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Abstract: A highly linear fully self-biased class AB current buffer designed in a standard 0.18 µm
CMOS process with 1.8 V power supply is presented in this paper. It is a simple structure that, with a
static power consumption of 48 µW, features an input resistance as low as 89 Ω, high accuracy in the
input–output current ratio and total harmonic distortion (THD) figures lower than −60 dB at 30 µA
amplitude signal and 1 kHz frequency. Robustness was proved through Monte Carlo and corner
simulations, and finally validated through experimental measurements, showing that the proposed
configuration is a suitable choice for high performance low voltage low power applications.
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1. Introduction

Current mirrors are required not only to generate and replicate bias currents, but also as core
cells in many analog and mixed signal applications: current conveyors, current feedback operational
amplifiers or current-mode filters, among others, are based on this basic current processing block [1–9].
Unfortunately, the power consumption of current-mode circuits proportionally increases as the number
of active branches where the current is replicated increases. This limitation, critical for the current
low-voltage low-power IC design scenario set by the driving portable market, can be circumvented
through class AB operation, which makes it possible to dynamically handle current levels higher than
the quiescent bias current [10–14]. Furthermore, self-biasing may be used to establish the DC current
in the circuit without any additional bias circuitry in order to optimize the power consumption [15].

The goal of this work is to accomplish a reliable fully self-biased class AB current buffer
design. It relies on an active input to attain very low input impedance and high linearity, which
is further increased by the coupling of the input and output branches through a single transistor.
Preliminary results from a not fully self-biased implementation, i.e., requiring extra bias generation
for the cascode transistors and the input amplifier, are presented in [16]. This paper presents the
complete fully self-biased design, providing more insight into the operation principle and the actual
implementation of the required amplifier and the corresponding compensation network, considering
both a single-stage and a two-stage differential amplifier. Simulations including process variations and
mismatch effects, as well as experimental results, validate the reliability of the proposed approach.

The circuit was characterized and compared with two other widely used class AB buffers designed
with the same technology, same power supply and for the same input current range. The first is a
quasi-floating gate current buffer (QFG-CB) and the second is a current-conveyor based current buffer
(CC-CB). These topologies were chosen for their class AB operation as well as for their ability to keep
the input node at a constant DC input voltage Vdc (virtual ground), as the proposed circuit does. This is
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a desirable characteristic in many cases, and becomes essential in some particular configurations
based on MOS current dividers [17–19]. A particular case where this feature is exploited is the
sign circuit required within the neuron of an analog neural system used to calibrate sensors [20,21]
(see Figure 1). This sign circuit is required to determine the direction of the current flowing through a
multiplier, thus allowing both positive and negative synaptic weights [22]. This particular application
motivated the design of the proposed self-biased buffer configuration, with the key requirements of
providing the highest possible accuracy and linearity response with a reduced power consumption
and a compact size.
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Figure 1. Neuron configuration implemented within the neural network-based microelectronic circuit
for sensor calibration.

The paper is organized as follows: Section 2 presents the operation principle of the proposed
buffer. The differential amplifiers and the compensation techniques used to ensure the buffer stability
are also presented in this section. In Section 3, the current buffer is thoroughly characterized for
both a single-stage and a two-stage amplifier as active input components to show the corresponding
trade-offs. A comparison with two other widely used class AB current buffers with a well defined
input voltage is also made. Measurement results of the integrated current buffer prototype and a
comparison with other integrated circuits are presented in Section 4 and, finally, conclusions are drawn
in Section 5.

2. Proposed Self-Biased Current-Buffer

The proposed self-biased current buffer (SB-CB) is shown in Figure 2. A Differential Amplifier
(DA) sets the input voltage at Vdc and establishes a virtual ground at this node. The quasi-floating
gate (QFG) approach is used to achieve class AB operation [23–30], since this technique requires no
additional current and adds minimum hardware penalty, leading to a power efficient and compact
solution. In static conditions, the bias current IBias is determined by the dimensions of the PMOS
(P-type metal-oxide-semiconductor) transistors Mp1 and Mp2, which are diode-connected and equally
sized. Therefore, the same current flows through each NMOS (N-type metal-oxide-semiconductor)
transistor Mn1 and Mn2, whereas M1 sinks twice the bias current.

