, Han, and Stefanovic (1998). A spatial data mining system prototype,

Geominer, was developed by Han, Koperski, and Stefanovic [HKS97].

For further background of spatial data mining techniques explored in the thesis is

discussed in detail below.

1.2.1 Spatial Co-location Pattern Mining

Related approaches for discovering spatial co-location patterns can be classified

into two categories, in the literature, spatial statistics-based mining and data mining ap-

proaches.

（1） Spatial statistics-based mining approaches use measures of spatial correla-

tion to characterize the relationship between different types of spatial features. Measures

of spatial correlation include the cross-K function with Monte Carlo simulation and mean

nearest-neighbour distance proposed by Cressie (1991), and spatial regression models

was proposed by Chou (1997). Computing spatial correlation measures for all possible

co-location patterns can be computationally expensive due to the exponential number of

candidate subsets given a large collection of spatial Boolean features.

（2） Data mining approaches can be further classified into clustering-based map

overlay approaches and association rule-based approaches.

a. A clustering-based map overlay approach treats every spatial attribute as a

map layer and considers spatial clusters (regions) of point-data in each layer as

candidates for mining associations that was proposed by Estivil-Castro and

Lee, (2001); and Estivil-Castro and Murray, (1998). Given X and Y as sets of

layers, a clustered spatial association rule is defined as %),(cccsYX ⇒ , for

Φ=∩YX , where cs is the clustered support, defined as the ratio of the area

of the cluster (region) that satisfies both X and Y to the total area of the study

region S, and cc% is the clustered confidence, which can be interpreted as cc%

of areas of clusters (regions) of X intersect with areas of clusters (regions) of Y.

The complexity and the efficiency are the crucial problems in the clustering-

Chapter 1. Introduction

5

based approaches.

b. Association rule-based approaches can be further classified into transaction-

based approaches and distance-based approaches.

 Transaction-based approaches focus on defining transactions over space.

For example, Koperski and Han (1995) and Wang et al (2005) proposed

transactions over space defined by a reference-object centric model. Under

this model, transactions are created around instances of one user-specified

spatial object. The spatial association rules are derived using the Apriori

(Agarwal and Srikant, 1994) algorithm. However, it is nontrivial to general-

ize this paradigm to the case where no reference feature is specified. Also,

defining transactions around locations of instances of all features may yield

to duplicate counts for many candidate associations.

 The distance-based approach was first presented by Shekhar and Huang

(2001) and Morimoto (2001). Related work may be classified into three

categories, which are the join-based approach (Shekhar and Xiong, 2001;

Xiong et al, 2004; Huang et al, 2004), the partial join approach (Yoo and

Shekhar, 2004) and the join-less approach (Yoo et al, 2005). The instance

join-based co-location mining algorithm is similar to Apriori (Agarwal and

Srikant, 1994). First, after finding all neighbour pair objects (size 2 co-

location instances) using a geometric method, the method finds the in-

stances of size k (>2) co-locations by joining the instances of the size k-1

subset co-locations where the first k-2 objects are common. This approach

finds correct and complete co-location instance sets. However, the join-

based approach is computationally expensive with the increase of co-

location patterns and their instances. The partial join approach converts a

continuous spatial data into a set of disjoint clique neighbourhoods while

keeping track of the spatial neighbour relations not modelled by the transac-

tionization. This approach reduces the number of expensive join operations

dramatically in finding co-location instances. However, the performance de-

pends on the distribution of the spatial dataset, especially the number of cut

neighbour relations. Yoo, Shekhar and Celik (2005) proposes a novel join-

less approach for co-location pattern mining, which materializes spatial

neighbour relationships with no loss of co-location instances and reduces

the computational cost of identifying the instances. The join-less co-location

mining algorithm is efficient since it uses an instance-lookup scheme in-

stead of an expensive spatial or instance join operation for identifying co-

An Investigation in Efficient Spatial Patterns Mining

6

location instances. But with the increasing size of co-location, the time of

scanning the materialized spatial neighbour relationships will increase.

1.2.2 Attribute-Oriented Induction Methods
Attribute-Oriented Induction (AOI) (Lu et al, 1993; Ester et al, 1998; Knorr and Ng,

1997) operates by generalizing detailed spatial data to a particularly high level and stud-

ies the general characters and data distributions at this level. It has been implemented in

the GeoMiner (Han et al, 1997). The goal of AOI is to discover interesting relationships

between spatial and non-spatial data. There are two well known AOI algorithms: (1)

AOI（Attribute-Oriented Induction）proposed by Cai et al (1991), and (2) LCHR（Learn

CHaracteristic Rule）proposed by Han (1994). Both are not incremental and do not al-

low fast re-generalization. An AOI method possessing fast re-generalization was pro-

posed by Wang (2000). But its runtime performance is not very good because it con-

sumes too much memory space.

Carter and Hamilton (1998) proposed two new algorithms. GDBR (Generalize Da-

tabase Relation) is an online algorithm, and FIGR (Fast, Incremental Generalization and

Re-generalization) has characteristics of incremental and fast re-generalization. More

importantly, the run times of the GDBR and the FIGR are less than the AOI and the

LCHR.

But there is a supposition in the FIGR. The size of attributes and the number of the

possible values in an attribute are relatively small (e.g., the size of attributes should be

less than 5). In addition, the four algorithms control generalization levels by using attrib-

ute thresholds. That is not so realistic in practice, because it is impossible to try every

possible combination of thresholds for every attribute. And the size of attributes and the

number of the possible values in an attribute are not small in a real-world environment.

So, it might not be a good idea to apply algorithms of AOI.

1.2.3 Spatial Data Fusion Methods
In the research of object fusion, Papakonstantinou, Abiteboul and Garcia-Molina

(1996) and Samet, Seth and Cueto (2004) considered that objects have identifiers (e.g.,

keys), while Beeri et al (2004) and Minami (2000) studied this problem without global

identifiers. The lack of global identifiers makes the object-fusion problem much more dif-

ficult. In addition, in the paper of Bruns and Egenhofer (1996), topological similarity is

used to find corresponding objects, while Fonseca and Egenhofer (1999), Fonseca,

Egenhofer and Agouris (2002), and Uitermark et al (1999) used ontology for that pur-

pose. Finally, the problem of how to fuse objects, rather than how to find fusion sets, was

studies by Papakonstantinou, Abiteboul and Garcia-Molina (1996).

Chapter 1. Introduction

7

Since location is the only property that is always available for spatial objects, loca-

tion-based fusion problems only using object location are investigated. Minami (2000)

proposed the one-sided nearest-neighbour join, Beeki et al (2004) gives the mutually-

nearest method, the probabilistic method and the normalized-weights method. The mu-

tually-nearest method is an improvement of the one-sided nearest-neighbour join, and

the probabilistic method and the normalized-weights method are based on a probabilistic

model which are shown in (Beeki et al, 2004) achieve the best results under all circum-

stances. Although these methods are very fresh and novel, they need to compute the

distance between two objects. It is unfortunately not a simple task, because the locations

of objects are spatial attributes.

1.3 Challenges in Spatial Data mining

Spatial data mining includes mining spatial association and co-location patterns,

clustering, classification, and spatial trend and outlier analysis. The common challenges

in spatial data mining are mining methodology, user interaction, performance, data type,

and data size as discussed below:

1.3.1 Mining methodology and user interaction issues: These reflect the kinds of

spatial knowledge miner, the ability to mine spatial knowledge at multiple granularities,

the use of domain knowledge, and spatial knowledge visualization.

 Mining different kinds of knowledge in spatial data sets: Because different users

can be interested in different kinds of spatial knowledge, spatial data mining should

cover a wide spectrum of data analysis and knowledge discovery tasks, including

data characterization, discrimination, association and correlation analysis, classifi-

cation, prediction, clustering, outlier analysis, and evolution analysis (which in-

cludes trend and similarity analysis). These tasks may use the same spatial data

set in different ways and require the development of numerous spatial data mining

techniques.

 Interactive mining of spatial knowledge at multiple levels of abstraction: The spatial

data mining process should be interactive, because it is difficult to know exactly

what can be discovered within a spatial data set. For data sets containing a huge

amount of spatial data, appropriate sampling techniques can be first applied to fa-

cilitate interactive data exploration. Interactive mining allows users to focus on the

researching patterns, providing and refining data mining requests based on re-

turned results. Specifically, knowledge should be mined by drilling down, rolling up,

and pivoting through the data space and knowledge space interactively, similar to

what OLAP can do on data cubes. In this way, the user can interact with the data

An Investigation in Efficient Spatial Patterns Mining

8

mining system to view data and discovered patterns at multiple granularities from

different angles.

 Incorporation of background knowledge: Background knowledge, or information re-

garding the domain under study, may be used to guide the discovery process and

allow discovered patterns to be expressed in concise terms and at different levels

of abstraction. Domain knowledge related to spatial data sets, such as integrity

constraints and deduction rules, can help focus and speed up a spatial data mining

process, or judge the interestingness of discovered patterns.

 Presentation and visualization of spatial data mining results: Discovered knowledge

should be expressed in high-level languages, visual representations, or other ex-

pressive forms so that the knowledge can be easily understood and directly usable

by humans. This is especially crucial if the data mining system is to be interactive.

This requires the system to adopt expressive knowledge representation tech-

niques, such as trees, tables, rules, graphs, charts, crosstabs, matrices, or curves.

 Pattern evaluation—the interestingness problem: A spatial data mining system can

uncover thousands of patterns. Many of the patterns discovered may be uninterest-

ing to the given user, either because they represent common knowledge or lack

novelty. Several challenges remain regarding the development of techniques to as-

sess the interestingness of discovered patterns, particularly with regard to subjec-

tive measures that estimate the value of patterns with respect to a given user class,

based on user beliefs or expectations. The use of interestingness measures or

user-specified constraints to guide the discovery process and reduce the search

space is another active area of research.

1.3.2 Performance issues: These include efficiency, scalability, and parallelization of

data mining algorithms.

 Efficiency and scalability of spatial data mining algorithms: To effectively extract in-

formation from a huge amount of spatial data in spatial data sets, spatial data min-

ing algorithms must be efficient and scalable. In other words, the running time of a

spatial data mining algorithm must be predictable and acceptable in large spatial

data sets. Considering the huge size of spatial data sets, efficiency and scalability

are key issues in the implementation of spatial data mining systems. The issues

discussed above under mining methodology and user interaction must also con-

sider efficiency and scalability.

 Parallel, distributed, and incremental mining algorithms: The huge size of spatial

data sets, the wide distribution of data, and the computational complexity of some

spatial data mining methods are factors motivating the development of parallel and

Chapter 1. Introduction

9

distributed data mining algorithms. Such algorithms divide the data into partitions,

which are processed in parallel. The results from the partitions are then merged.

Moreover, the high cost of some data mining processes promotes the need for in-

cremental spatial data mining algorithms that incorporate spatial data set updates

without having to mine the entire data again “from scratch”. Such algorithms per-

form knowledge modification incrementally to amend and strengthen what was

previously discovered.

1.3.3 Issues relating to the spatial data type and spatial fuzzy data types
 Handling complex spatial data types: Spatial data mining deals with not only com-

mon data types such as integers, dates and strings, but also complex spatial data

types like points, lines, and polygons. Furthermore, relationships between spatial

objects, including metric (e.g., distance), directional (e.g., north of), and topological

ones (e.g., adjacent), add new complexity to SDM.

 Mining information from spatial fuzzy data sets: If the location attribute of spatial

data in a spatial data set is described as area, the spatial data set becomes a fuzzy

spatial data set. Actually, the geographic proximity is a fuzzy concept in many real

application fields. Discovering spatial fuzzy knowledge from spatial fuzzy data sets

thus present great challenge to spatial data mining. Spatial fuzzy data mining may

help disclose interesting data regularities in spatial fuzzy data sets that are unlikely

to be discovered by traditional spatial data mining system.

The above issues are considered as major requirements and challenges for the in-

vestigations in spatial patterns mining. For the limited researching time, some of them

will be addressed in this thesis to a certain extent, while others will be studied in the fu-

ture.

1.4 Organization of the Thesis

This thesis includes the following investigations: discovering co-location patterns

from fuzzy spatial data sets, a new join-less approach for co-location patterns mining, an

order-clique-based method for mining maximal prevalence co-location patterns, an at-

tribute-oriented induction method based on attributes’ generalization sequence, re-

searching on mining prediction technologies, a cell-based spatial object fusion method, a

fuzzy clustering method based on domain knowledge, and a visual spatial co-location

patterns mining prototype system. Their relationship is shown in Figure 1.1.

An Investigation in Efficient Spatial Patterns Mining

10

Figure 1.1 The relationship map of the contents of research in the thesis

Discovering co-location patterns from
fuzzy spatial data sets 2

A new join-less approach for
co-location patterns mining

3

An attribute-oriented induction
method based on attributes’

generalization sequence 5

Research on mining prediction
technologies 6

Fuzzy spatial data

Spatial data A fuzzy clustering
method based on

domain
knowledge 8

A Cell-Based

Spatial Object

Fusion Method 7

A visual spatial co-location patterns’ mining prototype system 9

An order-clique-based method for
mining maximal prevalence

co-location patterns 4

This group is for co-location

patterns mining

This group is for
mining associations

among attributes

Pre-processes
spatial data mining

Incorporates
co-location

techniques into a
system

Two types of data, fuzzy spatial data and spatial data, are the studied objects in this

thesis. For fuzzy spatial data sets, the problem of discovering co-location patterns is ex-

plored (it is denoted as number 2 in Figure 1.1. It means it will be in Chapter 2.). For spa-

tial data sets, five works are investigated. The research of the number 8 is connected to

the works of the number 2, 5, and 6 since used the fuzzy equivalence partition method in

the number 2 and 6 is the same as in the number 8, and applied the concept hierarchy

trees in the number 5 is same as in the number 8. The efficiency of each of the tech-

niques given in Chapter 2-8 is investigated in its own chapter. Chapter 9 gives a proto-

type system which incorporates the techniques for co-location patterns mining, i.e. Chap-

ter 3 and 4. In the future, the system could be extended to incorporate techniques from

other chapters, but this extension of capability is not essential to proving the efficiencies

of all the techniques described in this thesis. The visual spatial co-location patterns’ min-

ing prototype system is the number 9 in Figure 1.1.

So, the rest of the thesis is composed of nine Chapters: Discovering co-location

patterns from fuzzy spatial data sets, a new join-less approach for co-location patterns

mining, an order-clique-based method for mining maximal prevalence co-location pat-

Chapter 1. Introduction

11

terns, an attribute-oriented induction method based on attributes’ generalization se-

quence, researching on mining prediction technologies, a cell-based spatial object fusion

method, a fuzzy clustering method based on domain knowledge, a visual spatial co-

location patterns’ mining prototype system, and conclusions and concluding remarks.

Chapter 2 provides how to discover co-location patterns from fuzzy spatial data

sets. A semantic proximity, SP, between spatial fuzzy instances is introduced in this

Chapter. Based on the fuzzy equivalence partition, the concept of co-location mining

from fuzzy spatial data sets (for short, called the fuzzy co-location mining) is formally

established. Further, an algorithm to discover the fuzzy co-location rules is designed. A

new data structure, the binary partition tree, to improve the process of fuzzy equiva-

lence partitioning, is proposed. A prefix-based approach to partition the prevalent event

set search space into subsets, where each sub-problem can be solved in main-memory,

is also presented. Finally, theoretical analysis and experimental results on synthetic data

sets and a real-world plant distributed data set are presented and discussed.

Chapter 3 describes a new join-less approach for identifying co-location pattern ta-

ble instances. In this Chapter, a new join-less approach for co-location patterns mining,

which based on the data structure----CPI-tree (Co-location Pattern Instance Tree), is

proposed. The CPI-tree materializes spatial neighbour relationships. All co-location in-

stances can be generated quickly with a CPI-tree. In this chapter, the correctness and

completeness of the new approach is also proved. Finally, an experimental evaluation

using synthetic datasets and a real world dataset shows that the algorithm is computa-

tionally more efficient than the traditional used algorithms.

Chapter 4 discusses an order-clique-based method for mining maximal prevalence

co-location patterns. In this chapter, Characteristic and efficiency of the approach is

achieved with three techniques: (1) the spatial neighbour relationships between in-

stances and the size-2 prevalence co-locations are compressed into extended prefix-tree

structures respectively, Neib-tree and P2-tree, which brings up an order-clique-based

approach to mining candidate maximal ordered prevalence co-locations and ordered ta-

ble instances, (2) all table instances are generated from the Neib-tree, and do not need
be stored after computing the Pi value of corresponding co-location, which dramatically

reduces the executive time and space of mining maximal co-locations, and (3) some

strategies, pruning the branches, with the number of children less than a related value,

and scanning the Neib-tree in order, are used to avoid some useless inspection in the

process of inspecting table instances.

Chapter 5 presents an attribute-oriented induction method based on the attributes’

generalization sequence. A reasonable approach of AOI (AOI-ags, attribute-oriented in-

duction based on attributes’ generalization sequence), which expands the traditional

An Investigation in Efficient Spatial Patterns Mining

12

AOI method, is proposed in this Chapter. By introducing equivalence partition trees, an

optimization algorithm of the AOI-ags is devised. Defining interestingness of attrib-
utes’ generalization sequences, the selection problem of attributes’ generalization se-

quences is solved. Extensive experimental results show that the AOI-ags are useful and

reasonable. Particularly, by using the AOI-ags algorithm in a plant distributed dataset,

some distributed rules for the species of plants in an area are found interesting.

Chapter 6 focuses on mining prediction technologies. Based on the concept of se-

mantic proximity, a mining method to evaluate the fuzzy association degree is given in

this chapter. Inverse document frequency (IDF) weight function has been adopted in this

investigation to measure the weights of ecological environments in order to superpose

the fuzzy association degrees. To implement the method, the “growing window” and

the proximity computation pruning are deployed to reduce both I/O and CPU costs for

the computation of the fuzzy semantic proximity between time-series. Extensive experi-

ments on real datasets are conducted, and the results show that the mining approach is

reasonable and effective.

Chapter 7 introduces a cell-based spatial object fusion method. This method only

uses locations of objects without calculating the distance between two objects. The

performance of the algorithm is measured in terms of recall and precision. This algorithm

can work well when locations are imprecise and each spatial data set represents only

some of the real-world entities. Results of extensive experimentation are presented and

discussed.

A fuzzy clustering method based on domain knowledge is described in Chapter 8.

The clustering method in this chapter is based on domain knowledge, from which the

tuples’ semantic proximity matrix can be obtained, and then two fuzzy equivalence parti-

tion methods are introduced. Both methods are started from semantic proximity matrix

so that the results of clustering can be instructed by domain knowledge. The two meth-

ods are Natural Method (NM) and Graph-Based Method (GBM), which are both con-

trolled by a threshold that is confirmed by polynomial regression. Theoretical analysis

testifies the correctness of the approaches. The extensive experiments on synthetic

datasets compare the performance of the new approaches with that of modified MM ap-

proach in Wang (2000) and highlight the benefits of the new approaches. The experi-

mental results on real datasets discover some rules which are useful to domain experts.

Chapter 9 focuses on the development of a visual spatial co-location patterns’ min-

ing prototype system (SCPMiner). The SCPMiner provides the user multiple methods of

the spatial co-location mining. The management of co-location data is given. The co-

location mining methods’ analyzing can be performed on the SCPMiner. And it provides

Chapter 1. Introduction

13

co-location mining applying function as well. Visualization and simplicity are outstanding

characteristics of SCPMiner.

Finally, In Chapter 10, the most important results and contributions of the thesis are

concluded. In addition, some possible extensions based on current achievements are

discussed. Further investigations which need to be carried out are indicated.

An Investigation in Efficient Spatial Patterns Mining

14

Chapter 2

Discovering Co-location Patterns from Fuzzy Spatial Data Sets

This Chapter extends mining spatial co-location patterns from general spatial data sets to mining

spatial co-location patterns from fuzzy spatial data sets and makes the following contributions. A

concept of semantic proximity SP over fuzzy spatial instances is defined. The concept of fuzzy

spatial co-location mining is given based on the fuzzy equivalence partition. An algorithm for min-

ing fuzzy spatial co-location rules is designed. A new data structure, the binary partition tree, to

improve the process of fuzzy equivalence partition, is proposed. A prefix-based approach to parti-

tion the prevalent event set search space into subsets is also presented, where each sub-problem

can be solved in main-memory. Finally, the time complexity and correctness of the algorithm are

analyzed and experiments are conducted using synthetic data sets and a real-world plant distrib-

uted data set. A case study on real-world data sets shows that our method is effective for mining

co-locations from fuzzy spatial data sets.

2.1 Overview

Spatial co-location patterns represent subsets of spatial events whose instances

are often located in close geographic proximity. Spatial events describe the presence or

absence of geographic object types at different locations in a two-dimensional or three-

dimensional metric space, such as the surface of the earth. Examples of spatial events

include plant species, animal species, business types, mobile service requests, disease,

crime, climate, etc. Spatial co-location patterns may yield important insights for many

applications. For example, Botanists may be interested in symbiotic plant species in a

special area. E.g., “Picea Brachytyla”, “Picea Likiangensis” and “Tsuga Dumosa” grow

frequently in an alpine terrain of the “Three Parallel Rivers of Yunnan Areas” zone. Co-

location rules are used to infer the presence of some events (e.g., plants or animals) in

the neighbourhood of instances of other spatial events. For example, “‘Picea Brachytyla’

→ ‘Picea Likiangensis’ and ‘Tsuga Dumosa’ ” predicts the presence of ‘Picea Likiangen-

sis’ and ‘Tsuga Dumosa’ plants in the areas with ‘Picea Brachytyla’.

In a plant distributed dataset, discovering spatial co-location patterns is quite a sig-

nificant task. We know that plants grow in a tuft, so, the location of certain plant species

is not a point but a probability area. If we approximately describe the location of plants as

areas, the spatial datasets we face become fuzzy spatial datasets. How do we discover

co-location patterns from a fuzzy spatial dataset while geographic proximity is not an ab-

solute concept? For instance, if you say that certain plant is in close proximity to other

Chapter 2. Discovering Co-location Patterns from Fuzzy Spatial data Sets

15

plant which is 5 meters away from it, then what is the relationship with the third plant

which is 5.01 meters away? Based on the discussion above, the problems of co-location

mining from fuzzy spatial datasets are investigated in this chapter (for short, called the

fuzzy co-location mining).

The problem of fuzzy co-location mining can be formalized as follows: Given 1) A

set E of K spatial event types },,{ 21 KeeeE L= and their instances },,{ 21 NiiiI L= ,

each Iii ∈ is a vector <instance-id, spatial event type, location>, where locations are

fuzzy data and they belong to a spatial framework F, and 2) A semantic proximity SP

over instances in I and a fuzzy equivalence partition of instances in I based on SP, all

the fuzzy co-location rules can be efficiently found.

2.1.1 Background of Fuzzy Co-location Mining

In previous work on mining co-location patterns, Morimoto (2001) defined distance-

based patterns called k-neighbouring class sets. In his work, the number of instances for

each pattern is used as the prevalence measure, which does not possess an anti-

monotone property by nature. However, Morimoto used a non-overlapping instance con-

straint to get the anti-monotone property for this measure. In contrast, Shekhar & Huang

(2001) developed an event centric model, which does away with the non-overlapping

instance constraint, and a new prevalence measure called the participation index (Pi) is

defined. This measure possesses the desirable anti-monotone property. At the same

time, Huang, Shekhar & Xiong (2004) proposed a general mining approach: Join-based

approach mining co-locations. This approach is good on sparse spatial data sets. How-

ever, in dealing with dense data sets, it is inefficient due to the computation time of the

join is growing with the growth in co-locations and table instances. Yoo and Shekhar

proposed two improved algorithms (called partial-join approach and join-less approach

respectively) to conquer the disadvantage of the full-join approach on efficiency in (Yoo

and Shekhar, 2004) and (Yoo et al, 2005).

Huang, Pei and Xiong address the problem of mining co-location patterns with rare

spatial events in (Huang et al, 2006). In this paper, a new measure called the maximal

participation ratio (maxPR) was introduced and a week monotonicity property of the

maxPR measure was identified. And in paper (Huang and Zhang, 2006), Huang and

Zhang proposed a new approach to the problem of mining co-location patterns using

clustering techniques. Therefore, clustering techniques can be applied to reveal the rich

structure formed by co-located spatial events in spatial data.

An Investigation in Efficient Spatial Patterns Mining

16

In summary, the problem of mining spatial co-location patterns is being widely in-

vestigated from the measures, algorithms to application domains, but not in fuzzy co-

location mining.

2.1.2 Organization of the Chapter

The remainder of the Chapter is organized as follows: Section 2.2 presents basic

concepts of the fuzzy co-location mining. In Section 2.3, an algorithm for fuzzy co-

location mining is presented. Section 2.4 provides an analysis of the algorithms in the

area of correctness, completeness and computational complexity. Experimental evalua-

tions are given in Section 2.5. The conclusion and discussing future work are given in

Section 2.6.

2.2 Definitions of Basic Concepts

This section defines the basic concepts of the fuzzy co-location mining. Figure 2.1

is used as an example to illustrate these concepts. In Figure 2.1, each instance is

uniquely identified by iE. , where E is the spatial event type, and i is the unique id in-

side each spatial event type, i.e., 2.A represents the second instance of spatial event

type A .

Figure 2.1 An example of spatial event instances

10

B.5

B.2

B.4

B.1

B.3 A.1

A.2

A.3

A.4

C.1

C.2

C.3

1

1

2

2

3

3

4

5

6

7

8

9

4 5 6 7 8 9 10

Instances can be described as a vector <instance-id, spatial event type, location>

(see the Table 2.1). The location of an instance is a fuzzy value and belongs to a spatial

framework F.

Zadeh provides the requisite mathematical framework for handling fuzzy data val-

ues in (Zadeh, 1965). A fuzzy subset iX~ in F is characterized by a membership function

Table 2.1 An example of spatial instances
(Instances set sorted by spatial event

types and instance-id)
Instance-id Spatial event type Location

1 A ([2-5], [2-5])
2 A ([7-10], [7-9])
3 A ([6-8], [3-6])
4 A ([8-10],[1-3])
1 B ([1-3], [1-3])
2 B ([2-4],[7-9])
3 B ([6-8], [2-4])
4 B ([7-9] ,[8-10])
5 B ([1-3], [8-10])
1 C ([4-7], [2-5])
2 C ([6-8],[8-10])
3 C ([5-7], [5-7])

Chapter 2. Discovering Co-location Patterns from Fuzzy Spatial data Sets

17

]1,0[:~ →F
iXµ .)(~ x

iXµ , for each Fx∈ , denotes the grade of membership of x in the

fuzzy subset iX~ .

 The interval number description and centre number description are the two most

common examples of Zadeh’s descriptions (Liu, 1993).

The interval number description:

A fuzzy subset iX~ is characterized by an ordered couple δ/][ba − .][ba − is

called an interval number. It expresses the fact that this fuzzy subset lies between a and

b .)10(≤≤ δδ is the degree of confidence. The subsets are stacked according to the

confidence degrees.

The centre number description:

A fuzzy subset iX~ is characterized by δ/],[rc . It expresses that this fuzzy subset

lies in a spherical region. c is the centre of a sphere, r is its radius, δ as above. For in-

stance, we say the length of a string is 10.17±0.03cm.
The interval number description is selected in this chapter. However, the same

method can be used to deal with the centre number description and the Zadeh descrip-

tions.

For the sake of convenience, the confidence degree of fuzzy values is sometimes

omitted. It means that the confidence degree of each fuzzy value is united into 1. For ex-

ample, suppose the probability distribution of values is a normal distribution. Since

∫−
σ

σ

3

3
)(dxxf =0.99, δ/][ba − is simplified by]33[σσ −− , where σ is the standard devia-

tion (Amstader, 1979). Suppose the probability distribution of values is evenly distrib-

uted. δ/][ba − is simplified by)]2/()2/[(ββ +−− ba , where βδ /1)/(=− ab . In case

the probability distribution of values is unknown, for convenience, it is regarded as

evenly distributed. The confidence degree of a classical value is 1. For example, 2.7 is

denoted]7.27.2[− . This is a simple and intuitive method. The exact method is not dis-

cussed in this chapter.

How to define the proximity between spatial instances which’s locations are pre-

sented by a fuzzy value as shown in table 2.1 is an important issue in fuzzy co-location

mining. Based on the concept of the interval number of fuzzy values, the semantic prox-

imity SP is introduced to define the geographic proximity between instances.

2.2.1 The semantic proximity SP and the fuzzy equivalence partition

An Investigation in Efficient Spatial Patterns Mining

18

The semantic proximity is the degree of proximity between instances 1f and 2f

(their locations are])[],([2
1

1
1

2
1

1
11 bbaaf −−= and][],([2

2
1
2

2
2

1
22 bbaaf −−=), written

),(21 ffSP)1),(0(21 ≤≤ ffSP , can be defined as

))(/)((),(212121 ffAreaffAreaffSP ∪∩= (1)

where)(hArea is the area of rectangle h .

Example 2.1. Suppose 5])-[2 5],-([21 =f , 3])-[1 3],-([12 =f . Then

083.0)12/1(),(21 ==ffSP

The semantic proximity (SP) between two fuzzy values defined by formula (1) satis-

fies the following properties.

(1). If f1, f2 are two equal fuzzy values then the SP of f1 and f2 is 1.

(2). If f1, f2 are two locations that do not intersect, then the SP of f1 and f2 is 0.

(3). If the area of the location f1 is equal to the area of the location f2, and the area of

f1∩g1 is greater than the area of f2∩g1 then SP(f1,g1) is greater than SP(f2,g1).

(4). If the area of the f1∩g1 is equal to the area of the f2∩g2, and the area of f1∪g1 is

greater than the area of f2∪g2 then SP(f1,g1) is smaller than SP(f2,g2).

There are many expressions of the proximity from various angles (He, 1989; Liu,

1993; Liu and Song, 2001; Schwartz, 1989; Ziarko, 1991). Which one you choose de-

pends on your applications. The different expression would not affect the following dis-

cussion.

Considering the proximity does not satisfy transitivity, the fuzzy equivalence parti-

tion method is introduced in geographic proximity instances. Assume that Nii ,,1 L is a

sequence of instances of events. From the above points, 1),(=ii iiSP and

),(),(ijji iiSPiiSP = hold. Using the semantic proximity between spatial instances, a simi-

larity matrix NNijsS ×=)(can be built up in (2):

⎩
⎨
⎧

≠
=

=
ji
ji

iiSP
S

ji),(
1

 (2)

The matrix S is multiplied by itself repeatedly, where)),(()(2
kjikkij ssMINMAXs = ,

until
kk SS =2
.

kS 2
 is called a fuzzy equivalence matrix (i.e.,

kkk
ji

k
ij

k
ij SSsss === 2,,1) (Wang, 2000; Huo, 1989).

Based on the level value matrix of the fuzzy equivalence matrix, the classifications

of Nii ,,1 L can be obtained (Wang, 2000; Huo, 1989).

Chapter 2. Discovering Co-location Patterns from Fuzzy Spatial data Sets

19

)5(

101001000101
010010000010
101001000101
000100100000
010010000010
101001000101
000100100000
000000010000
000000001000
101001000101
010010000010
101001000101

4
09.0

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=S

Example 2.2. Based on the definition of SP of two spatial instances, the similarity

matrix S can be obtained as (3) from Figure 2.1.

Applying S self-multiply repeatedly, the obtained matrix is shown in (4):

Then, S4 is the fuzzy equivalence matrix EM of the similarity matrix S. If selecting

level value λ =0.09, the level value matrix 4
09.0S is obtained as (5) (the value becomes 1

if it is greater thanλ , otherwise zero).

)3(

100000000111.000
0100333.000000111.00
00100182.0000154.002.0
000100143.000000
0333.00010000025.00
00182.00010002.000
000143.000100000
00000001000083.0
000000001000
111.00154.00025.0000100
0111.00025.00000010
002.00000083.00001

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=S

)4(

10111.000111.00083.00111.00111.0
0100333.00000025.00
111.00100182.00083.00182.002.0
000100143.000000
0333.00010000025.00
111.00182.00010083.002.00182.0
000143.000100000
083.00083.000083.0010083.00083.0
000000001000
111.00154.00025.00083.0010182.0
025.00025.00000010
111.002.000182.00083.00182.001

48

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=== SSEM

An Investigation in Efficient Spatial Patterns Mining

20

A partition of spatial instances in Figure 2.1 can be obtained from 4
09.0S : I0.09={(A.1,

A.3, B.3, C.1, C.3), (A.2, B.4, C.2), (A.4), (B.1), (B.2, B.5)}. This result is described by

the dashed circles in Figure 2.1.

2.2.2 Further Definitions Based on the SP and fuzzy equivalence partition

Based on the concepts of the fuzzy semantic proximity SP and fuzzy equivalence

partition, other concepts can be defined as follows.

Given I is an instance set of event set E, a semantic proximity neighbourhood is

a set II ⊂'
 of instances that belong to a fuzzy equivalence class.

A co-location C is a subset of spatial events, i.e., EC ⊆ . A co-location rule is of

the form:),(21 cppCC → , where 1C and 2C are disjoint co-locations, p is a value repre-

senting the prevalence measure, and cp is the conditional probability.

A semantic proximity neighbourhood
'I is a row instance (denoted by row-

instance (C)) of a co-location C if
'I contains instances of all the events in C and no

proper subset of
'I does so. The table instance, table-instance (C), of a co-location C

is the collection of all row instances ofC .

Example 2.3. Suppose the dashed circles in Figure 2.1 represent fuzzy equiva-

lence classes. In Figure 2.1, we observe that }3.,3.{ BA is a row instance of co-

location },{ BA . }3.,1.,3.{ CCA is a semantic proximity neighbourhood, but it is not a row

instance of co-location },{ CA because its subset }1.,3.{ CA or }3.,3.{ CA contain instances

of all the events in },{ CA . The table instance of },{ CB has 3 row instances }1.,3.{ CB ,

}3.,3.{ CB and }2.,4.{ CB .

From the definitions above, it can be observed that the concept of semantic prox-

imity neighbourhood is not an absolute concept. The geographic proximity relationship

can be controlled by changing the fuzzy equivalence partition threshold λ (the level

valueλ). Further more, because of the fuzzy equivalence partition, the problem of high

cost that is happened during computing the table instance in traditional co-location min-

ing can be improved in fuzzy co-location mining. However, the results of a fuzzy equiva-

lence classification are not equal to that of transactions, because there are many row

instances of a co-location in a fuzzy equivalence class. So, the following definitions are

similar to the definitions given by Huang et al (2004).

The conditional probability)(21 CCCP ⇒ of a co-location rule 21 CC ⇒ is the prob-

ability of finding an instance of 2C in the semantic proximity neighbourhood of an in-

Chapter 2. Discovering Co-location Patterns from Fuzzy Spatial data Sets

21

stance of 1C . Formally, it is estimated as
})({instance

}))({instance(

1

211

Ctable

CCtableC

−

∪−π , where π is the

relational projection operation with duplicate elimination.

The participation index is used as a co-location prevalence measure. The partici-

pation index)(CPi of a co-location },,{ 1 keeC L= is defined as { }),Pr(min iCe eC
i∈

, where

),Pr(ieC is the participation ratio for event type ie in a co-location C .),Pr(ieC is the

fraction of instances of ie which participate in any instance of co-location C ,

})({instance

}))({instance(

i

e

etable

Ctable
i

−

−π
, where π is the relational projection operation with duplication

elimination.

Example 2.4. In Figure 2.1, the total number of instances of event type B is 5 and

the total number of instances of event type C is 3. The participation index of co-location

],[CBc = is 5/2)},Pr(),,min{Pr(=CcBc , because),Pr(Bc is 2/5 and),Pr(Cc is 3/3.

In Huang’s work (Huang et al, 2004), it can be known that the participation ratio and

the participation index are monotonically non-increasing with the increase in size of the

co-location. So, the participation index can be used to effectively prune the search space

of co-location rules mining.

2.3 Algorithms for Discovering Fuzzy Co-location

In this section, an algorithm to mine fuzzy co-location rules is introduced. The inputs

of this algorithm are a set E of spatial event types, a set I of spatial instances, a user-

specified level value λ as well as thresholds for interest measures, i.e., minimum preva-

lence threshold, min_prev, and conditional probability threshold, min_cond_prob. The

algorithm outputs a set of prevalent fuzzy spatial co-location rules with the values of the

interest measures above the user-defined thresholds. The detailed descriptions are

shown as follows.

Input
E: a set of K spatial event types;

I: a set of N instances <event type, event instance id, and fuzzy location>;

λ : a user-specified level value for controlling the fuzzy equivalence partition;

min_prev: prevalence value threshold;

min_cond_prob: conditional probability threshold;

Output
A set of all prevalence co-location rules with participation index greater than min_prev and

conditional probability greater than min_cond_prob.

An Investigation in Efficient Spatial Patterns Mining

22

Variables
k: co-location size;

Ck: set of candidate co-locations of size k;

Tk: set of table instances of co-locations in Ck;

Pk: set of prevalent co-locations of size k;

Rk: set of co-location rules of size k;

S: matrix of semantic proximity between instances;

EM: fuzzy equivalence matrix for the fuzzy similarity matrix S;

EPC: fuzzy equivalence classifications for a set I of N instances;

Steps
1) Takes E, I, λ , min_prev and min_cond_prob;

2) Computing the semantic proximity between instances, a similarity matrix NNijsS ×=)(can

be obtained, where),(.. locationjlocationiij eeSPs = , 1=iis , jiij ss = , Nji L,2,1, = ;

3) Calculate a fuzzy equivalence matrix EM from the similarity matrix S;

4) Based on user-specified level value λ , the classifications },,,{ 21 lsssEPC L= for a set I

of N instances can be obtained;

5) k:=1; C1:=E; P1:=E;

6) T1=gen_table_instance (C1, I, EPC);

7) While (not empty Pk and k<K) do {

8) Ck+1=gen_candidate_co-location (Pk);

9) Tk+1=gen_table_instance (Ck+1, Tk);

10) Pk+1=select_prevalence_co-location (min_prev, Ck+1, Tk+1);

11) Rk+1=gen_co-location_rule (min_cond_prob, Pk+1);

12) k:=k+1; }

13) Return),,(12 +∪ KRR L ;

Step 1, i.e., input step, takes E, I, λ , min_prev, and min_cond_prob. Step 2, com-

pute semantic proximity between instances. A similarity matrix S is obtained. Step 3,

self-multiply the similarity matrix S repeatedly, and then obtain the fuzzy equivalence

matrix EM. The equivalence matrix EM can be computed in O(N3) time. The computa-

tional method can be expressed as:

1) For i:=1 to N do

2) For j:=1 to N do

3) If s(j,i)>0 then

4) For k:=1 to N do

5) S(j,k):=max{S(j,k), min{S(j,i), S(i,k)}};

where the test s(j,i)>0 in Step 3 is to avoid meaningless looping. This algorithm has

high efficiency when the fuzzy similarity matrix S has many zero elements.

Chapter 2. Discovering Co-location Patterns from Fuzzy Spatial data Sets

23

The above method can be optimized. Wang (2000) proposed an algorithm to com-

pute the fuzzy equivalence matrix EM in O(M2) time (M is the number of nonzero ele-

ments in the upper-triangle of the similarity matrix S.).

Suppose the spatial event instances can correspond to integer 1~N (the N entries

instances can be stored in an array, and then the N instances will correspond to the in-

dex of the array). So, the N instances can be denoted as N,,2,1 L .

A new data structure, the binary partition tree, to store fuzzy equivalence matrix

EM, is introduced. A binary partition tree for N instances will have N leaf nodes and at

most N-1 inner nodes. The relations between nodes are joined by parents’ relations. The

leaf nodes are denoted as N,,2,1 L , and inner nodes are denoted as 12,,2,1 −++ NNN L .

A function F[i] is defined, which values express transitive semantic proximity between

corresponding leaf nodes.

A link is used to store the binary partition tree, and put it to an array T. Node i is put

into T[i]. So, every node has only one field, which is the parent field.

In this algorithm, 3 arrays v [N+1,N+M], w [N+1,N+M], a [N+1,N+M] are used to

store all nonzero elements in the upper-triangle of the similarity matrix S, where ‘v’ con-

tains row coordinates, ‘w’ contains column coordinates, ‘a’ contains corresponding val-

ues, and M is the number of nonzero elements. Therefore

()() { } { }() []1,0*,...,1*,...,1,, NNawv jjj ∈
. The new algorithm for computing the

equivalence partition matrix can be designed as:

1) n1:=N+1; nm:=N+M;
2) for i:=1 to 2N-1 do T(i):=0;
3) sort((vj,wj),aj) /*j=n1,…,nm; take nonzero elements in upper-triangle by aj≥aj+1, j=n1,…, nm-1*/
4) k:=n1;
5) for i:=n1 to nm do

{
6) Pv:=v(i);
7) While T(Pv)>0 do Pv:=T(Pv); /*tracing its parents*/
8) Pw:=w(i);
9) While T(Pw)>0 do Pw:=T(Pw);
10) if Pv≠Pw then

 {
11) T(Pv):=T(Pw):=k; /*if they have no common parent, then produce a parent and
give it a transitive semantic proximity*/
12) F(k):=a(i);
13) k:=k+1
 }
 }

Example 2.5. An example to illustrate the algorithm above

An Investigation in Efficient Spatial Patterns Mining

24

 Suppose a similarity matrix S is as (6).

 S =

)6(

136.036.00071.0079.000
36.0136.024.071.0024.036.000
36.036.01000036.000

024.00142.0059.0036.00
071.0042.01042.0036.00

71.000001071.0036.0
024.0059.042.001036.00

79.036.036.00071.00100
00036.036.0036.00171.0
0000036.00071.01

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

After the algorithm carrying out step 1), 2) and 3), the results of the arrays v, w, a

and the link T are shown in Figure 2. 2. Figure 2.3 demonstrates that the changing situa-

tions of Pv and Pw, and the content of the link T, when the loop iterating step 5) is per-

formed. Figure 2.4 is the binary partition tree in the end (it is stored by a link T).

 n n1

i: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 …

T= 0 …

v= 3 1 3 5 6 4 4 6 1 2 2 2 …

w= 10 2 5 10 9 7 6 7 5 4 6 7 …

a= 0.79 0.71 0.71 0.71 0.71 0.59 0.42 0.42 0.36 0.36 0.36 0.36 …

Figure 2.2 The result after implementing the step 1), 2) and 3)

i k Pv Pw i: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

11 11 3 10 T= 12 12 11 15 13 14 15 14 11 13 16 16

12 12 1 2

13 13 3 5

 11

14 14 5 10 F(11)=0.79 F(12)=0.71 F(13)=0.71 F(14)=0.71 F(15)=0.59

 13 13 F(16)=0.42

15 14 6 9

16 15 4 7

17 16 4 6

 15 14

… … …

Figure 2.3 The partial results in executing the loop iterating step 5)

Chapter 2. Discovering Co-location Patterns from Fuzzy Spatial data Sets

25

F(15)=0.59

0

1919

1818

13

11

17
16

13

16
17

12 14 15 15 12 14

11

19 F(19)=0.36

18 8

F(17)=0.36

F(18)=0.36

17 16 F(16)=0.42

 F(12)=0.71 12
 F(13)=0.71

13 14
F(14)=0.71

15

1 2

3

5 11 6 9 4 7
 F(11)=0.79

10

Figure 2.4 The binary partition tree corresponding to the matrix S in Example 2.5

Based on the fuzzy equivalence matrix EM or the binary partition tree, the equiva-

lence partition classifications EPC for user-specified level value λ will be obtained in

step 4.

Step 5 is the initialization step that assigned starting values to various data struc-

tures used in the algorithm. It can be noted that the set C1 of candidate co-location of

size 1 as well as the set P1 of prevalent co-locations are initialized to E, the set of spatial

event types. Because the value of the participation index is 1 for all co-location of size 1,

the set T1 of table instances of size 1 co-location is created by sorting the class-id in

EPC and the set I of spatial instances by event types (see Figure 2.5 (a)).

