222 research outputs found

    A Min-Max . . . Functions and Its Implications

    Get PDF
    A. Huber and V. Kolmogorov (ISCO 2012) introduced a concept of k-submodular function as a generalization of ordinary submodular (set) functions and bisubmodular functions and obtained a min-max theorem for minimization of k-submodular functions. Also F. Kuivinen (2011) considered submodular functions on (product lattices of) diamonds and showed a min-max theorem for minimization of submodular functions on diamonds. In the present paper we consider a common generalization of k-submodular functions and submodular functions on diamonds, which we call a transversal submodular function (or a t-submodular function, for short). We show a min-max theorem for minimization of t-submodular functions in terms of a new norm composed of ℓ1 and ℓ ∞ norms. This reveals a relationship between the obtained min-max theorem and that for minimization of ordinary submodular set functions due to J. Edmonds (1970). We also show how our min-max theorem for t-submodular functions can be used to prove the min-max theorem for k-submodular functions by Huber and Kolmogorov and that for submodular functions on diamonds by Kuivinen. Moreover, we show a counterexample to a characterization, given by Huber and Kolmogorov (ISCO 2012), of extreme points of the k-submodular polyhedron and make it a correct one by fixing a flaw therein

    On the Steady State Control of Timed Event Graphs with Firing Date Constraints

    Get PDF
    Two algorithms for solving a specific class of steadystate control problems for Timed Event Graphs are presented. In the first, asymptotic convergence to the desired set is guaranteed. The second algorithm, which builds on from the recent developments in the spectral theory of min-max functions, guarantees Lyapunov stability since the distance between the actual state and the desired set never increases. Simulation results show the efficiency of the proposed approach in a problem of moderate complexity

    The level set method for the two-sided eigenproblem

    Full text link
    We consider the max-plus analogue of the eigenproblem for matrix pencils Ax=lambda Bx. We show that the spectrum of (A,B) (i.e., the set of possible values of lambda), which is a finite union of intervals, can be computed in pseudo-polynomial number of operations, by a (pseudo-polynomial) number of calls to an oracle that computes the value of a mean payoff game. The proof relies on the introduction of a spectral function, which we interpret in terms of the least Chebyshev distance between Ax and lambda Bx. The spectrum is obtained as the zero level set of this function.Comment: 34 pages, 4 figures. Changes with respect to the previous version: we explain relation to mean-payoff games and discrete event systems, and show that the reconstruction of spectrum is pseudopolynomia

    Rational semimodules over the max-plus semiring and geometric approach of discrete event systems

    Get PDF
    We introduce rational semimodules over semirings whose addition is idempotent, like the max-plus semiring, in order to extend the geometric approach of linear control to discrete event systems. We say that a subsemimodule of the free semimodule S^n over a semiring S is rational if it has a generating family that is a rational subset of S^n, S^n being thought of as a monoid under the entrywise product. We show that for various semirings of max-plus type whose elements are integers, rational semimodules are stable under the natural algebraic operations (union, product, direct and inverse image, intersection, projection, etc). We show that the reachable and observable spaces of max-plus linear dynamical systems are rational, and give various examples.Comment: 24 pages, 9 postscript figures; example in section 4.3 expande

    BSP-fields: An Exact Representation of Polygonal Objects by Differentiable Scalar Fields Based on Binary Space Partitioning

    Get PDF
    The problem considered in this work is to find a dimension independent algorithm for the generation of signed scalar fields exactly representing polygonal objects and satisfying the following requirements: the defining real function takes zero value exactly at the polygonal object boundary; no extra zero-value isosurfaces should be generated; C1 continuity of the function in the entire domain. The proposed algorithms are based on the binary space partitioning (BSP) of the object by the planes passing through the polygonal faces and are independent of the object genus, the number of disjoint components, and holes in the initial polygonal mesh. Several extensions to the basic algorithm are proposed to satisfy the selected optimization criteria. The generated BSP-fields allow for applying techniques of the function-based modeling to already existing legacy objects from CAD and computer animation areas, which is illustrated by several examples

    Tropical polyhedra are equivalent to mean payoff games

    Full text link
    We show that several decision problems originating from max-plus or tropical convexity are equivalent to zero-sum two player game problems. In particular, we set up an equivalence between the external representation of tropical convex sets and zero-sum stochastic games, in which tropical polyhedra correspond to deterministic games with finite action spaces. Then, we show that the winning initial positions can be determined from the associated tropical polyhedron. We obtain as a corollary a game theoretical proof of the fact that the tropical rank of a matrix, defined as the maximal size of a submatrix for which the optimal assignment problem has a unique solution, coincides with the maximal number of rows (or columns) of the matrix which are linearly independent in the tropical sense. Our proofs rely on techniques from non-linear Perron-Frobenius theory.Comment: 28 pages, 5 figures; v2: updated references, added background materials and illustrations; v3: minor improvements, references update

    Multiorder, Kleene stars and cyclic projectors in the geometry of max cones

    Full text link
    This paper summarizes results on some topics in the max-plus convex geometry, mainly concerning the role of multiorder, Kleene stars and cyclic projectors, and relates them to some topics in max algebra. The multiorder principle leads to max-plus analogues of some statements in the finite-dimensional convex geometry and is related to the set covering conditions in max algebra. Kleene stars are fundamental for max algebra, as they accumulate the weights of optimal paths and describe the eigenspace of a matrix. On the other hand, the approach of tropical convexity decomposes a finitely generated semimodule into a number of convex regions, and these regions are column spans of uniquely defined Kleene stars. Another recent geometric result, that several semimodules with zero intersection can be separated from each other by max-plus halfspaces, leads to investigation of specific nonlinear operators called cyclic projectors. These nonlinear operators can be used to find a solution to homogeneous multi-sided systems of max-linear equations. The results are presented in the setting of max cones, i.e., semimodules over the max-times semiring.Comment: 26 pages, a minor revisio

    Reinforcement Learning With Temporal Logic Rewards

    Full text link
    Reinforcement learning (RL) depends critically on the choice of reward functions used to capture the de- sired behavior and constraints of a robot. Usually, these are handcrafted by a expert designer and represent heuristics for relatively simple tasks. Real world applications typically involve more complex tasks with rich temporal and logical structure. In this paper we take advantage of the expressive power of temporal logic (TL) to specify complex rules the robot should follow, and incorporate domain knowledge into learning. We propose Truncated Linear Temporal Logic (TLTL) as specifications language, that is arguably well suited for the robotics applications, together with quantitative semantics, i.e., robustness degree. We propose a RL approach to learn tasks expressed as TLTL formulae that uses their associated robustness degree as reward functions, instead of the manually crafted heuristics trying to capture the same specifications. We show in simulated trials that learning is faster and policies obtained using the proposed approach outperform the ones learned using heuristic rewards in terms of the robustness degree, i.e., how well the tasks are satisfied. Furthermore, we demonstrate the proposed RL approach in a toast-placing task learned by a Baxter robot
    corecore