661 research outputs found

    Monitoring crops water needs at high spatio-temporal resolution by synergy of optical/thermal and radar observations

    Get PDF
    L'optimisation de la gestion de l'eau en agriculture est essentielle dans les zones semi-arides afin de prĂ©server les ressources en eau qui sont dĂ©jĂ  faibles et erratiques dues Ă  des actions humaines et au changement climatique. Cette thĂšse vise Ă  utiliser la synergie des observations de tĂ©lĂ©dĂ©tection multispectrales (donnĂ©es radar, optiques et thermiques) pour un suivi Ă  haute rĂ©solution spatio-temporelle des besoins en eau des cultures. Dans ce contexte, diffĂ©rentes approches utilisant divers capteurs (Landsat-7/8, Sentinel-1 et MODIS) ont Ă©tĂ© developpĂ©es pour apporter une information sur l'humiditĂ© du sol (SM) et le stress hydrique des cultures Ă  une Ă©chelle spatio-temporelle pertinente pour la gestion de l'irrigation. Ce travail va parfaitement dans le sens des objectifs du projet REC "Root zone soil moisture Estimates at the daily and agricultural parcel scales for Crop irrigation management and water use impact: a multi-sensor remote sensing approach" (http://rec.isardsat.com/) qui visent Ă  estimer l'humiditĂ© du sol dans la zone racinaire (RZSM) afin d'optimiser la gestion de l'eau d'irrigation. Des approches innovantes et prometteuses sont mises en place pour estimer l'Ă©vapotranspiration (ET), RZSM, la tempĂ©rature de surface du sol (LST) et le stress hydrique de la vĂ©gĂ©tation Ă  travers des indices de SM dĂ©rivĂ©s des observations multispectrales Ă  haute rĂ©solution spatio-temporelle. Les mĂ©thodologies proposĂ©es reposent sur des mĂ©thodes basĂ©es sur l'imagerie, la modĂ©lisation du transfert radiatif et la modĂ©lisation du bilan hydrique et d'Ă©nergie et sont appliquĂ©es dans une rĂ©gion Ă  climat semi-aride (centre du Maroc). Dans le cadre de ma thĂšse, trois axes ont Ă©tĂ© explorĂ©s. Dans le premier axe, un indice de RZSM dĂ©rivĂ© de LST-Landsat est utilisĂ© pour estimer l'ET sur des parcelles de blĂ© et des sols nus. L'estimation par modĂ©lisation de ET a Ă©tĂ© explorĂ©e en utilisant l'Ă©quation de Penman-monteith modifiĂ©e obtenue en introduisant une relation empirique simple entre la rĂ©sistance de surface (rc) et l'indice de RZSM. Ce dernier est estimĂ© Ă  partir de la tempĂ©rature de surface (LST) dĂ©rivĂ©e de Landsat, combinĂ©e avec les tempĂ©ratures extrĂȘmes (en conditions humides et sĂšches) simulĂ©e par un modĂšle de bilan d'Ă©nergie de surface pilotĂ© par le forçage mĂ©tĂ©orologique et la fraction de couverture vĂ©gĂ©tale dĂ©rivĂ©e de Landsat. La mĂ©thode utilisĂ©e est calibrĂ©e et validĂ©e sur deux parcelles de blĂ© situĂ©es dans la mĂȘme zone prĂšs de Marrakech au Maroc. Dans l'axe suivant, une mĂ©thode permettant de rĂ©cupĂ©rer la SM de la surface (0-5 cm) Ă  une rĂ©solution spatiale et temporelle Ă©levĂ©e est dĂ©veloppĂ©e Ă  partir d'une synergie entre donnĂ©es radar (Sentinel-1) et thermique (Landsat) et en utilisant un modĂšle de bilan d'Ă©nergie du sol. L'approche dĂ©veloppĂ©e a Ă©tĂ© validĂ©e sur des parcelles agricoles en sol nu et elle donne une estimation prĂ©cise de la SM avec une diffĂ©rence quadratique moyenne en comparant Ă  la SM in situ, Ă©gale Ă  0,03 m3 m-3. Dans le dernier axe, une nouvelle mĂ©thode est dĂ©veloppĂ©e pour dĂ©sagrĂ©ger la MODIS LST de 1 km Ă  100 m de rĂ©solution en intĂ©grant le SM proche de la surface dĂ©rivĂ©e des donnĂ©es radar Sentinel-1 et l'indice de vĂ©gĂ©tation optique dĂ©rivĂ© des observations Landsat. Le nouvel algorithme, qui inclut la rĂ©trodiffusion S-1 en tant qu'entrĂ©e dans la dĂ©sagrĂ©gation, produit des rĂ©sultats plus stables et robustes au cours