The proposed algorithm of fuzzy co-location mining iteratively performs four basic

tasks, namely, generation of candidate co-locations, generation of table instances of

candidate co-locations, selection of prevalent co-locations, and generation of co-location

rules. These tasks are carried out inside a loop iterating over the size of the co-locations.

2.3.1 Generation of Candidate Co-locations

The apriori_gen (Agarwal and Srikant, 1994) is used for generating candidate co-

locations. Size k+1 candidate co-locations are generated based on size k prevalence co-

locations. The anti-monotonic property of the participation index makes event level prun-

ing feasible (Huang et al, 2004) (see Figure 2.5 (b) (d)).

2.3.2 Generation of Table Instances

The table instances of candidate co-locations are enumerated using the method

that is similar to the apriori algorithm. It can be described as the following join query.

Forall co-location 1+∈ kCc

An Investigation in Efficient Spatial Patterns Mining

26

 Insert into Tc /* Tc is the table instance of co-location c */

 Select kk qpp instance.,instance.,,instance. 1 L

 From c.table_instance_id1 p, c.table_instance_id2 q

 Where p.instance1=q.instance1,…, p.instancek-1=q.instancek-1,

,tan.,tan. ikk sceinsqceinsp ∈ i=1, …, l /*si is a fuzzy equivalence class*/

End

The combinatorial join predicate (i.e.,

1111 instance.instance.,instance.instance. −− == kk qpqp L) can be processed efficiently us-

ing a sort-merge join strategy proposed by Graefe (1994), since the set of events is or-

dered and tables’ c.table_instance_id1 and c.table_instance_id2 are sorted. The resulting

tuples are checked for the spatial condition lisqP ikk L,1,instance.,instance. =∈ to get the

row-instance in the result.

For accelerating the joining operations of enumerating table instances, a class-id is

added to the table instance, by which and the instance-id the set of table instances is

ordered, then the instances that belong to a fuzzy equivalence class will be joined effi-

ciently.

Example 2.6. In Figure 2.5, row instance {1,3} of Tab. 4 and row instance {1,1} of

Tab. 5 are joined to generate row instance {1,3,1} of co-location {A, B, C} (Tab. 7). Row

instance {1} of Tab. 1 and row instance {1} of Tab. 2 fail to generate row instance {1,1} of

co-location {A, B} because instance 1 of A and instance 1 of B do not belong to a fuzzy

equivalence class.

Chapter 2. Discovering Co-location Patterns from Fuzzy Spatial data Sets

27

K=1

B cla_id

3 1

4 2

1 4

2 5

5 5

C cla_id

1 1

3 1

2 2

A cla_id

1 1

3 1

2 2

4 3

Tab.1 Tab.2 Tab.3
(a)

Candidate co-locations of size 2

A B

A C

B C

(b)

K=2

A C cla_id
1 1 1
1 3 1
3 1 1
3 3 1
2 2 2

B C cla_id

3 1 1

3 3 1

4 2 2

A B cla_id

1 3 1

3 3 1

2 4 2

Tab.4 Tab.5 Tab.6
(c)

Participation index:
 min{3/4, 2/5} min{3/4, 3/3} min{2/5, 3/3}
 =.4 (Tab.4) =.75 (Tab.5) =.4 (Tab.6)

K=3

Figure 2.5 An illustration example of the fuzzy co-location mining algorithm

A B C cla_id
1 3 1 1
1 3 3 1
3 3 1 1
3 3 3 1
2 4 2 2

Tab.7

Participation index

min{3/4, 2/5, 3/3}

=.4 (Tab.7)

Candidate co-locations of size 3

A B C

(d) (e)
K=2

If the number of events is enormous, the limit of main-memory could be a problem.

As the number of the species of plants located in “Three Parallel Rivers of Yunnan Pro-

tected Areas” is abound, this problem must be resolved. This, thus, brings up the issue:

Can the original event set be decomposed into smaller pieces so that each partition can

be solved independently in main-memory? The related discussion is addressed below:

An Investigation in Efficient Spatial Patterns Mining

28

Let E be a set of events. The power set)(EΡ of E is a complete lattice, which is

proved by Zaki (2000). Figure 2.6 shows the power set lattice)(EΡ of the events’ set

E={A, B, C, D}. Define a function

)()(: ENEf Ρ→×Ρ (7)

where]:1[),(kXkXf = , the k lengths prefix of X. Define a relation kθ on the lattice
)(EΡ as follows:

),(),(),(, kYfkXfYXEYX
k

=⇔≡Ρ∈∀ θ (8)

That is, two event sets are in the same class if they share a common k length pre-

fix. Therefore kθ is called as a prefix-based relation. In fact, kθ is an equivalence rela-

tion, because it is a reflexible, symmetric and transitive relation. The equivalence relation

partitions a set into disjointed subsets called equivalence classes. The equivalence class

of an element)(EPX ∈ is given as }|)({][YXEPYX
kθ

=∈= .

Figure 2.6 shows the equivalence classes induced by the equivalence relation
1θ on

)(EΡ , where all power sets of events are collapsed with a common, length one, prefix

into an equivalence class. The resulting set of equivalence classes is {[A], [B], [C], [D]}.

Figure 2.6 The power set lattice)(EΡ of the events’ set E={A, B, C, D}, and
the lattice induced by equivalence relation 1θ on)(EΡ .

A B C D

AB AC AD BC BD CD

ABC ABD ACD BCD

ABCD

{}

[A]

[B]

[C]

[D]

[{}]

Lemma 2.1 Each equivalence class k
X θ][induced by the equivalence relation kθ is

a sub-lattice of)(EΡ .

Chapter 2. Discovering Co-location Patterns from Fuzzy Spatial data Sets

29

Proof. (of Lemma 2.1). Let U and V be any two elements in the class [X]. i.e., U, V

share the common prefix X. XVUVU ⊇∪=∨ implies that][XVU ∈∨ , and

XVUVU ⊇∩=∧ implies that][XVU ∈∧ . Therefore, k
X θ][is a sub-lattice of)(EΡ . □

Each 1
][θX is itself a Boolean lattice with its own set of atoms. For example, the at-

oms of 1
][θA are {AB, AC, AD}, and the top and bottom elements are ABCD=Τ , and A⊥= .

If there is enough main-memory to hold instance sets for each class, then each 1
][θX can

be solved independently. Another interesting feature of the equivalence classes is that

the links (including real links and dashed links) between classes denotes dependencies.

That means if you want to put pruning in to practice, then the classes have to be proc-

essed in a specific order. In particular, the classes have to be resolved from bottom to

top, which corresponds to a reverse lexicographic order, for example, in Figure 2.6, we

process them in the order of [D], [C], [B], and [A]. This guarantees that all subset infor-

mation is available for pruning.

In addition, depending on the amount of main-memory available, one can recur-

sively partition large classes into smaller ones (by using 2θ , 3θ , …) until each class is

small enough to be solved independently in main-memory. As it happens, according to

the sort-merge join method developed in this chapter, the joining operations for enumer-

ating table instances will be in a partition class. The real links denote join operation for

enumerating table instances in Figure 2.6.

2.3.3 Selection of Prevalent Co-locations

The participation index of co-locations is calculated by scanning the table instances

once. First, keep a bitmap of size cardinality (ei) for each event ei of co-location c. Sec-

ond, scan of the table instance of c, and put the table instance of c in the corresponding

bits in each bitmap. Finally, obtain the participation ratio of each event ei (divide iep by

instance of ei) by summarizing the total number of ones (iep) in each bitmap.

Example 2.7. Computing the participation index of co-location {A, C}

First, bitmap bA=(0,0,0,0) of size 4 for A and bitmap bC=(0,0,0) of size 3 for C are

initialized to zeros (see Figure 2.5 (c) Tab. 5).

Second, scan Tab. 5 and get the following results: bA=(1,1,1,0) and bC=(1,1,1).

Finally, three out of four instances of A participate in co-location {A, C}, so the par-

ticipation ratio for A is 0.75. Similarly, the participation ratio for C is 1.00. Therefore, the

participation index is min {0.75, 1.00}=0.75.

An Investigation in Efficient Spatial Patterns Mining

30

After the participation index for each co-location is determined, the selection of

prevalent co-location is carried out. In other words, the nonprevalent co-locations are

deleted from the candidate prevalence co-location sets. For example, if min_prev is

given as 1/2, the candidate co-location {A, B} and {B, C} is pruned in the first loop iterat-

ing because its prevalence measure is less than 1/2.

2.3.4 Generating Co-location Rules

The gen_co-location_rule function generates all co-location rules with conditional

probability above a given min_cond_prob. The conditional probability of a co-location

rule can be calculated efficiently by using bitmaps strategies that have been used in Sec-

tion 2.3.3.

2.4 Analysis for Fuzzy Co-location Mining

In this section, the completeness, correctness and computational complexity of the

algorithm are analyzed. Correctness means that the participation index values and con-

ditional probability of generated co-location rules meet the user specified threshold.

Completeness implies that no co-location rule, which satisfy given prevalence and condi-

tional probability thresholds, is missed.

2.4.1 Completeness and Correctness

Lemma 2.2. The participation ratio and the participation index are monotonically

non-increasing with increasing the size of the co-location.

Proof. (of lemma 2.2). According to the definition of semantic proximity neighbour-

hoods, row instances and table instances in Section 2, it can be known that a spatial

event instance that participates in a row instance of a co-location C also participates in a

row instance of a co-location C ′ , where CC ⊆′ because a subset of an instance set

that belongs to a fuzzy equivalence class must belong to this equivalence class. So, the

participation ratio is anti-monotonic. The proof of anti-monotone of the participation index

is shown as follows.

Suppose a co-location },,{ 1 keeC L= , then

)},{Pr()(1

1

1
1 min ik

k

i
k eeCeCPi +

+

=
+ ∪=∪)},{Pr(min 11 ik

k

i
eeC +=

∪≤

)()},{Pr(min
1

CPieC i

k

i
=≤

=
 □

Lemma 2.3. The Fuzzy Co-location Miner algorithm is correct.

Chapter 2. Discovering Co-location Patterns from Fuzzy Spatial data Sets

31

Proof. (of lemma 2.3). First, the value of the participation index is 1 for all fuzzy co-

locations of size 1, so it is correct that the set C1 of candidate co-locations of size 1 as

well as the set P1 of prevalent co-location are initialized to E in step 5.

Then, for the size greater than 2, it will only be shown that the row instances of

each co-location are correct, which will imply the correctness of the participation index

values and that each co-location meets the user specified threshold. An instance

},{ ,11,11 kiiI L= of },,{ 11 keec L= and an instance },{ ,21,22 kiiI L= of },,,{ 1112 +−= kk eeec L are

joined to produce an instance },,{ ,2,11,1 kknew iiiI L= of },,{ 11 += keec L if 1) all elements of I1

and I2 are the same except i1,k and i2,k; 2) i1,k and i2,k are in the same fuzzy equivalence

class. The schema of Inew is apparently c, and elements in Inew are in a fuzzy equivalence

class because the intersection set between fuzzy equivalence classifications is φ , i2,k

and 1,11,1 , −kii L belongs to a fuzzy equivalence class, at the same time, also i2,k and i1,k

belong to a fuzzy equivalence class. □

Please refer to Wang’s paper (Wang, 2000) for the correctness of the fuzzy equiva-

lence partition algorithm using binary partition tree.

Lemma 2.4. The Fuzzy Co-location Miner is complete.

Proof. (of lemma 2.4). It will be proved that if a fuzzy co-location is prevalent, it is

found by the algorithm. First, the monotonicity of the participation index in Lemma 2.2

ensures the completeness of the event level pruning of candidate co-location used in

step 8 of the algorithm. Second, it will be proved that the joining of the table instances of

C1 and C2 to produce the table instances of C is complete in step 9. According to the

semantic proximity neighbourhood definition, any subset of a semantic proximity

neighbourhood is a semantic proximity neighbourhood too. For any instance

},{ 11 += kiiI L of co-location C, subsets },{ 11 kiiI L= and },,{ 1112 +−= kk iiiI L are

neighbourhoods, ki and 1+ki are in the same fuzzy equivalence class, and 1I and 2I are

row instances of C1 and C2, respectively. Join I1 and I2 will produce I. In step 10, enu-

meration of the subsets of each of the prevalent co-locations ensures that no spatial

fuzzy co-location rules with both higher the min_prev and the min_cond_prob are

missed. □

2.4.2 Computational Complexity Analysis

The computational complexity of the fuzzy co-location mining algorithm consists of

two parts. One is outside iteration, and the other is inside iteration.

An Investigation in Efficient Spatial Patterns Mining

32

For outer part of the iterating loops, steps 1, 5 and 6 are initialized. Their computa-

tional complexity is O(K+N). The steps 2, 3, calculate the similarity matrix S, equivalence

matrix EM and obtain fuzzy equivalence classification EPC. These can be computed in

)(2MO time, if the method of binary partition tree is used. So, the computational com-

plexity of this part is)(2MO .

For inner part of the iterating loops, let Tfcm(k+1) represent the cost of iteration k of

the co-location miner algorithm.

+=+)()1(_ kcandigenfcm PTkT)()_(1_ ++ kprunekinstgen CTPofinststableT

)_(_ kinstgen PofinststableT≈

In above equations,)(_ kcandigen PT represents the cost of generating size k+1 candi-

date co-locations with the prevalent size k co-locations.)_(_ kinstgen PofinststableT

represents the cost of generating table instances of size k+1 candidate co-locations with

size k table instances.)(1+kprune CT represents the cost of pruning non prevalent size k+1

co-location.

The bulk of the time is consumed in generating table instances. For generating ta-

ble instances of size-2 co-locations, the complexity is O(N2). It is difficult to express the

time which takes to generate table instances of co-location of size-3 or more, because it

depends on the number of instances in each candidate co-location set. However, by us-

ing the sort-merge join strategy (the set of table instance is ordered by the class-id and

instance-id), the complexity is lower (as the cost time of the inside of the iterating loop is

less than the outside part in the experiment).

2.5 Experimental Evaluation

The performance of the algorithms with synthetic and real-world data sets has been

evaluated. Synthetic datasets are generated using a methodology similar to the method-

ology used in Huang et al (2004). The synthetic data generator allows us to better con-

trol the study of the algorithms and the effects of interesting parameters.

The real-world plant distributed data set used in the experiments contains distribu-

tion information of plant species in the “Three Parallel Rivers of Yunnan Protected Ar-

eas”.

The experiments were performed on a Celeron computer with a 2.40 GHz CPU and

376 Mbytes memory running the Windows XP operating system. All programs are written

in Java.

Chapter 2. Discovering Co-location Patterns from Fuzzy Spatial data Sets

33

2.5.1 Performance Studying

It is considered that computing the fuzzy equivalence matrix is an important step in

the algorithm. Therefore, two algorithms are evaluated in the performance study. One is

the algorithm that uses the general method (O(N3)) to compute the fuzzy equivalence

matrix. It is denoted as GFCG (General Fuzzy Co-location Generation). The other is the

OFCG (Optimized Fuzzy Co-location Generation). It uses an optimized method to com-

pute the fuzzy equivalence matrix (O(N2)).

The experiment is conducted using detailed simulations to answer the following

questions:

(1). How does data density in the spatial framework affect the performance?

(2). How do the algorithms behave with different prevalence thresholds?

(3). How do the algorithms behave with difference level values λ of fuzzy equiva-

lence matrices?

The common parameter values used in these experiments are as follows: the spa-

tial framework is 250×250, the number of event types is fixed to 10, and the average

area of a spatial instance is 25×25.

Effect of data density in the spatial framework: The effect of data density in the

spatial framework was evaluated with spatial data sets generated by using above com-

mon parameters and spatial instances of different number, i.e., 100, 300, 500 and 700,

to control the data density in spatial framework. Figure 2.7 shows the performance gain

by two algorithms with the min_prev is set to 0.1 and the level value λ is equal to 0.1.

As the density increases, the execution time of the two algorithms is dramatically in-

creased. It shows the sensitivity of the algorithm with the increase of data density. For

further investigation, Figure 2.8 shows a comparison between computing the fuzzy

equivalence matrix (steps 2-4 in our algorithm) and the rest of the algorithm. As can be

seen, the computation of fuzzy equivalence matrix consumes most of running time and

demands a significant improvement. Table 2.2 is the results of mining from these syn-

thetic data sets. It also gives a hint for what kinds of synthetic datasets are generated in

these experiments.

An Investigation in Efficient Spatial Patterns Mining

34

Figure 2.7 Effect of data density

0

5000

10000

15000

20000

100 300 500 700

Number of instances in a

fixed spatial framework

E
x
e
c
u
t
i
o
n

t
i
m
e

(
s
e
c
) GFCG

OFCG

Figure 2.8 Comparison of density effect for the part of generation

EPC and the rest of the part of the algorithm

0

5000

10000

15000

100 300 500 700

Number of instances in a

fixed spatial framework

E
x
e
c
u
t
i
o
n

t
i
m
e

(
s
e
c
)

GFCG time of
generation EPC

OFCG time of
generation EPC

Time of generation
co_locations

Mining results
Data sets

Maximum size of co-
location

Number of co-
location

Dataset_100 instances 5 64
Dataset_300 instances 5 117
Dataset_500 instances 6 201
Dataset_700 instances 7 376

Effect of prevalence threshold: the performance effect, the prevalence threshold

increases, sees Figure 2.9 (a). The experiment is conducted with the above dataset_300

instances, and λ is fixed to 0.2. It can be seen that the effect of the prevalence thresh-

old for the two algorithms is almost the same. However, the execution time of algorithms

decreases with the increase of the threshold value (Figure 2.9 (b). there is a blow up in

Figure 2.9 (a)). The reason is the decrease in the number of joins of instances due

to the efficient pruning. In addition, the execution time of the algorithm is much less

than the first time, because steps 1-6 in the algorithm do not need to be run again.

Table 2.2 Mining results of synthetic data sets

Chapter 2. Discovering Co-location Patterns from Fuzzy Spatial data Sets

35

Figure 2.9 Effect of prevalence threshold

(b)

0

5

10

15

0.11 0.12 0.13 0.14 0.16 0.17 0.18 0.19

min_prev

E
x
e
c
u
t
i
o
n

t
i
m
e

(
s
e
c
)

GFCG

OFCG

(a)

0

50

100

150

200

0
.
1

0
.
1
5

0
.
2

0
.
2
5

0
.
3

0
.
3
5

0
.
4

0
.
4
5

0
.
5

min_prev

E
x
e
c
u
t
i
o
n

t
i
m
e

(
s
e
c
)

GFCG OFCG

Effect of level valueλ : The effect of level value threshold λ is evaluated with the

synthetic dataset contained 300 instances, and Min-prev is fixed to 0.2. Figure 2.10 illus-

trates the execution time of the two algorithms as a function of the level valuesλ . When

the level value λ is changed, the fuzzy similarity matrix and the fuzzy equivalence ma-

trix do not need to be computed again in the two algorithms, so the execution time of the

two algorithms is much less than the first time. Figure 2.10 (b) shows the execution time

of the algorithm decreases, as the number of joins of instances decreases with the in-

crease of the value ofλ . The addition of class-id to the table does allow the set of table

instances to be ordered by both class-id and instance-id.

Figure 2.10 Effect of level value λ

0

50

100

150

200

250

0
.
1

0
.
1
5

0
.
2

0
.
2
5

0
.
3

0
.
3
5

0
.
4

0
.
4
5

0
.
5

Values of λ

E
x
e
c
u
t
i
o
n

t
i
m
e

(
s
e
c
)

GFCG

OFCG

(a) (b)

0

5

10

15

20

0.
11

0.
12

0.
13

0.
14

0.
16

0.
17

0.
18

0.
19

Values of λ

E
x
e
c
u
t
i
o
n

t
i
m
e

(
s
e
c
)

GFCG

OFCG

2.5.2 Experiments on a Real Data Set

The algorithm is evaluated by using a plant distributed dataset of the “Three Parallel

Rivers of Yunnan Protected Areas”. The number of plant species (event types) is 29.

The total number of plant instances is 3908. When the level value λ is set to 0.09, the

number of the fuzzy equivalence classifications is 252. When Min_prev is set to 0.1, the

maximum size of co-location is 9 and the total number of size 2 co-location patterns is

An Investigation in Efficient Spatial Patterns Mining

36

167. Some selected mining results are shown in table 2.3. Table 2.4 is the correspond-

ing table of plants’ name and the ID used in table 2.3.

 Table 2.3 Some selected results of mining fuzzy co-location on the “Three
Parallel Rivers of Yunnan Protected Areas”

Rule_id The left-hand side of
the rules

The right-hand side of the
rules Cond_Prob*

1 (1) (3)(7)(14)(15) 0.92

2 (1)(3) (7)(14)(15) 0.97

3 (1)(7) (3)(14)(15) 0.95

4 (1)(3)(7) (14)(15) 1

5 (1)(3)(7)(14) (15) 1

6 (2) (4)(5)(9) 0.86

7 (2)(4) (5)(9) 0.93

8 (2)(4)(5) (9) 0.99

9 (3) (2)(6)(8)(10)(11)(12)(13) 0.75

10 (3)(2) (6)(8)(10)(11)(12)(13) 0.96

11 (16) (17)(18)(19)(20) 0.80

12 (16)(17) (18)(19)(20) 0.90

13 (16)(17)(18) (19)(20) 1

14 (21) (7)(11)(16)(22)(23)(24) 0.90

15 (21)(22) (7)(11)(16)(23)(24) 1

16 (21)(22)(23) (7)(11)(16)(23)(24) 1

* See section 2.2.2

Chapter 2. Discovering Co-location Patterns from Fuzzy Spatial data Sets

37

 Table 2.4 A correspondence table of plants’ name and their ID used in table 2.3

Plants_id Plants’ name

(1) Kobresia tunicata

(2) Kobresia stiebritziana

(3) Primula serratifolia

(4) Vertrilla baillonii

(5) Allium victorialis

(6) Meconopsis venusta

(7) Trollius yunnanensis

(8) Juncus castaneus

(9) Potentilla forrestii

(10) Arenaria longistyla var. pleurogynoides

(11) Anemone demissa

(12) Chamaesium sp.

(13) Polygonum coriaceum

(14) Draba oreodoxa

(15) Saxifraga macrostigma

(16) Rhododendron cephalanthum

(17) Salix calyculata

(18) Kobresia prattii

(19) Saxifraga sp.

(20) Pedicularis sp.

(21) Larix poteninii var. macrocarpa

(22) Picea likiangensis

(23) Schisandra rubriflora

(24) Rubia sp.

By discussing with an expert botanist of Yunnan University (Zhiha Hu), it has been

found from the mining results that there are three groups of co-location rules: The first

group (rule 1 to rule 10 in table 3) represents a sub-class of a plant community, the sec-

ond group (rule 11 to rule 13 in table 3) seems obvious as they belong to a plant com-

munity, and the third one (rule 14 to rule 16) is a mixed one of plant communities.

What is the information or knowledge behind the rules discovered by the algorithm?

Prof. Hu explained it using Figure 2.11. The plants involved in rules 1-10 belong to a

plant community, so they generally grow together. But if there is difference of terrain (for

example, sloping field, steep valley or stone-swept terrain), the combination of a plant

community represents that difference. The plants in rules 1-5 of table 3 are supposed to

grow in a valley which is covered by aqueous soil and some big stones. The plants in

rules 6-8 of table 3 are supposed to grow in a sloping field facing the West. The plants in

rules 9-10 of table 3 are supposed to grow in a sloping area facing North-East.

An Investigation in Efficient Spatial Patterns Mining

38

Figure. 2.11 An explanation of plants’ distribution in fuzzy co-location patterns

Vallley

Slope: the

North-East

Slope: the

West way

(1)

○

(2)

●

(3)

△

(4)

▲

(5)

◎

(6)

☆

(7)

★

(8)

◇

(9)

◆

(10)

□

(11)

■

(12)

▽

(13)

▼

(14)

♀

(15)

♂

○ △ ★ ♀ ♂
●

▲
◎

◆

●
△

☆
◇

□
■

▽
▼

In the second group of rules (rules 11-13 in table 3), plants (16) (17) belong to

Bosks, and plants (18) - (20) belong to Herbages. They belong to a form, Rhododendron

cephalanthum. Certain plants are expected to be co-located. Even if the threshold λ is

set to a value which is small, it may be that the plants belonging to these communities

are still not in a co-location pattern. This is because some problems might be with this

area (or with these plant communities). For example, the ecological environment might

be destroyed.

In the third group rules (rules 14-16 in table 3), plants (21) (22) belong to Arbors,

plant (23) belongs to Frutexes, and plant (24) belongs to Herbages. They belong to the

form, Larix pataninii var. macrocarpa. But why do plants (7) (11) (16) go together with

this community, since they do not belong to the same form? Prof. Hu explained that

those rules illustrate the plants (7) (11) (16) must be planted artificially (it is proved by

the record’s information of this area). It is a rare case in mining results.

We find that some plant species (for example, Plant “Cordyceps Sinensis (Berk.)

Sacc”) appear in many co-location rules. In fact, these plants grow in various places of

this area. Our algorithm will be more efficient if these kinds of events are initialized in the

set of events.

It is worth talking a few more words about the thresholdλ which controls spatial

neighbour relationship in fuzzy co-location mining. First, as we change the λ from low to

high in experiments of the plants’ dataset, the length of co-location patterns change from

long to short. And plants in the same co-location pattern always belong to a plant com-

munity, even if the λ is very low. But in general co-location mining, the mining results

are sometimes difficult to understand, as a co-location pattern might contain all of plants

with the distance threshold D increased. Second, the fuzzy similarity matrix and the

fuzzy equivalence matrix do not need to be computed again when the λ is changed, but

the situation is not the same in general co-location mining.

Chapter 2. Discovering Co-location Patterns from Fuzzy Spatial data Sets

39

2.6 Summary

This chapter analyzed the fuzzy characteristics of spatial events, and studied the

problems of mining co-location patterns from fuzzy spatial datasets. Based on the con-

cepts of the proximity between spatial instances and fuzzy equivalence partition, a se-

mantic proximity neighbourhood controlled by the threshold λ was introduced. A prefix-

based approach to partition the prevalent event set search space into subsets was pre-

sented, where each sub-problem can be solved in main-memory. In addition, the cor-

rectness, completeness, and computation cost of the algorithms were analyzed. An ex-

perimental study on a real plants’ dataset showed that our proposed framework is effec-

tive for mining co-location patterns to identify the subsets of spatial events with signifi-

cant spatial interactions.

In future work, how to obtain the fuzzy semantic proximity neighbourhoods and

fuzzy participation index from the fuzzy matrix will be investigated. The effective use of

the threshold λ in general co-location mining will also be explored. Furthermore, a plan

to collaborate with domain experts to further investigate the fuzzy co-location patterns

found in our experiment will be made. Finally, as well as studying fuzzy co-location min-

ing, fuzzy spatial clusters, fuzzy spatial classification and fuzzy spatial outline detection

on fuzzy spatial datasets will be investigated.

In next Chapter, a new join-less approach for co-location patterns mining will be

presented. This work is very significant in the field of traditional spatial co-location pat-

terns mining.

An Investigation in Efficient Spatial Patterns Mining

40

Chapter 3
A New Join-less Approach for Co-location Pattern Mining

With the rapid growth and extensive applications of the spatial dataset, it is becoming more im-

portant to solve how to find spatial knowledge automatically from spatial datasets. A spatial co-

location pattern represents the subsets of spatial events whose instances are frequently located

together in geographic space. It’s difficult to discover co-location patterns because of the huge

amount of data brought by the instances of spatial events. A large fraction of the computation

time is devoted to generating the instances of co-location patterns. The essence of co-location

patterns discovery and three kinds of co-location patterns mining algorithms proposed in recent

years are analyzed in this chapter, and a new join-less approach for co-location patterns mining,

based on the data structure----CPI-tree (Co-location Pattern Instance Tree), materializing spatial

neighbour relationships, is proposed. All co-location table instances can be generated quickly with

a CPI-tree. The correctness and completeness of the new approach are proved. Finally, an ex-

perimental evaluation using synthetic datasets and a real world dataset shows that the algorithm

is computationally more efficient than the proposed algorithms.

3.1 Overview

Spatial data mining is the process to discover interesting and previously unknown,

but potentially useful patterns from spatial datasets. Extracting interesting patterns from

spatial datasets is more difficult than extracting the corresponding patterns from transac-

tion datasets due to the complexity of spatial data types, spatial relationships and spatial

autocorrelation (Han and Kamber, 2006; Agarwal and Srikant, 1994). A spatial co-

location pattern represents a subset of spatial events which’s instances are frequently

located in a spatial neighbourhood. For example, botanists have found that there are or-

chids in 80% of the area where the middle-wetness green-broad-leaf forest grows. Spa-

tial co-location patterns may yield important insights for many applications. For example,

a mobile service provider may be interested in mobile service patterns frequently re-

quested by geographical neighbouring users. The locations which are gotten together by

people can be used for providing attractive location-sensitive advertisements, etc. Other

application domains include Earth science, public health, biology, transportation, etc.

Co-location pattern discovery presents challenges due to the following reasons:

First, it is difficult to find co-location patterns with traditional association rule mining algo-

rithms since there is no concept of traditional “transaction” in most of spatial datasets

(Agarwal and Srikant, 1994; Koperski and Han, 1995). Second, the instances of a spatial

Chapter 3. A New Join-less Approach for Co-location Pattern Mining

41

event distribute in spatial framework and share complex spatial neighbourhood relation-

ships with other spatial instances. So a large fraction of the computation time of mining

co-location patterns is devoted to generating the table instances of co-location pattern.

3.1.1 Basic Concepts

Given a set of spatial events F, a set of their instances S, and a spatial neighbour

relationship R over S. R could be topological relationships (e.g. linked, Intersection), dis-

tance relationships (e.g. Euclidean distance metric) and mixed relationships (e.g. the

shortest distance of two points on a map). As shown in Figure 3.1, there are 4 spatial

events A, B, C and D and their instances. A.1 stands for the first instance of A. If R is

defined as a Euclidean distance metric

and its threshold value is d, two spatial

objects are neighbours if they satisfy the

neighbour relationship:

() ()()ddistanceR ≤⇔ 1.B,1.A1.B,1.A . Given

a subset of spatial in-

stances { }miiiI ,...,, 21= , SI ⊆ . I is called

as an R-neighbour if I forms a clique un-

der the neighbour relation R.

A co-location c is a subset of spatial events, i.e., Fc ⊆ . An R-neighbour I is a row

instance of a co-location c if I contains instances of all the events in c and no proper

subset of it does so. The table instance of a co-location c is the collection of all row in-

stances of c. The size of a co-location c is the number of spatial events in co-location c,

it is denoted as () ccSize = .

The interest degree of a co-location differs from the degree of support in traditional

association rules mining. A new prevalence measure concept called the participation in-

dex is introduced by Huang, Shekhar and Xiong in (Huang et al, 2004). Participation ra-

tio will be presented before giving the concept of participation index.

The participation ratio ()ifcPR , for event type if in a size-k co-location

c={ }kff ...1 is the fraction of instances of event if which participate in any row instance

of co-location c. The participation ratio can be computed as

()ifcPR , =
()()

()ifancetable_inst

cancetable_inst
if

π
, whereπ is the relational projection operation with

duplication elimination.

Figure 3.1 An example of spatial event instances

B.5 B.4

B.1

B.3
A.1

A.2

A.3

A.4

C.1

C.2

C.3

B.2
●

●

D.1●

D.2
●

●

●
● ●

●

●

●

●

●

●

An Investigation in Efficient Spatial Patterns Mining

42

The participation index of a co-location c={ }kff ...1 is the minimum in all ()ifcPR ,

of co-location c:

()cPI = (){ }i
k
i fcPR ,min 1= 。

Example 3.1. Take Figure 3.1 as an example. A has 4 instances, B has 5 instances,

C has 3 instances, and D has 2 instances. Suppose co-location c={ }CB,A, ，the table

instance of co-location c is { } { }{ }C.1B.3,A.3,,C.2B.4,A.2, . ()A,cPR =2/4 since there are

only A.2 and A.3 in this table instance. Similarly, ()B,cPR =2/5, ()C,cPR =2/3.

()CPI = () () ()() 5/2C,,B,,A,min =cPRcPRcPR .

Given a minimum prevalence threshold min_prev, a co-location c is a prevalent co-
location if ()≥cPI min_prev holds.

Lemma 3.1. The participation ratio and the participation index are monotonically

non-increasing with the size of the co-location increasing.

Proof: Suppose a spatial instance is included in the row instance of co-location c.

For co-location cc ⊆' , this spatial instance must be included in the row instance of 'c .

The opposite is not true. Therefore, the participation ratio is monotonically non-

increasing.

 Suppose },,{ 1 keec L= ,

)},{Pr()(1

1

1
1 min ik

k

i
k eececPi +

+

=
+ ∪=∪)},{Pr(min 11 ik

k

i
eec +=

∪≤)()},{Pr(min
1

cPiec i

k

i
=≤

=

Therefore, the participation index of co-location is also monotonically non-increasing.

Lemma 3.1 ensures that the participation index can be used to effectively prune the

search space of co-location pattern mining.

3.1.2 Problem Definition

The co-location mining problem is formalized as follows:

Given:
1) A spatial framework η
2) A set of spatial events { }nffF ,...,1= and a set of their instances

nSSSS UUU ...21= , ()niSi <<1 is the set of instances of the event if , and each in-
stance is a vector <feature type, instance id, location>, where location∈η .
3) A spatial neighbour relation R over S.
4) A minimum prevalence threshold min_prev

Find:
A set of co-location patterns with participation index ≥ min_prev

Chapter 3. A New Join-less Approach for Co-location Pattern Mining

43

3.1.3 Background for Mining Co-location Patterns

In previous work on mining co-location patterns, Morimoto (2001) defined distance-

based patterns called k-neighbouring class sets. In his work, the number of instances for

each pattern is used as the prevalence measure, which does not possess an anti-

monotone property by nature. However, Morimoto used a non overlapping instance con-

straint to get the anti-monotone property for this measure. In contrast, Shekhar and

Huang (2001) developed an event centric model, which does away with the non-

overlapping instance constraint. They also defined a new prevalence measure called the

participation index. This measure possesses the desirable anti-monotone property. The

related work in the approach proposed by Shekhar and Huang can be classified into

three kinds for identifying co-location instances: the full-join approach, the partial-join

approach and the join-less approach.

(1). The full-join approaches: The full-join approach is mainly based on the com-

putation of the join operation between table instances for identifying co-location in-

stances. First, the spatial neighbour relations between spatial instances are found out,

and all the tables instance of size-2 co-location pattern are generated; second, generate

the size-3 co-location table instances by joining size-2 table instances. Size-k+1 co-

location table instances are generated by joining size-k co-location table instances. This

approach is similar to Apriori method and it could generate correct and complete co-

location sets. However, scaling the algorithm to substantially large dense spatial data-

sets is challenging due to the increasing number of co-locations and their table instances.

 (2). The partial-join approaches: The algorithm proposed by Yoo and Shekhar in

(Yoo and Shekhar, 2004) is to build a set of disjoint cliques in spatial instances to identify

the intraX instances of co-location (belonging to a clique) and interX instances of co-

location (belonging to between two cliques), and join the intraX instances and interX in-

stances respectively to calculate the value of PI (The participation index). This approach

reduces the number of expensive join operations dramatically in finding co-location in-

stances. However, the key of this algorithm is to find cliques as big as possible, which

could cut down the spatial neighbour relationships between two cliques. Besides building

cliques is time-consuming, if the correct cliques could not be identified, and the number

of cut neighbour relations would not be decreased, the partial-join algorithm of mining

co-location pattern would be similar to the full-join algorithm.

 (3). The join-less approaches: The algorithm proposed by Yoo, Shekhar and Ce-

lik in (Yoo et al, 2005) puts the spatial neighbour relationships between instances into a

compressed star neighbourhood. All the possible table instances for every co-location

An Investigation in Efficient Spatial Patterns Mining

44

were generated by scanning the star neighbourhood, and by 3-time filtering operations.

The join-less co-location mining algorithm is efficient since it uses an instance-lookup

scheme instead of an expensive spatial or instance join operation for identifying co-

location table instances. However, the star neighbourhood structure is not an ideal struc-

ture for generating table instances, for the table instances generating from this structure

have to be filtered. Therefore, the computation time of generating co-location table in-

stances will increase with the growing of length of co-location patterns.

3.1.4 Motivation
Let us see the spatial instances in Figure 3.1. If a pair of spatial instances satisfy

neighbour relationship R, connect them with a solid line (as seen in Figure 3.1), then a

graph G (E, V) can be obtained. Each co-location instance is a complete graph (clique)

in G. Mining co-location patterns is equal to the process of mining all cliques in G and

calculating the PI value of each co-location pattern. However, such process has been

proved as a NP-Hard problem (Alsuwaiyel, 2004). In fact, in the process of discovering

cliques, according to the definition of co-location pattern, the same spatial events cannot

appear in a clique, and according to the anti-monotonic property of PI value (Lemma 3.1),

not all the cliques should be calculated. The available 3-kind of mining co-location pat-

tern algorithms is based on the two properties and similar to Apriori approach.

Can all the cliques be calculated through simply scanning G? Can a structure which

contains the information of co-location table instances be built? In this Chapter, a new

structure called CPI-tree (Co-location Pattern Instance Tree), which is similar to FP-tree,

will be introduced in here. It could materialize the neighbour relationships of a spatial

data set, and find all the co-location table instances recursively from it. Different from the

star neighbourhood structure in the join-less approach, all information of the neighbour

relationships in a spatial dataset is organized together by the CPI-tree. So, the third

phase filters in the join-less algorithm, which might be an expensive step, need not be

performed. Meanwhile, some filtering methods appeared in the join-less algorithm, which

can filter candidate co-locations without finding exact co-location instances, will be re-

served. Some new filtering methods will be considered in the new algorithm. As it hap-

pens, in the CPI-tree-based approach, all co-location table instances are discovered by

scanning the CPI-tree once without candidate co-location generation. Although, in many

cases the Apriori candidate generate-test method reduces the size of candidate sets

significantly and leads to performance gain. However, it may need to repeatedly scan the

star neighbourhood and check a large set of candidates by pattern matching. This is es-

pecially the case for mining long patterns.

Chapter 3. A New Join-less Approach for Co-location Pattern Mining

45

3.1.5 Organization of the Chapter

The remainder of the Chapter is organized as follows. The CPI-tree structure and

the method to construct it are introduced in Section 3.2. Section 3.3 develops a CPI-tree-

based complete co-location-instance generating algorithm. Section 3.4 explores some

pruning strategies and optimized strategies for improving efficiency of the CPI-tree-

based algorithm. The experimental results are presented in Section 3.5. Section 3.6

summarizes the study and points out some future research work.

3.2 Co-location-Instance Tree (CPI-tree): Design and Construction

In this Section, the structure of CPI-tree and its construction method are introduced.

3.2.1 CPI-tree

A compact data structure can be designed based on the following observations:

(1). Since spatial neighbour relations between two instances make certain all co-

location-instance, it is necessary to perform one scan of spatial datasets to identify the

set of neighbour relationships.

(2). If the set of neighbour relationships can be stored in a compact data structure, it

may be possible to avoid repeatedly scanning the set of neighbour relationships (the ap-

riori-like algorithms did so, because they have to scan all size-k co-location-instance

when they generating size-k+1 co-location-instance.)

(3). If a size-k co-location-instance is found, it may be cost-efficient to expand a

size-k+1 co-location-instance from it at once. It is easy to expand co-location-instance if

the set of neighbour relationships can be stored in a compact data structure.

(4). The recursive and hierarchical properties of the tree structure ensure the clarity

and simplicity of the algorithms’ description. If all spatial instances are sorted in ascend-

ing order (the spatial events in alphabetic order, and then the different instance of the

same spatial event in numerical order), a graph G representing spatial neighbour rela-

tionships may correspond to a unique tree structure.

With the above observations, a tree structure (called CPI-tree (Co-location Pattern

Instance Tree), for all co-location-instances can be generated from it) can be defined as

follows.

Definition 3.1 (CPI-tree). A CPI-tree is a kind of rooted tree. The root of CPI-tree is

labelled as “null”. A branch of the CPI-tree is constructed a corresponding connective

sub-graph in the graph G. The nodes in CPI-tree represent the spatial instance. The

node u is the parent of the node v, when there is a neighbour relationship between in-

stances u and v and the instance u is “smaller” than instance v.

An Investigation in Efficient Spatial Patterns Mining

46

Based on this definition, there is the following CPI-tree construction approach.

1) Create the root of a CPI-tree, and label it as “null”.

2) Push all the spatial instances into a stack T1 in alphabetic and numerical de-

scending order.

3) Pop an instance from the stack T1, create a child node of the root “null” for this

instance (e.g. A.1 in Figure 3.3). Push this instance into a stack T2.

4) Pop an instance (e.g. A.1) from stack T2. Find out all the instances which are the

neighbours of this instance (showed in Figure 3.2), the different spatial event from this

instance, and “bigger” than this instance. These instances form child nodes of this node

in ascending order. Delete all these instances from stack T1 and stack T2, and link to the

same instance-name node (except for leaf-nodes) in the CPI-tree (see dashed link in

Figure 3.3).

5) Push child node instances (they have not the same instance-name node in CPI-

tree) into the stack T2 in descending order. Then, turn to 4).

6) Repeat the operation above till the stack T2 is empty, and then turn to 3)

7) Repeat the operation above till the stack T1 is empty.

The Figure 3.3 is the CPI-tree of the example in Figure 3.1. The CPI-tree of a spatial

dataset constructed by above steps will be unique. The CPI-tree materializes the

Figure 3.2 Neighbours of the instance A.1, B.1 and C.1.

B.5 B.4

B.1

B.3
A.1

A.2

A.3

A.4

C.1

C.2

C.3

B.2
●

●

D.1
●

D.2
●

●

●
● ●

●

●

●

●

●

●

d

Figure 3.3 CPI-tree of the example in figure 3.1

null

A.1 A.2 A.3 A.4

B.1 C.1

D.2

B.4 C.2

C.2

B.3 C.1 C.3 D.1 B.3

C.1 D.1

B.2 B.5

D.1

Chapter 3. A New Join-less Approach for Co-location Pattern Mining

47

neighbour relationships of a spatial dataset with no duplication of the neighbour relation-

ships and no loss of co-location instances, and more important thing is that it is conven-

ient and efficient to generate the co-location instances from it.

The approach of constructing a CPI-tree can be converted into the following algo-

rithm.

Algorithm 3.1 (CPI-tree construction).
Input: S: a set of spatial instances and each instance is a vector <feature type, instance id, location>;

R: the spatial neighbour relationship (e.g. Euclidean Distance);
Variables: NT={ }

mlll NTNTNT ...,
21

：a set of spatial neighbour relationships where il
NT is the set of

neighbour instances of the instance il , whose order is “bigger” than il , and is sorted in ascending order of

instances.
Output: CPI-tree：The CPI-tree structure of materialized spatial neighbour relationships;
Method:

1） NT=gen_neighbourhood;
2） Create the root of a CPI-Tree, and label it as “null.”

3） Push all the instances in S into a stack T1 in descending order;

4） While the stack T1 is not empty Do

5） { l← Pop an instance from stack T1;

6） create the node l which is the child of the root “null”;

7） Push instance l into the stack T2;

8） While the stack T2 is not empty Do

9） { l←Pop an instance from the stack T2;

10） For each instance f in NTl Do

11） { Create the node f which is the child of the node l;

12） Delete the instance f from the stack T1 and T2;

13） Link the node f to the same instance-name non-leaf-node in CPI-tree;

14） If there is not the same instance-name with the node f in CPI-tree then f → NTl′}

15） Push all the instances in NTl′ into the stack T2 in descending order;

 }

 }

16） Return the root “null”

The procedure gen_neighbourhood of this algorithm generates a set

NT= { }
mlll NTNTNT ...,

21
of spatial neighbour relationships, where il

NT is the set of

neighbour instances of the instance il whose order is “bigger” than il and is sorted in as-

cending order of instances. In this procedure, all neighbour instance pairs are found

firstly according to spatial neighbour relationship R, and then the set

An Investigation in Efficient Spatial Patterns Mining

48

NT= { }
mlll NTNTNT ...,

21
 is generated by grouping the neighbour instances for each in-

stance.