Under dynamic conditions, the PMOS transistors act as dynamic current sources. If the input
current flows out of the buffer, the current flowing through Mn1 and Mn2 decreases and so does the
tail current in transistor M1. Due to the RC coupling formed by capacitance C and resistances Rlarge,
the gate voltage of Mp1 and Mp2 drops and their current driving capability increases. Hence, the bias
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current of the buffer is lower than the input current that can be handled. Neglecting channel-length
modulation, the current transfer function is given by:

Iout

Iin
=

(gmn1 + gmn2)gmp2 + Adgm1 gmn2

(gmn1 + gmn2)gmp1 + Adgm1 gmn1

(1)

where Ad is the gain of the differential amplifier and gmi is the transconductance of transistor Mi.
If a unity current gain, i.e., a current buffer, is required, the transconductance ratios gmp2 /gmp1 and
gmn2 /gmn1 must both be equal to 1.
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Figure 2. Proposed Self-Biased Current Buffer (SB-CB).

The input resistance Rin is the parallel of the equivalent resistance RinP seen from the input to
VDD, and the equivalent RinN seen from the input to ground:

RinP =
gmcp1 rocp1 rop1

1 + gmp1 rocp1(gmcp1 rop1 − 1)
(2)

RinN =
2ron1

1 + Adgm1 ron1

(3)

Rin = RinP||RinN ≈
2

2gmp1 + Adgm1

(4)

As expected, Rin can be reduced by increasing the differential amplifier gain Ad. The output
resistance Rout is given by:

Rout =
2

gmp1

||
(

2ron1 +
1

gm1

)
≈ 2

gmp1

(5)

Rout is dominated by the equivalent resistance of the diode connection of transistor Mp1, so it may
be lower than in other current buffer implementations. However, as shown below, a 2.4 MΩ output
resistance was achieved in our design, which is still suitable for many applications.

The proposed SB-CB was designed in a standard 0.18 µm CMOS process with 1.8 V supply
voltage. The transistor sizes are shown in Table 1. The channel length is L ≥ 1 µm in all cases in order
to reduce mismatch effects. The sizes were chosen so the buffer would be able to handle input currents
up to 15 µA amplitude with a nominal bias current IBias = 8 µA. The coupling Metal-Insulator-Metal
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(MIM) capacitor has a value C = 1 pF. The resistances Rlarge were implemented with minimum-size
diode-connected MOS transistors in the cutoff region [31], as they do not need to have a precise value as
long as the cutoff frequency fc = 1/[2πRlargeC] is lower than the signal frequency. Cascode transistors
improve the accuracy in the current copy, and the self-bias scheme shown in Figure 2 was used to
establish the required BiasP and BiasN voltages [32]. Finally, an NMOS transistor not shown in the
figure was connected to the input node as start-up circuit.

Table 1. Transistors aspect ratios for the proposed buffer.

Transistor W/L (µm/µm)

Mp1, Mp2 2/1
M1, Mcp1, Mcp2 20/1

Mn1 Mn2 15/1
mb1 0.72/3

mb2, mb3 2/2
mb4 0.54/2

To analyze the stability of the SB-CB, it must be noted that the open-loop gain is given by:

Aol = Ad · Acs (6)

where Ad is the gain of the differential amplifier DA and Acs is the gain of the common-source stage,
i.e., transistor M1:

Acs ≈ gm1 ·
1 + 2gmp1 ron1

2gmp1(1 + gmp1 ron1)
(7)

First, a current buffer SB-CB1 where the DA is a single-stage PMOS differential pair with active
load will be considered. When opening the feedback loop, a two-stage configuration results, as shown
in Figure 3. To ensure stability, Miller compensation is applied. The bias current is set to 500 nA and
derived from the current buffer itself. The amplifier shows 40 dB gain and the buffer is compensated
with a Miller capacitance Ccomp = 300 fF, attaining 82◦ phase margin for BW = 4.1 MHz.
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Figure 3. Open-loop configuration with a single-stage amplifier.

As shown in Equation (4), a higher gain differential amplifier will decrease the input impedance.
Furthermore, the linearity is expected to increase by the virtual ground set at the input node.
Therefore, a two-stage amplifier was also designed to explore the impact of the amplifier on the
overall performance of the buffer. If the DA is a two-stage amplifier, the open-loop configuration turns



Electronics 2018, 7, 423 5 of 18

into a three-stage amplifier, as shown in Figure 4. To achieve stability, nested-Miller compensation
can be applied. This technique requires the second stage in the differential amplifier not to invert the
signal, so the amplifier has to be accordingly designed [33–35].
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Figure 4. Open-loop configuration with a two-stage amplifier.

