3,634 research outputs found

    Surface roughness modeling of CBN hard steel turning

    Get PDF
    Study in the paper investigate the influence of the cutting conditions parameters on surface roughness parameters during turning of hard steel with cubic boron nitrite cutting tool insert. For the modeling of surface roughness parameters was used central compositional design of experiment and artificial neural network as well. The values of surface roughness parameters Average mean arithmetic surface roughness (Ra) and Maximal surface roughness (Rmax) were predicted by this two-modeling methodology and determined models were then compared. The results showed that the proposed systems can significantly increase the accuracy of the product profile when compared to the conventional approaches. The results indicate that the design of experiments modeling technique and artificial neural network can be effectively used for the prediction of the surface roughness parameters of hard steel and determined significantly influential cutting conditions parameters

    Surface profile prediction and analysis applied to turning process

    Get PDF
    An approach for the prediction of surface profile in turning process using Radial Basis Function (RBF) neural networks is presented. The input parameters of the RBF networks are cutting speed, depth of cut and feed rate. The output parameters are Fast Fourier Transform (FFT) vector of surface profile for the prediction of surface profile. The RBF networks are trained with adaptive optimal training parameters related to cutting parameters and predict surface profile using the corresponding optimal network topology for each new cutting condition. A very good performance of surface profile prediction, in terms of agreement with experimental data, was achieved with high accuracy, low cost and high speed. It is found that the RBF networks have the advantage over Back Propagation (BP) neural networks. Furthermore, a new group of training and testing data were also used to analyse the influence of tool wear and chip formation on prediction accuracy using RBF neural networks

    Rapid design of tool-wear condition monitoring systems for turning processes using novelty detection

    Get PDF
    Condition monitoring systems of manufacturing processes have been recognised in recent years as one of the key technologies that provide the competitive advantage in many manufacturing environments. It is capable of providing an essential means to reduce cost, increase productivity, improve quality and prevent damage to the machine or workpiece. Turning operations are considered one of the most common manufacturing processes in industry. It is used to manufacture different round objects such as shafts, spindles and pins. Despite recent development and intensive engineering research, the development of tool wear monitoring systems in turning is still ongoing challenge. In this paper, force signals are used for monitoring tool-wear in a feature fusion model. A novel approach for the design of condition monitoring systems for turning operations using novelty detection algorithm is presented. The results found prove that the developed system can be used for rapid design of condition monitoring systems for turning operations to predict tool-wear

    Artificial Neural Network System for Predicting Cutting Forces in Helical-End Milling of Laser-Deposited Metal Materials

    Get PDF
    When machining difficult-to-cut metal materials often used to make sheet metal forming tools, excessive cutting force jumps often break the cutting edge. Therefore, this research developed a system of three neural network models to accurately predict the maximal cutting forces on the cutting edge in helical end milling of layered metal material. The model considers the different machinability of individual layers of a multilayer metal material. Comparing the neural force system with a linear regression model and experimental data shows that the system accurately predicts the cutting force when milling layered metal materials for a combination of specific cutting parameters. The predicted values of the cutting forces agree well with the measured values. The maximum error of the predicted cutting forces is 5.85% for all performed comparative tests. The obtained model accuracy is 98.65%

    Model-based observer proposal for surface roughness monitoring

    Get PDF
    Comunicación presentada a MESIC 2019 8th Manufacturing Engineering Society International Conference (Madrid, 19-21 de Junio de 2019)In the literature, many different machining monitoring systems for surface roughness and tool condition have been proposed and validated experimentally. However, these approaches commonly require costly equipment and experimentation. In this paper, we propose an alternative monitoring system for surface roughness based on a model-based observer considering simple relationships between tool wear, power consumption and surface roughness. The system estimates the surface roughness according to simple models and updates the estimation fusing the information from quality inspection and power consumption. This monitoring strategy is aligned with the industry 4.0 practices and promotes the fusion of data at different shop-floor levels

    Eco-efficient process based on conventional machining as an alternative technology to chemical milling of aeronautical metal skin panels