In the loop of the step 4), each of which will create a branch of the root “null” in the

CPI-tree, and the loop of the step 8) generates iteratively all nodes of this branch of the

CPI-tree. As it happens, the instances are considered in ascending order in the step 10),

because the instances are sorted in ascending order in NTl. The operation deletion in the

step 12) and the operation of the step 14) are to avoid duplication of information, and the

operation linking in the step 13) is for no loss of information.

3.2.2 Complexity and Completeness of CPI-tree

Analysis. The computational complexity of the algorithm 3.1 includes procedure

Gen_neighbourhood and the rest of algorithm. Suppose the number of spatial instances

is m. In the worse case, the computational complexity of the procedure

Gen_neighbourhood will be)log(2
2 mmO , and the rest of the algorithm will be)(2mO .

It will be shown that the CPI-tree contains the complete and no redundant information for

table-instance generating in Lemmas 3.2.

Lemma 3.2. All the neighbour relationships of given spatial instances are recorded

in a CPI-tree, no one is omitted.

Proof: according to the procedure of constructing a CPI-tree, all the spatial in-

stances are scanned and their neighbour relationships are recorded in CPI-tree. There-

fore, none of the spatial instances’ neighbour relationship is omitted in CPI-tree.

Lemma 3.3. CPI-tree materializes the neighbour relationships of a spatial dataset

with no duplication of the neighbour relationships.

Proof: It is obvious because the step 12) in constructing a CPI-tree algorithm guar-

antees each spatial neighbour relationship is considered once, and the step 10) and step

14) ensure that a connective sub-graph in spatial dataset forms a branch of a CPI-tree.

3.3 Generating Complete Table-Instance Using CPI-tree

Construction of a CPI-tree which materializes the neighbour relationships of a spa-

tial dataset ensures that all table instances can be generated from this CPI-tree. How-

ever, it is not guaranteed that the process of generating table instances will be highly ef-

ficient, since one may still encounter the combinatorial problem of table instances gen-

eration if one simple uses this CPI-tree to generate all table instances.

In this section, it will be studied that how to scan the neighbour relationship stored in

a CPI-tree, develop the principles of generating table instances using CPI-tree, explore

Chapter 3. A New Join-less Approach for Co-location Pattern Mining

49

how to perform further optimization of generating table instances using CPI-tree, and

propose a table-instance generation algorithm, Gen_instance, for efficiently generating

the complete set of table instances using CPI-tree.

3.3.1 Principles of Table-Instance Generation from a CPI-tree

In this subsection, some interesting properties of the CPI-tree structure which will

facilitate co-location-instance generation will be examined. To facilitate properties de-

scription, data structure of node in CPI-tree is defined as follows. Each node in the CPI-

tree consists of three fields: instance-name, child-link, and node-link. Node-link links to

the non-leaf node in the CPI-tree carrying the same instance-name, or null if there is

none.

Definition 3.2 (direct-child-link). A link between two nodes in a CPI-tree is called as

a direct-child-link. A k-length direct-child-link is called as a size-k direct-child-link. The

nodes lying in middle of a size-k direct-child-link are called as intra-node. For a node in a

direct-child-link, the nodes lying in this node below are called as child-node on the direct-

child-link.

Example 3.2 Considering examples in Figure 3.3, “A.3 B.3” is a direct-child-link,

“A.3 B.3 C.1” is a size-3 direct-child-link, B.3 is the intra-node of the size-3 direct-child-

link “A.3 B.3 C.1”, and B.3 and C.1 are the child-nodes of A.3.

Definition 3.3 (indirect-child-link). The child nodes linked out by a node-link (i.e.,

dashed link) are called as indirect-child. A size-k child-link linked out by an indirect-child

is called as a size-k indirect-child-link.

Example 3.3 D.1 is the indirect-child of the node C.1 linked to its parent by the

node-link in Figure 3.3. So, “B.3, C.1, D.1” and “A.3, C.1, D.1” are size-3 indirect-child-

link.

Definition 3.4 (all-link). If all child-nodes of each intra-node in a size-k direct-child-

link are the brothers of corresponding intra-node, then the size-k direct-child-link is called

as a size-k all-link. If the size-k direct-child-link defined above is a size-k indirect-child-

link, then it is called as a size-k indirect-all-link.

Example 3.4 In Figure 3.3, the size-4 direct-child-link “A.3 B.3 C.1 D.1” is a size-4

indirect-all-link. Because C.1 and D.1 are the brothers of B.3, and D.1 is the brother of

the node C.1. In the same way, the size-3 direct-child-link “A.3 B.3 D.1” is a size-3 direct-

all-link.

Based on the definitions above, there are the following properties.

An Investigation in Efficient Spatial Patterns Mining

50

Property 3.1 (Child-link property). Each size-2 child-link in a CPI-tree denotes a

size-2 co-location instances.

This property can be obtained directly from the CPI-tree constructing process, and it

is the base of generating other co-location instances.

Property 3.2 (All-link property). Each size-k all-link or size-k indirect-all-link in a

CPI-tree denotes a size-k co-location table instance. (k>2)

Rationale. It is obvious that the instances satisfying all-link or indirect-all-link form a

clique in corresponding graph G.

Example 3.5 The size-3 all-link “A.3 B.3 D.1” forms a co-location instance “A.3, B.3,

D.1”, the same to the size-4 indirect-all-link “A.3 B.3 C.1 D.1” and size-3 indirect-all-link

“B.3 C.1 D.1”.

It then will be shown that the complete set of table instances in a spatial dataset can

be generated by using corresponding CPI-tree.

Lemma 3.4 Co-location instances generated from the CPI-tree by using properties
3.1 and 3.2 are correct and complete.

Rationale. First, it is shown that each table instance generated from properties 3.1

and 3.2 is correct and distinct. The correctness is guaranteed by property 3.1 and

property 3.2, and the distinction is guaranteed by lemma 3.3.

Second, it is shown that no co-location instance can be generated out of the CPI-

tree. Suppose a size-k co-location instance can be generated out of the CPI-tree. If this

is a size-2 co-location instance, and then there is not a child-link between the two in-

stances. According to lemma 3.2, there is not a spatial neighbour relationship between

the two instances, this reduces to absurdity. For size-k co-location instance (k>2), that

means that these instances presenting to the size-k co-location instance do not form a

all-link or indirect-all-link, and then according to the process of constructing a CPI-tree,

there at least is not a neighbour relationship between two instances among these in-

stances. This also reduces to absurdity.

3.3.2 Table-Instance Generation Algorithm

Complete co-location table instances of a spatial dataset are generated recursively

from corresponding CPI-tree in the following steps.

1) Initiate prefix pattern α= {null} (the root of CPI-tree) and the suffix pattern β= {null},

search CPI-tree recursively for complete the co-location table instances.

2) If α has a child node s and s has a child node t too, then α is put by s, i.e. α={s},

search CPI-tree recursively with the new α and β; else (including the last recursion re-

turns), (1). β is put by s, i.e. β={s}, and a co-location instance α∪β is generated; (2). if β

Chapter 3. A New Join-less Approach for Co-location Pattern Mining

51

has child node t, then (a). Generating a size-3 co-location instances if the α∪β∪{t} is a

all-link (i.e., the child node t of β is the brother node of β), examining the size-4 co-

location instances if t has child node…, … (b). If β has indirect-child nodes, examining

indirect-all-link to generate some new co-location instances. For example, consider the

node “B.3” in Figure 3.3, when β is “B.3”, besides generating the instances “A.3, B.3,

C.1” and “A.3, B.3, D.1”, the instance “A.3, B.3, C.1, D.1” also be generated.

3) If the recursion is ended, return all the co-location table instances.

Example 3.6. Generating all co-location table instances of the CPI-tree in Figure 3.3

First level recursion (α=null, β=null): because the child node A.1 of α has children,

go to the second level recursion.

Second level recursion (α= {A.1}, β=null): because the child node B.1 of α still has

children, go to the third level recursion.

Third level recursion (α={B.1}, β=null): because the child node D.2 of α has no child,

so β={D.2}, a table instance of co-location {B, D} is α∪β =“B.1, D.2”. The D.2 is a leaf

node, end this recursion. When returning to the A.1, first, “A.1, B.1” forms a co-location

instance. Second, examine “A.1 B.1 D.2” is an all-link or not for determining it is a new

co-location instance or not (here, it is not). After finishing this branch, go to another

branch of A.1. A.1 has another child C.1, go to the next recursion level…, until to a leaf

node (when come to the node D.1), the table instance of co-location pattern {C, D} “C.1,

D.1”will be generated, and then return to the upper recursion level…. After the table in-

stance “A.1,C.1” of pattern {A, C} is generated, the branch A.1 finish due to the “A.1, C.1,

D.1” is not an all-link…….

The above approach can be transformed into the following algorithm.

Algorithm 3.2 (Gen_instance).
Input: CPI-tree: materialized spatial neighbour relationships in a spatial dataset and constructed ac-

cording to Algorithm 3.1;

Output: The complete set of co-location table instances.

Method: call Gen_instance (CPI-tree, null, null)

Procedure Gen_instance (CPT-Tree，α，β)

1） while α has child node s Do

2） {if s has child node t then Gen_instance (CPI-Tree, {s}, β);

3） β= {s};

4） If α <> “null” then

5） { α∪β forms an instance of co-location pattern;

6） If β has a child-node or a indirect-child-node then Gen_next_instance (CPI-tree, α, β); }

7） }

An Investigation in Efficient Spatial Patterns Mining

52

Procedure Gen_next_instance (CPI-tree, α, β)

1） { ω= The last element of β;

2） while (ω has a child-node or a indirect-child-node t AND Ok (t, β) Do

3） { β=β∪{t};

4） α∪β forms an instance of co-location pattern;

5） If t is not a leaf then Gen_next_instance (CPI-tree, α, β) }

6） }.

Bool Function Ok (t, β) //If the node t is the brother of β, then return true, else return false

1） { For i=1 to |β|

2） If the node t is not the brother of the i-th element in β then Return false;

3） Return true }

Analysis. With the properties and lemmas in Section 3.2 and 3.3, the algorithm cor-

rectly finds the complete set of table instances in a spatial dataset.

From the algorithm and reasoning, one can see that the table instances generating

process is a backtracking process. Let’s now examine the efficiency of the algorithm.

The algorithm scans the CPI-tree once and table instance generating is recursively per-

formed on the child-link from size 2. If a size-k table instance is not generated, then the

size-k+1 table instance derived from it will not be considered. Moreover, after generating

lower table instances, the table instances derived from them will be examined at once.

This is much less costly than traditional operation method of the full-join and the join-less.

Thus the algorithm is efficient. The real execution results will be shown in Section 3.5.

3.4. Some Optimization Strategies

3.4.1 Pruning Strategies

Although generating co-location instances from a CPI-tree will be No loss of co-

location instances and no duplication of co-location instances, the following pruning

strategies can be used to improve efficiency of generating co-location instances from

CPI-tree.

Pruning 3.1. A node, which is the child of the root “null” and has no child, can be

pruned.

Proof. If a node is the child of the root “null” and it has not a child node, it must be

the spatial instance without neighbourhood. So it can be pruned.

Example 3.7 In Figure 3.3, the instances B.2 and B.5 can be pruned with Pruning 1.

Chapter 3. A New Join-less Approach for Co-location Pattern Mining

53

Pruning 3.2. By using Pruning 3.1, If the number of the pruned instances of a fea-

ture fi is greater than min_prev*| fi|, then all the instances of the feature fi and the rele-

vant edges in the CPI-tree can be pruned. (If the root node of the remaining branch is

the right brother node of the pruned node, move the remaining branch to the right

brother node and combine the same nodes; else, move the remaining branches to be-

come another branch of this CPI-tree root.)

Proof. If the number of the pruned spatial instances of a feature fi with Pruning 3.1

is greater than min_prev*| fi|, the number of the remaining instances of the feature is less

than the min_prev*| fi|. Therefore, all instances of this spatial feature might be pruned

due to the co-location containing the feature might not be prevalent.

Example 3.8 Suppose that three instances of spatial feature B was pruned with

Pruning 3.1, and there were five instances in feature B and the min_prev is 50%, then all

the instances of B and the relevant edges can be pruned with Pruning 3.2.

3.4.2 Optimization by Reducing the Depth of CPI-tree

In the algorithm Gen-instance, an all-link forms a co-location instance. One can see

that cutting a branch in a CPI-tree that may not form an all-link will not affect the results

of the algorithm Gen-instance. For example, the instance “B.3” in Figure 3.4 (a), for its

children may not form any all-link with her parent, the branch “B.3” can be cut (duplicate

exactly) and move it to the root “null” of this CPI-tree (see Figure 3.4 (b)). The same with

the branch “B.1” is. For some distribution of data sets, spatial instances are connected

by some links (they can be called as bridges). Because of these bridges, the instances,

they could not be generated a co-location instance, are connected together, that must

affect efficiency of the algorithm. So, these links are cut for optimizing the method.

Definition 3.5 (Cut-link) A link connecting the node i1 to i2 in a CPI-tree is called a

cut-link if any child-node of i2 is not its brother.

Figure 3.4(a) presents cut-link as dotted lines. Link {A.1, B.1} and {A.1, B.3} are cut-

links.

Figure 3.4 An Example of reducing the depth of CPI-tree

null

A.1 A.2

C.2

E.1

B.1 B.3

D.2

B.2 C.1

C.1

D.1 E.1 E.2

E.2

E.1 D.1

(a)

A.1 A.2

B.3
B.1

D.2B.2 C.1

C.1

null

C.2

E.1

D.1 E.1 E.2

E.2

E.1 D.1

B.3
B.1

(b)

An Investigation in Efficient Spatial Patterns Mining

54

Property 3.3 (Cut-link property) The child instances linked out by a cut-link cannot

form a co-location instance with its parent instance.

Rationale. First, the property 3.3 guarantees there is not any size-3 co-location in-

stance linked out by a cut-link. Second, there is not any size-k (k>3) co-location instance

linked out by this cut-link according to Property 3.2.

Therefore, for a cut-link {i1, i2}, moving branch i2 to the root “null” will not affect the

results of generating co-location instances from CPI-tree (see Figure 3.4(b)). There is a

duplication of the node “i2” is generated in this optimization process, for generating size-2

co-location instance {i1, i2}.

It is obvious that the co-location instances generating from the depth-reduced CPI-

tree is better than from the original CPI-tree, but when and how the process of reducing

the depth of a CPI-tree is performed. For considering the efficiency of this process, it is

done when the CPI-tree is building. It means that the process of constructing a CPI-tree

will be changed for considering optimization strategies of reducing the depth of a CPI-

tree.

Algorithm 3.3 (construction of a CPI-tree for considering optimization strategies of
reducing its depth)

Method:
1） NT=gen_neighbourhood;
2） Create the root of a CPI-Tree, and label it as “null.”

3） Push all the instances in S into a stack T1 in descending order；

4） While the stack T1 is not empty Do

5） { l← Pop an instance from stack T1；

6） create the node l which is the child of the root “null”；

7） Push instance l into the stack T2；

8） While the stack T2 is not empty Do

9） { l←Pop an instance from the stack T2;

10） For each instance f in NTl Do

11） { Create the node f which is the child of the node l；

12） Delete the instance f from the stack T1 and T2；

13） Link the node f to the same instance-name non-leaf-node in CPI-tree;

14） If there is not the same instance-name with the node f in CPI-tree then f → NTl′ }

15） Push all the instances in NTl′ into the stack T2 in descending order;

16） If all the instances in NTl are not the brothers of the instance l then

17） copy the node l and move the branch l to the root “null”; //branch l includes the node l and its

children//

 }

Chapter 3. A New Join-less Approach for Co-location Pattern Mining

55

 }

18） Return the root “null”

Comparing to algorithm 3.1, besides the steps 16) and 17) are added, the others

are all the same. So, when using algorithm 3.3 to build a CPI-tree, it can be seen that a

depth-reduced CPI-tree is obtained. The experiments in Section 3.5 use this optimized

algorithm.

3.5. Experimental Results

In this section, the performance of the algorithms is evaluated with the join-less ap-

proach using both synthetic and real data sets. All the experiments were performed on a

3-GHz Pentium PC machine with 2G megabytes main memory, running on Microsoft

Windows/XP. All programs are written in Java.

The experimental results are reported on two synthetic data sets. The first one is

called as sparse dataset with 26 spatial features. In this dataset, when the neighbour dis-

tance threshold d and the prevalence threshold min_prev are set to 25 and 0.15, the to-

tal number of size 2 co-locations and the maximum size of co-locations are 104 and 4,

respectively, while the number of all instances in the dataset is set to 10k. The prevalent

co-locations are short and not numerous in this dataset.

The second synthetic dataset used in the experiments is a dense dataset with 26

spatial features. The total number of size 2 co-locations and the maximum size of co-

locations are 232 and 8, when the threshold d and the min_prev are set to 25 and 0.15,

respectively. There exist long prevalence co-locations as well as a large number of short

prevalence co-locations in this dataset when the prevalence threshold Min_prev goes

down.

To test the practicability of CPI-tree, a real dataset, the plant distributed data set of

the “Three Parallel Rivers of Yunnan Protected Areas”, is used. It contains the number of

plant species (spatial event types) is 16. The total number of plant instances is 3908.

When Min_prev and distance d are set to 0.1 and 1900 respectively, the maximum size

of co-location is 4 and the total number of size 2 co-location patterns is 42. The charac-

teristic of the dataset is that there are a large number of table instances in each co-

location pattern.

1） Scalability with the neighbour distance threshold d over sparse data set

and dense data set: The runtime of CPI-tree and Join-less on the sparse and the

dense synthetic datasets, when the prevalence threshold min_prev is set as 0.5, as the

An Investigation in Efficient Spatial Patterns Mining

56

neighbour distance threshold d increases from 15 to 25/30 is shown in Figure 3.5 (a),

(b). Since the dataset is sparse, as the threshold d is low, the prevalent co-location pat-

terns are short and the set of such patterns is not large, the advantages of CPI-tree over

Join-less are not so impressive. However, as the threshold d goes up or the dataset be-

comes dense, the gap becomes wider.

2）Scalability with prevalence threshold Min_prev over sparse data set and

dense data set: Figure 3.6(a) shows the experimental results of scalability with

Min_prev over the sparse dataset, while the results over dense dataset are shown in

Figure 3.6(b). The neighbour distance threshold d is set as 200 in the experiments of

Figure 3.6(a), while d is 150 in the experiments of Figure 3.6(b). The advantage of CPI-

tree approach is more impressive with threshold Min_prev decrease and the dataset be-

comes dense.

3）Scalability with prevalence threshold Distance d over a real data set: The

mining result over a real dataset, a plant distributed data set of the “Three Parallel Rivers

of Yunnan Protected Areas”, is shown in Figure 3.7. From the figure, one can see that

CPI-tree method is scalable even when there are many table instances. In such real

datasets, the join-less method is not comparable to the performance of CPI-tree method.

Figure 3.6 Scalability with Min_prev over sparse data set and dense data set

0

5
10

15
20

25
30

35

0.1 0.15 0.18 0.2 0.3

Min-prev

Ti
m
e
(s
ec
)

Join-less

CPI-tree

(a). over sparse data set

(b). over dense data set

0

500

1000

1500

2000

0.1 0.15 0.18 0.2 0.3

Min-prev

T
i
m
e
(
S
ec
)

Join-less

CPI-tree

Figure 3.5 Scalability with distance d over sparse data set and dense data set

(a). over sparse data set

0

10

20

30

40

50

60

70

15 20 22 25 30

Distance d

T
i
m
e

(
S
e
c

Jo in- less

CP I-t ree

(b). over dense data set

0
200

400
600

800
1000

1200
1400

1600
1800

15 20 22 25

Distance d

T
i
m
e

(
s
e
c
)

Jo in-less

CPI-t ree

Chapter 3. A New Join-less Approach for Co-location Pattern Mining

57

Figure 3.7 Scalability with Distance d over a plant distributed data set
of the “Three Parallel Rivers of Yunnan Protected Areas”

0

1000

2000

3000

4000

5000

1500 1700 1900

Distance d
T
i
m
e

(
S
e
c
)

Join-less

CPI-tree

4）Scalability of CPI-tree algorithm with number of instances: To test the scal-

ability of CPI-tree against the number of instances, the dense dataset is used with Min-

Prev is set to 0.3, the neighbour distance threshold d is 20, and the number of instances

ranges from 3K to 15K. The result is shown in Figure 3.8, which shows that the CPI-tree

method is the linear increase of runtime with the number of instances.

Figure 3.8 Scalability of CPI-tree algorithm with number of instances

0

200

400

600

800

1000

3000 6000 9000 12000 15000

Number of instance

T
i
m
e

(
S
e
c
)

Join-less

CPI-tree

3.6. Summary
In this Chapter, a new join-less co-location mining algorithm, which can rapidly gen-

erate spatial co-location table instances based on the CPI-Tree construction materialized

neighbourhood relationship between spatial instances, was proposed. The algorithm is

efficient since it does not require expensive spatial joins or instance join for identifying

co-location table instances. The experimental results show the new method outperforms

the join-less method in the case of sparse and dense datasets. As future work, the appli-

cations studying of co-location patterns mining is an important work. Treating with the

redundant co-location rules and maximal co-location patterns mining will be signifi-

cant works in the future work as well.

An Investigation in Efficient Spatial Patterns Mining

58

In next Chapter, an Order-Clique-Based Approach for Mining Maximal Co-locations

will be discussed. The purpose of the studying is to more efficiently mining spatial co-

location patterns.

Chapter 4. An Order-Clique-Based Approach for Mining Maximal Co-locations

59

Chapter 4

An Order-Clique-Based Approach for Mining
Maximal Co-locations

Mining co-location patterns in spatial datasets have been studied popularly in spatial data mining re-

search. Most of the previous studies adopt an Apriori-like approach to generate size-k prevalence co-

locations after size-(k-1) prevalence co-locations. However, generating the prevalence co-locations

and storing the excessive table instances is costly, especially when there are a large number of co-

locations and table instances, and/or long patterns. A novel order-clique-based approach for mining

maximal co-locations, which mines maximal co-locations without storing excessive table instances, is

proposed. Characteristic and efficiency of the approach is achieved with three techniques: (1) the spa-

tial neighbour relationships between instances and the size-2 prevalence co-locations are compressed

into extended prefix-tree structures respectively, Neib-tree and P2-tree, which brings up a or-

der-clique-based approach to mining candidate maximal ordered prevalence co-locations and ordered

table instances, (2) all table instances are generated from the Neib-tree, the table instances do not

need be stored after computing the Pi value of corresponding co-location, which dramatically reduces

the executive time and space of mining maximal co-locations, and (3) some strategies, pruning the

branches whose the number of child instances is less than a related value and scanning the Neib-

tree in order, are used to stop some useless inspection in the process of inspecting table instances.

The performance study shows that the method is efficient and scalable for mining both long and short

co-location patterns, and is faster than the full-join method, the join-less method and the CPI-tree

method.

4.1 Overview

Co-location patterns mining is a new branch studied in the spatial data mining field

recently. A spatial co-location pattern represents a subset of spatial features whose in-

stances are frequently located in a spatial neighbourhood. Spatial co-location patterns

may yield important insights for many applications. For example, a mobile service pro-

vider may be interested in mobile service patterns frequently requested by geographical

neighbouring users. The locations which are gotten together by people can be used for

providing attractive location-sensitive advertisements, etc. Other application domains

include Earth science, public health, biology, transportation, etc (Huang et al, 2004;

Shekhar and Huang, 2001).

An Investigation in Efficient Spatial Patterns Mining

60

Co-location pattern discovery presents challenges due to the following reasons:

First, it is difficult to find co-location patterns with traditional association rule mining algo-

rithms since there is no concept of traditional “transaction” in most of spatial datasets

(Koperski and Han, 1995; Wang et al, 2005). Second, the instances of a spatial feature

distribute in spatial framework and share complex spatial neighbour relationships with

other spatial instances (Chou, 1997; Cressie, 1991; Estivil-Castro and Lee, 2001; Estivil-

Castro and Murray, 1998). So a large fraction of the computation time of mining co-

location patterns is devoted to generating table instances of co-location patterns (Huang

et al, 2004; Huang and Zhang, 2006).

In previous work on mining co-location patterns, Morimoto (2001) defined distance-

based patterns called k-neighbouring class sets. In his work, the number of instances for

each pattern is used as the prevalence measure, which does not possess an anti-

monotone property by nature. However, Morimoto used a non-overlapping instance con-

straint to get the anti-monotone property for this measure. In contrast, Shekhar & Huang

(2001) developed an event centric model, which does away with the non-overlapping

instance constraint, and a new prevalence measure called the participation index (Pi) is

defined. This measure possesses the desirable anti-monotone property. At the same

time, Huang, Shekhar & Xiong (Huang et al, 2004) proposed a general mining approach:

Join-based approach mining co-locations (called join-based approach), which estab-

lished the basis of co-location mining. This approach is good on sparse spatial datasets.

However, in dealing with dense datasets, it is inefficient due to the computation time of

the join is growing with the growth in co-locations and table instances. Yoo and Shekhar

proposed two improved algorithms (called partial-join approach and join-less ap-
proach respectively) to conquer the disadvantage of the full-join approach on efficiency

in (Yoo and Shekhar, 2004) and (Yoo et al, 2005).

The partial-join approach is to build a set of disjoint clique in spatial instances to

identify the intraX instances of co-location (belonging to a clique) and interX instances of

co-location(belonging to between two cliques), and join the intraX instances and interX

instances respectively to calculate the value of the Pi. This approach reduces the num-

ber of expensive join operations dramatically in finding table instances. However, the key

of this algorithm is to find out cliques as big as possible, which could cut down the spatial

neighbour relationships between two cliques. Besides building cliques is time-

consuming, if the correct cliques could not be identified, and the number of cut neighbour

relations would not be decreased, the partial-join algorithm of mining co-location pattern

would be similar to the full-join algorithm.

The join-less approach puts the spatial neighbour relationships between instances

into a compressed star neighbourhood. All the possible table instances for every co-

Chapter 4. An Order-Clique-Based Approach for Mining Maximal Co-locations

61

location pattern were generated by scanning the star neighbourhood, and by 3-time fil-

tering operation. The join-less co-location mining algorithm is efficient since it uses an

instance-lookup scheme instead of an expensive spatial or instance join operation for

identifying co-location table instances. So the idea of the join-less is great. However, the

star neighbourhood structure is not an idea structure for generating table instances, for

the table instances generating from this structure have to be filtered. Therefore, the

computation time of generating co-location table instances will increase with the growing

length of co-location patterns.

To summarize above, in cases with a large number of prevalence co-locations and

table instances, long co-locations, or quite low min-prev thresholds, the existing algo-

rithms may suffer from the following two nontrivial costs:

(1). It is costly to handle a huge number of candidate co-locations. For example, if

there are 103 spatial events, the algorithms will need to generate more than 105 size-2

candidates and test their occurrence prevalence. Moreover, to discover a prevalence co-

location of size-100, such as {f1,…,f100}, it must generate 2100-2≈1030 candidates in total.

This is the inherent cost of generating the set of all prevalence co-locations, no matter

what implementation technique is applied.

(2). It is wasteful to store excessive table instances of co-locations, which is espe-

cially true when the number of table instances is tremendous.

Can one substantially reduce the number of co-locations generated in prevalence

co-location mining while preserving the complete information regarding the set of preva-

lence co-locations? Can one develop a method that utilizes some novel data structures

and algorithms to avoid a huge number of table instances’ store? This is the motivation

on this Chapter.

In this chapter, maximal prevalence co-location mining substitutes for traditional

prevalence co-location mining in order to solve the first question listed above. Some

novel, compact data structures, P2-tree, CPm-tree, Neib-tree and Ins-tree is

constructed, which extend prefix-tree structures storing crucial, quantitative information

about size-2 prevalence co-locations, candidate maximal ordered prevalence co-

locations, spatial neighbour relationships between instances and table instances. To en-

sure that the tree structures are compact and informative, the tree nodes are arranged in

an ascending order (the spatial features in alphabetic order, and then the different in-

stance of the same spatial feature in numerical order). Based on these tree structures,

an order-clique-based approach mining candidate maximal ordered prevalence co-

locations and generating table instances is developed, which use only the size-2 preva-

lence co-locations for generating candidate maximal co-location, while spatial neighbour

An Investigation in Efficient Spatial Patterns Mining

62

relationships between instances for generating table instances, perform iteratively mining

maximal prevalence co-location patterns without excessive table instances’ store.

A performance study has been conducted to compare the performance of the order-

clique-based method with two representative co-location mining methods, the full-join

and the join-less. The study shows that order-clique-based method is much faster than

full-join and join-less, especially when the spatial dataset is dense (containing many ta-

ble instances) and/or when the prevalence co-locations are long.

The remainder of the chapter is organized as follows. Section 4.2 introduces the

concepts and lemmas of maximal ordered co-locations, and proposes algorithms of min-

ing candidate maximal ordered prevalence co-locations based on ordered clique. Sec-

tion 4.3 discusses table instances’ inspection of candidate maximal co-locations based

on ordered clique. Section 4.4 is the algorithm and analysis for mining maximal preva-

lence co-locations without redundant table instances’ store. Section 4.5 presents the per-

formance study. Section 4.6 gives the conclusions and discusses future work.

4.2 Maximal Ordered Prevalence Co-locations

In this section, the concept of maximal ordered prevalence co-locations is intro-

duced, some lemmas are discussed, and algorithms for generating candidate maximal

ordered prevalence co-locations are developed.

4.2.1 Definitions and Lemmas

Definition 4.1. GIven a co-location { }kffc ,...,1= in a set of spatial events

{ }nffF ,...,1= , },,2,1{ nk L∈ , if ji ff ≤ (in alphabetic order) holds for any kji ≤≤≤1 ,

the co-location c is called as an ordered size-k co-location. If c is a prevalence size-k

co-location, it is called as an ordered prevalence size-k co-location.

Definition 4.2. Given a prevalence co-location { }kffc ,...,1= , },,2,1{ nk L∈ ,

Fc ⊂ , if ifc∪ is a non-prevalent co-location for any Ffi ∈ and cfi ∉ , the prevalent

co-location c is called as a maximal prevalence co-location. If c is an ordered preva-

lence size-k co-location, it is called as a maximal ordered prevalence co-location.

Lemma 4.1. Let R be a set of all maximal ordered prevalence co-locations in finite

spatial event set F, c is an ordered prevalence co-location, then Rw∈∃ , wc ⊆ holds.

Proof. (Antinomy) Suppose c∃ , which is a ordered prevalence co-location, for

Rw∈∀ , wc ⊄ holds. From this supposition and definition 4.2, one can deduce that

Fx ∈∃ 1 and cx ∉1 , }{ 1xc∪ is an ordered prevalence co-location. If the }{ 1xc∪ is a

Chapter 4. An Order-Clique-Based Approach for Mining Maximal Co-locations

63

maximal ordered prevalence co-location, then Rxcc ∈∪⊂ }){(1 holds. That infers an-

tinomy. So, the }{ 1xc∪ is not a maximal ordered prevalence co-location. Therefore,

Fx ∈∃ 2 and cx ∉2 , },{ 21 xxc∪ is an ordered prevalence co-location. That },{ 21 xxc∪

is not a maximal ordered prevalence co-location can be inferred using the same reason.

In this way, there will be an infinite feature sequence L,, 21 xx . That is an antinomy due

to the spatial feature set F is finite. That is to say, Rw∈∃ , wc ⊆ holds.

Lemma 4.1 points out that a set of maximal ordered prevalence co-locations con-

tains any ordered prevalence co-location in finite spatial feature set F.

Definition 4.3. Given a set of ordered prevalence size-2 co-locations P2, A set

δ ={ }
mlll δδδ ...,

21
, where

il
δ is the union of co-locations with the header feature il in P2 and

is sorted in ascending order, is called as the size-2 co-location header relationship
set.

Example 4.1. Let an ordered prevalence size-2 co-locations set P2 = {{AB}, {AC},

{AD}, {BC}, {BD}, {BF}, {CD}, {CE}, {DE}}, its size-2 co-location header relationship

set δ ={ }{},{},{ CDEBCDFABCD CBA === δδδ , }{DED =δ }.

Definition 4.4. Given the size-2 co-location header relationship set δ , a tree de-

signed as below is called as a prevalence size-2 co-location header relationship tree

(P2-tree, for short).

1). It consists of one root labelled as “P2”, each element of size-2 co-location

header relationship set is a sub-tree of this root.

2). A sub-tree consists of the root that is the header event and rest events as the

children of the root.

3). Each node in the HR sub-tree consists of two fields: event-name and node-link,

where event-name registers the event which this node represents, node-link links to the

next node in the P2-tree, carrying the same event-name, or null if there is none.

Example 4.2. Given a δ ={ }{},{},{},{ DECDEBCDFABCD DCBA ==== δδδδ }

obtained from an ordered prevalence size-2 co-location set P2 = {{AB}, {AC}, {AD}, {BC},

{BD}, {BF}, {CD}, {CE}, {DE}}, the corresponding P2-tree, which is constructed accord-

ing to definition 4.4, is shown in Figure 4.1.

An Investigation in Efficient Spatial Patterns Mining

64

Figure 4.1 The P2-tree of example 4.2

P2

A B

E C D B D F D E

C D

C

Figure 4.2 The CPm-tree of P2-tree in figure 4.1

CPm

A

E

B

D

D

C

C

Definition 4.5. Given an ordered size-k (2≥k) co-location c, c is called as a can-

didate maximal ordered prevalence co-location if c forms a maximal clique under

the ordered prevalence size-2 co-location relationships.

Lemma 4.2. For any maximal ordered prevalence size-k (2≥k) co-location c,

there must exist a candidate maximal ordered prevalence co-location, which is a super-

set of c.

Proof. That any sub-set of a prevalence co-location is prevalent is proved in paper

(Huang et al, 2004). So, any ordered size-2 co-location of a maximal prevalence size-k

co-location is also prevalent. Therefore, under the ordered prevalence size-2 co-location

relationships, the maximal prevalence size-k co-location forms a clique. Any clique can

be extended to a maximal clique.

Definition 4.6. A tree, whose root is “CPm” and each branch represents a candidate

maximal ordered prevalence co-location, is called as a candidate maximal ordered
prevalence co-location tree (CPm-tree, for short).

Example 4.3. An example of the CPm-tree is shown in Figure 4.2. One can see

that each branch in the tree is a candidate maximal ordered prevalence co-location of

the order prevalence size-2 co-locations {{AB}, {AC}, {AD}, {BC}, {BD}, {BF}, {CD}, {CE},

{DE}}.

Lemma 4.3. Let a P2-tree, the process of producing a CPm-tree from the P2-

tree is described as below.

1). Put the rightist child of the P2-tree into Hc.

2). For child-node set ψc of each branch in Hc, for each node (denoted as Hc′)

linked out from the node-link of Hc, If some nodes (denoted as ψc′) in ψc are brother-

node of the node Hc′, then ψc′ is added as child-node of the Hc′.

3). Put the next child of the P2-tree into Hc, go to 2), until the P2-tree has not

next child.

Chapter 4. An Order-Clique-Based Approach for Mining Maximal Co-locations

65

4). Delete all sub-trees which high is lower than 3 in the final CPm-tree and redun-

dant sub-trees (for example, there are candidate maximal prevalence co-locations

{ABCD, ACD,…}, then “ACD” is redundant for it is contained by “ABCD”.).

Proof. (a). If a candidate maximal prevalence co-location in CPm-tree looks like

‘ABC…’, ‘B’ must be a child of the sub-tree A in P2-tree, ‘C’ must be a child of the sub-

tree B in P2-tree, …et al. So, the step 1) and step 3) is proved.

(b). First, if ψx is a candidate maximal ordered prevalence co-location beginning

feature ‘x’, the second feature ‘y’ in ψx should be a child of the node ‘x’ in P2-tree. In

other words, how many children the node ‘x’ has, how many probability of forming ψx

has. Second, if ψx is an ordered co-location beginning feature ‘x’, and one of Tail (ψx) is

not a child of ‘x’, ψx must be not an ordered prevalence co-location. Here explains the

step 2) and 3).

(c). After the step 4), there are candidate maximal ordered prevalence co-locations

which size is bigger than 2 in the CPm-tree.

Example 4.4. The process of generating the CPm-tree from a P2-tree in Figure

4.1 is described as follows.

--Beginning the node ‘D’ that is the rightist child of the root ‘P2’ in Figure 4.1

--For first node (denoted ‘D′ ’ for conveniently) linked by ‘D’, because child ‘E’ of the

‘D’ is the sibling of the node ‘D′’, the node ‘E’ is added as a child of the ‘D′’. For other two

nodes linked by ‘D’, nothing is done due to the condition is not satisfied.

--For branch ‘CDE’, after executing the step 2) in Lemma 4.3, there is the result

shown in Figure 4.3 (a). There is the result shown in Figure 4.3 (b) after finishing three

children ‘D’, ‘C’ , and ‘B’ of the ‘P2’.

--The final result is shown in Figure 4.2.

(a)

P2

A B

E

C D B D F D E

C D

C

D D

E

P2

A B

E

C D B D F D E

C D

C

D D

E
C

D

D

Figure 4.3. (a) is the result of after finishing two children ‘D’ and ‘C’ of the P2-tree in Figure 4.1.
(b) is the result of after finishing three children ‘D’ , ‘C’, and ‘B’ of the P2-tree in Figure 4.1.

(b)

4.2.2 Algorithms

Based on the definition 4.4, an algorithm generating a P2-tree from a set of or-

dered prevalence size-2 co-locations P2 can be designed as below.

An Investigation in Efficient Spatial Patterns Mining

66

Algorithm 4.1 (Gen_P2-tree)
Input: P2: a set of ordered prevalence size-2 co-locations.
Output: P2-tree：an ordered prevalence size-2 co-location header relationship tree.
Method:
1） Create a root “P2” for a new tree;
2） Let L=|P2|; /*L is the number of co-locations in P2
3） i=1; sub-tree=”null”;
4） While i≤ L Do; /*suppose P2(i,1) represents the first feature of the i-th co-location

in P2, and P2(i,2) represents the second feature of the i-th co-location in P2.
5） {if sub-tree≠P2(i,1) then
6） {create a sub-tree “P2(i,1)” of the root “P2”;
7） the node-link of P2(i,1) is linked to the same-name nodes

in P2-tree
8） }
9） Create a child-node P2(i,2) of the current sub-tree;
10） i=i+1;
11） }
12） Return the root ‘P2’

Lemma 4.3 gives an idea for generating CPm-tree from the P2-tree. The follow-

ing algorithm 4.2 is designed based on Lemma 4.3.

Algorithm 4.2 (Gen_CPm-tree)
Input: P2-tree: an ordered prevalence size-2 co-locations header relationship tree.
Output: CPm-tree：a candidate maximal ordered prevalence co-locations tree.
Method:
1） Let the sequence of all children of the root ‘P2’ in the P2-tree is {Hn,Hn-

1,…,H1}; /*from the right child to the left child
2） i=n;
3） While i>1 Do
4） { For each branch ψ of Hi
5） For each node Hi′ linked out from the node-link of Hi
6） set(ψ)∩brother-set(Hi′) is added as a new branch of the Hi′;
7） i=i-1;
8） }
9） Delete branches which level is lower than 3;
10） Delete redundant candidate co-locations from the CPm;
11） Return the root ‘CPm’

The correctness of this algorithm is guaranteed by Lemma 4.3.

4.3 Table Instances’ Inspection of Candidate Maximal Co-locations

The basic idea of inspecting table instances of candidate maximal prevalence co-

locations is similar to the idea of generating candidate maximal prevalence co-locations,

since a table instance is a clique under the spatial neighbour relationships between in-

stances. That is to say, to get candidate maximal prevalence co-locations is to compute

cliques under the ordered prevalence size-2 co-location relationships, while to get table

Chapter 4. An Order-Clique-Based Approach for Mining Maximal Co-locations

67

instances is to compute cliques under spatial neighbour relationships between in-

stances. So, there are some definitions and lemmas that are similar to Section 4.2.

4.3.1 Definitions and Lemmas

Definition 4.7. Given a subset of spatial instances { }kiiI ,...,1= , },,2,1{ mk L∈ , If

ji ii ≤ (the spatial events in alphabetic order, and then the different instance of the same

spatial event in numerical order) holds for any kji ≤≤≤1 , then I is called as an or-

dered size-k instance set. If I is a table instance, it is called an ordered size-k table

instance. If the event-name of ii is not the same as the event-name of 1i and

),(1 iiiR (represents i1 and i2 is neighbour) holds for any ki ≤<1 , The I is called as or-

dered neighbour relationship set of the instance 1i . The set of ordered neighbour

relationship sets of all instances of a spatial event x is denoted as xδ .

Example 4.5. Let us take Figure 4.4 as an example. In this example, spatial event

A has 4 instances, B has 5 instances, C is 3 instances, and D is 2 instances. Two in-

stances are connected if they are neighbours in Figure 4.4. Therefore, { }1.,3.,3. DBAI =

is an ordered size-3 instance set, it also is an ordered size-3 table instance. The ordered

neighbour relationship set of the instance A.3 is {A.3,B.3,C.1,C.3,D.1}. The set of or-

dered neighbour relationship sets of all instances of the event A is denoted as

Aδ ={{A.1,B.1,C.1}, {A.2,B.4,C.2}, {A.3,B.3,C.1,C.3,D.1}, {A.4,B.3}}.

Figure 4.4 An example of spatial event instances

B.4

B.3 A.1

A.2

A.3

C.1

C.2
B.5

B.2
●

●

D.1 ●

D.2
●

B.1
●

● ● ●

●

C.3
●

●

●

●

A.4
●

Definition 4.8. Given a set of spatial events { }nffF ,...,1= and a set of ordered in-

stance neighbour relationship of spatial events
nfff δδδδ UUU ...

21
= , ()ni

if
<<1δ is

the set of ordered neighbour relationship sets of all instances of the event if , a tree de-

signed as below is called as a neighbour relationship tree (Neib-tree, for short).

An Investigation in Efficient Spatial Patterns Mining

68

1). It consists of one root labelled as “Neib”, a set of the spatial event sub-trees as

the children of the root.

2). The spatial event fi sub-tree consists of the root fi and each subset of
if

δ as a

branch of the root. Each branch records ordered neighbour relationship set of corre-

sponding instance.

Example 4.6. Figure 4.5 is the Neib-tree of the example in Figure 4.4. The event

‘A’ sub-tree consists of the root ‘A’ and branches A.1, A.2, A.3, and A.4. The branch A.1

records the content of ordered neighbour relationship set of the instance A.1, i.e., there

are)1.,1.(BAR and)1.,1.(CAR .

Figure 4.5 The Neib-tree of the example in figure 4.4

Neib

A B

C.2 A.2 A.3 A.1 B.1 B.3 B.4 B.2

C

D.1

A.4

B.1 C.1 B.4 C.2 B.3. C.1 C.3 B.3 D.2 D.1 C.1 C.2

C.3 C.1

D.1

Definition 4.9. A tree, which root is “Ins”, and each branch represents a candidate

maximal ordered co-location’s table instance, is called as a table instances’ inspection

tree (Ins-tree, for short).

Example 4.7. An example of the Ins-trees is shown in Figure 4.6. It is Ins-

tree of the candidate maximal ordered co-location {ABC} (suppose {ABC} is a candi-

date maximal ordered co-location of the example in Figure 4.4) of the Neib-tree in

Figure 4.4. One can see that two table instances “A.2, B.4, C.2” and “A.3, B.3, C.1” are

inspected in the Ins-tree of candidate maximal ordered co-location {ABC}.