As shown in Figure 4, the two-stage DA was implemented with two cascaded PMOS differential
pairs. An additional differential pair, not shown in the figure, was used to set the required bias voltage
Vbias at the negative input of the second stage so the current distribution through its branches is
symmetrical. Again, the bias currents were derived from the current buffer itself. Each differential pair
is biased with 500 nA and the two-stage DA gain is 78 dB. The compensation capacitors values are
CC1 = 400 fF and CC2 = 100 fF. The phase margin with the nested-Miller compensation is PM = 62◦

for a bandwidth (BW) of 3 MHz.

3. Performance Characterization

For the sake of comparison, simulations were carried out for the self-biased buffer both with
a single-stage amplifier (SB-CB1) and a two-stage amplifier (SB-CB2) as DA.

Figure 5 shows the output current and the relative error in the copy of current as a function of the
input current. The SB-CB2 shows lower relative error in the transfer current. Considering a minimum
input current Iin = 100 nA, the maximum relative error is 0.09% for the SB-CB2 and 0.24% for the
SB-CB1. If the minimum input current is reduced to Iin = 10 nA, the maximum relative error increases
to 0.75% for the SB-CB2 and 2.08% for the SB-CB1.

As for linearity, both current buffers show very low harmonic distortion. The THD for a 15 µA
amplitude input current remains below −60 dB up to 100 kHz for the SB-CB2 and up to 30 kHz for the
SB-CB1. Figure 6 shows THD versus frequency for both configurations.

Figure 7 shows the time response to a 30 µApp input current step for both SB-CBs. For the
SB-CB1, the rise time is 1.23 µs and the fall time is 898 ns, both considering the response within 0.1%
of the output signal. As for the SB-CB2 the rise time is 947 ns and the fall time is 1.13 µs under the
same conditions.

Table 2 summarizes the main electrical characteristics of the proposed buffers SB-CB1 and SB-CB2.
As expected, SB-CB2 shows higher linearity and lower input resistance than SB-CB1 with a slight
increment in power consumption. Table 2 also shows the characteristics of two other widely used class
AB current buffers with a virtual ground at the input node. For a fair comparison, these buffers were
redesigned in the same 0.18 µm CMOS process with 1.8 V supply and for the same input current range
Iin = ±15 µA.
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Figure 7. Response of the proposed circuit to an input current step: (a) SB-CB1; and (b) SB-CB2.

Table 2. Class AB current buffer characteristics.

Circuit
IBias THD (dB) Max. Power (µW) BW Rin Rout ermax (%) Settling Time Active *

(µA) Iin = 30µApp@1 kHz Static Dynamic (MHz) (Ω) (MΩ) Iin= 0.2µApp at 0.1% (µs) Area (µm2)

Proposed 8 −85.6 30.9 49.1 3.8 483 2.4 0.24 1.23 (MOS) 118
SB-CB1 (MIM) 1404

Proposed 8 −111.3 32.4 51.6 2.6 8.3 2.4 0.09 1.13 (MOS) 118
SB-CB2 (MIM) 1404

QFG-CB 3 −103.8 14.6 † 33.4 † 2.2 26.9 29.8 0.08 1.67 (MOS) 176 †

(MIM) 1404

CC-CB 5 −50.1 24.7 † 59.3 † 1.0 448.5 63.0 1.74 1.16 (MOS) 630 †

* Estimated area by considering the number of MOS transistors and their sizes, and MIM-capacitors. † Bias
circuit not considered.

The Quasi-Floating Gate Current-Buffer (QFG-CB) is presented in [26] and, as in the proposed
SB-CB, the bias transistors act as dynamic current sources. The two-stage differential amplifier shown
in Figure 4 was used in the design of the QFG-CB, and, again, nested-Miller compensation was used to
ensure stability. The second configuration considered for comparison is the Current Conveyor based
Current Buffer (CC-CB) [36–41]. Figure 8 shows both the schematic circuits and the transistor sizes
of the aforementioned class AB current buffers. According to Table 2, the QFG-CB and the proposed
circuit have higher estimated active area than the CC-CB due the MIM capacitors used for the QFG
technique. However, if only the number of transistors is considered, the proposed circuit has the
smallest area.