    Get PDF
    El fresado químico es un proceso diseñado para la reducción de peso de pieles metálicas que, a pesar de los problemas medioambientales asociados, se utiliza en la industria aeronáutica desde los años 50. Entre sus ventajas figuran el cumplimiento de las estrictas tolerancias de diseño de piezas aeroespaciales y que pese a ser un proceso de mecanizado, no induce tensiones residuales. Sin embargo, el fresado químico es una tecnología contaminante y costosa que tiende a ser sustituida. Gracias a los avances realizados en el mecanizado, la tecnología de fresado convencional permite alcanzar las tolerancias requeridas siempre y cuando se consigan evitar las vibraciones y la flexión de la pieza, ambas relacionadas con los parámetros del proceso y con los sistemas de utillaje empleados. Esta tesis analiza las causas de la inestabilidad del corte y la deformación de las piezas a través de una revisión bibliográfica que cubre los modelos analíticos, las técnicas computacionales y las soluciones industriales en estudio actualmente. En ella, se aprecia cómo los modelos analíticos y las soluciones computacionales y de simulación se centran principalmente en la predicción off-line de vibraciones y de posibles flexiones de la pieza. Sin embargo, un enfoque más industrial ha llevado al diseño de sistemas de fijación, utillajes, amortiguadores basados en actuadores, sistemas de rigidez y controles adaptativos apoyados en simulaciones o en la selección estadística de parámetros. Además se han desarrollado distintas soluciones CAM basadas en la aplicación de gemelos virtuales. En la revisión bibliográfica se han encontrado pocos documentos relativos a pieles y suelos delgados por lo que se ha estudiado experimentalmente el efecto de los parámetros de corte en su mecanizado. Este conjunto de experimentos ha demostrado que, pese a usar un sistema que aseguraba la rigidez de la pieza, las pieles se comportaban de forma diferente a un sólido rígido en términos de fuerzas de mecanizado cuando se utilizaban velocidades de corte cercanas a la alta velocidad. También se ha verificado que todas las muestras mecanizadas entraban dentro de tolerancia en cuanto a la rugosidad de la pieza. Paralelamente, se ha comprobado que la correcta selección de parámetros de mecanizado puede reducir las fuerzas de corte y las tolerancias del proceso hasta un 20% y un 40%, respectivamente. Estos datos pueden tener aplicación industrial en la simplificación de los sistemas de amarre o en el incremento de la eficiencia del proceso. Este proceso también puede mejorarse incrementando la vida de la herramienta al utilizar fluidos de corte. Una correcta lubricación puede reducir la temperatura del proceso y las tensiones residuales inducidas a la pieza. Con este objetivo, se han desarrollado diferentes lubricantes, basados en el uso de líquidos iónicos (IL) y se han comparado con el comportamiento tribológico del par de contacto en seco y con una taladrina comercial. Los resultados obtenidos utilizando 1 wt% de los líquidos iónicos en un tribómetro tipo pin-on-disk demuestran que el IL no halogenado reduce significativamente el desgaste y la fricción entre el aluminio, material a mecanizar, y el carburo de tungsteno, material de la herramienta, eliminando casi toda la adhesión del aluminio sobre el pin, lo que puede incrementar considerablemente la vida de la herramienta.Chemical milling is a process designed to reduce the weight of metals skin panels. This process has been used since 1950s in the aerospace industry despite its environmental concern. Among its advantages, chemical milling does not induce residual stress and parts meet the required tolerances. However, this process is a pollutant and costly technology. Thanks to the last advances in conventional milling, machining processes can achieve similar quality results meanwhile vibration and part deflection are avoided. Both problems are usually related to the cutting parameters and the workholding. This thesis analyses the causes of the cutting instability and part deformation through a literature review that covers analytical models, computational techniques and industrial solutions. Analytics and computational solutions are mainly focused on chatter and deflection prediction and industrial approaches are focused on the design of workholdings, fixtures, damping actuators, stiffening devices, adaptive control systems based on simulations and the statistical parameters selection, and CAM solutions combined with the use of virtual twins applications. In this literature review, few research works about thin-plates and thin-floors is found so the effect of the cutting parameters is also studied experimentally. These experiments confirm that even using rigid workholdings, the behavior of the part is different to a rigid body at high speed machining. On the one hand, roughness values meet the required tolerances under every set of the tested parameters. On the other hand, a proper parameter selection reduces the cutting forces and process tolerances by up to 20% and 40%, respectively. This fact can be industrially used to simplify workholding and increase the machine efficiency. Another way to improve the process efficiency is to increase tool life by using cutting fluids. Their use can also decrease the temperature of the process and the induced stresses. For this purpose, different water-based lubricants containing three types of Ionic Liquids (IL) are compared to dry and commercial cutting fluid conditions by studying their tribological behavior. Pin on disk tests prove that just 1wt% of one of the halogen-free ILs significantly reduces wear and friction between both materials, aluminum and tungsten carbide. In fact, no wear scar is noticed on the ball when one of the ILs is used, which, therefore, could considerably increase tool life
    corecore