Figure 4.7 An explanation of Step 3) and 4)
in Lemma 4.3

Ins

x1

x2

xl

xf xg

…

Figure 4.6 The Ins-tree of the candidate maximal prevalent
co-location {ABC} of the Neib-tree in figure 4.5

A

A.2 A.3

B.4 B.3.

C.1 C.2

Ins

Lemma 4.4. Given a Neib-tree, the process of generating an Ins-tree from

the Neib-tree is described as below.

Chapter 4. An Order-Clique-Based Approach for Mining Maximal Co-locations

69

1). Create a root “Ins” for inspecting a candidate maximal ordered co-location

c={f1,f2,…,fk}, },,4,3{ nk L∈ . Copy sub-trees f1,f2,…,fk-1 in Neib-tree to the tree “Ins”, at

the same time, delete child-nodes that event-names of instances do not belong to

{f1,f2,…,fk }, and delete branches of fi (ki ≤≤1), which child-nodes’ number is less than

(k-i).

2). For each child-node ψc of the branch Lc in the sub-tree f1 of the tree “Ins”, find

out the same-name node ψc′ (denoted it as ψc′, for distinctively) of the sub-tree ‘ψc’

whose event-name is the same as the ψc.

3). For child-nodes set Hc of ψc′, If some of Hc are brother-nodes of the ψc, the

some of Hc can be moved to become child-nodes of the ψc from brother-nodes of the ψc

and ψc becomes a extra-child of the Lc for the next loop. If the branch Lc still has child,

go to 2).

4). Put the next branch to Lc, go to 2), until there is not next branch in the sub-tree f1

of the tree “Ins”.

5). Delete all sub-trees fi (ki ≤≤2) and all branches which high is lower than k.

Proof. (a). The instances of event if must be in sub-tree if , and if

},...,,{
21 kfff iiii = (

if
i is a instance of event if) is a ordered table instance of the

c={f1,f2,…,fk}, there exist),(
li ff iiR (ilkl ≠≤≤ ,1), that is to say that

if
i at least has (k-i)

children (they are },...,,{
21 kii fff iii

++
). So, there is the step 1).

(b). Because any ordered table instance that starts an instance x must be by way of

instances that they are child-node (neighbour) of the instance x. So, the step 2) is

proved.

(c). If “x1,x2,…xl xf” and “x1,x2,…xl xg” is two ordered table instances (cliques) (shown

in Figure 4.7), and),(gf xxR holds, then the “x1,x2,…xl xf xg” must be an ordered table

instance (clique) (that principle is the same with the join principle of generating table in-

stances in full-join method (Huang et al, 2004)). That is why here has the step 3) and 4).

(d). There is Step 5) just because one are just interesting in ordered table instances

of the candidate maximal ordered co-location c={f1,f2,…,fk}, },,4,3{ nk L∈ .

Example 4.8. The process of generating the Ins-tree of a candidate maximal

ordered co-location c={ABC} from the Neib-tree in Figure 4.5 is described as follows.

-- Create a root “Ins” for inspecting a candidate maximal ordered co-location

c={ABC}. Copy sub-trees A and B in Figure 4.5 to the tree “Ins”, at the same time, delete

child-nodes that event-names of instances do not belong to {A,B,C}, and delete

An Investigation in Efficient Spatial Patterns Mining

70

branches of A and B, which child-nodes’ number is less than 2 and 1 respectively. The

result is shown in Figure 4.8 (a).

-- For child-node B.1 of the branch A.1 in the sub-tree A of the tree “Ins”, there is

not a same-name node in child-nodes of the sub-tree B. So, let us to handle the next

child-node C.1 of the branch A.1, there still nothing is done to the C.1 for the same rea-

son. Then, go to the next loop (the branch A.2 is considered).

-- In the branch A.2, first, for child-node B.4 of the A.2, C.2 is copied to become a

child-node of the B.4 due to C.2 (the child of B.4′) is brother-node of the B.4. Second, for

the next child-node C.2 of the A.2, nothing is done for C.2′ is not in the tree “Ins”. Third,

after finishing all children of A.2, the branch A.3 is considered…. after finishing the child-

node B.3 of the A.3, the result shown in Figure 4.8 (b) will be obtained.

--The final result is shown in Figure 4.6.

Figure 4.8 Two middle results in the process of generating Ins-tree of the co-location {ABC} from the Neib-tree in figure 4.5

B.1

Ins

A B

A.2 A.3 A.1 B.3 B.4

C.1 B.4 B.3. C.3 C.1 C.2 C.2 C.1

(a)

B.1

Ins

A B

A.2 A.3 A.1 B.3 B.4

C.1 B.4 B.3. C.3 C.1 C.2

C.2 C.1
(b)

4.3.2 Algorithms

According to the definition 4.8, an algorithm generating a Neib-tree from a set of

ordered spatial neighbour relationships between spatial instances δ and a set of spatial

events { }nffF ,...,1= may be designed as below.

Algorithm 4.3 (Gen_Neib-tree)
Input: { }nffF ,...,1= : a set of spatial events.

δ ={ }},...{}...,...{},,...{ 12
2

1

22
1

1

1

11
mk

mmn

kk l
f

l
ff

l
f

l
ff

l
f

l
ff δδδδδδδδδ === ：a set of spatial ordered neighbour

relationships between instances, where ()ni
if

≤≤1δ is the set of the set i

i

l
fδ of ordered neighbour in-

stances (they are “bigger” than the instance il) of instances il of feature if , whose order is sorted in ascend-
ing order.
Output: Neib-tree：an ordered instance neighbour relationship tree.
Method:
1） Create a root “Neib” for Neib-tree;
2） i=1;
3） While i<n Do;
4） { create a sub-tree if of the root “Neib”;

5） Create a branch 1

if
lδ for sub-tree if ;

6） For each il
ifδ ()iki ≤<1 of

ifδ in δ

Chapter 4. An Order-Clique-Based Approach for Mining Maximal Co-locations

71

7） create a child-node of the branch 1

if
lδ ;

8） i=i+1;
9） }
10） Return the root ‘Neib’

Lemma 4.4 gives an idea for generating ordered table instance of a candidate

maximal ordered prevalence co-location Cm from corresponding Neib-tree, so an al-

gorithm generating Ins-tree of the Cm is design as below.

Algorithm 4.4 (Gen_Instance)

Input: Neib-tree: an ordered instance neighbour relationship tree. Cm: a candidate maximal
ordered prevalence co-location;

Output: Ins-tree of the Cm;

Method:
1） k=|Cm|; // N is the number of features in Cm

2） Create a root “Ins” for a Ins-tree;

3） For i=1 to k-1 Do /* Cm(i) represents the i-th feature in Cm

4） {copy sub-tree Cm(i) in Neib-tree to be a sub-tree of the root “Ins“ ;

5） Delete instance-nodes whose feature do not belong to Cm;

6） Delete branches whose child-nodes’ number is less than (k-i) }

7） For each branch Lc in the sub-tree Cm(1)

8） {For each child-node ψc of Lc

9） If find out the same-name-branch ψc′in the sub-tree feature-name(ψc) then

10） If some-child-nodes (ψc′)= some-brother-nodes (ψc) then

11） {the some-brother-nodes (ψc) is moved to become child-nodes of the ψc;

12） the first child of the ψc becomes a child-node of Lc }

13） }

14） Delete branches whose level is lower than k+1;

15） Return the root ‘Ins’

The correctness of Algorithm 4.4 is guaranteed by Lemma 4.4.

4.4 Algorithm and Analysis for Mining Maximal Ordered Prevalence Co-
locations

Algorithms in Section 4.2 present candidate maximal ordered prevalence co-

locations mining, while algorithm 4.3 and algorithm 4.4 in Section 4.3 generate table in-

stance tree (Ins-tree) for a candidate maximal co-location. The algorithm and analysis

for mining maximal ordered prevalence co-location are given in this section.

An Investigation in Efficient Spatial Patterns Mining

72

4.4.1 Algorithms

Based on algorithms presented in Section 4.2 and Section 4.3, the idea of mining

maximal ordered prevalence co-locations is described in below.

(1). Computing spatial neighbour relationships between instances (the set of spatial

neighbour relationships between instances is denoted as δ), and then the set of preva-

lent size-2 co-locations P2 is generated.

(2). Based on the P2, the P2-tree is built by using Algorithm 4.1, and then the CPm-

tree, which contains the set of candidate maximal ordered prevalence co-locations CPm,

is generated by using Algorithm 4.2.

(3). Based on the δ , the Neib-tree is built by calling Algorithm 4.3

(4). Sorting CPm in long descending order (in alphabetic order when their long are

the same).

(5). For each candidate maximal ordered prevalence co-location Cm in CPm, accord-

ing to the value of Cm, the corresponding Ins-tree is generated by calling Algorithm

4.4, and then the value Pi of the Cm is computed. If Cm is not a prevalence co-location,

the content of CPm is changed (for a candidate maximal prevalence co-location set

{ABCD, CDE,…}, if “ABCD” is not prevalent, it will be replaced by “ABC”, “ABD”, “ACD”

and “BCD”). If Cm is prevalent, it is put to the set of maximal prevalence co-locations Pm.

(6). Return Pm

The idea above is transformed to the algorithm 4.5.

Algorithm 4.5 (Gen_Pm).

Input: A set of spatial dataset (including a set of spatial events { }nffF ,...,1=), a spatial neighbour dis-
tance threshold d, and a minimum prevalence threshold Min-prev.

Output: A set of maximal ordered prevalence co-locations with participation index is greater than Min-
prev.

Method:
1） δ = gen_neighbourhood(a spatial dataset); Pm=null;

2） P2= gen_size-2_colocation(δ);

3） P2-tree=Gen_P2-tree(P2); // calling algorithm 4.1

4） CPm-tree=Gen_CPm-tree(P2-tree) // calling algorithm 4.2

5） Neib-tree =Gen_Neib-tree (δ , F); // calling algorithm 4.3

6） For each Cm in CPm

7） { Ins-tree =Gen_Instance(Neib-tree,Cm); // calling algorithm 4.4

8） Compute Pi(Cm) from the Ins-tree;

9） If Pi(Cm) > Min-prev then

10） { Pm= Pm∪{Cm}; delete the Cm from the CPm }

Chapter 4. An Order-Clique-Based Approach for Mining Maximal Co-locations

73

11） Else the Cm in the CPm is replaced by its sub-patterns;

12） }

13） Return Pm

4.4.2 Analysis

Time complexity: The time complexity of algorithm 4.5 includes procedure

Gen_neighbourhood, procedure gen_size-2_colocation, algorithm 4.1-3, and the loop 6)

in algorithm 4.5. Suppose m is the total number of instances of all events and k is the

number of intersections. In the worst case, the computational complexity of the proce-

dure Gen_neighbourhood will be)log(2
2 mmO , and the procedure gen_size-2-

_colocation is)log(2 kmmO + if the geometric approach proposed by Huang et al in

(Huang et al, 2004) is used. For algorithm 4.1 (Gen_P2-tree), if P2 is sorted in alpha-

betic order, and n is the number of events, the complexity is)log|(| 2
2

2 nnPO + (where

)log(2
2 nnO is the cost of generating node-link of P2-tree in the worse case). For al-

gorithm 4.2 (Gen_CPm-tree), the cost is |)(| 2PO due to the number of branches in P2

just be the number of co-locations in P2. For algorithm 4.3 (Gen_Neib-tree), if Nins is

the number of spatial neighbour relationships between instances, the cost is)(insNO . For

the loop of the step 6) in algorithm Gen_Pm, The cost consists of generating Ins-tree

of a candidate maximal ordered prevalence co-location Cm by calling the algorithm 4.4

and calculating the participation index of Cm.

Let us suppose that a set of spatial events { }nffF ,...,1= , a set of spatial ordered

neighbour relationships between instances

δ ={ }},...{}...,...{},,...{ 12
2

1

22
1

1

1

11
mk

mmn

kk l
f

l
ff

l
f

l
ff

l
f

l
ff δδδδδδδδδ === , where ()ni

if
≤≤1δ is the set of

the set i

i

l
fδ of ordered neighbour instances of instances il of event if . If the longest can-

didate maximal ordered prevalence co-location is Cm in the CPm, and the first event in

the Cm is fj, then, under the worse case, the cost of algorithm 4.4 is |)|*|(| mf CO
j

δ ,

while the cost of calculating the participation index of Cm is |)|*|(| mf CO
j

δ . The total

cost of the loop of the step 6) in algorithm 4.5 Gen_Pm is less than

)(|)|||*|(| insmmf NOCPCO
j

≤∗δ .

Summarizing above, the cost of algorithm 4.5 Gen_Pm is TGen_Pm =

)log(2
2 mmO +)log(2 kmmO + +)log|(| 2

2
2 nnPO + + |)(| 2PO +)(insNO +)(insNO

An Investigation in Efficient Spatial Patterns Mining

74

≈)||loglog(22
2

2
2

insNPnnmmO +++)log(2
2 mmO≈ due to mn << , 2

2 || nP < , and

2mNins < hold.

It means that the efficiency of the algorithms depends on the number of spatial in-

stances, the number of events, the number of size-2 co-locations, and the number of

spatial neighbour relationships between instances, while the complexity mainly depends

on the number of spatial instances. But by sorting spatial instances and co-locations,

and using reasonable tree structures, which dramatically reduces the cost of algorithms.

The real performance of algorithms is shown in Section 4.5.

Space complexity: The store space of the tree Neib-tree is the most costly in

the algorithm, if it is always in the main memory, the space cost of the algorithm is

)()(2mONO ins ≤ . But a method which partial sub-trees of the Neib-tree are remained

to reduce the need of the space can be adopted, because in one iterative of inspecting a

candidate maximal ordered prevalence co-location Cm, the instances of events related to

the Cm only need to be in the main memory.

4.5 Performance Study

In this section, the performance of the order-clique-based approach presented in

this chapter is evaluated with the CPI-tree approach discussed in the last chapter, the

join-based approach and the join-less approach using both synthetic and real data

sets. All the experiments were performed on a 3-GHz Pentium PC machine with 2G

megabytes main memory, running on Microsoft Windows/XP. All programs are written in

Java.

The experimental results are reported on two synthetic data sets. The first one is a

sparse dataset with 26 spatial event types, when the neighbour distance threshold d and

the prevalence threshold min_prev are set to 25 and 0.15, the total number of size 2 co-

location patterns and the maximum size of co-location is 104 and 4, respectively, while

the number of all instances in the dataset is 10k. The prevalent co-location patterns are

short and not numerous in this dataset.

The second synthetic dataset used in the experiments is a dense dataset with 26

spatial events, the total number of size 2 co-location patterns and the maximum size of

co-location is 232 and 8, respectively, when the threshold d and the min_prev are set to

25 and 0.15. There exist long prevalence co-locations as well as a large number of short

prevalence co-locations in this dataset when the prevalence threshold Min_prev goes

down.

Chapter 4. An Order-Clique-Based Approach for Mining Maximal Co-locations

75

To test the feasibility of the order-clique-based approach, a real dataset, the plant

distributed data set of the “Three Parallel Rivers of Yunnan Protected Areas”, is used. It

contains the number of plant species (feature types) is 16. The total number of plant in-

stances is 3908. When Min_prev and distance d are set to 0.2 and 1700 respectively,

the maximum size of co-location is 4 and the total number of size 2 co-location patterns

is 39. There are a huge number of spatial neighbour relationships between instances

due to the plants’ particularity of growing in groups.

1） Performance with the neighbour distance threshold d over sparse data

set and dense data set: The runtime of the order-clique-based approach, CPI-tree, join-

based and Join-less on the sparse synthetic data set, when the prevalence threshold

min_prev is set to 0.15, as the neighbour distance threshold d increases from 15 to 30 is

shown in Figure 4.9(a), while the results of the four methods on the abundant mixtures of

short and long prevalence co-locations is shown in Figure 4.9(b) (the prevalence thresh-

old min_prev is set as 0.15 in these experiments). Since the dataset is sparse, as the

threshold d is low, the prevalent co-location patterns are short and the set of such pat-

terns is not large, the advantages of order-clique-based over CPI-tree, join-based and

join-less are not so impressive. However, as the threshold d goes up or the dataset be-

comes dense, the gap becomes wider. In fact, the number of co-location patterns of size

2 generated from the sparse data set is 75 when the threshold d is given 22 in the ex-

periments. But the number has gone to 166 when the threshold d goes just to 22 in the

dense data set.

 (a) Over a sparse dataset

0

10000

20000

30000

40000

50000

15 20 22 25 30

Distance d

T
i
m
e

(
m
s
)

join-based join-less

CPI-tree order-clique-based

An Investigation in Efficient Spatial Patterns Mining

76

Figure 4.9 Scalability with distance d over a sparse dataset and a dense dataset

(b) Over a dense dataset

0

20000

40000

60000

80000

100000

10 15 20 22

Distance d

T
i
me

(m
s
)

join-based join-less

CPI-tree order-clique-based

2）Performance with prevalence threshold Min_prev over sparse data set and

dense data set: Figure 4.10(a) shows the experimental results with Min_prev over the

sparse dataset, while the results over the dense dataset are shown in Figure 4.10(b).

The neighbour distance threshold d is set to 25 in the experiments of Figure 4.10(a),

while d is 22 in the experiments of Figure 4.10(b). In figures, it can be seen that the or-

der-clique-based method has its advantage in most time. But it can also be found that

sometimes it is not better than others, since the maximal co-location mining method

might not be the best way in the case of shorter maximal co-locations.

(a) over a sparse data set

0

5000

10000

15000

20000

25000

0.3 0.18 0.15 0.1

Min-prev

T
i
m
e

(
m
s
)

join-based join-less

CPI-tree order-clique-based

Chapter 4. An Order-Clique-Based Approach for Mining Maximal Co-locations

77

(b) over a dense data set

Figure 4.10 Scalability with Min_prev over a sparse dataset and a dense dataset

0

20000

40000

60000

80000

100000

0.45 0.35 0.25 0.15

Min-prev

T
i
m
e

(
m
s
)

join-based join-less

CPI-tree order-clique-based

3）Performance with threshold Distance d over a real data set: The advantage

of the order-clique-based method is dramatic in datasets with pretty long frequent co-

location patterns, a large number of short frequent co-location patterns as well as a large

number of table instances, which is challenging to the algorithms that mine the complete

set of co-location patterns. The results over this real data set, a plants distributed dataset

of the “Three Parallel Rivers of Yunnan Protected Areas”, are shown in Figure 4.11.

From the Figure 4.11, one can see that the new method is scalable even when there are

many spatial neighbour relationships between instances due to the plants’ particularity of

growing in group. Without the excessive table instances’ store and maximal ordered

prevalence co-locations mining, the order-clique-based method and CPI-tree method are

very efficient over real spatial datasets. In such datasets, the join-less method is not

comparable to the performance of the order-clique-based method, and it is not even

comparable to the performance of the join-based method.

Figure 4.11 Scalability with Distance d over a plant distributed data set of the “Three
Parallel Rivers of Yunnan Protected Areas”

0

1000000

2000000

3000000

4000000

5000000

1500 1700 1900

Distance d

T
i
m
e

(
m
s
)

join-based join-less CPI-tree order-clique-based

An Investigation in Efficient Spatial Patterns Mining

78

4）Scalability of the order-clique-based method with number of instances: To

test the scalability of the order-clique-based method against the number of instances, the

dense dataset is used with Min-Prev is set to 0.3, the neighbour distance threshold d is

20, and the number of instances ranges from 3K to 15K. The result is shown in Figure

4.12, which shows that the new method is the linear increase of runtime with the number

of instances. At the same time, it shows that as the number of instances goes up, the

join-less method is not comparable to the performance of the order-clique-based

method.

Figure 4.12 Scalability of the order-clique-based algorithm with number of instances

0

100000

200000

300000

400000

500000

600000

700000

800000

3000 6000 9000 12000 15000

The number of instances

T
i
m
e

(
m
s
)

join-less CPI-tree order-clique-based

4.6 Summary

In this chapter, an order-clique-based method for mining maximal prevalence co-

location, which can rapidly mining maximal ordered prevalence co-locations by adopting

data structure P2-tree, CPm-tree, Neib-tree and Ins-tree to store related data

information, and by sorting data in these tree, is proposed. The new approach is efficient

since it does not require expensive table instances’ joining and excessive table in-

stances’ storing operations to identify next level table instances. The experimental re-

sults show the order-clique-based method outperforms the CPI-tree, the full-join and the

join-less methods in the case of sparse, dense datasets and real-world datasets. As fu-

ture work, the applications studying of maximal co-location patterns mining is an impor-

tant work. And mining close co-location patterns will be a significant work in the future

works as well.

Chapter 4. An Order-Clique-Based Approach for Mining Maximal Co-locations

79

In next Chapter, A reasonable new approach of AOI (attribute-oriented induction),

attribute-oriented induction based on attributes’ generalization sequences (AOI-ags),

which expands the traditional AOI method, is proposed (Wang et al, 2007(a)).

An Investigation in Efficient Spatial Patterns Mining

80

Chapter 5

AOI-ags Algorithms and Applications

The attribute-oriented induction (AOI, for short) method is one of the most important data mining

methods. In this chapter, a reasonable approach of AOI (AOI-ags, attribute-oriented induction

based on attributes’ generalization sequence), which expands the traditional AOI method, is pro-

posed. By introducing equivalence partition trees, an optimization algorithm of the AOI-ags is de-

signed. Defining interestingness of attributes’ generalization sequences, the selection problem of

attributes’ generalization sequences is solved. Extensive experimental results show that the AOI-

ags are feasible. Particularly, by using the AOI-ags algorithm in a plant distributed dataset, some

distributed rules for the species of plants in an area are found interesting.

5.1 Overview

The general idea of attribute-oriented induction (AOI) is to abstract each attribute of

each record in a relation from a relatively low conceptual level to higher conceptual lev-

els by using domain knowledge(Concept Hierarchy Trees), in order to discover rules

among attributes from multilevel or higher level. The AOI approach to concept descrip-

tion was first proposed by Cai, Cercone, and Han in (Cai et al, 1991), a few years before

the introduction of the data cube approach, and further extended by Han, Cai, and Cer-

cone in (Han et al, 1993), Han and Fu in (Han and Fu, 1996), and Carter and Hamilton in

(Carter and Hamilton, 1998). The data cube approach is essentially based on material-

ized views of the data, which typically have been pre-computed in a data warehouse. In

general, it performs off-line aggregation before an OLAP or data mining query is submit-

ted for processing. On the other hand, the attributed-oriented induction approach is basi-

cally a query-oriented, generalization-based, on-line data analysis technique.

There are two common ways to control a generalization process:

The first technique, called attribute generalization threshold control, either sets

one generalization threshold for all of the attributes, or sets one threshold for each attrib-

ute. If the number of distinct values in an attribute is greater than the attribute threshold,

further attribute generalization should be performed. If a user feels that the generaliza-

tion reaches too high a level for a particular attribute, the threshold can be increased.

Also, to further generalize a relation, the user can reduce the threshold of a particular

attribute. But selecting an idea threshold for each attribute is not simple work.

Chapter 5. AOI-ags Algorithms and Applications

81

The second technique, called generalized relation threshold control, sets a

threshold for the generalized relation. If the number of (distinct) tuples in the generalized

relation is greater than the threshold, further generalization should be performed. Other-

wise, no further generalization should be performed. Such a threshold may also be pre-

set in the data mining system by an expert or user, and should be adjustable. But the

low-efficiency of AOI algorithms becomes the main problem in the relation threshold con-

trol, for it has to be considered that all combinations of attributes which satisfy the rela-

tion threshold in an attribute-oriented generalization process, and the results of generali-

zation (or rank them for user) should be explained.

These two techniques can be applied in sequence: first apply the attribute threshold

control technique to generalize each attribute, and then apply relation threshold control

to further reduce the size of the generalized relation. No matter which generalization

control technique is applied, the user should be allowed to adjust the generalization

thresholds in order to obtain interesting concept descriptions. But it is still an intractable

task to set the attribute thresholds in this combination of two techniques.

In this chapter, by introducing the concept of attributes’ generalization se-
quences, the attribute threshold control technique and the relation threshold control

technique are unified, and a new approach of AOI—AOI-ags (Attribute-Oriented Induc-

tion based on Attributes’ Generalization Sequences), which expands the traditional AOI,

is proposed. Some technologies, for example, partitions, equivalence partition trees,

prune optimization strategies and interestingness, are used to improve the efficiency of

the algorithm. It is shown that the AOI-ags algorithm has special advantages.

The rest of the chapter is organized as following. Section 5.2 formally defines the

concept of the degree of relation generalization, and introduces the method of AOI

based on attributes’ generalization sequence (AOI-ags). In Section 5.3, by introducing

equivalence partition trees, an optimization algorithm of AOI-ags is designed. Interest-

ingness of attributes’ generalization sequences is discussed in Sect. 5.4. Section 5.5

presents correctness, completeness and complexity of the algorithms. Performance and

application results of algorithms are evaluated in Sect. 5.6. The last section is summary.

5.2 Attribute-Oriented Induction Based on Attributes’ Generalization Se-
quences (AOI-ags)

AOI generalizes each attribute of each record in dataset from the lower conceptual

levels up to the higher conceptual levels according to concept hierarchy trees and

thresholds, to discover rules from multi-levels or higher levels. The concept hierarchy

tree is an important part in AOI process. Some concept hierarchy trees can be obtained

An Investigation in Efficient Spatial Patterns Mining

82

from domain experts. But some concept hierarchy trees can be produced automatically

from datasets by using hierarchical clustering approach (Lin and Chen, 2005).

For conveniently, some concepts about the concept hierarchy trees are defined as

follows. The Depth of a certain node V in a tree is defined as the path length from root to

V, the Height of V is the length of the longest path in the tree whose root is V. The

Height of the tree is the Height of its root. The Level of V is its Depth more 1.

Example 5.1 Suppose the concept hierarchy tree of an attribute “elevation” in a re-

lation table is shown in Figure 5.1, the Height of the concept hierarchy tree is 4. The

Height of the node “[1500，2400]”is 0, its Depth is 4, its Level is 5. While the Height

of node“[800，2400]”is 1, its Depth is 3, its Level is 4, and so on.

[800,3000](3,1)

[2000, 3000](3,1,2) [3000, 4000](3,2,2)

[1000, 1500](3,1,1,1) [800, 2400](3,1,1,2)

[800, 2200](3,1,1,2,1) [1500, 2400](3,1,1,2,2)

[2400, 3000](3,1,2,2)

[800, 2400](3,1,1) [3000, 3700](3,2,1)

[2000, 3000](3,1,2,1)

[800, 4000](3)

4

1

2

3

5

Level

[3000,4000](3,2)

Figure 5.1 An example of a concept hierarchy tree

In traditional AOI algorithms, the generalization process is controlled by setting a

threshold for each attribute. But in some applications, user does not want to consider

each attribute for generalization threshold, so the degree of relation generalization is in-

troduced.

Definition 5.1 Given a relation r r rn(,...,)1 and the generalization relation),,(''
1

'
'nrrr ⋅⋅⋅ ,

then the rate of reserved tuples is defined as nnZ /′= , so the degree of relation generaliza-

tion is defined as)/(11 nnZZ ′−=−= .

Z is a measure for the degree of relation generalization. The higher the value of Z

is, the greater the degree of generalization. The value Z meets nnZ /)1(0 −≤≤ .

Z cannot confirm certain generalization result. That is to say, given a relation

threshold control Z, some generalization relations that satisfy this threshold Z will be ob-

tained. But analyzing the process of AOI, it can be found that generalization for each at-

tribute is independent, that is to say, an attribute is generalized earlier or latter will not

affect the final generalization result. Further to say, a generalization result is the same no

matter that it is obtained by generalizing gradually or directly up to the k-th level, so at-

Chapter 5. AOI-ags Algorithms and Applications

83

tributes’ generalization sequences (“AGS” for short) is introduced in this chapter. One

AGS confirms certain generalization relation.

Definition 5.2 Given a relation pattern),,(1 mAAR L , attributes’ concept hierarchy

trees mhh ,,1 L , the Heights of trees mll ,,1 L , sequence mi g
m

g
i

g AAA LL1
1 is called an AGS of AOI,

where (11 +≤≤ ii lg).

Property 5.1 The number of all AGS in a relation pattern is∏=
+

m

i
il

1

)1(
。

Proof. QOne sequence mi ggg LL1 can only confirm one AGS
mi g

m
g
i

g AAA LL1
1 .

Meanwhile,Q 11 +≤≤ ii lg ∴ 1|| += ii lg)1(mi ≤≤

∴The number of attributes’ generalization sequences is:

∏
=

+=+××+××+
m

i
imi llll

1
1)1()1()1()1(LL □

Definition 5.3 Given the relation threshold control Z. If the generalization rela-

tion),(1 nrrr ′′′′ K which are confirmed by the AGS
mi g

m
g
i

g AAA LL1
1 (11 +≤≤ ii lg) satisfies

Znn ≥′−)/(1 , and if increasing any)1(migi ≤≤ , it will not satisfy Znn ≥′−)/(1 , then
mg

m
g AA L1

1

is called an AGS which satisfies the Z, and),(1 nrrr ′′′′ K is called a generalization result

under
mg

m
g AA L1

1 .

From Definition 5.3, it can be concluded that the AOI method of using attribute

thresholds is a special case of using the relation thresholds. It means that the attribute

thresholds and the relation thresholds are unified under the concept of AGS. The AOI

based on AGS (for short, call it AOI-ags) is an extension to the traditional approach.

An ordinary AOI-ags algorithm is designed as follows.

Algorithm 5.1 The ordinary AOI-ags algorithm

Input:
 An un-generalized dataset (relation) r, which has m attrib-

utes {A1,A2….Am}.
 Attributes’ concept hierarchy trees },,{ 1 mhh L and the height of

trees },,{ 1 mll L .
 The relation threshold control Z
Output: Generalization rules which meet the Z

Description：
1) Gen_seq(relation,1,m,L1,S,Gs); //computing all attributes’ generalization se-
quences Gs which meet the Z. the initial values are S=“null”, Gs=Φ.
2) Selecting a sequence from the set Gs of AGS and returning a
generalization relation;
3) Producing generalization rules from the generalization rela-
tion.

An Investigation in Efficient Spatial Patterns Mining

84

Procedure Gen_seq(r,i,m,L
i
,S,Gs); // S is an attributes’ generalization sequence, Gs is a

collection of attributes’ generalization sequences which meet the Z

(1) For k=L
i
+1 downto 1 Do

(2) Begin If k<L
i
+1 then

(3) Gen_r ← generalize(r,i,k)

(4) Else Gen_r r ←

Endif;

(5) If i<m then

(6) Gen_seq (Gen_r,i+1,m,L
i+1
,S∪ A

k
i,Gs)

(7) Else

(8) If |Gen-r| n(1≤ -Z) then

(9) Gs ← Gs∪ {S∪ A
k
i}

 endif

 Endif

 End

When the number of attributes (m) is larger, in order to obtain all attributes’ gener-

alization sequences which meet the Z in algorithm, times
∏
=

+
m

i
il

1

)1(
 must be searched, and

it will waste much time. So, how to efficiently compute all AGS which meet the Z is the

chief problem in this algorithm. Further more, how to quickly calculate generalization re-

lations that are related to AGS is another problem need to be solved. To solve these

problems efficiently, an optimization AOI-ags algorithm is presented by introducing

equivalence partition trees according to the property of AGS.

5.3 An Optimization AOI-ags Algorithm

5.3.1 AOI-ags and Partition

Let),,(1 nrrr K is a relation in relation pattern),,(1 mAAR L , RX ⊆ , rrr ji ∈∀ , , ri and rj are

equal with respect to X if and only if][][kjki ArAr = for XAk ∈∀ , which is denoted as jXi rr = . X

partitions the rows of r into equivalence classes. The equivalence class of rri ∈ with

respect to RX ⊆ can be denoted by [] xir = . The quotient set []{ }rrr ixix ∈= = |π of equiva-

lence classes is an equivalence partition of r under X.

Given two partitions { }kx ττπ ,,1 L= , { }ky ′′′= ττπ ,,1 L , YX ππ ⊗ ={ }yjxiji πτπτττ ∈′∈′∩ ,| is

called intersection partition of Xπ and Yπ , YX ππ ⊗ is a partition of r .

Property 5.2 YXYX πππ ⊗=∪

Proof.（1） YX ∪π and YX ππ ⊗ are partitions
 （2） yx∪∈∀ πτ and τ∈∀ ji rr , ,][][YXrYXr ji ∪=∪ holds.

Chapter 5. AOI-ags Algorithms and Applications

85

][][XrXr ji =∴ and][][YrYr ji = hold.

 Therefore xπτ ∈′∃ 1 and yπτ ∈′2 , 1, τ ′∈ji rr and 2, τ ′∈ji rr hold.

 So, yx ππτ ⊗∈′′∃ , τ ′′∈ji rr , holds.

 （3）For yx ππτ ⊗∈′′∀ and τ ′′∈∀ ji rr , ,

 xπτ ∈′∃ 1 and yπτ ∈′2 , 1, τ ′∈ji rr and 2, τ ′∈ji rr hold.

][][XrXr ji =∴ and][][YrYr ji =][][YXrYXr ji ∪=∪∴

 yxUπτ ∈∃∴ , τ∈ji rr , holds.

In fact, the equivalence class },{ 1 mAAR Lππ = is the relation r . According to the prop-

erty of YXYX πππ ⊗=∪ , there is a one-one correspondence from the records of r to

equivalence classes of }{}{ 1 mAA ππ ⊗⊗L . If)11,1(, +≤≤≤≤ ijA ljmi
i

π denotes equivalence

partition which attribute Ai generalizes up to the j-th level along with the concept hierar-

chy tree, then the generalization relation and AGS
mg

m
g AA L1

1 is corresponding one by one.

This leads to a new partition-based approach of AOI-ags:

(1) Compute all)11,1(, +≤≤≤≤ iigA lgmi
ii

π .

(2) Obtain all AGS which meet the Z.

(3) Select a sequence
mg

m
g AA L1

1 , and then calculate generalization relation

mm gAgAr ππ ⊗⊗=′ L
11 .

(4) Produce generalization rules from the generalization relation.

5.3.2 Search Space and Pruning Strategies

Definition 5.4 The Grid that is constituted by
∏
=

+
m

i
il

1

)1(
possible AGS and satisfies the

following properties is called the search space.

(1) There are AGS that satisfy 11 +=++ kgg mL in the k-th level.

(2) Each sequence is connected to any sequence mi g
m

g
i

g AAA LL 1
1

1 −

 of the (k-1)-th

level.

Example 5.2 Given two attributes A1 and A2, the Heights of the concept hierarchy

trees are 3,2 21 == ll , then the search space is showed in Figure 5.2.

An Investigation in Efficient Spatial Patterns Mining

86

1
2

1
1 AA

2
2

1
1 AA

3
2

1
1 AA 2

2
2

1 AA 1
2

3
1 AA

3
2

2
1 AA 4

2
1
1 AA

3
2

3
1 AA

2
2

3
1 AA

4
2

2
1 AA

4
2

3
1 AA

1
2

2
1 AA

1

2

3

4

5

6

Figure 5.2 An example of the search space

Level

The search space will increase rapidly with the increasing of m and li. By introduc-

ing the concept “refinement”, some pruning is executed for reducing search space.

Definition 5.5 Given a relation and its two partitions { }kx ττπ ,,1 L= , { }ky ′′′= ττπ ,,1 L ,

if Xi πτ ∈∀ , Yj πτ ∈∃ '

,
'
ji ττ ⊆ holds, then Xπ is called as a refinement of Yπ .

Obviously, YX ππ ⊗ is the refinement of Xπ and Yπ , and jAi ,π refines kAi ,π ,

11,1 +≤<≤≤≤ iljkmi .

Property 5.3 If Xπ refines Yπ , then YX ππ ≥ holds.

Proof. Xi πτ ∈∀Q , Yj πτ ∈∃ ' , '
ji ττ ⊆ holds,

And because Xπ and Yπ are partitions.

 YX ππ ≥∴ □

Definition 5.6 Given two sequences
mg

m
g AAA L1

1= and
mg

m
g AAA ′′=′ L1

1 , if iA∀ ,

)1(migg ii ≤≤′≥ holds, and then A is called a sub-sequence of A′ , denote as)(AsqA ′= ,

and A′ is the parent-sequence of A , denoted as)(AfqA =′ .

If)(AsqA ′= , then Aπ refines A′π . Therefore, what the pruning strategies can get

are the following.

(1) If there exists a ii g,Aπ , and)1(
ii ,gA Zn −>π holds, then any sequence which includes

ig
iA or its sub-sequence

kg
iA (ik gg ≥) cannot meet the Z.

(2) If there is a sequence
ji g

j
g
i AA L , and)1(|| ,, Zn

jjii gAgA −>∪∪ ππ L holds, then any se-

quence which includes
ji g

j
g
i AA L or its sub-sequence may not meet the Z.

Chapter 5. AOI-ags Algorithms and Applications

87

(3) If a sequence mg
m

g AAA L1
1= meets the Z, then all parent-sequences of A will not

meet the Z, so it can be pruned.

The pruning strategies above, on the one hand, can form search lower bound in the

search space, which reduces the search space, on the other hand, they can prune the

attributes’ generalization sequence which do not meet the threshold Z as early as possi-

ble, which avoids searching ∏
=

+
m

i
il

1

)1(times.

5.3.3 Equivalence Partition Trees and Calculating ii g,Aπ

By introducing the concept of equivalence partition trees, ii g,Aπ can be calculated

efficiently. At first, each node (i.e., concept) in a concept hierarchy tree is assigned to a

concept’s code. As shown in Figure 5.1, the unary concept’s codes (the numbers in

bracket, “3” only represents the difference from other attributes) represent the first level

in the concept hierarchy tree (i.e., the root of the tree). The binary codes represent the

second level, etc.

Definition 5.7 The equivalence partition tree of the attribute A, each branch is a

concrete value of A, which is concept’s code with respect to the value in the concept hi-

erarchy tree, each node in the tree is a value in concept’s code.

Example 5.3 Take table 5.1 in Section 5.6.2 as an example, the equivalence parti-

tion tree of the attribute “elevation” is showed as Figure 5.3.

 null

Partition level

2

0
1

2

3

4

5

12

3

1

2

1

2

1

1

1

{t7}

{t1}

{t8}

{t2}

{t5,t6}{t3}
2

{t4}
2

Figure 5.3 The equivalence partition tree of the attribute “elevation” in Table 5.1

An equivalence partition tree can be constructed by the following steps:

(1) Create the root of the tree, labelled with “null”.

(2) For each value of the attribute, a branch is created.

(3) Note down the corresponding Row-id under the corresponding leaf node. The

set of the Row-Id noted down is called the identity of the leaf-node.

Scanning a dataset once, the equivalence partition trees for each attribute can be

constructed.

An Investigation in Efficient Spatial Patterns Mining

88

Definition 5.8 the partition level with respect to an equivalence partition tree is de-

fined as follows. Define the root “null” as level 0, the following is level 1, …till the leaf

node. The identity of node on an equivalence partition tree is the union of the identity of

all leaf-nodes of the sub-trees with this node as their root.

It is not difficult to see that the partition level of the equivalence partition tree corre-

sponds to the concept level of the concept hierarchy tree. The partition level with respect

to equivalence partition tree of example 5.3 is shown in the left side of the Figure 5.3.

Property 5.4 the set of equivalence partition class with respect to attribute A at level

l is the set of the identity of nodes of the l-th partition level in equivalence partition tree

with respect to the attribute A (including leaf-nodes whose partition level is smaller than

l).

Example 5.4 Considering the equivalence partition tree in Figure 5.3, the partition

result in the third level is {{t1,t7,t8}, {t2,t4}, {t3}, {t5,t6}}, which is the same as the equivalence

partition result after “elevation” is generalized to the third level.

5.3.4 Algorithms

Introducing partition and refinement, the AOI process can be speeded up efficiently.

Introducing equivalence partition trees, equivalence partition results of attributes in any

level can be quickly obtained. So an optimization algorithm of AOI-ags is designed as

below:

Algorithm 5.2: An optimization algorithm of AOI-ags

Input:

 An un-generalized dataset r，which has m attributes {A
1
,A

2
…A

m
}.

 Attribute’s concept hierarchy tree },,{ 1 mhh L and their

heights },,{ 1 mll L .

 The relation threshold control Z

Output: generalization rules which meet the Z

Description:
1) creation_partition_tree(r); //producing each attribute’s equivalence partition
tree
2) computing lower bound L(A

i
) which attribute A

i
 is generalized;

3) Gen()(1,1 AlAπ ,1,m,L(A
1
),S,Gs); //the initial values are S=“null”, Gs=Φ. Obtain all

AGS (Gs) which meet the Z
4) Selecting a generalization sequence

mg
m

g AA L1
1 from Gs, computing

generalization relation mm gAgAr ππ ⊗⊗=′ L
11 ;

5) Producing generalization rules from the generalization rela-
tion.

Procedure creation_partition_tree(r)
Var item: Item; record: The set of item; T1,…Tm: Tree;

Chapter 5. AOI-ags Algorithms and Applications

89

 Begin create m root-nodes of m trees T1,…Tm, it is noted by
“null” respectively;

 While record:=get_next_record(r);
 For i:=1 to m do
 { item:=get_next_item (record);
 insert_tree (item,Ti); }
 End {while}
 Return equivalence_partition _trees T1,…Tm.
End;

The get_next_record procedure reads a record and converts the attribute values to

concepts. The get_next_item procedure gets an item (i.e., a concept) in the record, and

converts the concept to concepts’ code. And the insert_tree (item, Ti) procedure is per-

formed as follows: Let the item be [E|item′], where E is the first element in the item. If Ti

has a child N such that N.value=E.value, then it shares the node N; else create a new

node N, its parent link to be linked to Ti. If item′ is nonempty, call insert_tree (item′, N)

recursively. When the recursion procedure finishes, the Tuple-id is added to the identity

of corresponding leaf-node.

Procedure Gen(r,i,m,L(A
i
),S,Gs);

(1) For k= L(A
i
) downto 1 Do

(2) Begin If i=1 and k < L(A
1
) then

(3) Gen_r ← kAi ,π
(4) Else If i=1 and k= L(A

1
) then

(5) Gen_r r←

(6) Else Gen_r ← kAi
r ,π⊗

 Endif
 Endif;
(7) if | Gen_r| > n(1-Z) then
(8) exit for

endif
(9) If i<m then
(10) Gen (Gen_r,i+1,m,L(A

i+1
),S∪ A

k

i
,Gs)

(11) Else If |Gen-r| n(1≤ -Z) then
(12) Gs ← Gs∪ {S∪ A

k

i
};

(13) Exit for
 Endif
 Endif
 End

In the optimization algorithm of AOI-ags, the recursive times are efficiently con-

trolled by computing each attribute’s lower limit L(Ai), and consider whether AGS can be

pruned or not in a recursive process according to Pruning Strategies. In fact, many re-

cursive steps will be jumped over using pruning strategies in algorithm 5.2.

An Investigation in Efficient Spatial Patterns Mining

90

5.4 Interestingness of Attributes’ Generalization Sequences

The method of attributed-oriented induction based on attributes’ generalization se-

quence extends traditional AOI method, but which now induce a new problem: how to

choose attributes’ generalization sequence which have the same degree of generaliza-

tion? So, the interestingness of attributes’ generalization sequences is introduced.

Motivation example: For the plant “Magnolia sieboldii” in a plant distributed dataset,

suppose the following rules have been obtained.

（1） Plant “Magnolia sieboldii” ⇒ 50% grows in the conifer forest and scrub whose

elevation is from 2600 to 4100 meter of Lijiang, and 50% grows in the forest,

scrub and meadow whose elevation is from 2400 to 3900 meter of Weixi.

（2） Plant “Magnolia sieboldii” ⇒ 90% grows in the conifer forest and scrub whose

elevation is from 2600 to 4100 meter of Lijiang, and 10% grows in the forest,

scrub and meadow whose elevation is from 2400 to 3900 meter of Weixi.

The rule (2) is more meaningful than the rule (1), because the growth characteris-

tics of plant “Magnolia sieboldii” are more obvious in the rule (2).