The bias current IBias is lowest for the QFG-CB, which results in the lowest power consumption,
both static and dynamic. However, it should be mentioned that both the QFG-CB and CC-CB require
additional biasing schemes which are not considered in the comparison.

The QFG-CB and the proposed SB-CB2 show the lowest relative error in the copy of current.
At an input current Iin = 100 nA, the relative error remains below 0.1% for both circuits, and, even
considering an input current Iin = 10 nA, the relative error remains below 0.8% in both cases, whereas
the error of the CC-CB rises to 45%, which is unbearable in practical cases. As for the THD@30 µApp,
it remains below−60 dB up to 100 kHz both for the SB-CB2 and for the QFG-CB. The CC-CB, in contrast,
shows a THD higher than −55 dB even at low frequencies.
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DA

(a)

DA

(b)

Figure 8. Class AB current buffers with a virtual ground at the input node and their transistor sizes:
(a) QFG-CB; and (b) CC-CB.

The proposed buffer shows the lowest input resistance, thanks both to the negative feedback
established by the amplifier and to the diode-connection of the PMOS transistors. However,
as expected, it also shows the lowest output resistance. A transistor working in saturation could
be added in series with the diode-connected transistor to increase Rout. To keep the circuit symmetry,
it would be necessary to also add another transistor to the input branch, but, from Equations (2)–(4),
it can be seen that the input resistance may still be very low as long as the amplifier gain is sufficiently
high. Finally, the proposed buffer shows the highest bandwidth.

To prove the robustness of the proposed self-biased buffers, corner process simulations were
carried out and Table 3 shows the results. To ensure proper operation under all conditions, even
when the bias current is reduced because of process variations, the transistors Mp1 and Mp2 were
oversized in the design stage. The bias current IBias decreases down to 6.5 µA in the slow-slow corner
but performance is not affected and the THD for a 30 µApp input current at 1 kHz remains below
−80 dB for all cases. In the fast-fast corner, IBias increases up to 10 µA, therefore increasing the total
power consumption to 38.7 µW for the SB-CB1 and 41.6 µW for the SB-CB2. As for the QFG-CB and
CC-CB topologies, their robustness to process variations depends on the robustness of the external
biasing circuit.

Finally, Monte Carlo simulations were carried out to verify the circuit operation under mismatch.
The mean value and the standard deviation of main electrical parameters considering 500 samples
are summarized in Table 4. In the proposed buffers, SB-CB1 and SB-CB2, the mean value for the gain
distribution is practically 1 with the same 0.7% standard deviation. The SB-CB1 shows a higher mean
offset value than SB-CB2, but the latter presents a higher standard deviation. As for THD, the mean
value is lower than −66 dB for both circuits considering a 15 µA amplitude and 1 kHz frequency input
signal. Linearity is therefore primarily degraded by mismatch and, according to these results, the
actual THD is almost the same for the single-stage and the two-stage implementations. The SB-CB2
implementation may still be preferred if a very low input resistance is required, as is the case for
example in configurations based on MOS current dividers [17,18]. Table 4 also shows that IBias is very
robust to mismatch variations, and therefore so is the overall power consumption.
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Table 3. THD and static power considering process variations.

Process Corner IBias [µA]
SB-CB1 SB-CB2

Power [µW] THD [dB] * Power [µW] THD [dB] *

typical 8.0 30.9 −85.6 32.4 −111.3
slow NMOS-slow PMOS 6.5 24.8 −85.0 26.7 −108.3

fast NMOS-fast PMOS 10.0 38.7 −87.1 41.6 −115.5
slow NMOS-fast PMOS 9.0 35.3 −86.5 38.2 −113.7
fast NMOS-slow PMOS 7.3 28.4 −84.7 30.4 −109.3

* THD@30 µApp@1 kHz.

Table 4. Monte Carlo analysis results.

