685 research outputs found

    High Gain Amplifier with Enhanced Cascoded Compensation

    Get PDF
    A two-stage CMOS operational amplifier with both, gain-boosting and indirect current feedback frequency compensation performed by means of regulated cascode amplifiers, is presented. By using quasi-floating-gate transistors (QFGT) the supply requirements, the number of capacitors and the size of the compensation capacitors respect to other Miller schemes are reduced. A prototype was fabricated using a 0.5 μm technology, resulting, for a load of 45 pF and supply voltage of 1.65 V, in open-loop-gain of 129 dB, 23 MHz of gain-bandwidth product, 60o phase margin, 675 μW power consumption and 1% settling time of 28 ns

    An improved reversed miller compensation technique for three-stage CMOS OTAs with double pole-zero cancellation and almost single-pole frequency response

    Get PDF
    This paper presents an improved reversed nested Miller compensation technique exploiting a single additional feed-forward stage to obtain double pole-zero cancellation and ideally single-pole behavior, in a three-stage Miller amplifier. The approach allows designing a three-stage operational transconductance amplifier (OTA) with one dominant pole and two (ideally) mutually cancelling pole-zero doublets. We demonstrate the robustness of the proposed cancellation technique, showing that it is not significantly influenced by process and temperature variations. The proposed design equations allow setting the unity-gain frequency of the amplifier and the complex poles' resonance frequency and quality factor. We introduce the notion of bandwidth efficiency to quantify the OTA performance with respect to a telescopic cascode OTA for given load capacitance and power consumption constraints and demonstrate analytically that the proposed approach allows a bandwidth efficiency that can ideally approach 100%. A CMOS implementation of the proposed compensation technique is provided, in which a current reuse scheme is used to reduce the total current consumption. The OTA has been designed using a 130-nm CMOS process by STMicroelectronics and achieves a DC gain larger than 120 dB, with almost single-pole frequency response. Monte Carlo simulations have been performed to show the robustness of the proposed approach to process, voltage, and temperature (PVT) variations and mismatches

    High-Linearity Self-Biased CMOS Current Buffer

    Get PDF
    A highly linear fully self-biased class AB current buffer designed in a standard 0.18 mu m CMOS process with 1.8 V power supply is presented in this paper. It is a simple structure that, with a static power consumption of 48 mu W, features an input resistance as low as 89 Omega, high accuracy in the input-output current ratio and total harmonic distortion (THD) figures lower than -60 dB at 30 mu A amplitude signal and 1 kHz frequency. Robustness was proved through Monte Carlo and corner simulations, and finally validated through experimental measurements, showing that the proposed configuration is a suitable choice for high performance low voltage low power applications

    Strategies for enhancing DC gain and settling performance of amplifiers

    Get PDF
    The operational amplifier (op amp) is one of the most widely used and important building blocks in analog circuit design. High gain and high speed are two important properties of op amps because they determine the settling behavior of the op amps. As supply voltages decrease, the realization of high gain amplifiers with large Gain-Bandwidth-Products (GBW) has become challenging. The major focus in this dissertation is on the negative output impedance gain enhancement technique. The negative impedance gain enhancement technique offers potential for achieving very high gain and energy-efficient fast settling and is low-voltage compatible. Misconceptions that have limited the practical adoption of this gain enhancement technique are discussed. A new negative conductance gain enhancement technique was proposed. The proposed circuit generates a negative conductance with matching requirements for achieving very high DC gain that are less stringent than those for existing -g m gain enhancement schemes. The proposed circuit has potential for precise digital control of a very large DC gain. A prototype fully differential CMOS operational amplifier was designed and fabricated based on the proposed gain enhancement technique. Experimental results which showed a DC gain of 85dB and an output swing of 876mVp-p validated the fundamental performance characteristics of this technique. In a separate section, a new amplifier architecture with bandpass feedforward compensation is presented. It is shown that a bandpass feedforward path can be used to substantially extend the unity-gain-frequency of an operational amplifier. Simulation results predict significant improvements in rise time and settling performance and show that the bandpass compensation scheme is reasonably robust. In the final section, a new technique for asynchronous data recovery based upon using a delay line in the incoming data path is introduced. The proposed data recovery system is well suited for tight tolerance channels and coding systems supporting standards that limit the maximum number of consecutive 0\u27s and 1\u27s in a data stream. This system does not require clock recovery, suffers no loss of data during acquisition, has a reduced sensitivity to jitter in the incoming data and does not exhibit jitter enhancement associated with VCO tracking in a PLL

    Analysis and design of analog integrated circuits

    Get PDF

    Rail-To-Rail Output Op-Amp Design with Negative Miller Capacitance Compensation

    Get PDF
    In this paper, a two-stage op-amp design is considered using both Miller and negative Miller compensation techniques. The first op-amp design uses Miller compensation around the second amplification stage, whilst the second op-amp design uses negative Miller compensation around the first stage and Miller compensation around the second amplification stage. The aims of this work were to compare the gain and phase margins obtained using the different compensation techniques and identify the ability to choose either compensation technique based on a particular set of design requirements. The two op-amp designs created are based on the same two-stage rail-to-rail output CMOS op-amp architecture where the first stage of the op-amp consists of differential input and cascode circuits, and the second stage is a class AB amplifier. The op-amps have been designed using a 0.35mm CMOS fabrication process

    Design of two-stage class AB CMOS buffers: a systematic approach

    Get PDF
    A systematic approach for the design of two-stage class AB CMOS unity-gain buffers is proposed. It is based on the inclusion of a class AB operation to class A Miller amplifier topologies in unity-gain negative feedback by a simple technique that does not modify quiescent currents, supply requirements, noise performance, or static power. Three design examples are fabricated in a 0.5 μm CMOS process. Measurement results show slew rate improvement factors of approximately 100 for the class AB buffers versus their class A counterparts for the same quiescent power consumption (< 200 μW)

    Design of a CMOS active electrode IC for wearable electrical impedance tomography systems

    Get PDF
    This paper describes the design of an active electrode integrated circuit (IC) for a wearable electrical impedance tomography (EIT) system required for real time monitoring of neonatal lung function. The IC comprises a wideband high power current driver (up to 6 mAp-p output current), a low noise voltage amplifier and two shape sensor buffers. The IC has been designed in a 0.35-μm CMOS technology. It operates from ±9 V power supplies and occupies a total die area of 5 mm2. Post-layout simulations are presented
    corecore