Definition 5.8 In a generalization relation, the t-weight of the i-th generalization re-

cord ti is defined as formula (1).

∑
=

= '

1
)(

)(
n

j

i

jcount

icountt
(1)

In formula (1), count (i) is the number of repeated records of the i-th generalization

record in generalization relation, 'n is the number of records in generalization relation.

Definition 5.9 Given),(1 nrrr ′′′′ K is a generalization relation under
mg

m
g AA L1

1 ,

(11 +≤≤ ii lg), then interestingness mggI L1 of
mg

m
g AA L1

1 is defined as formula (2).

∑
′

= ′
−=

n

i
igg n

tI
m

1

2)1(
1L (2)

When the number of repeated records for each generalization record in a generali-

zation relation),(1 nrrr ′′′′ K gets average value, mggI L1 achieves the minimum 0. The farer

t-weight of generalization records in a generalization relation is from average value, the

larger the contribution to interestingness. The larger the value of mggI L1 , the more interest-

ing the rule expressed by the attributes’ generalization sequence
mg

m
g AA L1

1 .

Chapter 5. AOI-ags Algorithms and Applications

91

Therefore, after obtaining sequences which meet the Z, computing their interesting-

ness, and ranking the generalization sequences with the decline of interestingness, the

generalization relation and rules can be produced.

5.5 Analysis

In this section, the algorithms are analyzed for completeness, correctness and

computational complexity. Correctness means that the generalization rules meet the

user specified threshold. Completeness implies that no AGS that satisfies the given

threshold is missed.

5.5.1 Completeness and Correctness

Lemma 5.1 Algorithm 5.1 is correct.

Proof. The algorithm 5.1 uses very simple way to get generalization rules. It is ob-

vious that algorithm 5.1 is correct if it can be proved that the recursive procedure

Gen_seq is correct. That means the Gen_seq will return the AGS that satisfy the Z. It is

guaranteed by step (8) in Gen_seq, because this step will check whether every se-

quence satisfies the Z or not.

Lemma 5.2 Algorithm 5.2 is correct.

Proof. The pruning strategy (1) guarantee the step 2) in algorithm 5.2 will return the

low boundary of every attributes. If the return of step 3) is correct, then the Section 5.3.1

ensures the generalization relation computed by the step 4) is correct.

For step 3) (i.e., the recursive procedure Gen), the property of YXYX πππ ⊗=∪ and

Section 5.3.2 ensure the correctness of the step (3)-(6) in Gen. The step (3)-(6) ensures

the correctness of the step (11). And the step (11) guarantees every AGS satisfies the

threshold Z.

Lemma 5.3 The algorithms are complete.

Proof. It will be proved that if a sequence satisfies the Z, it is found by the algo-

rithms. In the recursive procedure Gen_seq of algorithm 5.1, the step (1) iterates all

generalization levels of an attribute and the step (6) recursively perform Gen_seq. So the

combine of step (1) and step (6) ensures the Gen_seq will check all possible candidate

sequences.

For algorithm 5.2, the pruning strategy (1) guarantee the step 2) of algorithm 5.2 will

return the low boundary of every attributes. In the recursive procedure Gen, The step (7)

and (8) is because the pruning strategy (2) and the step (11) and (13) are just because

An Investigation in Efficient Spatial Patterns Mining

92

the pruning strategy (3). The combine of step (1) and step (10) guarantee the Gen will

check all possible candidate sequences.

5.5.2 Computational Complexity

Suppose the number of records in the relation T is N, the number of attributes in T

is m, and the height of attribute i-th concept hierarchy tree is li. In the worse case, the

computational complexity of the algorithm 5.1 will be))1((
1
∏
=

+∗
m

i
ilNO . And the algorithm 5.2 will

be
))1((

1
∏
=

+
m

i
ilO

. Theoretically speaking, the computational complexity of the two algorithms

seems not very distinctive. But many recursive steps will be jumped over using pruning

strategies in algorithm 5.2, so the complexity will be much lower than algorithm 5.1. The

real execution results will be shown in the Section 5.6.

5.6 Performance Evaluation and Applications

The performance of the algorithms is evaluated by synthetic datasets and a real-

world dataset (a plant distributed dataset of “The Three Parallel Rivers in Yunnan Pro-

tected Areas”). The experiments are performed on a Celeron computer with a 2.40 GHz

CPU and 256 Mbytes memory running the Windows XP operating system.

5.6.1 Evaluation Using Synthetic Datasets

The experiments using synthetic data sets are aimed at answering the following

questions. (1) How does the size of dataset affect the two algorithms? (2) How do the

Algorithm 5.1 and the Algorithm 5.2 behave with the Z is changed?

A series of experiments are run with increasing number of spatial data points. The

results are showed in Figure 5.4 (a). It can be seen that the algorithm 5.2 is almost linear

and much faster than the algorithm 5.1.

(a) (b)

z=0.8, m=2

0

500

1000

1500

100 300 500 1000 3000

The n value

R
u
n
t
i
m
e

(
s
)

A.2

A.1

n=200, z=0.8

0

1000

2000

3000

4000

2 3 5 7 8 10

The m value

R
u
n
t
i
m
e

(
s
)

A.2

A.1

Figure 5.4 Performance of algorithms using synthetic datasets

Fixed on the number of records, the number of attributes is an important parameter.

The detailed comparative results are showed in Figure 5.4(b). It can be seen that the

Chapter 5. AOI-ags Algorithms and Applications

93

performance of Algorithm 5.1 is very bad when m=5. The results indicate that the prun-

ing strategies and equivalence partition trees used in Algorithm 5.2 are very efficient.

Now let us look at the characteristic of fast re-generalization of the two algorithms.

The results are shown in Figures 5.5(a) (b). The 6 different settings of the thresholds Z

are used in the experiments. It can be seen from the results that the Algorithm 5.2 pos-

sesses the characteristic of fast re-generalization.

(a) (b)

n=500, m=3

0

200

400

600

800

0.4 0.5 0.6 0.7 0.8 0.9

the Z value

R
u
n
t
i
m
e
(
s
)

A.1

n=1000,m=5

0

5

10

15

20

25

0.4 0.5 0.6 0.7 0.8 0.9

the z value

R
u
n
t
i
m
e
(
s
)

A.2

Figure 5.5 Characteristic of fast re-generalization for the two algorithms

5.6.2 Applications in a Real Dataset

A plant distributed dataset, which involves 29 plant species which are very valuable

and rare in “The Three Parallel Rivers in Yunnan Areas” and 319 instances (tuples), is

used in the experiments. Table 5.1 is some tuples of the dataset.

Table 5.1. Some tuples of a plant distributed dataset

Tuple-ID Plant-name Veg-name Elevation /m Location
t1 Orchid meadow [1000, 1500] Lijiang
t2 Fig scrub [2400, 3000] Weixi
t3 Magnolia scrub [3000, 3700] Lijiang
t4 Calligonum taiga [2000, 3000] Jianchuan
t5 Magnolia meadow [3000, 4000] Lanping
t6 Agave taiga [3000, 4000] Lanping
t7 Yucca forest [1500, 2400] Weixi
t8 Waterlily meadow [800, 2200] Jianchuan

The experiments using this dataset are aimed at checking the usefulness of the

AOI-ags algorithms. Can they discover valuable patterns? Are the rules discovered by

the algorithms interesting towards geographers and botanists?

34 AGS are obtained when the threshold Z is set to 0.8, and 57 plant distributed

rules are discovered when one of the 34 AGS is chosen according to their interesting-

ness. When the threshold Z is set to 0.85, the number of AGS is 28 and the number of

rules is 19. When the Z is set to 0.9, the number of AGS and rules is 22 and 16 respec-

tively.

An Investigation in Efficient Spatial Patterns Mining

94

Some rules discovered by the algorithms are really attractive to geographers and

botanists. The following are some examples:

− “Tricholoma matsutake” ⇒ 40% grows in the forest and meadow whose elevation

is from 3300 to 4100 meter of Lijiang.

− “Angiospermae” ⇒ 80% grows in the forest、scrub and meadow whose elevation

is from 2400 to 3900 meter of Lijiang and Weixi.

− Lijiang ⇒ There are a plenty of plants species in severe danger such as

“Tricholoma matsutake”, “Angiospermae”, “Gymnospermae”, and so on.

5.7 Summary

Related approaches for mining the associations of attributes can be divided into the

clustering-based approach, the association rule-based method and the approach of AOI.

Clustering-based approach treats every attribute as a layer and considers clusters of

point-data in each layer as candidates for mining associations (Estivill-Castro and

Murray, 1998; Estivill-Castro and Lee, 2001). The complexity and the low-efficiency are

the crucial problems of this method. The association rule-based approach is divided into

the transaction-based method and distance-based method again. The transaction-based

method computes the mining transaction (two-dimension table) by a reference-object

centric model, so one can use the method which is similar to Apriori for mining the rules

(Koperski and Han, 1995; Wang et al, 2005). The problem of this method is that a suit-

able reference-object is required to be specified. The distance-based method was pro-

posed by Morimoto in (Morimoto, 2001), and Shekhar together with Huang in (Xiong et

al, 2004; Huang et al, 2004; Yoo and Shekhar, 2004) did further research. Because of

doing a plenty of join operations, executing efficiency is the key problem of this method.

The approach of AOI is presented firstly by Cai, Cercone, and Han in (Cai et al, 1991). It

is a simple and understandable method. But it is inconvenient because setting each at-

tribute threshold is required.

The AOI-ags proposed in this chapter can obtain automatically rules under setting a

threshold Z. Particularly, by using the AOI-ags algorithm in a plant distributed dataset,

some distributed rules for the species of plants in “Three Parallel Rivers of Yunnan Pro-

tected Areas” are found interesting. The advantage of AOI method is that domain knowl-

edge (concept hierarchy trees) is used in the process of data mining.

Chapter 5. AOI-ags Algorithms and Applications

95

In next Chapter, A valuable Fuzzy Data Mining Prediction Technology, the degree

of fuzzy association based on the distribution of the variables for the prediction object

and the concept of semantic proximity (SP) between two prediction objects, is discussed.

Particularly, by using this technology in a system of predicting plant species in an eco-

logical environment and a prediction system of shovel hoist cable service lifespan, the

applied value of this method is verified (Wang et al, 2007(b); Wang et al, 2007(c)).

An Investigation in Efficient Spatial Patterns Mining

96

Chapter 6

Fuzzy Data Mining Prediction Technologies
and Applications

Based on a concept of fuzzy association degree, a data mining prediction method is proposed in

this chapter. Inverse document frequency (IDF) weight function has been adopted in this investi-

gation to measure the weights of conditional attributes in order to superpose the fuzzy association

degrees. To implement the method, the “growing window” and the proximity computation pruning

are introduced to reduce both I/O and CPU costs in computing the semantic proximity between

time-series data. By applying the approach in a plant species and ecological environment dataset

and a dataset for predicting shovel cable lifespan, one can see that the approach is reasonable

and effective.

6.1 Overview

Databases are rich with hidden information that can be used for intelligent decision

making. Data mining prediction is a form of data analysis that can be used to predict fu-

ture data trends. There are a great number of methods in the mining prediction, such as

statistical learning (Hastie et al, 2001), machine learning (Witten and Frank, 1999), deci-

sion tree (Alsabti et al, 1998), and fuzzy method (Liu and Song, 2001). Further more,

many algorithms have been proposed that adapt association rule mining to the task of

prediction. The CBA algorithm for associative classification was proposed by Liu, HSU,

and Ma (1998). CPAR (Classification based on Predictive Association Rules) was pro-

posed in Li, Han, and Pei (2001). Carter and Hamilton (1998) handle data generalization

by the attribute-oriented generalization method. Wang (2000) proposes a fuzzy equiva-

lence partition method to handle data generalization. A data reduction technique based

on attribute-oriented generalization is presented in paper (Wang and Chen, 2005). Shi et

al (2003) presents a novel data pre-processing technique called shrinking inspired by the

Newton’s Universal Law of Gravitation in the real world, which optimizes the inner struc-

ture of data.

But no prediction method is superior over all others for all data types and domains.

When a real application problem faced, any method mentioned above may be inapplica-

ble to it. In this chapter, starting at a discussion of the two application problems, a rea-

sonable and effective fuzzy data mining prediction approach is proposed, in order to re-

solve similar problems.

Chapter 6. Fuzzy Data Mining Prediction Technologies and Applications

97

6.2 Preparing the Data for Prediction

This section describes issues regarding preparing the data for prediction by analyz-

ing two practical application problems.

6.2.1 Preparing the Data for Predicting the Shovel Cable Lifespan

Electric cable shovels are the workhorses of ore-pit mining, each shovel handling

mineral ore of many thousand tons per day. Ore is scooped into a shovel’s bucket with

digging energy supplied by motors pulling on cables of large diameter attached to the

shovel’s bucket. Cables (also called ropes) are expected to last for approximately 2000

hours of operation. However, current shovel cable lifespan can range from 400 to over

1800 hours over an entire shovel fleet.

Our goal is to predict the shovel cable lifespan. How the shovel is used for the most

part determines cable’s lifespan. From the shovel telemetry data, the information about

shovel work status can be obtained. The sequence of activities in an ideal simple shovel

duty cycle consists of digging, hoisting, swinging the dipper towards the truck, dumping

and swinging back to the ground.

Several variables are believed to contribute to a cable’s lifespan, and these vari-

ables are described as shovel dispatch data, shovel dig energy (energy expended within

dig cycles), other shovel energy (energy expended outside dig cycles) and shovel-id

(because it represents different shovel and different working site). There is intuitively a

correlation between shovel dig energy and shovel cable lifespan. However the shovel dig

energy alone cannot determine the exact shovel lifespan, nor can the shovel lifespan

determine shovel dig energy. The same can be said for shovel dispatch data and other

shovel energy. By analyzing the shovel motor performance data during shovel operation,

the dig cycles of a shovel can be identified. So the dataset to predict the shovel cable

lifespan is organized as Table 6.1.

Table 6.1. The dataset for predicting shovel cable lifespan

Tuple-
No

shovel dispatch data shovel dig energy other shovel energy
Shovel-
ID

shovel
lifespan

r1 127.3285,128.3771,137.5078, … 3437972,6070928,6087400, … 9102248,9471670,10623427, … 78 703.6

r2 123.8424,127.9197,119.3427, … 3646337,3927044,4339156, … 10649652,8565822,8153072, … 78 1213.6

… … … … … …

rn 130.0234,128.3092,126.7473, … 4090329,4411364,3239778, … 9820630,9797128,10519956, … 84 639.2

In the dataset, there are two kinds of data. One is relatively static data that is stable

and constrained to a finite number of values, for example, ‘Shovel-ID’ and “shovel life-

An Investigation in Efficient Spatial Patterns Mining

98

span”. Others are time-series data. They change over time. If data were collected at a

one-second time interval, then the quantity of data to be handled is huge. For example,

the quantity of data of the shovel 78 in a lifespan (2005-04-24 to 2005-05-30) is

9*703.6*3600=22,796,640. So, obtaining a reduced representation of a time-series,

comparing the similarity between two time-series, and partitioning the set of time-series,

will be the works have to study in initial data exploration (IDE) for predicting the shovel

cable lifespan.

6.2.2 Preparing the Data for Predicting Plant Species in an Ecological Envi-
ronment

“Three Parallel Rivers of Yunnan Protected Areas”, confirmed as the World Heri-

tage on July 2, 2003 by UNESCO (United Nations Educational, Scientific and Cultural

Organization), is the one of the most important researching areas for rocksy and botanist

(Guo, 2004).

The ecological environments are believed to contribute to the plant species,

distribution and diversity in Three-Parallel-River zone, which include climates (e.g., mean

temperature, mean precipitation), elevation, topography, etc. So the data listed in Table

6.2 will be used in the chapter.

The ultimate goal of data mining in this plant species and ecological environment

dataset is to discover the association pattern between plants and ecological environ-

ments in Three-Parallel-River Zone. Then it can be predicted that there might be some

plant species in an ecological environment. Discovering correlations between the plant

species and ecological environments will be very significant for retaining rare and en-

dangered plants in Three-Parallel-River Zone.

Table 6.2. Plant species and ecological environment dataset

Tuple-ID mean temperature
 (monthly 0.1oC)

mean precipitation
 (monthly 0.1mm) elevation (m) topography plant species

r1 90, 100, 108, 130, … 0, 7, 21, 21, 307, … [900,2000] ascent Camellia
r2 80, 111, 130, 102, … 12, 13, 133, 55, … [500,900] ascent Water-lily
r3 99, 100, 144, 142, … 71, 205, 502, 330, … [700,1100] valley Camellia
r4 93, 115, 141, 165, … 0, 98, 171, 793, … [200,700] ascent Camellia
r5 77, 68, 116, 113, … 17, 228, 212, 453, … [120,400] valley Water-lily
r6 93, 105, 130, 145, … 36, 228, 679, 190, … [200,800] valley Orchid
r7 93, 103, 120, 151, … 40, 882, 46, 899, … [600,1200] basin Orchid
r8 67, 84, 81, 105, … 7, 62, 68, 184, 734, … [1000,2000] ascent Water-lily

Prior to Table 6.2, data analysis is carried out as follows.

1). Climate data: there are two groups of time-series data for mean temperature

and mean precipitation. These data change over time.

2). Elevation data: it is the interval values.

Chapter 6. Fuzzy Data Mining Prediction Technologies and Applications

99

3). Topography data: it may have the following values: peak, valley, ascent, terrace,

and basin…, all of them are used to describe the location of the plants growth.

There is hopefully a correlation between plants and ecological environments in

Three-Parallel-River Zone. But a single ecological environment (e.g., elevation) cannot

determine the exact plants growing; nor can the plants determine ecological environ-

ments. The same are climates and topography. The relationship between plants and the

ecological environments in Three-Parallel-River Zone is a fuzzy association relationship.

The degree of fuzzy association represents the intensity of correlation between at-

tributes in a data set. Therefore, in this chapter, the following problems need to be dis-

cussed:

1). How to explore the initial data? For example, the mean temperature of climate

data is a time-series data.

2). How to evaluate the fuzzy association degree between the conditional attribute

and the predicted attribute?

3). How to superimpose fuzzy association degrees?

6.3 Initial Data Exploration – IDE

In the light of the datasets above two applications, the key following issues are go-

ing to tackle in the study of IDE:

 Comparing the similarity between two time-series

 Approximately partitioning them

6.3.1 Comparing the Similarity of Two Time-Series

A time-series is a sequence of real numbers representing values at specific points

in time. We start by defining time-series.

Definition 6.1 A time-series T of length n is an ordered set (t1, t2, … , tn) with ℜ∈it ,
ni ≤≤1 . |T| is the length of T.

For comparing similarity of two time-series, the degree of proximity will be defined.

The Euclidean distance, a popular similarity measure that has been extensively used in

comparing time-series (Shi et al, 2003; Hastie et al, 2001; Witten and Frank, 1999), is

adopted in this definition.

Definition 6.2 Given two time-series, T[1…n] and Q[1…n], the degree of proximity

between T and Q (denoted PD (T, Q), 1),(0 ≤≤ QTPD) is defined as

An Investigation in Efficient Spatial Patterns Mining

100

∑
=

+−=
n

i
ii qtQTPD

1

2 1)(/1),(
(1)

Simple, yet important, a property held by the PD is described by the Lemma 6.1.

This property will be useful in improving the performance of computing PD. Simply put

the Lemma 6.1 states that if two time-series are in close proximity, then all their prefix

subsequence of equal length are also in close proximity.

Lemma 6.1. If ε>])...1[],...1[(nQnTPD for time-series T[1…n] and Q[1…n],
ε>])...1[],...1[(kQkTPD holds, for nk ≤≤1 .

Proof. (By contradiction) If for a particular k, nk ≤≤1 , ε≤])...1[],...1[(kQkTPD , how-

ever,])...1[],...1[(])...1[],...1[(kQkTPDnQnTPD ≤ , and therefore ε≤])...1[],...1[(nQnTPD , a contradic-

tion, since the ε>])...1[],...1[(nQnTPD was assumed. �

Using a “growing window” to scan the time-series, the computation of PD(T, Q) can

be done recursively by adding the remaining terms to the previously sums, thus the

number of necessary computations are reduced. For example, if the values:

PD(T[1…300], Q[1…300]) have been computed, then the values of PD(T[1…301],

Q[1…301]) can be computed directly using Equation (2).

2
2])301[]301[(

]))300..1[],300...1[((
1/1])301...1[],301...1[(QT

QTPD
QTPD −+= (2)

This allows people to perform a “growing window” algorithm. For example, if we

compute the arguments in (1) for a window of size m in T and Q, i.e., PD(T[1…m],

Q[1…m]), we can compute the same arguments for the “growing” window

PD(T[1…m+1], Q[1…m+1]) in O(1) time.

Using the “growing window” and Lemma 6.1, there is an efficient pruning strategy.

When a value of PD from a growing window is less thanε , it can be considered as zero,

and no more further computation.

In the above discussion, it is supposed that two time-series have the same length.

However the situation is not always like this and the data one face are usually long and

have noise. So, beside Lemma 6.1 and the “growing window”, here want to optimize the

computation of PD by employing a method of scaling.

Let T [1..n] be a large time-series and m be an integer with 0<m<n. One wants to

compress T from n to m points. By intuition, one can group sequential points of T and

take their averages in order to form the smaller sequence. Figure 6.1 is an example for

grouping a time-series. It presents a scaling of a 24-point time-series into 4 points.

Chapter 6. Fuzzy Data Mining Prediction Technologies and Applications

101

Figure 6.1 Scaling of a 24-point time-series into 4 points

Definition 6.3 Let T[1…n] be a time-series, m be an integer such that nm <≤1 ,

⎥⎥
⎤

⎢⎢
⎡=
m
nA

, ⎥⎦
⎥

⎢⎣
⎢=
m
nB

 and mnr mod= . The scaling of T to size m, a time-series Ts[1…m] , is

defined, where

⎪
⎪
⎩

⎪⎪
⎨

⎧

≤<

≤≤
=

∑

∑
⋅+

+⋅−+=

⋅

+⋅−=

mirjT
B

rijT
AiT Bir

Birj

Ai

Aij
s

1)1(

1)1(

][1

1][1

][(3)

In the above definition, if n/m is not an integer, here take the first mn mod points of

the scaled sequence to be averages of A (⎥⎥
⎤

⎢⎢
⎡=
m
nA

) points, and the rest to be averages of

B (⎥⎦
⎥

⎢⎣
⎢=
m
nB

) points of T. If 0mod == mnr holds, then the scaling will be consist of n/m

points averages, as expected.

Taking averages has been used successfully as an approximation and dimensional-

ity reduction technique in time-series (Witten and Frank, 1999; and Alsabti, 1998). This

type of scaling that here used is robust to noise, which means that even small variances

of the time sequence do not alter the scaled sequence. Moreover, it can be implemented

in a computationally efficient way and transform the time-series to the same length. After

all, the scaling procedure in this method is also similar to the human’s nature under-

standing of “scaling”.

6.3.2 Fuzzy Equivalence Partition for the Set of Time-Series
Once the value of PD between two time-series obtained, the remained issue is how

to partition the set of time-series. Fuzzy equivalence partition method (Wang, 2000; Huo,

1989; and Zadeh, 1965) is used as follows.

Assume that NTT ,,1 L is a set of time-series. From Definition 6.2, there is a relation-

ship 1),(=ii TTPD and),(),(ijji TTPDTTPD = . Using the degree of proximity between two

time-series, a similarity matrix ,)(NNijsS ×= can be built up, where

An Investigation in Efficient Spatial Patterns Mining

102

⎩
⎨
⎧

≠
=

=
jiTTPD

ji
s

ji
ij),(

1
 (4)

S can be multiplied by itself repeatedly, where)),(()(2
kjikkij ssMINMAXs = , until

kk SS =2
. kS 2 is called a fuzzy equivalence matrix EM. Based on the fuzzy equivalence

matrix EM, the classifications of NTT ,,1 L will be obtained for user-specified level valueλ .

The equivalence matrix EM can be computed in O(N3) time from a similarity matrix

S. The computational method can be expressed as follows:
1 For i:=1 to N do
2 For j:=1 to N do
3 If s(j,i)>0 then
4 For k:=1 to N do
5 S(j,k):=max{S(j,k), min{S(j,i), S(i,k)}};

This algorithm is very efficient if the fuzzy similarity matrix S has many zero ele-

ments, due to step 3.

The above method can also be optimized through computing the fuzzy equivalence

matrix EM in O(M2) time (M is the number of nonzero elements in the upper-triangle of

the similarity matrix S.) (Wang, 2000).

6.3.3 An Example
Example 6.1 Let T be the set of the given time-series data T1 – T4 (see Table 6.3).

Table 6.3 A simple example of 4 time-series data

T Time-series data

T1

176.7289,137, 176.7289, 104, 120.9448, 137, 149.0745, 109.667,137, 137, 137, 170.2474, 108.6299,
163.7659, 181.9141, 160, 137, 85.5126, 160, 163.7659, 114.6793, 185.3709, 160, 180.1857, 137

T2
177.5931, 104, 160, 144.7535, 107.7657, 140.0436, 160, 94.241, 160, 154.2597, 140.0004, 160, 160,
96.3151, 160, 158.5807, 133.0868,160

T3
93.3336, 104, 160, 137, 156.8523, 100.6361, 160, 104, 137, 137, 133.0868, 158.1486,89.099, 160,
104, 120.988, 137, 137, 128.7658, 128.7658

T4
181.9141, 104, 159.877, 160, 178.0252, 158.5807, 160, 137, 104, 137, 185.803,104, 137, 149.5066,
153.8276, 137, 160, 178.4573, 150.4572, 160, 186.6672, 176.2968, 137, 106.5127, 160, 160,
160,158.1486, 176.2968

Assuming 00001.0=ε and m is 12 for this example. Then, from Definition 6.3, can

get

Ts1={163.4859, 112.4724, 143.0373, 123.3335, 137, 139.4387, 172.8400,

148.5000, 122.7563, 139.2226, 172.6855, 158.5929};

Ts2={140.7966, 152.3768, 123.9047, 127.1205, 157.1299, 150.0002, 160, 96.3151,

160, 158.5807, 133.0868, 160};

Ts3={98.6668, 148.5, 128.7442, 132, 137, 145.6177, 124.5495, 112.494,137, 137,

128.7658, 128.7658};

Chapter 6. Fuzzy Data Mining Prediction Technologies and Applications

103

Ts4={148.597, 165.5353, 133.6667, 142.2677, 146.7781, 148.5, 164.4572,

173.3336, 156.6484, 133.2564, 160, 167.2227}

From Definition 6.2, s12=PD(Ts1,Ts2)=1/[(163.4859-140.7966)2+…+(158.5929-160)2

+1]1/2=0.0237, s13=0.1282, … .

Thus,

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

10300.00120.00243.0
0300.010200.01282.0
0120.00200.010237.0
0243.01282.00237.01

S

Applying S self-multiple repeatedly, can obtain

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

==

10300.00237.00300.0
0300.010237.01282.0
0237.00237.010237.0
0300.01282.00237.01

24 SS

Then, S4 is the fuzzy equivalence matrix of the S. When the level value λ is se-

lected as 0.025, the level value matrix of the fuzzy equivalence matrix

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

1101
1101
0010
1101

4
01.0S can be obtained.

The classification of T1 – T4 is T0.025={(T1, T3, T4), (T2)}. By the same method,

T0.1={(T1, T3), (T2), (T4)} could be obtained.

6.4. Mining Prediction

6.4.1. Degree of Fuzzy Association
Let R={r1, …, rp} be a finite set of objects, A={A1, …, An, B} be a set of attributes

over R. The attributes in A are classified into disjoin conditional attributes C={ A1, …, An }

and the predicted attribute D={B}. The equivalent class L in the set of the equivalent

classes for the conditional attributes Ak is denoted by AkL, and for predicted attribute B,

the Bm means the mth equivalence class. The intersection of AkL and Bm is denoted by

POS(AkL, Bm). The number of objects in POS(AkL, Bm) is called the distribution of AkL to

Bm, written as K(POS(AkL, Bm)).

The degree of fuzzy association between AkL and Bm is determined as follows.

Once the value of the conditional attribute Ak is AkL, the value of the predicted attribute B

must be Bm, then AkL is in close association with Bm. In another condition, the conditional

attribute Ak is AkL, and the predicted attribute B is Bm or Bh, then the fuzzy association

degree between AkL and Bm can be decided depending on the proximity between Bm and

Bh. The greater the proximity between Bm and Bh is, the higher the fuzzy association de-

An Investigation in Efficient Spatial Patterns Mining

104

gree between AkL and Bm. If the B is Bm, Bh, or Bf when the Ak has the value AkL, it is

unlikely to have a relationship between AkL and Bm.

Definition 6.4 Given a weight wjm for measuring the proximity between the two val-

ues Bj and Bm of the predicted attribute B, the fuzzy association degree from Akj to Bm is

defined as ρ (10 ≤≤ ρ)

mkjmkj wBAPOSKBA 11)),(((),(∗=ρ

mkj wBAPOSK 22 *)),((+
)(/)*)),((kjsmskj AKwBAPOSK++L

(5)

The weight wjm , written as w(Bj, Bm), represents the degree of proximity between Bj

and Bm. w(Bm, Bm)=1 and w(Bj, Bm)=w(Bm, Bj) are held. The weight wjm can be obtained

from domain expert (for example botanists), or by mining the co-location relation be-

tween plants (Huang et al, 2004; Yoo and Shekhar, 2004; and Xiong et al, 2004). The

following two methods are adopted in the study.

1). Method for the plant data
Plants can be organized to a plant family tree, named as the conceptual hierarchy

tree, with its leaf nodes describing an association relationship of plants. Figure 6.2 is an

example of a plant family conceptual hierarchy tree

3

Figure 6.2 A concept hierarchy tree of plant species

spermatophyta

angiosperm gymnosperm

Theaceae Ranuncul aceae

Camellia L. Michelia Linn

Camellia
reticulata
Lindl.

Camellia
japonica
Linn.

Paeonia L. …

…

Pinaceae …

…

LNO

4

2

1

0
 Height: 0
 Depth: 4
 lNO: 0

 Height: 4
 Depth: 0
 lNO: 4

Paeonia
suffruticosa
Andrews

Definition 6.5 The Depth of the node v in the concept hierarchy tree is the length of

path form the root to this node v. The height of the node v is the length of the longest

path in the subtree that the node v is the root. The height of the tree is defined as the

height of the root. The level number lNO of the node v is the height of this tree minus the

depth of v.

Example 6.2 Consider the concept hierarchy tree in Figure 6.2. Its height is 4. The

height, depth and lNO of the nodes “Camellia japonica Linnn” and “spermatophyta” in

Chapter 6. Fuzzy Data Mining Prediction Technologies and Applications

105

the concept hierarchy are shown in Figure 6.2 respectively. It can be seen that the lNO

of nodes are given on the right side in Figure 6.2.
Definition 6.6 Given a conceptual hierarchy tree, f1 and f2 are two leaves of this

tree, the value of weight w (f1, f2) is defined as:

12

12

21
21 /)),((1

1
),(

ff
ff

HffPl
ffw

≠
=

⎩
⎨
⎧
−

=
(6)

Where, P(f1,f2) returns the node of the common parent, l(f) gets the level number of

node f and H is the height of the tree.

Example 6.3 In the concept hierarchy shown in Figure 6.2,

 1)Lindl reticulata Camellia,Lindl reticulata Camellia(=w , and

4/1)Andrews sasuffrutico PaeoniaLindl, reticulata Camellia(=w

The weight w satisfies the following properties:

 For any plant f in a tree, w(f,f)=1 holds.

 For the parent of two plants f1 and f2 is the root in a tree, w(f1,f2)=0 holds.

 For any two plants f1 and f2 in a tree, 1),(0 21 ≤≤ ffw .

 For any plants f1, f2, f3 and f4 in a tree, if l(P(f1,f2))>l(P(f3, f4)), then

w(f1,f2)<w(f3,f4).

2). Method for the lifespan data
For a value of the predicted attribute B, a center number (c, r) is used, c is the cen-

ter of the sphere and r is the radius of the sphere, to describe it (e.g., a lifespan is
12700 ± hours), and the value of weight wjm between two center numbers Bj and Bm can

use the semantic proximity between Bj and Bm to measure.

Definition 6.7 The value of weight between two center numbers Bj and Bm can be

defined as

)(/)(),(mjmjmj BBLengthBBLengthBBw ∪∩= (7)

where Length(h) is the length of h.

6.4.2 Superposition of the Degrees of Fuzzy Association
The factors affecting the value of the predicted attribute B are not just the values of

A1, there are A2, A3…. How to superimpose them?

Definition 6.8 The superposition of 1ρ , 2ρ , …, kρ , written as kρρρ ⊕⊕⊕ L21 , is de-

fined as

An Investigation in Efficient Spatial Patterns Mining

106

2/1

1

2
21][∑

=

=⊕⊕⊕
k

i
iik ρµρρρ L

(8)

where iµ is the weight on iρ .

Inverse document frequency (IDF) weight function is adapted to the relational do-

main by treating each tuple as document of attribute values. The motivation for this idea

is clear from the following example. One expects the weight of attribute value ‘a1’ to be

less than that of ‘d3’ since ‘a1’ appears more frequently as a value for its attribute than

‘d3’ does.

Definition 6.9 Let the frequency of attribute value ‘a’ in the attribute Ai, denoted

freq (a, Ai), be the number of tuple (i.e., object) r in R such that r[Ai]=’a’. The IDF value,

IDF(a, Ai), of an attribute value ‘a’ with respect to the attribute Ai in the schema of R is

computed as Equation (9), when freq (a, Ai)>0, (K(R) is the number of tuples in relation

R)

),(
)(log),(),(

i
ii Aafreq

RKAaIDFAa ==µ
(9)

For an attribute value ‘a’ which’s frequency in attribute Ai is 0, ‘a’ is an erroneous

version of some values in the reference tuple. Since one does not know the value to

which it corresponds, the weight),(iAaµ is defined as the average weight of all values in

this attribute of relation R.

6.4.3. An Example
Example 6.4 Suppose Table 6.4 is the result after preprocessing the data of Table

6.1 or 6.2. For Table 6.2, where A1, A2, A3, A4 represent the conditional attributes mean

temperature, mean precipitation, elevation, and topography respectively, and attribute B

is the plant species. The same lower case letter is used if ri[Ak], rj[Ak] belong to the same

equivalence class (For the attribute elevation (A3), it can be partitioned based on the

concept of the semantic proximity between two interval values. In this study, the seman-

tic proximity between two interval values 1f and 2f can be defined as

))(/)((),(212121 ffsizeffsizeffSP ∪∩= , where)(hsize is the size of interval h).

There is a new conditional attributes data in Table 6.5 (it has been pre-processed).

Let us predict the value of the predicted attribute B under these conditional attributes

data. The distributing table from ‘a2’, ‘b2’, … to f1, f2 or f3 (see Table 6.7) and correspond-

ing values of w (see Table 6.6) are obtained, where for f1 here have w11= 1, w12= 0,

w13=0, etc. In the same way, the),(iAaµ is computed, the result is Table 6.8.

Chapter 6. Fuzzy Data Mining Prediction Technologies and Applications

107

Table 6.4 An example of data table for prediction

Table 6.5 A new conditional attributes’ data that have been preprocessed

A new ecological environment data A1 A2 A3 A4
r a2 b2 c1 e1

Table 6.6 Weight w for the predicted attribute B

w f1 (Camellia) f2 (Water-lily) f3 (Orchid)
f1 1(w11) 0(w12) 0(w13)
f2 0(w21) 1(w22) 0.6(w23)
f3 0 (w31) 0.6 (w32) 1(w33)

Table 6.7 The distributing table

K f1 f2 f3
a2 0 2 1
b2 1 1 0
c1 2 1 1
e1 2 2 0

Table 6.8 Weight µ for superposition
µ a2 b2 c1 e1
 0.4260 0.6021 0.3010 0.3010

Thus here have

111212)),(([),(wfaPosKfa ×=ρ 3/])),(()),((13321222 wfaPosKwfaPosK ×+×+ =0*1+2*0+1*0=
0

211222)),(([),(wfaPosKfa ×=ρ 3/])),(()),((23322222 wfaPosKwfaPosK ×+×+ =(0*0+2*1+1*
0.6)/3=2.6/3=0.867

Using the same method, Table 6.9 is obtained. Superposing the data in row f1, here

have the result of association degree. It indicates the association degree of the condi-

tional attributes data with ‘a2’, ‘b2’, ‘c1’, and ‘e1’ to predicted attributes data ‘f1’, ‘f2’, or ‘f3’.

It means that the value of predicted attribute f2 can be predicted in the conditional attrib-

utes data with ‘a2’, ‘b2’, ‘c1’, and ‘e1’.

Tuple-ID A1 A2 A3 A4 B
r1 a1 b1 c1 e1 f1
r2 a2 b1 c2 e1 f2
r3 a1 b2 c1 e2 f1
r4 a3 b3 c2 e1 f1
r5 a2 b2 c2 e2 f2
r6 a2 b4 c2 e2 f3
r7 a1 b4 c1 e3 f3
r8 a3 b3 c1 e1 f2

An Investigation in Efficient Spatial Patterns Mining

108

Table 6.9 Mining prediction of predicted attribute
ρ a2 b2 c1 e1 The result of superposition
f1 0 0.5 0.5 0.5 0.5487
f2 0.867 0.5 0.4 0.5 0.7708
f3 0.733 0.3 0.4 0.3 0.5986

6.5 Algorithms

The data mining prediction algorithm works in two procedures, the Ini-

tial_Data_Exploration procedure and the Data_Mining_Prediction procedure. The Ini-

tial_Data_Exploration procedure obtains the original data and partitions them into a rela-

tion table (see Table 6.4). The Data_Mining_Prediction procedure is invoked when a

new conditional attributes data obtained. This procedure will predict the value of the pre-

dicted attribute for this new conditional attributes data.

6.5.1 IDE Algorithm
A simple yet efficient partition time-series data algorithm based on fuzzy equiva-

lence partitioning according to the proximity degree of two time-series is designed in al-

gorithm 1. It is a naive method that achieves its efficiency using “growing window”, scal-

ing of time-series and pruning. As shown in Algorithm 1, it consists of three phases. In

the first phase (line 1), it compresses and standardizes the input time-series. The case

where the size of the time-series is larger than the memory buffer is considered (see the

algorithm 1.1). In the second phase (line 2), it computes the proximity degree between

time-series and forms the similarity matrix S. In the third phase (line 3), it performs the

fuzzy equivalence partitioning process on the similarity matrix S and outputs the partition

results. These phases are described in detail in Algorithm 1.1-1.3.

Chapter 6. Fuzzy Data Mining Prediction Technologies and Applications

109

Algorithm 1 Initial_Data_ Exploration_Time-series;
Input: A set of time series data, {T1, …TN}, with the

length {n1,…nN} respectively, m: compress every
Ti from ni to m points, ε : 0.0001, :λ 0.01;

Output: fuzzy partition of its set;
Procedure
 Begin
13) Scaling_Time-series;

14) Calculate_PD;

15) Partition;

End

Algorithm 1.1 Scaling_Time-series;

Input: A set of time-series data, {T1, …TN}, with the

length {n1,…nN} respectively, m: compress all Ti from

ni to m points;

Output: the set of time-series data each of which has

m points, {Ts[1…N]};

Procedure

 Begin

1) For i=1 to N do

2) minr mod][= ;
⎥⎥
⎤

⎢⎢
⎡=

m
inA][;

⎥⎦
⎥

⎢⎣
⎢=

m
inB][;

3) Read the first buffer from Ti;

4) For j=1 to r do

5) Ts[i, j]=0;

6) For k=(j-1)*A+1 to j*A do

7) If T[i, k] not in the buffer then

 Read the next buffer from Ti

8) Ts[i, j]=Ts[i, j] + T[i, k];

9) Ts[i, j]=Ts[i, j] / A;

10) For j=r+1 to m do

11) Ts[i, j]=0;

12) For k=r+(j-1)*B+1 to r+j*B do

13) If T[i, k] not in the buffer then

 Read the next buffer from Ti

14) Ts[i, j]=Ts[i, j] + T[i, k];

15) Ts[i, j]=Ts[i, j] / B;

 End

Algorithm 1.2 Calculate_PD;

Input: the set of time-series data each of which has m

points, {Ts[1…N]}, ε : 0.00001;

Output: the similarity matrix NNijsS ×=)(;

Procedure

 Begin
1) For i=1 to N-1 do

2) For j=i+1 to N do

3) Read the first 1/2 size of buffer from Tsi;

4) Read the first 1/2 size of buffer from Tsj;

5) S[i, j]= 1])1,[]1,[(/1 2 +− jTsiTs ;

6) K=2;

7) While S[i, j] > ε and mk ≤ do
8) If Ts[i, k] not in the buffer then

 Read the next buffer from Tsi and Tsj;
9) S{i, j}= 22]),[],[(],[/1/1 kjTskiTsjiS −+ ;

10) K=k+1

 Endwhile

11) Endfor

12) Endfor

 End

Algorithm 1.3 Partition;
Input: the similarity matrix NNijsS ×=)(, :λ ;
Output: fuzzy equivalence matrix EM; Equivalence
partition classifications EPC;
Procedure
 Begin
1) EM=S;

2) For i=1 to N do

3) For j:=1 to N do

4) If s(j,i)>0 then

5) For k:=1 to N do

6) S(j,k):=max{S(j,k), min{S(j,i), S(i,k)}};

7) If EMS ≠ then

EM=S goto step 2);

8) get EPC for λ

End

6.5.2 Mining Prediction Algorithm
The data_mining_prediction procedure performs mining prediction of predicted at-

tribute. First, the relation table R is scanned by the Get_Attribute_Partition function to

obtain the equivalence partition for every attribute in R. The detailed design of the

Get_Attribute_Partition function is shown in Algorithm 2.1. Then all the weights wij be-

tween predicted attribute values i and j are computed. A result that looks like Table 6.6

An Investigation in Efficient Spatial Patterns Mining

110

will be obtained. Finally, the algorithm iteratively performs the following tasks for all new

conditional attributes data. 1) Compute distributing table and weight µ according to the

equivalence partition results in Step 1 of this algorithm; 2) compute the association de-

grees of this new conditional attributes data to every kind of predicted attribute value,

and superimpose them; 3) output the results of mining prediction.

Algorithm 2 Data_Mining_Prediction;
Input: A relation table R in which all the data is
preprocessed, con_attr_count: the number of condition
attributes in table R;
Output: the prediction values of decision attributes for
this new shovel data;
Procedure
 Begin
1) Get_Attribute_Partition;
2) calculate_weight ω for the decision attribute;
3) Read ‘a new ecological data’ ED;
4) Transforming ED to useable form;
5) While not at end of input do
6) compute_distributing_table;
7) calculate_weight µ ;
8) compute_assoiciation_degree ρ ;
9) superpose_ associatione_degree;
10) output the result of prediction;
11) Read ‘a new ecological data’ ED;
12) Transformimg ED to useable form

 Endwhile
End

Algorithm 2.1 Get_Attribute_Partition

Input: A relation table R in which all the data is

preprocessed, con_attr_count: the number of condition

attributes in table R;

Output: the set of equivalence classes of every attribute

in R

Procedure

 Begin

1) Read a record r from R;

2) While not at end of record do

3) For the value r[A] of each attribute A in r do

4) Replace_with_integer (r[A], I[A]); // to map the

original value r[A] to a integer I[A] using a data structure

such as a trie or a hash table//

5) The row r goes to IND(A)[I[A]]; // The I[A]

equivalence class of attribute A contains the row r//

Endfor

6) Read a record r;

Endwhile

 End

The Get_Attribute_Partition function computes equivalent classes of all attributes in

relation R. A set of equivalent classes IND(A) with respect to an attribute A is computed

from the column R[A] of relation R as follows. First, the values of the column are re-

placed with integers 1, 2, 3, … so that the equivalence relations do not change, i.e.,

same values are replaced with the same integers and different values with different inte-

gers. This can be done in linear time using a data structure such as a trie or a hash table

to map the original values to integers. After this, the value r[A] is the number of the

equivalence classes of IND(A) that contains the row r, and IND(A) is then easy to con-

struct.