Monte Carlo Analysis
SB-CB1 SB-CB2 QFG-CB CC-CB

Mean σ Mean σ Mean σ Mean σ

IBias (µA) 8.0 0.1 8.0 0.1 — — — —
Gain 1.000 0.007 1.000 0.007 1.000 0.004 1.007 0.002

Offset (nA) −1.1 124.3 −0.5 132.8 −0.45 73.07 −4.81 29.96
THD (dB) −66.4 6.1 −67.0 6.7 −56.1 5.4 −49.1 1.2

By comparing the proposed SB-CB2 with the two other buffers, results show that the three
implementations have a mean value in gain of nearly 1, showing the CC-CB the lowest standard
deviation and the SB-CB2 the highest. The proposed SB-CB2 and the QFG-CB show similar offset mean
value, but the SB-CB2 shows again the highest standard deviation. In Figure 9 the THD distribution
is represented for all three implementations. The CC-CB shows the worst mean value of THD but
the lowest standard deviation. The proposed self-biased buffer, in turn, is the most sensitive to
mismatching, but still shows the highest linearity.
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Figure 9. THD@30 µApp@1 kHz considering mismatch for (a) the CC-CB, (b) the QFG-CB and (c) the
proposed SB-CB2.

4. Experimental Results

The self-biased current buffer SB-CB2 was integrated in the UMC (United Microelectronics
Corporation) 0.18 µm CMOS technology with 1.8 V power supply. Figure 10 shows the
microphotograph of the circuit and the layout. The circuit implementation occupies an area of 143 µm
× 43 µm and exhibits a power consumption of 48 µW. Accordingly, the bias current is estimated to be
12 µA, which is a bit higher than expected from the results in Table 3. This increase in the bias current
in turn results in an increase in the current capability of the buffer.
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Figure 10. Integrated self-biased current buffer SB-CB2.

A PCB (Printed Circuit Board) was designed to carry out the characterization process. Figure 11a
shows this PCB, and Figure 11b shows the photograph of the test setup. As the circuit processes
the signal in the current domain, current conversion is necessary at both the input and the output.
By means of a 10 kΩ resistance connected at the input node, the input current was generated, whereas
the output current was measured through an external transimpedance amplifier configured with
a TL081 integrated circuit [42]. This is detailed in Figure 12, which shows a block diagram of the
interconnections within the PCB, as well as the methodology followed to carry out the experimental
measurements after the circuit has been fabricated.

SB - CB

TL081

Power
supply Input

Output

Resistors

(a)

SB - CB

TL081

Power
supply Input

Output

Resistors

(b)

Figure 11. Photograph of the setup used for the characterization: (a) PCB; and (b) test setup.

First, the current buffer was characterized under static conditions to obtain the DC characteristics
and verify that the prototype is properly biased. Then, the time response was observed in the
oscilloscope to test the current capability and accuracy of the buffer, as well as the settling time and
input resistance. Finally, the frequency response and the harmonic distortion were characterized.

The circuit response to a 60 µApp sine input current at 1 kHz frequency is shown in Figure 13.
This is the maximum output current that the buffer can handle before the signal starts getting
distorted. The input–output characteristic is shown in Figure 14 for a −30 µA to +30 µA current range.
A maximum relative error er = 1.35% is obtained, as also shown in Figure 14.

The input resistance was estimated from the response in the time domain, by measuring the input
node voltage and calculating the derivative with respect to the input current. A 89 Ω input resistance
was obtained.
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 High linearity
 High accuracy
 Low power

1.  CMOS electronic design
 Schematic simulation

 Montecarlo and corner verification

 Layout design

2.  Prototype integration

 143µm x 43µm
 UMC 0.18µm 

CMOS technology
 VDD=1.8V

 IC  DIP16 package

 PCB design

3.  Experimental characterization

a.  Measurements in DC   (Multimeter Agilent 34401A)

 Bias current estimation
 Power consumption estimation

 Node voltages

b.  Time domain characterization  

 Current capability
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 Rin

(Oscilloscope  Tektronix DPO7104)

c.  Frequency domain characterization  
 Gain

(Network Analyzer Keysight E5061B)
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Figure 12. Experimental characterization block diagram.
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If a 60 µApp input current step is considered, the circuit shows a rise time of 8.6 µs and a fall
time of 8.4 µs, both considering the response within 0.1% of the output signal. Figure 15 shows the
oscilloscope screenshots of the buffer response to both the rising and falling edges of the input step for
this dynamic characterization.

trise = 8.6µstfall = 8.4µs

(a)

trise = 8.6µstfall = 8.4µs

(b)

Figure 15. Response of the integrated prototype to an input current step: (a) rising edge; and
(b) falling edge.