6.5.3 Analysis of Algorithm Complexity
Let us analyze the I/O and CPU cost of the Initial_Data_ Exploration. Suppose the

number of records in R is N, the number of conditional attributes in R is Mcon (in the ap-

plication problems, it is 4), and the number of predicted attributes in R is Mdec (it is one in

two applications mentioned in Section 6.2). If the number of points in every time-series

has been scaled to m then the cost of Algorithm 1.1 is O(N*m), then, for a time-series

Chapter 6. Fuzzy Data Mining Prediction Technologies and Applications

111

attribute, Algorithm 1.2 is O(N2*m), and Algorithm 1.3 is O(N3) (If the optimized method is

used, the cost of algorithm 1.3 is O(N2)). It is known that the cost of pre-processing other

kind of attributes (e.g., interval values) will be much less than time-series data. So, the

total cost of Algorithm 1 is at most O(N2*m* Mcon).

For the I/O and CPU cost of the Data_Mining_Prediction, In the

Get_Attribute_Partition phase (Algorithm 2.1), each of the attributes for each record is

sequentially scanned once, to get the set of equivalence classes for every attribute. The

cost is N*(Mcon +Mdec). In the calculate_weight ω phase, suppose the number of classes

in the i-th predicted attribute is Ci. The number of weights need to be computed is Ci*Ci

for the i-th attribute. But wij is equal to wji, and the values of the classes for the corre-

sponding predicted attribute can be obtained from the previous phase, the cost of this

phase is
∑
=

−×decM

i

ii CC
1 2

)1(

. In the next phase, for a new ecological data, to compute the distrib-

uting table costs O(
∑
=

×
decM

i
icon CM

1), to compute weights µ costs O(conM), to compute the de-

grees of association costs O(∑
=

×
decM

i
icon CM

1) and to superimpose the degrees of association

costs O(
∑
=

decM

i
iC

1). The total cost is O (
∑
=

×
decM

i
icon CM

1).

Therefore, the cost of the Data_Mining Prediction algorithm is

N* (Mcon +Mdec) + ∑
=

−×decM

i

ii CC
1 2

)1(+ ∑
=

×
decM

i
icon CM

1

.

Since the number of predicted attributes is a small value (It is just one in two appli-

cations), and if C is the average value of Ci (i=1, …, Mdec), then the cost of the algorithm

will become O (N*M) (M is the number of attributes in R).

6.6 Results of Experiments

In this section, the experimental results of the algorithms will be presented. More

specifically, both the quality of results we came across and the performance of the algo-

rithm will be illustrated. In the experiments the following data is used:

1). Rope history data;

2). Shovel dispatch data;

3). The raw telemetry data of shovels.

Seven different shovels collected from April 2005 to Feb. 2006 as used, and there

shovel id’s are 78, 79, 80, 82, 83, 84 and 85.

An Investigation in Efficient Spatial Patterns Mining

112

6.6.1 Estimating Error Rates
For estimating error rates, there are mainly three methods. One is called partition:

training-and-testing. This method uses two independent data sets, e.g., training set (2/3),

test set (1/3). It is usually used for data sets with large number of samples. Another

method is called cross-validation. This method divides the data set into k sub-samples,

and then, uses k-1 sub-samples as training data and one sub-sample as test data (it is

called k-fold cross-validation). It is usually used for data sets with moderate size. The

third is called bootstrapping (or leave-one-out cross-validation). It is used for small size

data sets.

In this experiment, the bootstrapping method is chosen to estimating error rates.

The first time, 13 lifespan have been chosen from shovel datasets. Then 34 lifespan

were used to predict. A shovel cable lifespan is predicted according to the degree of as-

sociation threshold. If the results of the algorithm are less than the threshold, this new

shovel will be refused to predict. In the experiments, false positives (FP%) and false

negatives (FN%) are used to evaluate the program’s error rates.

Table 6.10 and Table 6.11 show the results of FP% and FN% with given the differ-

ent thresholds of the fuzzy association degree for 13 and 34 lifespan. In the experiments,

the equivalence partition level value thresholds λ1 =0.00000114, λ2=0.000002, λ3=0.0045

is fixed for three time-series attributes respectively. It has been observed that to lower

level the thresholds of fuzzy association degree will increases the percentage of false

positive, and the result of 13 lifespan is better than 34 lifespan. Because in the experi-

mental data, there are just 4 shovel sets of data and 7 classes of lifespan data in 13 life-

span experiments, and there are 7 shovels and 16 classes of lifespan in 34 lifespan ex-

periments. The correlation of data in 34 lifespan is lower than in 13 lifespan, and the

probability of prediction error in 34 lifespan is higher than in 13 lifespan. That means the

data used in these experiments are not ideal. They are chosen just for they come from a

real application.
Table 6.10 FP% and FN% for 13 lifespan

Thresholds of
association

 degree
Error rates

0.6 0.5 0.4 0.3 0.2

FP% 22.2 27.2 27.2 23.1 23.1
FN% 75 100 100 null null

Table 6.11 FP% and FN% for 34 lifespan

 Thresholds of fuzzy
 Association

 degree
Error rates

0.6 0.5 0.4 0.3 0.2

FP% 37.5 57.8 56.5 55.6 55.6
FN% 57.8 75 75 null null

Chapter 6. Fuzzy Data Mining Prediction Technologies and Applications

113

6.6.2 Quality
Beside the error rate, other parameters have been used to measure the prediction perform-

ance, there are Sensitivity=t_pos/pos, Specificity=t_neg/neg, Precision=t_pos/(t_pos+t_neg), and

Accuracy=Sensitivity*(pos/(pos+neg))+Specificity*(neg/ (pos+neg)).

Table 6.12 shows all results with using different measures for both 13 lifespan and

34 lifespan. In the experiments, the equivalence partition level value thresholds are fixed

to λ1 =0.00000114, λ2=0.000002, λ3=0.0045, and the degree of the fuzzy association

threshold is 0.4.

Table 6.12 Results of the algorithm’s quality

 Quality
lifespan Sensitivity Specificity Precision Accuracy
13 lifespan 72.7 0 100 61.5
34 lifespan 76.9 25 90.9 40.7

The degree of fuzzy association threshold was set to 0.4, then all measures are ob-

served with different equivalence partition level value thresholds for 13 lifespan (the re-

sults is shown in Table 6.13. The settings of equivalence partition level value thresholds

are that λ1 means λ1=0.00000114, λ2=0.000002, λ3=0.0045, λ2 means λ1=0.000002,

λ2=0.0000025, λ3=0.0045, and the λ3 means λ1=0.000003, λ2=0.000003, λ3=0.0045). It

can be seen that the setting of equivalence partition level value thresholds is the most

important step in this method. From experiments, the value of λ in row 1 of Table 6.13

produces the best outcome for the four measures given.

Table 6.13 The measure with different partition level value thresholds for 13 lifespan

 Quality
partition thresholds

Sensitivity Specificity Precision Accuracy

λ1 8/11=72.7 0/2=0 1=100 8/13=61.5

λ2 6/12=50 0/1=0 1=100 6/13=46.2

λ3 5/13=38.5 0/0=null 1=100 5/13=38.5

6.6.3 Performance of the Algorithm
The algorithm was run on artificial datasets of size 13, 24, 33, …, 1000 lifespan.

Figure 6.3 shows that the algorithm is increasing quickly with the increasing size of data-

sets, because the large time-series data need to be dealt with for just adding a tuple into

the dataset.

An Investigation in Efficient Spatial Patterns Mining

114

Figure 6.3 The performance of algorithm

The performance of the algorithm

0
100
200
300
400

1
3

2
4

3
3

5
0

7
0

1
0
0

2
5
0

5
0
0

10
0
0

the size of lifespan

T
h
e

t
i
m
e

(
S
)

6.7 Summary

This chapter makes contribution to using data mining techniques to resolve the pre-

dicting problem. It has been found that using the fuzzy association degree with superpo-

sition approach could achieve reasonable and effective results.

For the future work, it will be carried out formally to characterize the relative

strengths and weaknesses of various prediction tests and to study the confidence of

prediction results. Other interesting directions are mining a functional dependency rela-

tionship between conditional attributes, and mining crucial factors which affect plant

growing, which could be advantageous to protect and retain rare and endangered plants.

In next Chapter, A new approach to deal with the object fusion problem, based on a

special cell with a length that is equal to the error interval, is proposed. The key idea of

this method is to find fusion sets by using cell-by-cell processing instead of object-by-

object processing, thereby avoiding the computation of distance between two objects

(Wang and Li, 2006).

Chapter 7. A Cell-Based Spatial Object Data Fusion Method

115

Chapter 7

A Cell-Based Spatial Object Fusion Method

The object fusion problem occurred in geographic information system is also met in spatial data

warehouses and is a very important problem in the spatial field. A cell-based spatial object fusion

method in spatial data sets, which uses only locations of objects without distance between two

objects involved, is described and its performance is measured in terms of recall and precision.

This algorithm can work well when locations are imprecise and each spatial data set represents

only some of the real-world entities. Results of extensive experimentation are presented and dis-

cussed.

7.1 Overview

With huge amounts of spatial data having been accumulated in the last two dec-

ades by government agencies and other organizations for various purposes such as land

information management, asset and facility management, resource management and

environment management, it is a pressing task to integrate information from heteroge-

neous information sources. When integrating data from heterogeneous information

sources, one is faced with the task of fusing distinct objects that represent the same real-

world entity. This is known as the object-fusion problem.

In the various researches on object fusion, some have considered that objects have

identifiers (e.g., keys) (Papakonstantinou et al, 1996; Smal et al, 2004), while in (Beeri et

al, 2004) and in (Minami, 2000) studied this problem without global identifiers. The lack

of global identifiers makes the object-fusion problem much more difficult. In addition, in

Bruns’s paper (Bruns and Egenhofer, 1996), topological similarity is used to find corre-

sponding objects, while ontology is used for that purpose in (Fonseca and Egenhofer,

1999; Fonseca et al, 2002; and Uitermark et al, 1999). Finally, the problem of how to

fuse objects, rather than how to find fusion sets, was studied in (Papakonstantinou et al,

1996).

A spatial database or data warehouse stores spatial objects, or objects for short.

Each object represents a single, real-world, spatial entity. An object has associated spa-

tial and non-spatial attributes. Spatial attributes describe the location, height, shape and

topology of the entity, while non-spatial attributes are usually place-name, temperature,

humidity, etc. Object fusion is much harder without global identifiers. When fusing ob-

jects, spatial and non-spatial attributes should be used in lieu of global identifiers. Since

An Investigation in Efficient Spatial Patterns Mining

116

location is the only property that is always available for spatial objects, the location-

based fusion problems are investigated, assuming that each dataset has, at most, one

object per real-world entity, and locations are given as points. Thus, the fusion problem

in this research is one-to-one.

Using only object’s location, many efficient algorithms have been developed, such

as the one-sided nearest-neighbour join (Minami, 2000), the mutually-nearest method

(Beeri et al, 2004), the probabilistic method and the normalized-weights method (Beeri et

al, 2004). The mutually-nearest method is an improvement of the one-sided nearest-

neighbour join, and the probabilistic method and the normalized-weights method are

based on a probabilistic model which are shown in (Beeri et al, 2004) achieve the best

results under all circumstances. Although these methods are very fresh and novel, they

need to compute the distance between two objects. This unfortunately is not a simple

task, because the locations of objects are spatial attributes. As an alternative, a cell-

based algorithm for finding corresponding objects that should be fused is presented in

the chapter. In the approach, a special cell is defined. The cells possess some peculiar

properties used to help finding fusion objects. The results of extensive tests that illustrate

the validity and efficiency of this algorithm are also presented.

The main contribution of the work is finding corresponding objects effectively with-

out the distance between two objects. The rest of this chapter is organized as follows. In

Section 7.2, the problem is defined formally and how to measure the quality of the result

of a fusion algorithm is described. Section 7.3 describes the fusion algorithm proposed.

The testes and their results are discussed in Section 7.4. The summary is written in Sec-

tion 7.5.

7.2 Basic Definitions and Measurements

In general, a fusion algorithm may process more than two datasets, generating fu-

sion sets with, at most, one object from each dataset. In the research, the case of two

datasets and investigate the problem of finding the correct fusion sets are considered,

under the following assumptions. First, in each dataset, distinct objects represent distinct

real-world entities. This assumption is realistic, since a dataset represents a real-world

entity as a single object. Second, only locations of objects are used to find the fusion

sets. This assumption is feasible, since spatial objects always have information about

their locations. Third, obviously, corresponding objects are within a distance D, but are

not always the closest to each other, since locations are uncertain.

The two datasets are denoted as },,{ 1 maaA L= and },,{ 1 nbbB L= respectively.

Two objects Aa∈ and Bb∈ are corresponding objects, if they represent the same en-

Chapter 7. A Cell-Based Spatial Object Data Fusion Method

117

tity. A fusion set that is generated from A and B is either a singleton (i.e., contains a sin-

gle object) or has two objects, one from each dataset. A fusion set },{ ba is correct if a

and b are corresponding objects. A singleton fusion set }{a is correct if a does not

have a corresponding object in the other dataset.

In the absence of any global key, it is not always possible to find all the correct fu-

sion sets. So, similarly to Beeri’s work (Beeri et al, 2004), the quality of a fusion algo-

rithm is measured in terms of recall and precision. Recall is the percentage of correct

fusion sets that actually appear in result. Precision is the percentage of correct fusion

sets out of all the fusion sets in the result. Formally, let the result of a fusion algorithm

have rN fusion sets, and let
r
cN sets be those that are correct. Let E denote the total

number of real-world entities that are represented in at least one of the two datasets.

Then the recall is EN r
c / and the precision is

rr
c NN / .

Factors affecting recall and precision are various. One factor is the error interval.
The error interval is a bound on the distance between an object in the dataset and the

entity it represents. The density of a dataset is the number of objects per unit of area.

The chosen object is the number of objects in a circle with a radius that equals to the

error interval. Apparently, the chosen object is the product of the density and the area of

that circle. Intuitively, for a given entity, the chosen object is an estimate of the number of

objects in the dataset that could possibly represent that entity. It is more difficult to

achieve high recall and precision when the choice object is large.

Suppose that the datasets A and B have m and n objects, respectively. Let c be the

number of corresponding objects. Then the number of distinct entities that are repre-

sented in the two datasets is m+n-(c/2). The overlap between A and B is c/(m+n). The

overlap is a measure of the fraction of objects that have a corresponding object in the

other set. One of the challenges one faces is to develop an algorithm that has high recall

and precision for all degrees of overlap.

7.3 A Cell-Based Method Finding Fusion Sets

In this section, a cell-based method is proposed for solving the object-fusion prob-

lem. The method is based on the intuition that two corresponding objects must be within

a distance D (it is practically the error interval D), but the two objects are not always the

closest. The recall and precision of this method depend on specific characteristics of the

given datasets, e.g., the chosen objects of the datasets, the degree of overlap, etc.

An Investigation in Efficient Spatial Patterns Mining

118

7.3.1 The Method
The four methods discussed in (Beeri et al, 2004; Minami, 2000) all depend on the

distance between two objects in two datasets },,{ 1 maaA L= and },,{ 1 nbbB L= . We can

call them distance-based methods. Computing distance between objects is an expensive

and tedious task. So, the idea of the new method is to find fusion sets by using cell-by-

cell processing instead of object-by-object processing, thereby avoiding the computation

of distance between two objects. In addition, the method computes a confidence degree

for every fusion set. The confidence degree indicates the likelihood that the fusion set is

correct.

The final result is produced by choosing the fusion sets which confidence is above

a given threshold. The threshold)10(≤≤ττ is given by the user. Typically, increasing

the threshold will increase the precision and lower the recall, while decreasing the

threshold will increase the recall and decrease the precision. Controlling the recall and

precision by means of a threshold is especially useful when the datasets have a large

number of objects.

In the following, a special cell that is used in computing fusion sets is defined, and

then the properties of this cell are discussed. For ease of presentation, suppose the data

objects are 2-D (the case of higher dimensions will be the same). Each of the two data-

sets A and B is quantized into cells or squares of length 22
Dl =

 (This D is the error interval

that is chosen by the user or obtained by a special process). Let Cx,y denote the cell that

is at the intersection of row x and column y. The layer 1 (L1) neighbours of the cell Cx,y

are the immediately neighbouring cells of Cx,y, defined in the usual sense, that is,

 },1,1|{)(,,,,1 yxvuvuyx CCyvxuCCL ≠±=±== (1)

A typical cell (except for cell on the boundary of the cell structure) has 8 L1

neighbours.

Definition 7.1 Two objects a and b are called the same cell objects, if Aa∈ and

Bb∈ lie within the same cell Cx,y.

Property 7.1 Any pair of the same cell objects is at most distance 2
D

 apart.

Definition 7.2 If Cu,v is a L1 neighbour of Cx,y, then any object vuCa ,∈ (Aa∈) is the

L1 neighbour object with respect to any object yxCb ,∈ (Bb∈).

The definition of Bb∈ is the L1 neighbour from Aa∈ can be defined similarly.

Chapter 7. A Cell-Based Spatial Object Data Fusion Method

119

Property 7.2 If Cu,v is a L1 neighbour of Cx,y, then any object vuCp ,∈ and any object

yxCq ,∈ is at most distance D apart.

Property 7.1 is valid because the length of a cell’s diagonal is 222
22 DDl ==

.

Property 7.2 is valid too, because the distance between any pair of objects in two cells

cannot exceed twice the length of a cell’s diagonal. From these two properties, one can

say that any pair of objects, which they are the same cell objects or one is the L1

neighbour object of other’s, may be a pair of fusion set.

The layer 2 (L2) neighbours of Cx,y are those additional cells within 3 cells of Cx,y,

i.e.,

 }),(,3,3|{)(,,,1,,,2 yxvuyxvuvuyx CCCLCyvxuCCL ≠∉±=±== (2)

A typical cell (except for any cell on or near a boundary) has 72-32=40 L2 cells. Note

that layer 1 is 1 cell thick and the layer 2 is 2 cells thick. L2 chosen in this way satisfies

the following property.

Definition 7.3 If Cu,v is a L2 neighbour of Cx,y, then any object vuCa ,∈ (Aa∈) is the

L2 neighbour object with respect to any object yxCb ,∈ (Bb∈).

The definition of Bb∈ is the L2 neighbour object from Aa∈ can be defined simi-

larly.

Property 7.3 If yxvu CC ,, ≠ is neither a L1 nor a L2 neighbour of Cx,y, then any object

vuCp ,∈ and any object yxCq ,∈ must be greater than the distance D apart.

Since the combined thickness of L1 and L2 is 3 cells, the distance between p and q

must exceed
DDl >=

22
33

. The error interval D is a bound on the distance between an ob-

ject in the dataset and the entity it represents, so the following definition can be given.

Definition 7.4 Any object
yxCa ,∈ (Aa∈) is an isolated object if and only if there

is not any object Bb∈ in the same cell, L1 neighbour and L2 neighbour of object a .

The definition of an isolated object of Bb∈ can be defined similarly.

The intuition behind the cell-based method is that corresponding objects are within

a distance D. So, in the cell-based method, a two-object fusion set is created for each

pair of the same cell objects and the L1 neighbour objects. A singleton fusion set is cre-

ated for each isolated object.

Now, the degree of confidence of fusion sets will be defined. Consider a pair of the

same cell objects or L1 neighbour objects (i.e., Aa∈ , Bb∈ and yxCba ,, ∈ , or Aa∈ ,

An Investigation in Efficient Spatial Patterns Mining

120

Bb∈ and { yxCa ,∈ ,)(,1 yxCLb∈ or)(,1 yxCLa∈ , yxCb ,∈ }). Let Bcount(Cx,y) be the number

of B’s objects in Cx,y, and Bcount(L1(Cx,y)) be the number of B’s objects in L1 neighbours of

Cx,y. The definitions of Acount(Cx,y) and Acount(L1(Cx,y)) are similar. The confidence degree of

the fusion set },{ ba is defined as follows.

))(()(
1

))(()(
1}),({

,1,,1, yxcountyxcountyxcountyxcount CLACACLBCB
baconfidence

+
×

+
= (3)

The confidence is defined as the square root in order for it to be not too small. If a

is the only one of the A’s object in Cx,y and L1(Cx,y) and b is the only one of the B’s object

in Cx,y and L1(Cx,y), then its confidence is the largest, and is equal to 1. The addition of

the same cell objects or L1 neighbour objects of A or B has reduced the confidence of the

fusion set },{ ba .

Now consider an isolated object Aa∈ (yxCa ,∈), i.e., any Bb∈ is not in the Cx,y and

L1 of Cx,y. Let Bcount(L2(Cx,y)) be the number of B’s objects in L2 neighbours of Cx,y. The

confidence degree of the fusion set { a } is defined as follows.

))((1
1})({

,2 yxcount CLB
aconfidence

+
= (4)

The confidence will be the largest when the objects of L2(Cx,y) is null, and is equal to

1. The confidence of a fusion set with a single object from Bb∈ is defined similarly.

A threshold can be used to increase the precision of result by choosing only these

fusion sets that have a confidence above the threshold. Consequently, some objects

from given datasets may not be in the result. If the number of these objects is not so

small, one have to perform again by using a smaller D, and again if necessary. For fewer

objects, a less restrictive approach is to discard two-object fusion sets with a confidence

below the threshold, but to add their objects as singletons.

In the method, the confidence of each cell is computed by using expression (3) or

(4). When the confidence is above the threshold, the two objects in this cell or its L1

neighbour cells will be paired randomly (Because two corresponding objects must be

within a distance D, but the two objects are not always the closest).

The main advantage of the cell-based method over the traditional methods is effi-

ciency and lower sensitivity to the degree of overlap between the two datasets. In par-

ticular, it may perform well even when neither datasets is covered by the other one, be-

cause a fusion set is paired randomly within a distance D.

Chapter 7. A Cell-Based Spatial Object Data Fusion Method

121

7.3.2 The Algorithm
The algorithm of the cell-based method is designed as follows.

1). For mq ,,2,1 L← , 0,0 ←← B
q

A
q CountCount

2). For each object Aa∈ do
a. Map a to its appropriate cell Cq

b. Increment
A
qCount by 1

3). For each object Bb∈ do

a. Map b to its appropriate cell Cq

b. Increment
B
qCount by 1

4). For mq ,,2,1 L← do

a. ∑∈
+←

)(2
1 qCLi

A
i

A
q

A
q CountCountCount

b. ∑∈
+←

)(2
1 qCLi

B
i

B
q

B
q CountCountCount

c. If
τ>× B

q
A
q CountCount 22

11

 do

For each object Aa∈ in the Cq, find out an object Bb∈ in this Cq or the L1 of Cq at ran-

dom and label },{ ba as a fusion set, provided the b has not already been labeled.

d. If 02 =
B
qCount or 02 =

A
qCount do

i. ∑∈
←

)(3
2 qCLi

B
i

B
q CountCount

, ∑∈
←

)(3
2 qCLi

A
i

A
q CountCount

ii. If
τ>B

qCount 3

1

 do
Label each object Aa∈ and qCa∈ as a singleton set { a }.

iii. If
τ>A

qCount 3

1

 do

Label each object Bb∈ and qCb∈ as a singleton set { b }.
5).If there are some objects that have not been labeled, change the size of the cell and repeat the 1-4

(note steps 2) and 3) only quantize these un-labeled objects to its appropriate cell at this time),
until all objects are labeled.

Steps 2) and 3) of the algorithm quantize each object of dataset A and B to its ap-

propriate cell. Step 4) labels all fusion sets and singleton sets of satisfying threshold τ .

Step 5) repeats all the processes if D is set smaller, in order to deal with unlabelled ob-

jects.

7.3.3 Complexity Analysis
Let us analyze the complexity of this algorithm. Step 1) takes O(m) time, where

m<<NA+NB is the total number of cells (NA and NB are the number of objects in dataset A

and B respectively). Steps 2) and 3) take O (NA) and O (NB) time respectively. Step 4) is

the most complicated step. This step is the core of the algorithm. It divides NA+NB ob-

jects to m cells, and conquers them. In detail, the computing of 4(a), 4(b) and 4(d)i is fi-

An Investigation in Efficient Spatial Patterns Mining

122

nite, because a cell’s neighbours, L1 and L2, are finite. For threshold τ , the number of

A’s objects and B’s objects in Cq should be less than
A
qk and

B
qk respectively (

A
qk and

B
qk

are constants). Therefore, O (B
q

A
q kk +) time is required for each cell Cq (i.e., the time to

perform an iteration of 4(c), 4(d)ii and 4(d)iii). Here, in the worst case, step 4) takes

)())((
1

BA

m

i

B
i

A
i NNOkkO +<<+∑

=

. For Step 5), if suppose the number of the loop iteration by

Step 5) is k (this k will depend on the initial value of the D and the distribution of the data

sets), and the complexity of following loop iteration will not exceed the first loop, there-

fore, the complexity of the algorithm is))(())((
1

BA

m

i

B
i

A
iBA NNkOkkNNmkO +×≈++++× ∑

=

.

Note that the run-time will increase if D is reset in Step 5), although the complexity is un-

altered. In Section 7.4, experimental results will show the efficiency of this algorithm.

7.4 Testing the Method

The method is tested using synthetic datasets, because there are not a sufficient

number of real-world datasets to test our algorithm under varying degrees of density and

overlap. Moreover, in real-world datasets, it is not always possible to determine accu-

rately the correspondence between objects and real-world entities.

Following the method of the paper (Beeri et al, 2004), a synthetic dataset generator

is implemented, which is a two-step process. First, the real-world entities are randomly

generated. Second, the objects in each dataset are randomly generated, independent

from the objects in the other dataset.

In the tests, 500 real-world entities is created in a square area of 2,000 * 2,000 me-

ters, a minimal distance of 15 meters between entities, and an error interval of 30 meters

for each dataset. And then three pairs of datasets were randomly generated. The three

pairs had 100, 300, and 500 objects in each dataset, respectively (Figure 7.1 gives a

visual view of the random pairs of datasets, with 100 and 500 objects). Thus, each pair

had a different degree of overlap and density (500 objects in each dataset means a

complete overlap).

Chapter 7. A Cell-Based Spatial Object Data Fusion Method

123

(a) 100 objects in each dataset (b) 500 objects in each dataset

Figure 7.1 A visual view of the random pairs of datasets, with 100 and 500 objects

The recall and the precision of the method are measured for every pair of datasets.

In all tests, the initial value of D is 30 meters and the next iterative value of D is 9.0×D .

When the threshold τ was 0.0, for the datasets with 100 objects, the recall and the pre-

cision are both 0.93; for 300 objects, they are both 0.74, and for 500 objects, they were

0.68 and 0.59, respectively.

Figure 7.2 presents the recall and the precision as a function of the thresholds τ .

From the tests, one can see that this algorithm is efficient and is insensitive to the degree

of overlap between the two datasets. In particular, it may perform well even when neither

dataset is covered by the other one (The values of the recall and the precision are all

larger than 0.5), possibly because a fusion set is paired randomly within a distance D.

One also can see that the recall and the precision have a low sensitivity to the threshold
τ . This property will make the method useful in real applications.

An Investigation in Efficient Spatial Patterns Mining

124

(a) The results of 100 objects (b) The results of 300 objects

(c) The results of 500 objects

Figure 7.2 Recall and precision as a function of the threshold values

Analyzing the effect of the initial value of the D on the performance of the algorithm,

Figure 7.3 presents the recall and the precision as a function of the value of the D, and

Figure 7.4 presents the running time as a function of the D. These tests tell us that the

initial value D will have a significant effect on the results and efficiency of the algorithm

(for example, the running time when D is set to 120 is more then two times of the value

when D is set to 90. This means that the loop iteration k in initial D set to 120 is at least

bigger than k′+2 (k′ is the number of the loop iterations when D is initially set to 90)).

From Figure 7.4, the best results occurred when the initial value of D is the error interval

(in these experiments, the threshold τ is set to 0.4).

 The impact for algorithm to change the size D

0.00
0.20
0.40
0.60
0.80
1.00

20 30 50 60 90 120 150

The initial values of the D

P
re
c
is
i
on

&
R
e
ca
l
l

Precision

Recall

Figure 7.3 The impact for algorithm’s precision to change the size of the D

Chapter 7. A Cell-Based Spatial Object Data Fusion Method

125

 Running time(ms)

0

50000

100000

150000

200000

20 30 50 60 90 120 150

The initial values of the D

R
u
n
n
i
n
g

T
i
m
e
(
m
s
)

Time

Figure 7.4 The impact for algorithm’s time to change the size of the D

Figure 7.5 presents the impact for algorithm efficiency with changing the thresholds
τ . From the tests, one can see that the running time (ms=millisecond) will increase

when the threshold values τ is increasing, while the efficiency will be decreased when

the overlap is increasing, since the number of iterations of the algorithm is increased.

The thresholds (0.3-0.5) should be reasonable choices from Figure 7.5.

The threshold's impact to running time

0

50000

100000

150000

200000

0
.
0

0
.
1

0
.
2

0
.
3

0
.
4

0
.
5

0
.
6

0
.
7

0
.
8

0
.
9

The threshold values

T
h
e

r
u
n
n
i
n
g

t
i
m
e
(
m
s
)

500-100

500-300

500-500

Figure 7.5 Running time as a function of the threshold values

7.5 Summary

A new approach to deal with the object fusion problem, based on a special cell with

a length that is equal to the
22

D
 (D is the error interval), is developed. The key idea of

this method is to find fusion sets by using cell-by-cell processing instead of object-by-

object processing, thereby avoiding the computation of distance between two objects.

Algorithm’s measures of recall, precision and running time for the various degrees of

overlap and thresholds are shown in extensive experiments.

The future work is to combine this approach with grid-clustering approach to spatial

data mining (Wang et al, 1997; Agrawal et al, 1998; and Shi et al, 2003). It will be studied

An Investigation in Efficient Spatial Patterns Mining

126

how to utilize locations that are given as polygons (e.g., a mountain) or lines (e.g., a

river), rather than just points.

In next Chapter, a fuzzy clustering method based on domain knowledge is dis-

cussed (Lu et al, 2007). In this method, the transitive closure is not computed by recur-

sion, so the new algorithms save much time.

Chapter 8. A Fuzzy Clustering Method Based on Domain Knowledge

127

Chapter 8

A Fuzzy Clustering Method Based on Domain
Knowledge

Clustering is an important task in data mining. Fuzzy clustering is on the significant status in clus-

tering, which can deal with all types of datasets. The fuzzy clustering method in this chapter is

based on domain knowledge, from which the tuples’ semantic proximity matrix can be obtained,

then two fuzzy clustering methods are introduced, which both started from semantic proximity

matrix, so the results of fuzzy clustering can be instructed by domain knowledge. The two fuzzy

clustering methods are Natural Method (NM) and Graph-Based Method (GBM), which are both

controlled by a threshold that is confirmed by polynomial regression. Theoretical analysis testify

the corrective of the new methods, the extensive experiments on synthetic datasets compare the

performance of the new approaches with that of Modified MM approach in literature (Wang, 2000)

and highlight the benefits of the new approaches, and the experimental results on real datasets

discover some rules which are useful to domain experts.

8.1 Overview

Motivation: Clustering is an important task in data mining, which can discover use-

ful information from plenty of datasets. But in practice, many types of datasets often

need to be dealt with. In this chapter, the relationships from different plant species need

to be discovered, the plant datasets are described by several data types, these kinds of

problems are often met. So the fuzzy clustering methods are studied, which can deal

with all types of datasets.

Related Works: Clustering has been studied extensively for 40 years and across

many disciplines due to its broad applications. Most books on patterns classification and

machine learning contain chapters on cluster analysis or unsupervised learning. Meth-

ods for combining variables of different types into a single dissimilarity matrix were intro-

duced by Kaufman and Rousseeuw in (Kaufman and Rousseeuw, 1990). For partitioning

methods, the k-means algorithm was first introduced by MacQueen in (MacQueen,

1967). The k-medoids algorithms of PAM and CLARA were proposed by Kaufman and

Rousseeuw in (Kaufman and Rousseeuw, 1990). The CLARANS algorithm was pro-

posed by Ng and Han in (Ng and Han, 1994). For density-based clustering methods,

DBSCAN was proposed by Ester, Kriegel, Sabdae, and Xu in (Ester et al, 1996). The

BIRCH algorithm was developed by Zhang et al in (Zhang et al, 1996). For fuzzy cluster-

An Investigation in Efficient Spatial Patterns Mining

128

ing methods are discussed in (Kaufman and Rousseeuw, 1990; Liu and Tian, 2001;

Wang, 2000). These methods, however, are not efficient due to iteration.

Contributions: The contributions of the chapter are as follows. (1). In order to get

the tuples’ semantic proximity matrix, domain knowledge is used in fuzzy clustering. (2).

introducing two clustering methods: Natural Method and Graph-Based Method, both of

which are controlled by a threshold, and the threshold is confirmed by polynomial re-

gression. (3). the experiments are on synthetic and real datasets respectively.

Organization: The rest of the chapter is arranged as below: In Section 8.2, the

classical method for fuzzy clustering—Matrix Method is expatiated with an example. In-

troducing the two new methods, designing algorithms and confirming the threshold are

all in Section 8.3. Section 8.4 discusses correctness and complexity of the new algo-

rithms. Evaluation on experiments is in Sect. 8.5, the last is the summary.

8.2 Basic Concepts and Methods

Fuzzy clustering in this chapter has 3 steps:

(1). Reading all tuples in and replacing each attribute value by leaf concept in con-

cept hierarchy tree;

(2). Computing every two tuples’ semantic proximity and forming proximity matrix S

according to domain knowledge—Concept Hierarchy Trees;

(3). Executing clustering using the proximity matrix S.

8.2.1 Basic Concepts
Concept hierarchy tree. Each attribute Ai (ki ≤≤1 , k is the number of attributes)

has a concept hierarchy tree iH , which can be obtained from domain experts. The con-

cept hierarchy trees of attributes “plant” and “elevation” in the plants dataset of “Three

Parallel Rivers of Yunnan Protected Areas” are shown in Figure 8.1. The definitions of

height, depth and level of node are the same with the Chapter 6 (see Definition 6.5).

It can be seen from Figure 8.1 that the higher level concepts are the generalization

of lower level concepts, If the attribute’s value is continuous, then leaf concepts are a

interval with continuous values, one can use the method in literature (Kohavi and Sa-

hanu, 1996; Tay and Shen, 2002) to discretize them, then deal with them according to

discrete attribute values.

Chapter 8. A Fuzzy Clustering Method Based on Domain Knowledge

129

3

2

1

0

Level

sclerophyllous
forest

Warm value
vegetation

alp
meadow Value

scrub
Liushitan
zhibei

Representive plants

Scrub or alp
meadow

Alp
Scrub

Pure or mixed forest

Conifer forest

Value vegetation.

Cinnamomum
bejolghota

Abies
nukiangensis
Cheng

Dianjing l.g Melissa axillaris Pincea
likiangensis

Cyclobalalio
psis
glaucoides

Solanum
deflexicarpum C.

Tsuga
dumosa (D.
Don)
Eichler

[800,3000] [3000, 4000]

[2000, 3000] [3000, 4000]

[1000, 1500] [800, 2400]

[800, 2200] [1500, 2400]

[2400, 3000]

[800, 2400] [3000, 3700]

[2000, 3000]

[800, 4000]

1

4

3

2

0

level

Figure 8.1. Concept hierarchy trees of attributes “plant” and “elevation”

Computing the tuples’ proximity matrix S using concept hierarchy tree. Table

8.1 is parts of plants’ dataset of “Three Parallel Rivers of Yunnan Protected Areas”. At

first, each attribute value in table 8.1 is replaced by corresponding leaf concept of con-

cept hierarchy tree in Figure 8.1, and then the semantic proximity between attribute’s

values are computed using the equation (1) in definition 8.1.

Table 8.1 Plant and elevation datasets
Tuple ID Plant Elevation
t1 Cinnamomum bejolghota [1000,1500]
t2 Tsuga dumosa (D. Don) Eichler [2400,3000]
t3 Abies nukiangensis Cheng [3000,3700]
t4 Melissa axillaris [2000,3000]
t5 Pincea likiangensis [2000,3000]
t6 Cyclobalaliopsis glaucoides [3000,4000]
t7 Dianjing l.g [1500,2400]
t8 Solanum deflexicarpum C. [800,2200]
t9 Tsuga dumosa (D. Don) Eichler [2400,3000]
t10 Liushitan zhibei [2400,3000]

Definition 8.1. Attribute’s Semantic proximity (Attribute’s proximity, for short):

For two leaf concepts in concept hierarchy tree 21 , ff , the attribute’s semantic proximity

is defined as follows:

An Investigation in Efficient Spatial Patterns Mining

130

⎩
⎨
⎧

≠−
=

=
2121

21
21 /)),((1

,1
),(

ffHffPl
ff

ffSP
(1)

),(21 ffP returns the common father-node of 21, ff ; and)(fl returns the level of f ; H

is the Height of the tree. So the semantic proximity between attribute values can be

computed using domain knowledge—concept hierarchy trees.

Definition 8.2. Tuples’ semantic proximity (Tuples’ proximity): Suppose there

are two tuples),...,,(211 kaaat =),...,,(, 212 kbbbt = , the semantic proximity between tuples

21 , tt is defined as the equation (2).

2/1

1

2
21)),((),(⎥

⎦

⎤
⎢
⎣

⎡
×= ∑

=

k

i
iii baSPWttSP

(2)

Where iW is the weight of attribute i.

Computing all tuples’ proximity between tuples for a dataset (for example, Table

8.1) forms a proximity matrix S (nnijsS ×=)(, where 1=ijs if ji = ; and),(jiij ttsps = if

ji ≠). S is reflexivity, symmetry but not transitive. So S is a similar matrix not equivalent

matrix.

8.2.2 Fuzzy Clustering Using Matrix Method
Using matrix method (MM, for short) to realize fuzzy clustering has been introduced

by Liu and Tian in (Liu and Tian, 2001). The process of the fuzzy clustering is: The simi-

lar matrix S is self-multiplied repeatedly, where)),(()(2
kjikkij ssMINMAXs = , until

kk SS =2 .
kS 2
 is called as a fuzzy equivalence matrix (i.e., kkk

ji
k
ij

k
ij SSsss === 2,,1)

Example 8.1. According to concept hierarchy trees in Figure 8.1, the semantic

proximity between tuples in table 8.1 form a similar matrix S shown in Figure 8.2(a)

(Supposed weight are both 1/2):

Chapter 8. A Fuzzy Clustering Method Based on Domain Knowledge

131

S =

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

171.029.018.0035.042.0071.035.0
71.0118.029.023.059.035.047.0129.0
29.018.0153.0018.029.0018.035.0
18.029.053.0147.029.018.023.029.059.0
023.0047.0123.0029.024.047.0
35.059.018.029.023.0171.047.059.029.0
42.035.029.018.0071.01035.018.0
047.0023.029.047.00147.024.0
71.0118.029.024.059.035.047.0129.0
35.029.035.059.047.029.018.024.029.01

The similar matrix S multiplies itself repeatedly, an equivalent matrix 4S (84 SS = ,

so 4S is the equivalent matrix) can be obtained. The clustering result can be obtained by

setting a threshold. If the threshold λ =0.44, the level value matrix 4
44.0S is obtained as

Figure 8.2(b) (the value becomes 1 if it is greater thanλ , otherwise zero). The clustering

result is ,,,,(),,,{(5432876144.0 ttttttttT =)}, 109 tt , and if setting the threshold is 48.0=λ , the

result is),,{(87148.0 tttT =)}(),(),,,,(63109542 ttttttt ， .

A modified matrix method (MMM, for short) is presented in Chapter 2, and the main

modified idea is that it does not deal with the value “0” in similar matrix (i.e., to avoid

meaningless looping) and saves running time, especially when the number of 0 is very

large. The new methods of this chapter also start from the similar matrix S.

8.3 New Algorithms for Fuzzy Clustering

8.3.1 Natural Method (NM)
It is from a simple idea, which directly uses the similar matrix S to process cluster-

ing. At first, saves the nonzero elements (proximities) and their rows, columns in up-

triangular of the similar matrix in three arrays a[], v[] and w[], then scans the three arrays

to get clustering result. The method is described as below:

If two tuples (that is v[i] and w[i]) have not been searched and the proximity (a[i]) is

bigger than the thresholdλ , then putting them in a new category;

If only one tuple has been searched, and proximity is bigger thanλ , put the tuple

which has not been searched into the category possesses the other tuple.

If two tuples have been both searched and the proximity is bigger thanλ , then

combining the two categories which the two tuples belonged to into one.

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

1100011110
1100011110
0011100001
0011100001
0011100001
1100011110
1100011110
1100011110
1100011110
0011100001

4
44.0S

Figure 8.2. An example of fuzzy clustering process

(a). the similar matrix S (b). the level value matrix 4
44.0S

An Investigation in Efficient Spatial Patterns Mining

132

So, the clustering result can be obtained by scanning three arrays a[], v[] and w[]

once. The algorithm is given in following.

Algorithm 8.1 Natural Method for Fuzzy Clustering (NM)

Input: the nonzero elements (proximities) and their rows, columns in up-triangular of
similar matrix a[], v[], w[]

Output: classifications

Method:
(1) For i:=1 to n do //n is the number of tuples

 Cla[i]:=0; //the classification values of tuple i are initialized to 0
 t:=0;
(2) For i:=1 to m do // m is the number of the nonzero elements in similar matrix S
(3) If a[i]>= λ then

 {
(4) If Cla[v[i]]=0 and Cla[w[i]]=0 then

 {t:=t+1; Cla[v[i]]:=t; Cla[w[i]]:=t}
(5) Else if (Cla[v[i]]=0 and Cla[w[i]]<>0) then

Cla[v[i]]:= Cla[w[i]]
Else if (Cla[v[i]]<>0 and Cla[w[i]]=0) then

Cla[w[i]]:= Cla[v[i]]
(6) Else //the two tuples have been scanned
 Changing the classification values of the tuples that they has the

classification values Cla[v[i]] and Cla[w[i]] into the same one;
 };

8.3.2 Graph-Based Method (GBM)
A graph (G (V, E)) can be stored by a matrix or adjacent table. It is expressed with

an adjacent table here. Taking the tuples as vertexes of graph, and the proximity is as

the weight of arcs. The table head Header is a dynamic array, which stores the tuple id

of each tuple in sequence. Each node of links has three fields: node.col, node.value and

node.next, and they store column, proximity and pointer points to the next node respec-

tively. When constructing adjacent table, the arcs which’s weights smaller thanλ can be

directly deleted (the proof will be in section 8.4). Therefore, a collection of non-

connective sub-graphs, these sub-graphs are equivalent partition to original graph (see

the proof in section 8.4), is obtained.

The algorithm is as follows:

Algorithm 8.2. The Graph-Based Method for Fuzzy Clustering (GBM)

Method: 1) Create(); // Construct adjacent table only to the arc whose weight is bigger
than λ

 2) Depth_Scan(1,1); // Start from the first element of Header, execute depth
first search to the adjacent table

3) Execute depth first search to the node that has not been searched, and
stopping search until all nodes have been searched.

Chapter 8. A Fuzzy Clustering Method Based on Domain Knowledge

133

The step 2）in algorithm 8.2 only scanned (searched) one sub-graph, and

searched all sub-graphs in step 3). The procedure Create() is designed as below.

Procedure Create()
(1) for i:= 1 to m do //m the number of the nonzero elements in similar matrix S

begin
(2) new node node1;
(3) new node node2;

 node1.col := w[i]; node1.value := a[i]; node1.next := null;
node2.col := v[i]; node2.value := a[i]; node2.next := null;

(4) if a>λ then
 begin
(5) if (Header[v[i]].next=null) //to insert the node1

Header[v[i]].next:=node1
(6) else

 insert the node1 into the header[v[i]] link;
if (Header[w[i]].next=null) // to insert the node2

 Header[w[i]].next:=node2
else

 insert the node2 into the header[w[i]] link;
end;

end.

8.3.3 Confirming the Threshold λ
Carefully analyzing Matrix Method you will find, it implements equivalent partition

according toλ after having obtained equivalent matrix, so you can change λ to get a

reasonable result. While the threshold λ is used in the beginning of the new algorithms,

the whole clustering process has to be performed again ifλ changed. Therefore, confirm-

ing the thresholdλ is a very important task in the new methods. Here confirmsλ by

polynomial regression, which is enlightened by the method in (Zhang et al, 2004). The

main steps are as below.

(1). Confirming aλ by Polynomial Regression. Arraying the nonzero elements

(proximities) in up-triangular of similar matrix by descent, then executing thrice-

polynomial regression to points who’s Y-coordinates are these proximities, the inflexion

of curve is the threshold λ .

(2). Computing the nearest k entries values from the former λ and choosing a λ .

Computing the nearest k entries values from the λ obtained in step (1) and saving them,

which are a possible scopes of finalλ , then choosing a givenλ from the scopes to per-

form clustering according to the need of user.

An Investigation in Efficient Spatial Patterns Mining

134

The matrix method has not any indication to confirm λ , so user can only try one by

one, while the new algorithms firstly confirm a possible scope of threshold λ , user can

choose λ from the scope. If it is not reasonable, one can choose over again from the

scopes, and two clustering algorithms in this chapter are not time-consuming ()*(mnO)),

which will be better than trying one by one in practice (It will be shown by experiments in

Section 8.5.1).

8.4 Algorithm Analysis

8.4.1 Correctness Analysis
Illustration. For the similar matrix S in example 8.1, the fuzzy clustering is exe-

cuted using GBM with the threshold 44.0=λ and 48.0=λ . Figure 8.3(a), Figure 8.3(b)

shows the sub-graphs after deleting the arcs whose weights are smaller thanλ . After

depth first search, the partition results can be obtained, which are the same as the re-

sults of the MM. The NM can obtain the same results too.

6

3

5
4

7

8

1
2

10

9

Figure 8.3(a) Sub-graph when 44.0=λ Figure 8.3(b) Sub-graph when 48.0=λ

Theoretical analysis. Analyzing the Matrix Method or Modified MM in section 8.2,

the following rules will be found:

①The matrix multiplies itself in fact computes the transitive closure.

②Given a threshold λ , the values smaller thanλ can be replaced by zero, which

cannot affect the equivalent matrix .

Proof. Supposed []jiS , and []jiS , are values in similar matrix S and equivalent

matrix S respectively, []jiS , can be obtained by performing the following compution

from []jiS , :

[]jiS ,)),(minmax(kjikk
SS=),...),min(max(..., ljil SS=

)min(, ljil SS= (suppose ilS and ljS are the maximal values currently)

6

3

5
4

7

8

1 2

10

9

Chapter 8. A Fuzzy Clustering Method Based on Domain Knowledge

135

So []),min(, ljil SSjiS = may be two kinds of values: bigger than λ , smaller than or

equal toλ .

①
[] λ>=),min(, ljil SSjiS ,whether []jiS , is zero or not, []jiS , will replace []jiS ,

②
[] λ≤=),min(, ljil SSjiS ,whether []jiS , is zero or not, the value which is smaller than

or equal toλ will be replaced by zero in the level value matrix.

③As one has known, computing the transitive closure to a graph is adding to some

arcs. The arcs are defined as follows: If node 1 and node 2 are connected by an arc,

node 2 and node 3 are connected by an arc, then add an arc between node 1 and node

3.

In this chapter, although GBM does not compute the transitive closure by recursion,

but the set of non-connective sub-graphs is gotten after getting rid of some arcs. Even if

computing transitive closure, the non-connective sub cannot become connective, the

transitive closure is in fact only executed in each sub-graph, which will not affect

clustering result.

8.4.2 Time Complexity

Comparing with MMM, all of the new algorithms need confirmλ at first. Although

the computation of confirming will cost some time, the running time is fixed with use

thrice-polynomial regression. Only the time of sorting will increase with the increasing of

datasets, so the time complexity of confirmingλ is)log*(mmO . Table 8.2 shows the time

complexity of the three algorithms. From Table 8.2 one can see NM and GBM are

obvious better than MMM.

Table 8.2. The comparison of time complexity

Algorithm Time Complexity
MMM)(3nO

NM)log**(mmmnO +)(mn <
GBM)log**(mmmnO +

8.5 Experiments

The performance of the new algorithms was evaluated with synthetic datasets and

real-world datasets. The experiments were performed on a Celeron computer with a 2.60

GHz CPU and 512 Mbytes memory running the Windows XP operating system.

An Investigation in Efficient Spatial Patterns Mining

136

8.5.1 Evaluation Using Synthetic Datasets
The experiments using synthetic datasets want to answer the following questions.

(1) How does the size of the dataset affect the three algorithms? (2) How is the three al-

gorithms’ performance with changing λ ?

The experiments are executed on the matrix of 5050× , 100100× ,…,and 500500× ,

comparing the performance of MMM, NM and GBM as function of matrix size respec-

tively (see the Figure 8.4). When the matrix size is larger than 300, MMM cannot process

due to lack of memory. From Figure 8.4 one can see that the new algorithms are better

than MMM.

0

50000

100000

150000

200000

250000

50 100 150 200 300 400

n

r
u
n
t
i
m
e
(
m
s
)

MMM GBM NM

Figure 8.4. The performance of MMM, NM and GBM as function of matrix size n

With the fixed size of datasets, comparing the performance of NM with MMM by

changingλ untill the reasonable clustering result gained. The experiments are executed

on 100100× matrix, table 8.3 shows the results. Yet, the experiments are only one ex-

ample. From table 8.3 one can see that, because the cardinal number of MMM (the cost

of first time) is very large, to get a reasonable result it must adjust thresholds λ many

times, which means the total running time of MMM is larger than that of NM, and the per-

formance of MMM declines very sharply with the increasing size of datasets.

Table 8.3. Runtime and total time of NM and MMM by changing λ

λ 0.37 0.4 0.54 0.6 Total NM
Runtime 894 48 46 40 1028
λ 0.1 0.2 0.3 0.4 0.5 0.6 Total MMM
Runtime 4281 28 32 24 20 25 4410

Chapter 8. A Fuzzy Clustering Method Based on Domain Knowledge

137

8.5.2 Evaluation Using a Real Dataset
The performance of the algorithms is evaluated using a real dataset. Can they dis-

cover useful information?

The real dataset used in experiments involves 16 plant species in “The Three Paral-

lel Rives in Yunnan Areas”. There are 254 instances extracting from satellitic telemetric

data. Some rules discovered by the algorithms are really interested by geographers and

botanists. The followings are some examples:

Figure 8.5(a) is one of figures which have dealt with using some methods, which

shows the 16 plant species with different colours respectively, and Figure 8.5(b) shows

the clustering results using the new algorithms. Some rules discovered by the algorithms

are useful. For example: Cordyceps sinensis (Berk.) Sacc is a kind of plant coloured with

orange in Figure 8.5(a), but in Figure 8.5(b), they are divided in 3 categories with differ-

ent colours respectively, which is due to the different growth environments, which ex-

plains the three kinds of environments are suitable for Cordyceps sinensis (Berk.) Sacc

in “The Three Parallel Rives in Yunnan Protected Areas”.

On the other hand, some of Pseudotsuga forrestii Craib and Taxus wallichiana are

in the 2-th category, which grow in the Cool temperate conifer forest whose elevation is

from 3000 to 3400 meter of Lijiang (showed in Figure 8.5(b)), which explains these plant

species can coexist in the same environment, and they may have some common char-

acteristics. From plant hierarchy one can see that these plant species are all belonged to

Gymnospermae, so domain knowledge validates the efficiency of the new algorithms.

 Figure 8.5(a).Before clustering Figure 8.5(b). After clustering

An Investigation in Efficient Spatial Patterns Mining

138

8.6 Summary

The two fuzzy clustering methods—Natural Method and Graph-Based Method in

this chapter are based on domain knowledge. After confirming threshold λ at the begin-

ning of executing the new algorithms, the transitive closure does not need be computed

by recursion and correct clustering results can be obtained, so the new algorithms save

much time. The theoretical analysis and experimental results on synthetic and real data-

sets show that the new approaches are corrective and efficient, and some rules discov-

ered by the new algorithms are useful to domain experts.

In experiments, it is found that the performance of algorithms will decline with the

increasing of datasets. Further more, because GBM stored the whole adjacent table,

when the experiment is executed on 500500× matrix, it cannot be performed due to

lack of memory. Therefore, how to solve the memory problems and realize data ex-

change between memory and storage are the future works.

A number of new techniques in the area of spatial data mining have been devel-

oped in previous chapters. These techniques can be incorporated into one software

package, so that efficiencies and effect can be compared. In next Chapter, as an exam-

ple, a prototype system of visual spatial co-location patterns mining is developed. In this

system, the new techniques in Chapter 3 and 4 can be compared in any way you like.

Chapter 9. A Visual Spatial Co-location Patterns’ Mining Prototype System (SCPMiner)

139

Chapter 9

A Visual Spatial Co-location Patterns’ Mining
Prototype System (SCPMiner)

This chapter introduces a visual spatial co-location patterns’ mining prototype system (SCPMiner).

Visual spatial data mining is an effective way to discover knowledge from huge amounts of spatial

data. The systematic study and development of visual spatial data mining techniques will facilitate

the promotion and use of spatial data mining as a tool for spatial data analysis.

9.1 Overview

The purpose of studying spatial data mining is to support and improve spatial data-

referenced decision-making in the real world. To reach this, the development of spatial

data mining products and efforts toward the visualization studying is a very important re-

searching direction. Although spatial data mining is a relatively new field with many is-

sues that still need to be investigated in depth, some mining methods, for example, spa-

tial co-location patterns mining, have been researched fully in this thesis. As a mining

technique possessing broadly applied values, Research and development of a visual

spatial co-location patterns’ mining prototype system (SCPMiner) will facilitate the broad

application of spatial co-location patterns’ mining technique.

Mentioning the development of spatial data mining prototype system, there are the

GeoMiner (Han and Kamber, 2006; http://db.cs.sfu.ca//GeoMiner) and the MultiMedia-
Miner (Zaiane et al, 1998) developed by Simon Fraser University in Canada, and the

RSImageMiner developed by Wuhan University in China (Li et al, 2006). These systems

have little in common with respect to data mining functionality or methodology, may in-

cluding association mining, classification, prediction, clustering, outline detection, et al,

but they work with different kinds of data sets and could not be used in spatial co-

location patterns’ mining.

9.2 Analysis and Design of SCPMiner

Spatial data mining functions form the core of a spatial data mining system. In the

SCPMiner, only one data mining function, spatial co-location patterns’ mining, is pro-

vided. But the extensible property is considered in designing of SCPMiner, it can be-

come a system supported multiple spatial data mining functions. Because the methods

An Investigation in Efficient Spatial Patterns Mining

140

of co-location mining have advantages respectively for different kinds of data, the

SCPMiner that supports multiple methods of the spatial co-location mining provide the

user with greater flexibility and analysis power. Thus SCPMiner should also provide nov-

ice users with convenient access to the most suitable method, or to default settings. Fig-

ure 9.1 shows the basic architecture of SCPMiner.

Spatial data management

Co-location

mining

Visual user’s interface

Figure 9.1 Basic architecture of SCPMiner

 Synthetic
spatial data Real spatial

data

 Co-location rules
obtained

 Co-location rules
base

 Interesting
data

Management of spatial data
Mining

Co-location

mining analysis

Co-location mining

application

Analysing Applying

 GIS information
base

SCPMiner is divided into four parts in Figure 9.1. First (left side) is the management

of co-location spatial data, second is the discovery of spatial co-location rules, third is co-

location mining methods’ analysis, and the fourth (right side) is the applications of co-

location mining.

Before mining co-location knowledge, users could select interesting data from spa-

tial dataset (synthetic or real) by using the co-location data management procedure.

This is an interactive and visualization process. Co-location mining procedure accepts

a command to mining co-location from user. According to the user’s demand of knowl-

edge mining, the co-location mining procedure discover knowledge from the interesting

data. The co-location rules obtained is provided to user or added into the co-location

rules base for users to query, analyze and apply them. Co-location mining analysis
procedure includes efficiency analysis of mining methods and the characteristic analysis

of mining data. Some application functions of co-location rules discovered are provided

by co-location mining application procedure. In general, co-location mining process

needs to be performed repeatedly to get satisfied results.

Chapter 9. A Visual Spatial Co-location Patterns’ Mining Prototype System (SCPMiner)

141

9.3 Implementation of SCPMiner

According to the designed architecture of SCPMiner in Figure 9.1, the SCPMiner

was developed, under the operating system Window XP, by using JDK 1.4.2_5, Eclipse

3.2.2, adobe SVG Viewer tool, Macromedia Dreamweaver MX2004, and SQL

Server2000 database management system. The main interface of SCPMiner is shown in

Figure 9.2.

It can be seen that there are four main menus in SCPMiner. They are co-location

data management, co-location rules mining, co-location mining analysis, and co-location

mining applying.

9.3.1 Co-location Data Management (CDM)
The unitive management of spatial data is a feature of the SCPMiner. There are two

kinds of spatial data in SCPMiner. One is synthetic spatial, another is real-world spatial

data. One can browse the spatial data stored in the system, generate new synthetic data

and delete data from the system. For real-world spatial data, there is a plants’ distribu-

tion data of the “Three Parallel Rivers in Yunnan Protected Areas” in the system. One

can load new real-world spatial data by CDM. Spatial data is stored in link structure. The

real plants’ distribution data of the “Three Parallel Rivers in Yunnan Protected Areas” is

managed by SQL server 2000 database.

Figure 9.2 Main interface of SCPMiner

An Investigation in Efficient Spatial Patterns Mining

142

The interface of CDM is shown in Figure 9.3.

The main functions in CDM include:

(1) Data selection: selecting spatial data from exited spatial data set (synthetic or

real) for co-location mining. The processing of selecting data is visual which means one

can see the distribution of the data you want to select. Figure 9.4 is a result in the proc-

ess of data selection. The selected spatial data will be stored in a data file for co-location

mining.

Figure 9.3 The interface of CDM

Figure 9.4 A result of selecting a plant distribution dataset

Chapter 9. A Visual Spatial Co-location Patterns’ Mining Prototype System (SCPMiner)

143

 (2) Data generation: including synthetic spatial data generation and real spatial

data input. The left side in Figure 9.5 is for setting parameters area. After setting suitable

parameters, one can run the procedure of synthetic data generation. If you satisfy the

result of data generation (the distribution of generated data is shown in right side area as

showing the right side area of Figure 9.5), one can give a name to it and store it. For in-

putting real spatial data, the system can read file data and image data.

 (3) Data deletion: deleting a selected synthetic spatial data or real spatial data

from the system.

9.3.2 Co-location Patterns Mining (CPM)
Figure 9.6(a) is the interface of CPM. The parameters of co-location patterns’ min-

ing include spatial neighbour distance D, minimum prevalence threshold min_prev, and

conditional probability threshold min_cond_prob. The system provides the inter-interface

(as shown in Figure 9.6(b)) to user to select values of these parameters. The scope of

each parameter is computed according to the interesting data for co-location mining.

CPM provide four algorithms for co-location mining: join-based method proposed by

Huang et al (Huang et al, 2004), join-less method proposed by Yoo et al (Yoo et al,

2005), CPI-tree method proposed in this thesis, and order-clique-based method also

proposed in here. One can choose any one of them to mining co-locations. But for differ-

ent interesting data and different mining parameters setting, the system can guide you to

choose a suitable method to mining co-locations. Figure 9.6(c) is a mining result of the

size-3 co-location rules.

Figure 9.5 Processing of data generation

An Investigation in Efficient Spatial Patterns Mining

144

9.3.3 Co-location Mining Analyzing (CMA)
In four co-location mining methods provided by the SCPMiner, different method

represents its advantage under different spatial dataset. So, in CMA, two functions are

provided for analyzing mining methods. One is mining’s efficiency analyzing, and an-

other is mining’s datasets analyzing. Figure 9.7 is the interface of CMA.

Figure 9.6 The procession of co-location patterns mining

(a) The interface of CPM (b) The interface of setting parameters

(c) A result of CPM

Chapter 9. A Visual Spatial Co-location Patterns’ Mining Prototype System (SCPMiner)

145

 (1) Mining’s efficiency analyzing: In this function, first, you select a dataset

(sparse dataset or dense dataset). Second, you choose methods you want to compare.

Third, spatial neighbour distance D, minimum prevalence threshold min_prev, or the

number of instances N can be chosen one to analyzing efficiency of the mining method.

Then, running results with D, min_prev or N over a dataset you selected will be obtained.

Figure 9.8 is one result.

Figure 9.7 Interface of CMA

Figure 9.8 An example of mining’s efficiency analysis

An Investigation in Efficient Spatial Patterns Mining

146

 (2) Mining’s dataset analyzing: If the analysis results above are not what you ex-

pected, you can analyze the dataset using this function. You can look at how distribution

of this dataset, how many size-2 prevalence co-location patterns in this dataset. How

long the maximal prevalence co-location pattern is in this dataset, and et al. The results

of the size-2 prevalence co-location patterns in the dataset of Figure 9.8 are shown in

Figure 9.9.

9.3.4 Co-location Patterns Applying (CPA)
For there is a real plants distribution dataset of the “Three Parallel Rivers of Yunnan

Protected Areas”, the CPA provide two functions, rules’ plants growth environment
query and visualization of a set of co-location rules. Figure 9.10 is the interface of

CPA.

Figure 9.9 The results of the size-2 prevalence co-location pat-
terns in the dataset of figure 9.8

Chapter 9. A Visual Spatial Co-location Patterns’ Mining Prototype System (SCPMiner)

147

 (1) Rules’ plants growth environment query: selecting a co-location rule from

mining results, you can see corresponding plants’ instances distribution map, then, you

can add contour line, longitude, woof or the humidity information of the area on the map.

The visualization results will be significant for analyzing and researching the relationship

between plants and ecological environments. Figure 9.11 is an example of rules’ plants

growth ecological environment (longitude and woof) query.

 (2) Visualization of a set of co-location rules: Visualization of a sub-set of min-

ing results is the presentation of co-location rules obtained from co-location mining in

visual forms. Figure 9.12 gives visualization of size-2 and size-3 co-location rules mined

from the plants distribution dataset of the “Three Parallel Rivers of Yunnan Protected Ar-

Figure 9.10 Interface of CPA

Figure 9.11 An example of rules’ plants growth environment query

An Investigation in Efficient Spatial Patterns Mining

148

eas”. Figure 9.12 (a) uses a two-dimension matrix method to describe a set of size-2 co-

location rules. In this figure, the row and the column of the matrix represent the anteri-

ority and the posterior of the rules respectively. In matrix unit, using difference colours

represent the difference degree of prevalence and the conditional probability of corre-

sponding rule. For size-3 rules and above, a parallel coordinate method is generally

used. Figure 9.12 (b) is a visual result of parallel coordinate method of size-3 co-location

rules mined from the plants distribution dataset of the “Three Parallel Rivers of Yunnan

Protected Areas”.

Figure 9.12 Visualization of co-location rules in the plants’ distribution dataset

of the “Three Parallel Rivers of Yunnan Protected Areas”

(a). Visualization of size-2 co-location rules

(b). Visualization of size-3 co-location rules

Chapter 9. A Visual Spatial Co-location Patterns’ Mining Prototype System (SCPMiner)

149

9.4 Summary

Data mining products, for example Intelligent Miner (an IBM data mining product),

Microsoft SQL Server 2005, MineSet, Clementine (from SPSS), and et al. are fast evolv-

ing. But for spatial data mining, it is in stage of researching prototypes. In this chapter, a

visual spatial co-location patterns mining prototype system (SCPMiner) is investigated.

In SCPMiner, there are not only data management function and four co-location

mining methods, but also co-location mining methods analysis and co-location mining

applications. This work will be a significant step towards to develop spatial data mining

products.

An Investigation in Efficient Spatial Patterns Mining

150

Chapter 10

Concluding Remarks

Based on studying the evolution of spatial data mining, the thesis mainly proposed the following

new techniques: the fuzzy co-location mining, CPI-tree (Co-location Pattern Instance Tree)

which materializes spatial neighbour relationships for co-location mining, maximal co-locations

mining, attribute-oriented induction based on attributes’ generalization sequences (AOI-ags),
data mining prediction, a cell-based spatial object fusion, and a fuzzy clustering based on do-

main knowledge. A prototype system of mining spatial co-location patterns was developed.

10.1 Contributions and Conclusions

First, the new concept of fuzzy co-location mining was proposed. Based on study-

ing the fuzzy properties of spatial objects and spatial relationship, the motivation, basic

concepts, and algorithms of discovering fuzzy co-location were expounded. In the design

of algorithm, a new data structure, the binary partition tree, improving the process of

fuzzy equivalence partitioning, was proposed. A prefix-based approach to partition the

prevalent event set search space into subsets, where each sub-problem can be solved

in main-memory, was also presented. Finally, theoretical analysis and experimental re-

sults on synthetic data sets and a real-world plant distribution dataset were presented

and discussed.

Second, a new join-less method for co-location mining was proposed. A new struc-

ture called CPI-tree (Co-location Pattern Instance Tree) was introduced in the thesis. It

could materialize the spatial neighbour relationships of a spatial data set, and find all the

co-location table instances recursively from it. The algorithm is efficient since it does not

require expensive spatial joins or instance join for identifying co-location table instances.

The experimental results showed the new method outperforms the join-less method in

the case of both sparse and dense datasets.

Third, an order-clique-based method for mining maximal co-location patterns was

proposed. Two extended prefix-tree structures, Neib-tree and P2-tree, which the spatial

neighbour relationships between instances and the size-2 prevalence co-locations are

compressed into them respectively, were introduced. A method of generating all the

candidate maximal ordered prevalence co-locations from the P2-tree was presented. An

algorithm of inspecting all table instances from the Neib-tree was given. In this algorithm,

the table instances do not need be stored after computing the Pi value of corresponding

Chapter 10. Concluding Remarks

151

co-location, which dramatically reduces the executive time and space of mining maximal

co-locations. A performance study has been conducted to compare the performance of

the order-clique-based method with three representative co-location mining methods, the

full-join, the join-less and the CPI-tree. The study shows that order-clique-based method

is much faster than full-join, join-less and the CPI-tree, especially when the spatial data-

set is dense (containing many table instances) and/or when the prevalence co-locations

are long.

Fourth, by introducing the concept of the attributes’ generalization sequence, the at-

tribute thresholds and the tuple thresholds were unified, and a reasonable approach of

AOI—AOI-ags (Attribute-Oriented Induction based on Attributes’ Generalization Se-

quences), which expands the traditional AOI, was proposed. Some technologies, for ex-

ample, partitions, equivalence partition trees, prune optimization strategies and interest-

ingness, were used to improve the efficiency of the algorithm. It was shown that the AOI-

ags algorithm has its advantages.

Fifth, based on the semantic proximity, a mining prediction method to evaluate the

fuzzy association degree was given. Inverse document frequency (IDF) weight function

has been adopted in this investigation to measure the weights of conditional attributes in

order to superpose the fuzzy association degrees. To implement the method, the “grow-

ing window” and the proximity computation pruning were introduced to reduce both I/O

and CPU costs in computing the fuzzy semantic proximity between time-series. Exten-

sive experiments on real datasets were conducted, and the results showed that the min-

ing prediction approach is reasonable and effective.

Sixth, a cell-based spatial object fusion method was proposed. The main contribu-

tion of this work is in showing that corresponding objects can be effectively found without

distance between objects.

Seventh, In order to get the tuples’ semantic proximity matrix, domain knowledge

was used in fuzzy clustering. Two clustering methods: Natural Method and Graph-Based

Method, both of which is controlled by a threshold, and the threshold is confirmed by

polynomial regression, were proposed.

Finally, a prototype system of spatial co-location patterns mining was described. In

this system, experimental data and real-world data were managed. A user-friendly inter-

face of mining was developed. The mining results could be checked conveniently. This

work is a significant step for investigating of spatial patterns mining products.

10.2 Forecasting Perspectives

An Investigation in Efficient Spatial Patterns Mining

152

Spatial data mining is a rising field in spatial information science. Some achieve-

ments in this area have been gained, many challenges, however, still remain. Where,

mainly including the following directions: multirelational and multidatabase spatial data

mining, uncertain spatial data mining, multilevel spatial data mining, parallel spatial data

mining, the investigation of new methods and efficient algorithms, the design of spatial

data mining languages, and the effective application of spatial data mining techniques.

More investigations are required, especially toward the integration of spatial data mining

methods with object-oriented spatiotemporal databases, spatial index, spatial reasoning,

spatial data warehouses, and GIS.

Spatial data mining, which could change the limited spatial data into unlimited spa-

tial knowledge, has extensive forecasting perspectives and potential general benefits.

Today, as spatial information increasing and development of software and hardware

techniques, spatial data mining has infiltrated into GIS, information fusion, preprocessing

of remote sensing data, medical imaging processing, navigation, robot, et al. It will be-

come an actual that using the discoverable spatial knowledge accelerates researching

on automatization and intelligentize of these subjects.

References

153

References
Agarwal, R. and Srikant, R. (1994) Fast Algorithms for Mining Association Rules, In:

Proc. 1994 Int. Conf. Very Large Data bases (VLDB’94), Santiago, Chile, Sept.
1994, pp. 487-499

Agrawal, R., Gehrke, J., Gunopulos, D. and Raghavan, P. (1998) Automatic subspace
clustering of high dimensional data for data mining applications, In: Proceed-
ings of the ACM SIGMOD Conference on Management of Data, Seattle, WA,
1998, pp. 94–105

Alsabti, K., Ranka, S. And Singh, V. (1998) CLOUDS: A Decision Tree Classifier for
Large Databases. In: Proceedings of the 4th Intl. Conf. on Knowledge Discov-
ery and Data Mining, New York, August 1998, pp. 2-8.

Alsuwaiyel, M. H. (2004) Algorithms Design Techniques and Analysis. Publishing House
of Electronics Industry, Beijing, 2004

Amstader, B.L. (1979) Reliability Methematics, McGraw-Hill, New York, 1979

Beeri, C., Kanza, Y., Safra, E. and Sagiv, Y. (2004) Object Fusion in Geographic Infor-
mation Systems, In: proceedings of the 30th VLDB Conference, Toronto,
Canada, 2004, pp. 816-827.

Bruns, T. and Egenhofer, M. J. (1996) Similarity of spatial scenes, In: Proceedings of the
7th International Symposium on Spatial Data Handling, Delft (Netherlands),
1996, pp. 31-42

Buckles, B.P. and Petry, F.E. (1982) ‘A fuzzy representation of data for relational data-
bases’ Fuzzy Sets and Systems, 7, (3) pp. 213-226

Cai, Y., Cercone, N. and Han, J. (1991) Attribute-Oriented Induction in Relational Data-
bases, Piatetsky-Shapiro, G. and Frawley, W.J. eds, Knowledge Discovery in
Databases, AAAI/MIT Press, Menlo Park, Calif., pp. 213-228

Carter, C. L. and Hamilton, H. J. (1998) ‘Efficient attributed-oriented generalization for
knowledge discovery from large databases’ IEEE Trans. on Knowledge and
Data Eng., 10, (2) pp. 193-208

Celik, M., Kang, J. M. and Shekhar, S. (2007) Zonal Co-location Pattern Discovery with
Dynamic Parameters, In: Proc. of the Seventh IEEE International Conference
on Data Mining (ICDM’07), Omaha, United States, 2007, pp.433-438

Chou, Y. (1997) Exploring Spatial Analysis in Geographic Information System. Onward
Press

Cressie, N.A.C. (1991) Statistics for Spatial Data. Wiley and Sons

Ester, M., Kriegel, H. -P., Sander, J., and Xu, X. (1996) A Density-Based Algorithm for
Discovering Clusters in Large Spatial Databases, In: Proc.1996 Int. Conf.
Knowledge Discovery and Data Mining (KDD’96). pp: 226-231, Portland, OR,
Aug. 1996

Ester, M., Kriegel, H.-P., and Sander, J. (1997) Spatial Data Mining: A Database Ap-
proach, In: Proc. 5th Int. Symposium on Large Spatial Databases (SSD'97),
Berlin, Germany, 1997, pp. 47-66

Ester, M., Kriegel, H.-P., Sander, J. and Xu, X. (1997) Density-connected sets and their
application for trend detection in spatial databases, In: Proc. 1997 Int. Conf.
Knowledge Discovery and Data Mining (KDD’ 97), Newport Beach, CA, Aug.

An Investigation in Efficient Spatial Patterns Mining

154

1997, pp. 10-15
Ester, M., Frommelt, A., Kriegel, H.-P., and Sander, J. (1998) Algorithms for Characteri-

zation and Trend Detection in Spatial Databases, In: Proc. 4th Int. Conf. on
Knowledge Discovery and Data Mining (KDD'98), New York, NY, 1998, pp.
44-50

 Ester, M., Kriegel, H.-P., and Sander, J. (1999) Knowledge Discovery in Spatial Data-
bases, In: invited paper at 23rd German Conf. on Artificial Intelligence (KI '99),
Bonn, Germany, Lecture Notes in Computer Science, Vol. 1701, pp. 61-74.

Estivill-Castro, V. and Murray, A. (1998) Discovering Associations in Spatial Data—An
Efficient Medoid Based Approach, In: Proc. Second Pacific-Asia Conf. Knowl-
edge Discovery and Data Mining, PAKDD-98, Springer-Verlag, Berlin. pp.110-
121.

Estivill-Castro, V. and Lee, L. (2001) Data Mining Techniques for Autonomous Explora-
tion of Large Volumes of Geo-Referenced Crime Data, In: Proc. Sixth Int’l
Conf. Geocomputation, 2001.

 Fonseca, F. T. and Egenhofer, M. J. (1999) Ontology-driven geographic information
systems, In: Proceedings of the 7th ACM International Symposium on Ad-
vances in Geographic Information Systems, Kansas City (Missouri, US), 1999,
pp. 14-19

Fonseca, F. T., Egenhofer, M. J. and Agouris, P. (2002) ‘Using ontology for integrated
geographic information systems’ Transactions in GIS, 6, (3) pp. 231-257

Graefe, G. (1994) Sort-Merge-Join: An Idea Whose Time Has (h) Passed? In: Proc.
IEEE Conf. Data Eng., 1994, pp. 406-417

Guo, L. (2004) Geological Dividing of Forests at Three Parallel Rivers of Yunnan Pro-
tected Areas, Journal of West China Forestry Science, 33 (2) (2004) 10-15

Han, J., Cai, Y. and Cercone, N. (1993) Data-driven discovery of quantitative rules in re-
lational databases. IEEE Trans. Knowledge and Data Engineering, 5:29-4-,
1993

Han, J. (1994) Towards Efficient induction mechanisms in database systems, Theoreti-
cal Computing Science, 1994, 133, pp. 361-385

Han, J. and Fu, Y. (1996) Exploration of the power of attribute-oriented induction in data
mining. In U. M. Fayyad, et al, editors, Advances in Knowledge Discovery and
Data Mining, pp. 399-421, AAAI/MIT Press, 1996

Han, J., Koperski, K. and Stefanovic, N. (1997) GeoMiner: A system prototype for spatial
data mining, In: Proc. 1997 ACM-SIGMOD Int. Conf. Management of Data
(SIGMOD’97), Tucson, AZ, May 1997, pp.553-556

Han, J. and Kamber, M. (2006) Data mining: concepts and techniques (Second Edition),
China Machine Press, Beijing

Hastie, T., Tibshirani, R. and Friedman, J. H. (2001) The Elements of Statistical Learning:
Data mining, Inference, Prediction, Springer, New York, 2001

He, X. (1989) ‘Semantic distance and fuzzy user's view in fuzzy database’ Chinese J.
Comput, 10, (1989) pp. 757-764

Huo, Z. (1989) Fuzzy Mathematics and its Applications, Tianjin Science and Technology
Press, Tianjin, China

Huang, Y., Pei, J. and Xiong, H. (2006) ‘Mining Co-location Patterns with Rare Events
from Spatial Data Sets’, Geoinformatica (2006) 10:239-260.

References

155

Huang, Y., Shekhar, S. and Xiong, H. (2004) ‘Discovering Colocation Patterns from Spa-
tial Data Sets: A General Approach’ IEEE Transactions on Knowledge and
Data Engineering, 16, (12) pp. 1472-1485

Huang, Y. and Zhang, P. (2006) On the Relationships between Clustering and Spatial
Co-location Pattern Mining, In: Proc. of the 18th IEEE Int. Conf. on Tools with
Artificial Intelligence (ICTAI 06), Washington D.C., Nov. 2006, pp: 513 – 522.

Kaufman, L. and Rousseeuw, P. J. (1990) Finding Group in Data: An introduction to
cluster analysis, John Wiley & Sons, 1990.

Knorr, E. M. and Ng, R. T. (1997) Extraction of spatial proximity patterns by concept
generalization, In: Conf. on spatial information theory (COSIT), 1997, pp. 15-
33

Kohavi, R. and Sahanu, M. (1996) Error-based and Entropy-based Discretization of Con-
tinuous Features, In: Proc. of the 2nd International Conference on Knowledge
Discovery and Data Mining, Portland, Oregon: AAAI Press, 1996-08: 114-119

Koperski, K. and Han, J. (1995) Discovery of Spatial Association Rules in Geographic
Information Databases, In: Proc. 1995 Int. Symp. Large Spatial Databases
(SSD’95), Portland, ME, Aug. 1995, pp. 47-66

Koperski, K., Han, J. andStefanovic, N. (1998) An efficient two-step method for classifi-
cation of spatial data, In: Proc. 8th Symp. Spatial Data Handling, Vancouver,
Canada, 1998, pp. 45-55

Kriegel, H.-P., Pfeifle, M. and Schönauer, S. (2004) ‘Similarity Search in Biological and
Engineering Databases’ IEEE Data Engineering Bulletin, 27, (4) pp. 37-44

Larsen, H. L. and Yager, R. R. (1990) ‘Efficient computing of transitive closures’ Fuzzy
Sets and Systems, 38, (1) pp. 81-90

Lee, A. J. T., Hong, R., Ko, W., Tsao, W., and Lin, H. (2007) ‘Mining spatial association
rules in image databases’ Information Sciences, 177 (2007) 1593-1608.

Li, D., Wang, S. and Li, D. (2006) Spatial Data Mining Theories and Applications, Sci-
ence Press, Beijing, 2006

Lin, C. and Chen, M. (2005) ‘Combining Partitional and Hierarchical Algorithms for Ro-
bust and Efficient Data Clustering with Cohesion Self-Merging’ IEEE Trans.
Knowl. Data Eng. 17(2): 145-159 (2005)

Liu, W. (1993) ‘The fuzzy functional dependency on the bases of the semantic dis-
tance‘ Fuzzy Sets and Systems 59 (2) (1993) 173-179

Liu, W. and Song, N. (2001) ‘The fuzzy association degree in semantic data models’
Fuzzy Sets and Systems, 117, (2001) pp. 203-208

Liu, W. and Tian, W. (2001) Data model, Science Press, Beijing, 2001.

Lu, J., Wang, L., Li, Y. (2007) A Fuzzy Clustering Method Based on Domain Knowledge.
In: Proceedings of the Eighth ACIS International Conference on Software En-
gineering, Artificial Intelligence, Networking, and Parallel/Distributed Comput-
ing (SNPD2007), Qingdao, China, July30-Aug.1, 2007, pp.297-302.

Lu, W., Han, J. and Ooi, B.C. (1993) Discovery of general knowledge in large spatial da-
tabases, In: Proc. Far East Workshop on Geographic Information Systems,
Singapore, June 1993, pp. 275-289

MacQueen, J. (1967) Some methods for classification and analysis of multivariate ob-
servations. In: Proc. 5th Berkeley Symp. Math. Statist. Prob., 1: 281-297, 1967

Minami, M. (2000) Using ArcMap, Environmental Systems Research Institute, Inc., 2000.

An Investigation in Efficient Spatial Patterns Mining

156

Morimoto, Y. (2001) Mining Frequent Neighbouring Class Sets in Spatial Databases, In:
Proc. ACM SIGKDD Int’l Conf. Knowledge Discovery and Data Mining, 2001.
pp. 353-358

Ng, R. and Han, J. (1994) Efficient and effective clustering method for spatial data min-
ing, In: Proc. 1994 Int. Conf. Very Large Data Bases (VLDB’94), Santiago,
Chile, Sept. 1994, pp. 144-155

Papakonstantinou, Y., Abiteboul, S. and Garcia-Molina, H. (1996) Object Fusion in Me-
diator Systems, In: proceedings of the 22nd VLDB Conference, Mumbai
(Bombay), India (1996), pp. 413-424

Samal, A., Seth, S. and Cueto, K. (2004) ‘A feature based approach to conflation of geo-
spatial sources’ International Journal of Geographical Information Science, 18,
(00) (2004), pp. 1-31

Schwartz, D.G. (1989) ‘Fuzzy inference in a formal theory of semantic equivalence’
Fuzzy Sets and Systems, 31, (2) pp. 205-216

Shekhar, S. and Chawla, S. (2003) Spatial Databases: A Tour, Prentice Hall, 2003

Shekhar, S. and Huang, Y. (2001) Co-location Rules Mining: A Summary of Results, In:
Proc. of International Symposium on Spatio and Temporal Database (SSTD),
2001

Shenoi, S. and Melton, A. (1989) ‘Proximity relations in the fuzzy relational database
model’ Fuzzy Sets and Systems, 31, (3) pp. 285-296

Shi, Y., Song, Y. and Zhang, A. (2003) A Shrinking-Based Approach for Multi-
dimensional Data Analysis, In: proceedings of the 29th International Confer-
ence on Very Large Data Bases (VLDB03), Berlin, Germany, 2003, pp.440-
451

Tarjan, R. E. and Leeuwen, T. (1984) ‘Worst-case analysis of set union algorithms’ J.
ACM, 31, (2) pp. 245-281

Tay, F. E. F. and Shen, L. (2002) ‘A Modified Chi2 Algorithm for Discretization’ , IEEE
Transactions on Knowledge and Data Engineering, 2002, 14(3): 666-670

Uitermark, H., Oosterom, P. V., Mars, N. and Molenaar, M. (1999) Ontology-based geo-
graphic data set integration, In: Proceedings of Workshop on Spatio-Temporal
Database Management, Edinburgh (Scotland), 1999, pp. 60-79

Wang, W., Yang, J. and Muntz, R. (1997) STING: A Statistical Information Grid Ap-
proach to Spatial Data Mining, In: proceedings of the 23rd VLDB Conference,
Athens, Greece, 1997, pp. 186-195

Wang, L. (2000) A method of the abstract generalization on the bases of the semantic
proximity, CHINESE J. COMPUTERS, 23, (10) pp. 1114-1121

Wang, L. and Chen, H. (2005) Record Reduction Based on Attribute Oriented Generali-
zation, In: Proceedings of the Fourth International Conference on Machine
Learning and Cybernetics (ICMLC05), Guangzhou, China, 2005, pp. 1693-
1700

Wang, L., Xie, K., Chen, T. and Ma, X. (2005) ‘Efficient discovery of multilevel spatial
association rule using partition’ Information and Software Technology (IST), 47,
(13) pp. 829-840

Wang, L. and Li, H. (2006) A Cell-Based Spatial Object Fusion Method, In: Proceedings
of the International Conference on Complex Systems and Applications (IC-
CSA06), Huhhot, China, June 16-18, 2006, pp.106-110

Wang, L., Lu, J., Yip, J. (2007) AOG-ags Algorithms and Applications, ADMA 2007, LNAI

References

157

4632, pp. 323-334, 2007.8

Wang, L., Lu, J., Yip, J. (2007) An Effective Approach to Predicting Plant Species in an
Ecological Environment, In: Proceedings of the 2007 international Conference
on Information and Knowledge Engineering (IKE’07), June 25-28, 2007, Las
Vegas Nevada, USA, pp. 245-250

Wang, L., Yang, A., Zhang, H. (2007) Data Mining Prediction of Shovel Cable Service
Lifespan. SNPD 2007 (Eighth ACIS International Conference on Software
Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Com-
puting）, Qingdao, China, July 30-Aug.1, 2007, pp.233-238

Xiong, H., Shekhar, S., Huang, Y., Kumar, V., Ma, X. and Yoo, J. S. (2004) A Framework
for Discovering Co-location Patterns in Data Sets with Extended Spatial Ob-
jects, In: Proc. 2004 SIAM International Conference on Data Mining (SDM),
2004, pp. 1-12

Yoo, J. S. and Shekhar, S. (2004) A partial Join Approach for Mining Co-location Pat-
terns, In: Proc. of the 12th annual ACM international workshop on Geographic
information systems, 2004, pp. 241-249

Yoo, J. S., Shekhar, S. and Celik, M. (2005) A Join-Less Approach for Co-Location Pat-
tern Mining: A Summary of Results, In: Proc. of the 5th IEEE Int. Conf. on
Data Mining, ICDM 2005, Houston, November 2005, pp. 813-816.