The THD characterization was done using the signal analyzer ROHDE & SCHWARZ FSV-Signal
Analyzer (10 Hz–6 GHz) [43]. Figure 16 shows the spectrum analyzer screenshots when considering
a 60 µApp sine input signal at 1 kHz (Figure 16a) and 10 kHz (Figure 16b). Both the frequency spectrum
and the THD calculation are shown, considering ten harmonic components. The integrated prototype
shows a −61 dB THD for the 60 µApp input current at 1 kHz, and −53 dB at 10 kHz. These values
correspond to the distortion specifications of the signal generator, so lower distortion values are
actually expected.

Finally, the transfer function in the frequency domain was determined using the network analyzer
E5061B ENA [44], as shown in Figure 17. Note that the bandwidth was reduced because of the parasitic
capacitances of the chip package and the interconnection setup used for the characterization.

The self-biased current buffer electrical characteristics are summarized in Table 5, where
a comparison with other topologies found in the literature is also presented. All the buffers presented
in the table are based on the quasi-floating gate technique.

Note that, although the proposed circuit requires the highest bias current, it does not have
a significant impact on the final consumption. Furthermore, the bias circuit of the other topologies has
not been considered when estimating their power consumption.

The buffer in [26] and the proposed circuit show the lowest input resistance of 25 Ω and 89 Ω,
respectively, so that a virtual ground is set at the input node, and therefore a higher linearity is observed
when the maximum input current is considered in each case. The best experimental distortion figure is
obtained in [26], at the cost of increased power consumption, which is almost three times the proposed
SB-CB consumption. The buffers in [28,29] both present competitive power consumption, but with a
rather high Rin (934 Ω and 4.8 kΩ, respectively). A higher distortion of −40 dB is observed in [28] for
the maximum input current; even if a lower input current of 30 µA amplitude is considered, the THD
is not higher than −53 dB. Similarly, the buffer presented in [29] shows a THD of −41 dB for a current
Iin = 100 µApp.

Finally, the proposed SB-CB shows the lowest integration area, whereas the circuit presented
in [29] has the highest dimensions because it uses three capacitors to achieve the class-AB operation.
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1kHz 10kHz 100kHz

(a)

1kHz 10kHz 100kHz

(b)

Figure 16. Integrated current buffer THD characterization for a 60 µApp input current at: (a) 1 kHz;
and (b) 10 kHz considering ten harmonics.
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Table 5. Electrical characteristics of the integrated SB-CB prototype and comparison with other circuits.

Parameter This Work
Lopez-Martin’08 Suadet’13 Esparza’14

[26] [28] † [29]

CMOS Technology 0.18 µm 0.5 µm 0.18 µm 0.5 µm

Power Supply (V) 1.8 3.3 0.5 1.2

IBias (µA) 12 10 6 10

THD (dB)
<−61@60 µApp@1 kHz

−59@200 µApp@120 kHz −40@96 µApp@1 MHz −41@100 µApp **
<−53@60 µApp@10 kHz

Power Consumption (µW) 48 165 8.2 36

BW (MHz) 2.6 † 120 † 230 72.4 †

Rin (Ω) 89 25 934 4.8k †

Rout (MΩ) 2.4 † — 1.13 7.2 †

ermax (%) 1.35%@Iin = 60 µApp — — —

Settling Time (µs) 8.6 — — —

Area (µm2) 6149 18,200 — 25,020

† Simulation results. ** Operation frequency not mentioned.

5. Conclusions

A self-biased class AB 1.8 V–0.18 µm CMOS current buffer based on the QFG approach is proposed
in this paper. It shows the lowest input resistance and highest linearity when compared to other class
AB current buffers with a virtual ground at the input node, at a cost of higher power consumption.
However, as the proposed topology is self-biased, it does not require any additional circuitry, whereas
other buffers require a biasing scheme. Monte Carlo and process corner simulations show that, even
though the proposed buffer is more sensitive to process variations, it still shows the best performance
in terms of linearity.

The integrated prototype was able to copy an input current ranging from −30 µA to +30 µA with
a maximum relative error of 1.35% and 48 µW static power consumption. The prototype has a reduced
area of 143 × 43 µm2, making it a viable solution for battery-operated systems where minimum
dimensions and low power operation are mandatory. The THD for the same amplitude input current
remains below −53 dB up to 10 kHz, showing a high linearity characteristic even when the maximum
input current is considered. The circuit also has a very low input resistance Rin = 89 Ω, thus setting
a virtual ground at the input node, a relatively high output impedance and a circuit response time of
8.6 µs.
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