Zadeh, L.A. (1965) ‘Fuzzy sets’ Inform. and Control, 8, (3) pp. 338-353

Zaiane, O. R. et al., (1998) Multimedia-miner: a system prototype for multimedia data
mining, In: Proceedings of 1998 CMSIGMOD Conference on Manegement of
Data, (system demo), Seattle, Washington, June

Ziarko, W. (1991) The discovery, analysis and representation of data dependency in da-
tabases, In: G.P. Shapiro (Ed.), Knowledge Discovery in Databases, Benja-
min/Cummings, Menlo Park, CA, 1991, pp. 213-228

Zaki, M. J. (2000) ‘Scalable Algorithms for Association Mining’ IEEE Transactions on
Knowledge and Data Engineering, 12, (3) pp. 372-390

Zhang, M., Wang, D., and Yu, G. (2004) ‘A Text Clustering Method Based on Auto Se-
lected Threshold’, Journal of Computer Research and Development, 2004,
41(10): 1748-1753

Zhang, T., Ramakrishnan, R., and Livny, M. (1996) BIRCH: an efficient data clustering
method for very large databases, In: Proceedings of 1996 ACM-SIGMOD Int.
Conf. Management of Data (SIGMOD’96), Pages 103-114, Montreal, Canada,
June 1996

Zhou, X., Truffet, D. and Han, J. (1999) Efficient polygon amalgamation methods for spa-
tial OLAP and spatial data mining, In: Proc. 1999 Int. Symp. Large Spatial Da-
tabases (SSD’99), Hong Kong, China, July 1999, pp. 167-187

An Investigation in Efficient Spatial Patterns Mining

158

Appendix 1
The Partial Codes of SCPMiner

//The following codes is for generating data of co-location data management function:
Left.jsp
<%@page contentType="text/html;charset=gb2312"%>
<%@ page import="java.sql.*" %>
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=gb2312">
<title>no title file</title>
<style type="text/css">
<!--
.style11 {font-size: 16px; color: #0000FF; font-weight: bold; }
-->
</style>
</head>

<body bgcolor="#D6ECD5">
<form name="form1" method="post" action="show.jsp" target="main" onsubmit="return check-
Login();">
 <table width="100%" border="2" cellspacing="5" bordercolor="#0000FF">
 <tr>
 <td><table width="100%" border="0" cellspacing="0">
 <tr>
 <td height="25">feature: </td>
 </tr>
 <tr>
 <td height="25">from:
 <select name="start"; id="start">
 <jsp:useBean id="RegisterBean" scope="page" class="colocation.Opendb" />
<%
 String sql="select * from type";
 ResultSet rs=RegisterBean.executeQuery(sql);
 while (rs.next()){
 String s1,s2;
 s1=rs.getString(1);
 s2=rs.getString(2);

 %>

 <option value="<%=s1%>"><%=s2%></option>
 <%

 }
 rs.close();
%>
 </select>
 </td>
 </tr>
 <tr>

Appendix 1 The Partial Codes of SCPMiner

159

 <td height="25">to:
 <select name="end"; id="end">

<%
 String sql2="select * from type";
 ResultSet rs2=RegisterBean.executeQuery(sql2);
 while (rs2.next()){
 String s1,s2;
 s1=rs2.getString(1);
 s2=rs2.getString(2);

 %>

 <option value="<%=s1%>"><%=s2%></option>
 <%

 }
 rs2.close();
%>
 </select>
 </td>
 </tr>
 </table></td>
 </tr>
 <tr>
 <td><table width="100%" border="0" cellspacing="0">
 <tr>
 <td height="25">max number of instance:</td>
 </tr>
 <tr>
 <td height="25">
 <input name="maxCount" type="text" id="maxCount" value="100" size="10" max-
length="10">
 </td>
 </tr>
 </table></td>
 </tr>
 <tr>
 <td><table width="100%" border="0" cellspacing="0">
 <tr>
 <td height="25">scop:</td>
 </tr>
 <tr>
 <td height="25">width:
 <input name="width" type="text" id="width" value="1000" size="10" maxlength="10">
 </td>
 </tr>
 <tr>
 <td height="25">height:
 <input name="height" type="text" id="height" value="1000" size="10" maxlength="10">
 </td>
 </tr>
 </table></td>
 </tr>
 <tr>
 <td><table width="100%" border="0" cellspacing="0">
 <tr>
 <td height="25">move:</td>
 </tr>
 <tr>

An Investigation in Efficient Spatial Patterns Mining

160

 <td height="25">x:
 <input name="startX" type="text" id="startX" value="0" size="10" maxlength="10">
 </td>
 </tr>
 <tr>
 <td height="25">y:
 <input name="startY" type="text" id="startY" value="0" size="10" maxlength="10">
 </td>
 </tr>
 </table></td>
 </tr>
 <tr>
 <td><table width="100%" border="0" cellspacing="0">

 <tr>
 <td height="25">file name: </td>
 </tr>
 <tr>
 <td height="25"><input name="filename" type="text" id="filename" value="eventlx"
size="30" maxlength="30"></td>
 </tr>
 </table></td>
 </tr>
 <tr>
 <td><input type="submit" name="Submit" value="gen data">
 <input type="reset" name="Submit2" value="result"></td>
 </tr>

 </table>
 </tr>
 </table>
</form>
</body>
</html>

Show.jsp
<%@page contentType="text/html;charset=gbk"%>
<jsp:useBean id="gendata" scope="session" class="gendata.genData" />
<jsp:useBean id="svg" scope="session" class="SVG_ScatterGraphExample.SvgScatterSjk1" />

<%
// out.print("<h3>runing.......</h3>");
 request.setCharacterEncoding("GBK");
%>

<%!
String start=null;
String end=null;
String maxCount=null;
String width=null;
String height=null;
String startX=null;
String startY=null;
String filename=null;
%>

<%
start=request.getParameter("start");
end=request.getParameter("end");
maxCount=request.getParameter("maxCount");

Appendix 1 The Partial Codes of SCPMiner

161

width=request.getParameter("width");
height=request.getParameter("height");
startX=request.getParameter("startX");
startY=request.getParameter("startY");
filename=request.getParameter("filename").trim();
%>
<html>
 <body>
 <%

 gendata.mainProg(Integer.parseInt(start),Integer.parseInt(end),Integer.parseInt(maxCount),
 Integer.parseInt(width),Integer.parseInt(height),
 Integer.parseInt(startX),Integer.parseInt(startY),filename);

 String ss=filename+".svg";
 svg.mainProg(filename,filename);

 //out.print("<h3>run over!</h3>");
 %>
 <embed name="svg" type="image/svg+xml" src="../brow/<%=ss%>" width="700"
height="700">
 </body>
</html>
genData.java
package gendata;
import java.io.IOException;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;
import java.util.Random;

public class genData {
 String filename;
 String[] type;

 /**
 * Read data from the file, and then put the events and instances into a two-dimensional array
respectively
 * @throws java.io.IOException the exceptions thrown by the file processing
 */
 public void readData(Statement stmt,int start,int end) throws IOException,SQLException {
 //start: The number of the start type
 //end: The number of the end type
 int k=end-start+1;
 this.type=new String[k];
 String typeTemp="";
 int idTemp=0;

 String sqlStr="select id,type from useType order by 1,2";
 ResultSet rs = stmt.executeQuery(sqlStr);
 int i=0;
 while (rs.next()) {
 idTemp=Integer.valueOf(rs.getString(1));
 typeTemp=rs.getString(2).trim();

 System.out.println(typeTemp+idTemp);

An Investigation in Efficient Spatial Patterns Mining

162

 if (idTemp>=start && idTemp<=end){
 type[i]=typeTemp;
 ++i;
 }

 }
 }

 public void randomSj(String type,int maxCount,int width,int height,
 int startX,int startY,Statement stmt) throws SQLException{
 //maxCount: The maximal count of each type
 //width:
 //height:
 //startX:
 //startY:
 Random ranInt=new Random();
 String s3;
 int ix,iy,j,gs;
 gs=ranInt.nextInt(maxCount);
 while(gs==0){
 gs=ranInt.nextInt(maxCount);
 }
 for(int i=0;i<gs;i++){
 j=i+1;
 s3="insert into "+filename+"(type,id,x,y) values('"+type+"',"+j+",";
 ix=ranInt.nextInt(width)+startX;
 iy=ranInt.nextInt(height)+startY;
 s3=s3+ix+","+iy+")";

 //System.out.println("s3="+s3);
 stmt.executeUpdate(s3);
 //Add some tuples into the instance-table
 }
 }

 public void genTable(Statement stmt) throws SQLException{
 //stmt.executeUpdate("CREATE TABLE col_link (sitename varchar (20) NULL ,siteurl varchar
(50) NULL) ");
 String createP="create table "+filename+"(type char(10),id decimal(9),x decimal(9),y deci-
mal(9))";
 //System.out.println(createP);
 ResultSet rt=stmt.executeQuery("select count(*) as n from sysobjects where name
='"+filename+"'");
 if (rt.next()) {
 int num=Integer.valueOf(rt.getString("n"));
 if (num>0){
 stmt.executeUpdate("drop table "+filename);
 }
 }

 stmt.executeUpdate(createP);

 }

 public void mainProg(int start,int end,int maxCount,
 int width,int height,int startX,int startY,
 String filename) throws IOException,SQLException{

Appendix 1 The Partial Codes of SCPMiner

163

 //The number of points, the dimensionality of points generated and the bound of the points
gererated

 this.filename=filename;

 String url = "jdbc:odbc:sqlFullJoin";
 Connection con;
 Statement stmt;
 try {
 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
 }
 catch(java.lang.ClassNotFoundException e) {
 System.err.print("ClassNotFoundException: ");
 System.err.println(e.getMessage());
 }
 try
 {
 con = DriverManager.getConnection(url, "sa", "75");
 stmt = con.createStatement();
 genTable(stmt);
 readData(stmt,start,end);
 for(int i=0;i<type.length;i++){
 randomSj(type[i],maxCount,width,height,
 startX,startY,stmt);
 }
 stmt.close();
 con.close();
 }
 catch(SQLException ex) {
 System.err.println("SQLException: " + ex.getMessage());
 }
 }

 public static void main(String args[]) throws IOException,SQLException{
 int start=1;
 int end=4;
 int maxCount=10;
 int width=100;
 int height=20;
 int startX=20;
 int startY=20;
 String filename="eventlx";
 genData lx=new genData();
 // Integer.parseInt("1");
 lx.mainProg(start,end,maxCount,width,height,startX,startY,filename);
 System.out.println("Running finished!");

 }

}

**
FullJoin.java //Join-based algorithm
package SFullSjk;

import java.io.BufferedReader;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.IOException;

An Investigation in Efficient Spatial Patterns Mining

164

import java.util.*;
import java.sql.*;

public class FullJoin {
 private LinkedHashMap<String,List<Instance>> eventmap=new LinkedHash-
Map<String,List<Instance>>() ;
 private LinkedHashMap<Model,List<ModelInstance>> distancePair;
 private LinkedHashMap<Model,List<ModelInstance>> lc; //The set lc of candidate prevalence
co-location patterns
 private LinkedHashMap<Model,List<ModelInstance>> lc2; // The set lc2 of candidate preva-
lence co-location patterns
 private LinkedHashMap<Model,Double> lk;// The set lk of the size-k candidate prevalence co-
location patterns
 private LinkedHashMap<Model,Double> lk2;// The set lk2 of the size-k+1 candidate prevalence
co-location patterns
 private String filename;
 // lk lc ->lk2,lc2

 double distance;//The distance D
 private double minSup;//The min_prev
 private String eTime;

 int k;
 public void read(Statement stmt,String filename) throws IOException,SQLException {
 eventmap=new LinkedHashMap<String,List<Instance>>();
 String eventType;
 String eventTypeTemp="";
 int instanceNumber=0;
 double x=0;
 double y=0;
 List<Instance> listInstance;
 listInstance=new ArrayList<Instance>();
 String sqlStr="select * from "+filename.trim()+" order by 1,2";
 ResultSet rs = stmt.executeQuery(sqlStr);
 // Return a set of results
 //System.out.println("the event originality data:");
 //System.out.println("type "+" "+"id"+"x"+"y");

 while (rs.next()) {
 eventType=rs.getString(1).trim();
 String bl=rs.getString(2);
 instanceNumber=Integer.valueOf(bl);
 x=Double.valueOf(rs.getString(3));
 y=Double.valueOf(rs.getString(4));
 /*
 * eventType=rs.getString("event_type").trim();
 String bl=rs.getString("event_id");
 instanceNumber=Integer.valueOf(bl);
 x=Double.valueOf(rs.getString("x"));
 y=Double.valueOf(rs.getString("y"));
 */

 Instance instance1=new Instance(instanceNumber,x,y);
 //System.out.println(eventType + " " + instanceNumber+" "+x+" "+y);
 if (eventmap.keySet().contains(eventType)==false){
 listInstance=new ArrayList<Instance>();
 eventmap.put(eventType, listInstance);
 }
 eventmap.get(eventType).add(instance1);

Appendix 1 The Partial Codes of SCPMiner

165

 }//end file

 }//end FileReadIn

 public LinkedHashMap<Model,List<ModelInstance>>
 caculateDistance(double disParameter){

 LinkedHashMap<Model,List<ModelInstance>> distancePair=new LinkedHash-
Map<Model,List<ModelInstance>>();
 Model joinEvent;
 List<ModelInstance> listModelInstance;

 List<String> eventList=new ArrayList<String>();
 String eventOne,eventTwo;

 List<Instance> instanceListOne,instanceListTwo;
 eventList.addAll(eventmap.keySet());
 //System.out.println("the eventlist is:"+eventList);
 for(int i=0;i<eventList.size()-1;i++){
 eventOne=eventList.get(i);
 instanceListOne=eventmap.get(eventOne);

 //The following is to print event1 and its instances
 //System.out.println("The following is to print event1 and its instances ");
 //System.out.println("The instances are:"+eventOne);
 /*
 System.out.println("the one instance list is:");
 for(int k=0;k<instanceListOne.size();k++)
 {
 instanceListOne.get(k).printInstance();
 }

 */
 for(int j=i+1;j<eventList.size();j++){
 listModelInstance=new ArrayList<ModelInstance>();
 eventTwo=eventList.get(j);
 instanceListTwo=eventmap.get(eventTwo);

 if(distance(listModelInstance,
 instanceListOne,
 instanceListTwo,
 disParameter)
){
 joinEvent=new Model();
 joinEvent.list.add(eventOne);
 joinEvent.list.add(eventTwo);
 distancePair.put(joinEvent,listModelInstance);
 //System.out.println("***************");
 /*
 joinEvent.printList();
 for(int k=0;k<listModelInstance.size();k++)
 System.out.println(listModelInstance.get(k).toString());
 */

 }

 }
 }
 return distancePair;

An Investigation in Efficient Spatial Patterns Mining

166

 }

 //computing the distances
 public boolean distance(List<ModelInstance> listModelInstance,
 List<Instance> instanceList1,
 List<Instance> instanceList2,
 double disParameter){

 Instance instance1,instance2;
 double result;
 ModelInstance modelInstance;
 for(int i=0;i<instanceList1.size();i++){
 instance1=instanceList1.get(i);
 for(int j=0;j<instanceList2.size();j++){
 instance2=instanceList2.get(j);
 result=Math.sqrt(
 (instance1.getX()-instance2.getX())*
 (instance1.getX()-instance2.getX())+
 (instance1.getY()-instance2.getY())*
 (instance1.getY()-instance2.getY()));

 if (result<=disParameter){
 //System.out.println(result);
 modelInstance=new ModelInstance();
 modelInstance.add(instance1.getNumber());
 modelInstance.add(instance2.getNumber());
 listModelInstance.add(modelInstance);

 }

 }

 }
 if(listModelInstance.size()>0)
 return true;
 return false;

 }

 //printing the originality data
 public void printEvent(){
 Set s1=eventmap.keySet();
 Iterator<String> itEvent=s1.iterator();
 while(itEvent.hasNext()){
 String event=itEvent.next();
 System.out.println("the key is:"+event);
 List<Instance> listinstance1=eventmap.get(event);
 System.out.println("listinstance.size():"+listinstance1.size());
 Iterator<Instance> itInstance=listinstance1.iterator();
 while(itInstance.hasNext()){
 System.out.println(itInstance.next().toString());
 }

 }

 }

 public void printPK(LinkedHashMap<Model,List<ModelInstance>> pk,int i,String message){
 System.out.println(message+i+" the start of printing");

Appendix 1 The Partial Codes of SCPMiner

167

 Set s1=pk.keySet();
 Iterator<Model> it=s1.iterator();
 while(it.hasNext()){
 Model model=it.next();
 List<ModelInstance> listinstance1=pk.get(model);
 System.out.print(model);
 System.out.println(" length="+listinstance1.size());
 Iterator<ModelInstance> itInstance=listinstance1.iterator();
 while(itInstance.hasNext()){
 System.out.println(itInstance.next().toString());
 }

 }
 System.out.println(message+i+"the end of printing");

 }

 //Printing the Pi values of the co-locations
 public void printSup(LinkedHashMap<Model,Double> lk,int i){
 System.out.println("The Pi value"+i+"is:");
 System.out.println(lk.keySet().toString());
 System.out.println(lk.values().toString());
 }

 //Computing the Pi values of the co-locations
 public LinkedHashMap<Model,Double> calculateSup
 (LinkedHashMap<Model,List<ModelInstance>> lc,int k,Statement stmt)
 throws SQLException {
 lk=new LinkedHashMap<Model,Double>();
 Set s2=lc.keySet();
 List listDistinct;
 Integer sz;
 double supTemp=1.0;
 double supNow=1.0;
 double everyCount=1.0;
 double everyOCount=1.0;
 String eventType;

 //Generating an instance-table
 //stmt.executeUpdate("CREATE TABLE col_link (sitename varchar (20) NULL ,siteurl varchar
(50) NULL) ");
 String createP="create table p"+k+"(INum decimal(10),";
 for(int i=1;i<=k;i++){
 createP=createP+"type"+i+" char(10),";
 }
 ResultSet rt=stmt.executeQuery("select count(*) as n " +
 "from sysobjects where name ='p"+k+"'");
 if (rt.next()) {
 int num=Integer.valueOf(rt.getString("n"));
 if (num>0){
 stmt.executeUpdate("drop table p"+k);
 }
 }

 createP=createP+"pi decimal(10,2))";
 //System.out.println(createP);
 stmt.executeUpdate(createP);

 Iterator<Model> it2=s2.iterator();
 int INum=0;

An Investigation in Efficient Spatial Patterns Mining

168

 while(it2.hasNext()){
 Model key2=it2.next();//eg. AB
 //System.out.println("the key is:"+key2);
 List<ModelInstance> value2=lc.get(key2);
 supTemp=1.0;// Computing the Pi values of the co-locations again
 //System.out.println("value.size():"+value2.size());
 //System.out.println("*****************");
 for(int i=0;i<k;i++){
 listDistinct=new ArrayList<Integer>();
 //System.out.println("*****************"+i);
 for(int j=0;j<value2.size();j++){
 sz=value2.get(j).get(i);
 //System.out.println(sz);
 if (listDistinct.contains(sz)==false){
 listDistinct.add(sz);
 }
 }//end for
 everyCount=listDistinct.size();
 //System.out.println("distinct count: "+everyCount);
 eventType=key2.get(i);
 everyOCount=eventmap.get(eventType).size();
 //System.out.println("Object count: "+everyOCount);
 supNow=everyCount/everyOCount;
 //System.out.println("supNow: "+supNow);
 if (supTemp>supNow){
 supTemp=supNow;
 }

 }//endfor
 //System.out.println("supTemp: "+supTemp);
 if (supTemp>=minSup){
 INum++;
 lk.put(key2, supTemp);
 //stmt.executeUpdate("insert into col_link values('ASP Chinese Network
','http://www.aspcn.com/')");
 String s3="insert into p"+k;
 String s4="INum,";
 String s5=INum+",";
 for(int m=1;m<=key2.size();m++){
 s4=s4+"type"+m+",";
 s5=s5+"\'"+key2.get(m-1).toString().trim()+"\'"+",";
 }
 s3=s3+" ("+s4+"pi) values("+s5+supTemp+")";

 //System.out.println("s3="+s3);
 stmt.executeUpdate(s3);

 for(int i=0;i<value2.size();i++){
 s3="insert into t"+k;
 s4="INum,";
 s5=INum+",";
 for(int j=0;j<k;j++){
 s4=s4+"id"+(j+1);
 s5=s5+value2.get(i).get(j);
 if (j<k-1){
 s4=s4+",";
 s5=s5+",";
 }
 }
 s3=s3+" ("+s4+") values("+s5+")";

Appendix 1 The Partial Codes of SCPMiner

169

 //System.out.println("s3="+s3);
 stmt.executeUpdate(s3);
 }

 }

 }//end while

 return lk;
 //

 }

 public void generateModel(
 LinkedHashMap<Model,List<ModelInstance>> lc,
 LinkedHashMap<Model,Double> lk,
 LinkedHashMap<Model,List<ModelInstance>> distancePair,
 int index,
 LinkedHashMap<Model,List<ModelInstance>> lc2
){
 // lc lk distancePair k ->lc2
 Model source,target;
 List<Model> keys=new ArrayList<Model>();/
 //System.out.println("generateModel");
 //System.out.println(lk.keySet());
 keys.addAll(lk.keySet());
 for(int i=0;i<keys.size()-1;i++){
 source=keys.get(i);
 //System.out.println("source:"+source);
 //for(int k=0;k<source.size();k++)
 //System.out.print(source.list.get(k));
 //System.out.println("");
 for(int j=i+1;j<keys.size();j++){
 target=keys.get(j);
 //System.out.println("target:"+target);

 if(source.partialEqual(target, index)){
 Model searchModel=new Model();
 searchModel.add(source.get(source.size()-1));
 searchModel.add(target.get(source.size()-1));
 //System.out.println("searchModel:"+searchModel);
 Model newModel=new Model();
 newModel.addPartialValue(source, index);
 newModel.addPartialValue(searchModel, searchModel.size());

 int k=index+2;/

 int m=0;
 boolean xhbl=true;
 while(xhbl==true && m<k-2){
 Model zh=new Model();
 for(int n=0;n<k;n++){
 if (n!=m){

 zh.add(newModel.get(n));
 }
 }
 m++;

An Investigation in Efficient Spatial Patterns Mining

170

 if(lk.containsKey(zh)==false){

 xhbl=false;//
 }
 }//end while
 if (xhbl==true){
 lc2.put(newModel, new ArrayList<ModelInstance>());
 //Generating table-instances
 generateInstance(lc.get(source),
 lc.get(target), index,searchModel,newModel);
 }
 }
 }
 }

 }
 public void generateInstance(List<ModelInstance> sourceList,
 List<ModelInstance> targetList,int index,
 Model searchModel,Model newModel){
 //distancePair,index,
 //searchModel BC,newModel ABC

 ModelInstance sourceI,targetI;
 List<ModelInstance> distanceInstance;/
 for(int i=0;i<sourceList.size();i++){
 sourceI=sourceList.get(i);//eg 11
 for(int j=0;j<targetList.size();j++){
 targetI=targetList.get(j);//eg 12
 if(sourceI.partialEqual(targetI, index)){
 ModelInstance searchInstance,newInstance;
 searchInstance=new ModelInstance();
 newInstance=new ModelInstance();
 searchInstance.add(sourceI.get(sourceI.size()-1));
 searchInstance.add(targetI.get(targetI.size()-1));

 //System.out.println("searchI:"+searchInstance);

 distanceInstance=distancePair.get(searchModel);
 if (distanceInstance.contains(searchInstance)){
 newInstance.addPartialValue(sourceI, index);
 newInstance.addPartialValue(searchInstance, searchInstance.size());
 lc2.get(newModel).add(newInstance);

 }//endif
 }//endif

 }//endfor
 }// end for
 }
 public java.util.Date accountTime(java.util.Date nowTime1,String message){
 java.util.Date nowTime2=
 new java.util.Date(System.currentTimeMillis());
 long hms2 = nowTime2.getTime();
 long hms1 = nowTime1.getTime();
 long jg_hms = hms2 - hms1;
 System.out.print(message);
 //System.out.println("The last running time: " + nowTime1);
 //System.out.println("The running time of this work: " + nowTime2);
 //System.out.println("Conversing it to milliseconds: " + hms1);
 //System.out.println("Conversing it to milliseconds: " + hms2);

Appendix 1 The Partial Codes of SCPMiner

171

 System.out.println(" : " + jg_hms+"milliseconds");
 return nowTime2;
 }

 public void genPT(int k,Statement stmt) throws SQLException{

 //stmt.executeUpdate("CREATE TABLE col_link (sitename varchar (20) NULL ,siteurl varchar
(50) NULL) ");
 String createP="create table t"+k+"(INum decimal(10),";
 for(int i=1;i<=k;i++){
 createP=createP+"id"+i+" decimal(10)";
 if (i<k){
 createP=createP+",";
 }
 }
 createP=createP+")";
 //System.out.println(createP);
 ResultSet rt=stmt.executeQuery("select count(*) as n from sysobjects where name
='t"+k+"'");
 if (rt.next()) {
 int num=Integer.valueOf(rt.getString("n"));
 if (num>0){
 stmt.executeUpdate("drop table t"+k);
 }
 }

 stmt.executeUpdate(createP);

 }
 public void genTable(Statement stmt) throws SQLException{
 String createP="";
 for(int i=1;i<=k;i++){
 createP="create table t"+i+"(INum decimal(2))";
 //System.out.println(createP);
 stmt.executeUpdate(createP);
 }

 }
 public void mainProg(double m,double d,String filename) throws IOException,SQLException{
 this.minSup=m;
 this.distance=d;
 k=2;

 java.util.Date startTime=
 new java.util.Date(System.currentTimeMillis());

 String url = "jdbc:odbc:sqlFullJoin";
 Connection con;
 Statement stmt;
 try {
 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");/
 } catch(java.lang.ClassNotFoundException e) {
 System.err.print("ClassNotFoundException: ");/
 System.err.println(e.getMessage());//
 }
 try {
 con = DriverManager.getConnection(url, "sa", "739555");//
 stmt = con.createStatement(); //
 read(stmt,filename);
 //printEvent();

An Investigation in Efficient Spatial Patterns Mining

172

 java.util.Date t2=accountTime(startTime,"Input the data");
 java.util.Date t1=t2;

 distancePair=caculateDistance(distance);
 t2=accountTime(t1,"Computing the distances");
 t1=t2;
 genPT(2,stmt);
 lk=calculateSup(distancePair,k,stmt);
 //printSup(lk,2);
 t2=accountTime(t1,"The size-2 co-locations");
 t1=t2;
 lc=distancePair;

 for(int i=2;i<eventmap.size();i++){
 if (lk.isEmpty()){
 System.out.println("The end of the program!");
 break;
 }

 lc2=new LinkedHashMap<Model,List<ModelInstance>>();
 generateModel(lc,lk,distancePair,i-1,lc2);

 genPT((i+1),stmt);
 lk=calculateSup(lc2,i+1,stmt);/

 lc=lc2;
 t2=accountTime(t1,"The size"+(i+1)+"prevalence co-locations");
 t1=t2;
 }

 stmt.close();
 con.close();

 } catch(SQLException ex) {
 System.err.println("SQLException: " + ex.getMessage());
 }

 java.util.Date endTime=accountTime(startTime,"the whole time ");
 }

 /*
 public static void main(String args[]) throws IOException,SQLException{
 FullJoin event=new FullJoin();

 event.mainProg(0.2,3000,"event300");

 }

 */
 public static void main(String[] args) throws IOException,SQLException {
 double r,minprev;
 String filename;
 FullJoin colocation=new FullJoin();

 if(args.length != 3){
 System.out.println("Please input parameters：The first one is the distance D, the second
is the min-prev, and the third is the name of the file ");
 return;
 }
 try{

Appendix 1 The Partial Codes of SCPMiner

173

 r = Double.valueOf(args[0]);
 minprev = Double.valueOf(args[1]);
 filename=args[2].trim();
 }catch(Exception e){
 System.out.println("The parameters inputted by you are wrong, please input them again!");
 return;
 }
 System.out.println("full join");
 System.out.print("R：" + r);
 System.out.print(" min Prev:" + minprev);
 System.out.println(" file name:" + filename);

 colocation.mainProg(minprev,r,filename);

 }// end main

}

LessJoin.java //Join-less algorithm
package SFullSjk;

import java.io.IOException;
import java.util.*;
import java.sql.*;

public class LessJoin {
 private LinkedHashMap<String,List<Instance>> eventmap=new

LinkedHashMap<String,List<Instance>>() ;
 private LinkedHashMap<Model,List<ModelInstance>> distancePair;
 private LinkedHashMap<String,Sneighber> starN;
 private LinkedHashMap<Model,List<ModelInstance>> lcs1;
 private LinkedHashMap<Model,List<ModelInstance>> lc;
 private LinkedHashMap<Model,Double> lks1;
 private LinkedHashMap<Model,Double> lk;
 private int iNum=0;

 double distance;
 private double minSup;

 int k;

 public void read(Statement stmt,String filename) throws

IOException,SQLException {
 eventmap=new LinkedHashMap<String,List<Instance>>();
 String eventType;
 int instanceNumber=0;
 double x=0;
 double y=0;
 List<Instance> listInstance;
 listInstance=new ArrayList<Instance>();
 String sqlStr="select * from "+filename.trim()+"

order by 1,2";
 ResultSet rs = stmt.executeQuery(sqlStr);
 while (rs.next()) {
 eventType=rs.getString(1).trim();

An Investigation in Efficient Spatial Patterns Mining

174

 String bl=rs.getString(2).trim();
 instanceNumber=Integer.valueOf(bl);
 x=Double.valueOf(rs.getString(3));
 y=Double.valueOf(rs.getString(4));

 Instance instance1=new Instance

(instanceNumber,x,y);

 if (eventmap.keySet().contains(eventType)==false){
 listInstance=new

ArrayList<Instance>();
 eventmap.put(eventType,

listInstance);
 }
 eventmap.get(eventType).add(instance1);

 }//end file
 }//end FileReadIn

 //Generating the set of the star neighborhoods
 public LinkedHashMap<String,Sneighber> genStarN(double disParameter){

 starN=new LinkedHashMap<String,Sneighber>();
 Sneighber sneighber;
 Sevent sevent;
 List<Integer> slist;

 List<String> eventList=new ArrayList<String>();
 String eventOne,eventTwo;
 Instance instance1,instance2;
 List<Instance> instanceListOne,instanceListTwo;
 eventList.addAll(eventmap.keySet());
 for(int i=0;i<eventList.size()-1;i++){
 eventOne=eventList.get(i);
 instanceListOne=eventmap.get(eventOne);
 sneighber=new Sneighber();
 starN.put(eventOne, sneighber);
 for(int m=0;m<instanceListOne.size();m++){
 instance1=instanceListOne.get(m);
 sevent=new Sevent();
 sneighber.put(instance1.getNumber(), sevent);
 for(int j=i+1;j<eventList.size();j++){
 eventTwo=eventList.get(j);
 instanceListTwo=eventmap.get(eventTwo);
 slist=new ArrayList<Integer>();
 for(int n=0;n<instanceListTwo.size();n++){
 instance2=instanceListTwo.get(n);
 double jl=distance

(instance1,instance2);
 if(jl<=disParameter){
 slist.add

(instance2.getNumber());

 }//endif
 }//endfor instanceListTwo

Appendix 1 The Partial Codes of SCPMiner

175

 if (slist.size()>0)
 {
 sevent.put(eventTwo, slist);
 }
 }//end for eventList
 }//end for eventList
 }//end for
 return starN;
 }

 public double distance(Instance instance1, Instance instance2){
 double result;
 result=Math.sqrt(
 (instance1.getX()-instance2.getX())*
 (instance1.getX()-instance2.getX())+
 (instance1.getY()-instance2.getY())*
 (instance1.getY()-instance2.getY()));
 return result;
 }

 public void printEvent(){
 Set s1=eventmap.keySet();
 Iterator<String> itEvent=s1.iterator();
 while(itEvent.hasNext()){
 String event=itEvent.next();
 System.out.println("the key is:"+event);
 List<Instance> listinstance1=eventmap.get(event);
 System.out.println("listinstance.size

():"+listinstance1.size());
 Iterator<Instance>

itInstance=listinstance1.iterator();
 while(itInstance.hasNext()){
 System.out.println(itInstance.next

().toString());
 }

 }

 }

 public void printPK(LinkedHashMap<Model,List<ModelInstance>> pk,int i,String message){
 System.out.println(message+i+"The beginning of printing");
 Set s1=pk.keySet();
 Iterator<Model> it=s1.iterator();
 while(it.hasNext()){
 Model model=it.next();
 List<ModelInstance> listinstance1=pk.get(model);
 System.out.print(model);
 System.out.println(" length="+listinstance1.size());
 Iterator<ModelInstance>

itInstance=listinstance1.iterator();
 while(itInstance.hasNext()){
 System.out.println(itInstance.next

An Investigation in Efficient Spatial Patterns Mining

176

().toString());
 }

 }
 System.out.println(message+i+"The end of printing");

 }
 //Printing the Pi values
 public void printSup(LinkedHashMap<Model,Double> lk,int i){
 System.out.println("The Pi value of"+i+"co-location:");
 System.out.println(lk.keySet().toString());
 System.out.println(lk.values().toString());
 }
 //p1
 public LinkedHashMap<Model,Double> p1(){
 lk=new LinkedHashMap<Model,Double>();

 Model model1;
 List<String> eventList=new ArrayList<String>();
 eventList.addAll(eventmap.keySet());
 String event1;
 for(int i=0;i<eventList.size();i++){
 event1=eventList.get(i);
 model1=new Model();
 model1.add(event1);
 lk.put(model1, 1.0);
 }

 return lk;

 }
 public void genP(int k,Statement stmt) throws SQLException

{

 //stmt.executeUpdate("CREATE TABLE col_link (sitename varchar (20) NULL ,siteurl varchar
(50) NULL) ");
 String createP="create table pl"+k+"(INum decimal(10),";
 for(int i=1;i<=k;i++){
 createP=createP+"type"+i+" char(10),";
 }
 ResultSet rt=stmt.executeQuery("select count(*) as n " +
 "from sysobjects where name ='pl"+k+"'");
 if (rt.next()) {
 int num=Integer.valueOf(rt.getString("n"));
 if (num>0){
 stmt.executeUpdate("drop table pl"+k);
 }
 }
 createP=createP+"pi decimal(10,2))";
 stmt.executeUpdate(createP);
 }
 public void supExact(int k,Statement stmt,double supTemp,Model key,
 List<ModelInstance> value) throws SQLException

{
 if (supTemp>=minSup){
 iNum++;
 lc.get(key).addAll(value);

Appendix 1 The Partial Codes of SCPMiner

177

 lk.put(key, supTemp);
 String s3="insert into pl"+k;
 String s4="INum,";
 String s5=iNum+",";
 for(int m=1;m<=key.size();m++){
 s4=s4+"type"+m+",";
 s5=s5+"\'"+key.get(m-1).toString().trim()

+"\'"+",";
 }
 s3=s3+" ("+s4+"pi) values("+s5+supTemp+")";
 stmt.executeUpdate(s3);

 for(int i=0;i<value.size();i++){
 s3="insert into tl"+k;
 s4="INum,";
 s5=iNum+",";
 for(int j=0;j<k;j++){
 s4=s4+"id"+(j+1);
 s5=s5+value.get(i).get(j);
 if (j<k-1){
 s4=s4+",";
 s5=s5+",";
 }
 }
 s3=s3+" ("+s4+") values("+s5+")";
 stmt.executeUpdate(s3);
 }
 }

 }

 public double sup(int k,Model key,List<ModelInstance> value){
 List listDistinct;
 Integer sz;
 double supTemp=1.0;
 double supNow=0.0;
 double everyCount=0.0;
 double everyOCount=0.0;
 String eventType;
 if(value.size()==0){
 supTemp=0.0;
 return supTemp;
 }else{

 for(int i=0;i<k;i++){

 listDistinct=new ArrayList<Integer>();

 for(int j=0;j<value.size();j++){

 sz=value.get(j).get(i);

 if (listDistinct.contains(sz)

==false){
 listDistinct.add(sz);

 }

An Investigation in Efficient Spatial Patterns Mining

178

 }//end for

 everyCount=listDistinct.size();

 eventType=key.get(i);
 everyOCount=eventmap.get(eventType).size();
 supNow=everyCount/everyOCount;

 if (supTemp>supNow){

 supTemp=supNow;
 }

 }//endfor
 return supTemp;
 }//end if

 }
 public boolean supCoarse(Model key,double supTemp){
 if (supTemp<minSup){

 lc.remove(key);
 //System.out.println("coarse delete!"+key);
 return true;
 }else{
 return false;
 }

 }
 public List<ModelInstance> filterClique(int k,Model

key,List<ModelInstance> value){
 // 3 abc,111 242 331 lcs1
 Model checkKey=new Model();
 ModelInstance checkValue;
 List<ModelInstance> valueNew=new ArrayList<ModelInstance>();
 List<ModelInstance> cliqueValue=new

ArrayList<ModelInstance>();
 for(int i=1;i<k;i++){
 checkKey.add(key.get(i));
 }

 cliqueValue=lcs1.get(checkKey);
 for(int i=0;i<value.size();i++){
 checkValue=new ModelInstance();
 for(int j=1;j<value.get(i).size();j++){
 checkValue.add(value.get(i).get(j));
 }
 if (cliqueValue.contains(checkValue)==true){
 valueNew.add(value.get(i));
 }
 }
 return valueNew;
 }

 public void genModel(int index){

Appendix 1 The Partial Codes of SCPMiner

179

 Model source,target;
 List<Model> keys=new ArrayList<Model>();
 keys.addAll(lks1.keySet());
 for(int i=0;i<keys.size();i++){
 source=keys.get(i);
 for(int j=i+1;j<keys.size();j++){
 target=keys.get(j);
 if(source.partialEqual(target, index)){
 Model searchModel=new Model();
 searchModel.add(source.get

(source.size()-1));
 searchModel.add(target.get

(source.size()-1));
 //System.out.println

("searchModel:"+searchModel);
 Model newModel=new Model();
 newModel.addPartialValue(source,

index);
 newModel.addPartialValue

(searchModel, searchModel.size());

 int k=index+2;

 int m=0;
 boolean xhbl=true;
 while(xhbl==true && m<k-2){
 Model zh=new Model();
 for(int n=0;n<k;n++){
 if (n!=m){

 zh.add

(newModel.get(n));
 }
 }
 m++;

 if(lks1.containsKey(zh)

==false){

//System.out.println(newModel);
//System.out.println(zh);
 xhbl=false;/
 }
 }//end while
 if (xhbl==true){
 lc.put(newModel, new

ArrayList<ModelInstance>());
 }
 }
 }
 }

An Investigation in Efficient Spatial Patterns Mining

180

 }

 public void genInstance(int k,Statement stmt) throws SQLException{
 // lc(k)+starN->Instance of lc(k)
 List<Model> keys;
 List<Integer> keys2;
 Sevent sevent;
 List<ModelInstance> list1,list3,list;
 List<Integer> list2;
 ModelInstance id1;
 keys=new ArrayList<Model>();
 keys.addAll(lc.keySet());
 int centerId;

 for(int i=0;i<keys.size();i++){
 Model model=keys.get(i);
 //iNum++;

 String center,neighber;
 center=model.get(0);
 Sneighber sneighber=starN.get(center);

 keys2=new ArrayList<Integer>();
 keys2.addAll(sneighber.map.keySet());
 list=new ArrayList<ModelInstance>();
 for(int n=0;n<keys2.size();n++){
 centerId=keys2.get(n);//1
 id1=new ModelInstance();
 id1.add(centerId);
 list1=new ArrayList<ModelInstance>();
 list3=new ArrayList<ModelInstance>();
 list1.add(id1);
 sevent=sneighber.get(centerId);
 boolean kg=true;
 for(int j=1;j<model.size();j++){
 neighber=model.get(j);

 if (sevent.containsKey(neighber)){
 //if (center.equals("AA") &&

neighber.equals("CC"))
 //{System.out.println

(neighber);}
 list2=sevent.get(neighber);
 //list1*list2->list3
 list3=genInstance2

(list1,list2);
 list1=list3;
 }
 else{
 kg=false;
 break;
 }
 }//end keys2
 //model list3
 if(kg==true){
 list.addAll(list3);

Appendix 1 The Partial Codes of SCPMiner

181

 }
 }//end model
 if(k>2){

 double sup1=sup(k,model,list);
 if (supCoarse(model,sup1)==false){

 list=filterClique(k,model,list);

 double sup3=sup(k,model,list);
 supExact(k,stmt,sup3,model,list);
 }
 }else{

 double sup2=sup(k,model,list);
 supExact(k,stmt,sup2,model,list);
 }
 }// end for
 }

 public List<ModelInstance> genInstance2(List<ModelInstance>, list1,List<Integer> list2){
 List<ModelInstance> list=new ArrayList<ModelInstance>();
 ModelInstance modelI;
 int id;
 for(int i=0;i<list1.size();i++){
 for(int j=0;j<list2.size();j++){
 modelI=new ModelInstance();
 modelI.addAll(list1.get(i));
 id=list2.get(j);
 modelI.add(id);
 list.add(modelI);
 }// end list2
 }//end list1
 return list;
 }

 public java.util.Date accountTime(java.util.Date nowTime1,String, message){
 java.util.Date nowTime2=
 new java.util.Date(System.currentTimeMillis());
 long hms2 = nowTime2.getTime();
 long hms1 = nowTime1.getTime();
 long jg_hms = hms2 - hms1;
 System.out.print(message);

 System.out.println(" : " + jg_hms+"milliseconds");
 return nowTime2;
 }

 public void genT(int k,Statement stmt) throws SQLException{

 //stmt.executeUpdate("CREATE TABLE col_link (sitename
varchar (20) NULL ,siteurl varchar (50) NULL) ");
 String createP="create table tl"+k+"(INum decimal(10),";
 for(int i=1;i<=k;i++){
 createP=createP+"id"+i+" decimal(10)";
 if (i<k){
 createP=createP+",";
 }
 }
 createP=createP+")";

An Investigation in Efficient Spatial Patterns Mining

182

 ResultSet rt=stmt.executeQuery("select count(*) as n

from sysobjects where name ='tl"+k+"'");
 if (rt.next()) {
 int num=Integer.valueOf(rt.getString("n"));
 if (num>0){
 stmt.executeUpdate("drop table tl"+k);
 }
 }

 stmt.executeUpdate(createP);

 }
 public void mainProg(double m,double d,String filename) throws

IOException,SQLException{
 this.minSup=m;
 this.distance=d;
 java.util.Date startTime=
 new java.util.Date(System.currentTimeMillis());

 String url = "jdbc:odbc:sqlFullJoin";

Sqldsn is the name of the dsn
 Connection con;
 Statement stmt;
 try {
 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
 } catch(java.lang.ClassNotFoundException e) {
 System.err.print("ClassNotFoundException: ");
 System.err.println(e.getMessage());/
 }
 try {
 con = DriverManager.getConnection(url, "sa",

"739555");
 stmt = con.createStatement();

 read(stmt,filename);//printEvent();//
 java.util.Date t2=accountTime(startTime,"Input the data");
 java.util.Date t1=t2;
 starN=genStarN(distance);//
 t2=accountTime(t1,"generating the set of the star neighborhoods");
 t1=t2;
 lks1=p1();

 for(int k=2;k<=eventmap.size();k++){
 if (lks1.isEmpty()){
 System.out.println("The end of the program!");
 break;
 }

 lc=new

LinkedHashMap<Model,List<ModelInstance>>();
 lk=new LinkedHashMap<Model,Double>();
 genModel(k-2);
 genP(k,stmt); genT(k,stmt);
 genInstance(k,stmt);
 //printPK(lc,k,"The set of the candidate co-locations ");

Appendix 1 The Partial Codes of SCPMiner

183

 //printSup(lk,k);
 lks1=lk;
 lcs1=lc;
 t2=accountTime(t1,"The size"+k+"co-locations");
 t1=t2;
 }
 stmt.close();
 con.close();

 } catch(SQLException ex) {
 System.err.println("SQLException: " + ex.getMessage());

 }
 java.util.Date endTime=accountTime(startTime,"the whole time");
 }

 public static void main(String args[]) throws

 public static void main(String[] args) throws

IOException,SQLException {
 double r,minprev;
 String filename;
 LessJoin colocation=new LessJoin();
 if(args.length != 3){
 System.out.println("Please input the parameters: The distance D, the min-prev and the
name of the file. ");
 return;
 }
 try{
 r = Double.valueOf(args[0]);
 minprev = Double.valueOf(args[1]);
 filename=args[2].trim();
 }catch(Exception e){
 System.out.println("Your input is wrong, please input again!");
 return;
 }
 System.out.println("less join");
 System.out.print("R：" + r);
 System.out.print(" min Prev:" + minprev);
 System.out.println(" file name:" + filename);

 colocation.mainProg(minprev,r,filename);

 }// end main

}

An Investigation in Efficient Spatial Patterns Mining

184

Appendix 2

The Papers Published during this Doctor of Philosophy Degree:

Appendix 2 The Papers Published During This Doctor of Philosophy Degree

185

An Investigation in Efficient Spatial Patterns Mining

186

Appendix 2 The Papers Published During This Doctor of Philosophy Degree

187

An Investigation in Efficient Spatial Patterns Mining

188

Appendix 2 The Papers Published During This Doctor of Philosophy Degree

189

An Investigation in Efficient Spatial Patterns Mining

190

Appendix 2 The Papers Published During This Doctor of Philosophy Degree

191

An Investigation in Efficient Spatial Patterns Mining

192

Appendix 2 The Papers Published During This Doctor of Philosophy Degree

193

An Investigation in Efficient Spatial Patterns Mining

194

Appendix 2 The Papers Published During This Doctor of Philosophy Degree

195

An Investigation in Efficient Spatial Patterns Mining

196

Appendix 2 The Papers Published During This Doctor of Philosophy Degree

197

An Investigation in Efficient Spatial Patterns Mining

198

Appendix 2 The Papers Published During This Doctor of Philosophy Degree

199

An Investigation in Efficient Spatial Patterns Mining

200

Appendix 2 The Papers Published During This Doctor of Philosophy Degree

201

An Investigation in Efficient Spatial Patterns Mining

202

Appendix 2 The Papers Published During This Doctor of Philosophy Degree

203

An Investigation in Efficient Spatial Patterns Mining

204

Appendix 2 The Papers Published During This Doctor of Philosophy Degree

205

An Investigation in Efficient Spatial Patterns Mining

206

Appendix 2 The Papers Published During This Doctor of Philosophy Degree

207

An Investigation in Efficient Spatial Patterns Mining

208