de l'annĂ©e sĂ©lectionnĂ©e. Dont, 3,35 °C Ă©tait le RMSE le plus bas et 0,75 le coefficient de corrĂ©lation le plus Ă©levĂ© Ă©valuĂ©s en utilisant le nouvel algorithme.Optimizing water management in agriculture is essential over semi-arid areas in order to preserve water resources which are already low and erratic due to human actions and climate change. This thesis aims to use the synergy of multispectral remote sensing observations (radar, optical and thermal data) for high spatio-temporal resolution monitoring of crops water needs. In this context, different approaches using various sensors (Landsat-7/8, Sentinel-1 and MODIS) have been developed to provide information on the crop Soil Moisture (SM) and water stress at a spatio-temporal scale relevant to irrigation management. This work fits well the REC "Root zone soil moisture Estimates at the daily and agricultural parcel scales for Crop irrigation management and water use impact: a multi-sensor remote sensing approach" (http://rec.isardsat.com/) project objectives, which aim to estimate the Root Zone Soil Moisture (RZSM) for optimizing the management of irrigation water. Innovative and promising approaches are set up to estimate evapotranspiration (ET), RZSM, land surface temperature (LST) and vegetation water stress through SM indices derived from multispectral observations with high spatio-temporal resolution. The proposed methodologies rely on image-based methods, radiative transfer modelling and water and energy balance modelling and are applied in a semi-arid climate region (central Morocco). In the frame of my PhD thesis, three axes have been investigated. In the first axis, a Landsat LST-derived RZSM index is used to estimate the ET over wheat parcels and bare soil. The ET modelling estimation is explored using a modified Penman-Monteith equation obtained by introducing a simple empirical relationship between surface resistance (rc) and a RZSM index. The later is estimated from Landsat-derived land surface temperature (LST) combined with the LST endmembers (in wet and dry conditions) simulated by a surface energy balance model driven by meteorological forcing and Landsat-derived fractional vegetation cover. The investigated method is calibrated and validated over two wheat parcels located in the same area near Marrakech City in Morocco. In the next axis, a method to retrieve near surface (0-5 cm) SM at high spatial and temporal resolution is developed from a synergy between radar (Sentinel-1) and thermal (Landsat) data and by using a soil energy balance model. The developed approach is validated over bare soil agricultural fields and gives an accurate estimates of near surface SM with a root mean square difference compared to in situ SM equal to 0.03 m3 m-3. In the final axis a new method is developed to disaggregate the 1 km resolution MODIS LST at 100 m resolution by integrating the near surface SM derived from Sentinel-1 radar data and the optical-vegetation index derived from Landsat observations. The new algorithm including the S-1 backscatter as input to the disaggregation, produces more stable and robust results during the selected year. Where, 3.35 °C and 0.75 were the lowest RMSE and the highest correlation coefficient assessed using the new algorithm

    Field measurements of natural and artificial targets using a mid-infrared laser reflectance sensor

    Full text link

    Development of a Multimode Instrument for Remote Measurements of Unsaturated Soil Properties

    Get PDF
    The hydromechanical behavior of soil is governed by parameters that include the moisture content, soil matric potential, texture, and the mineralogical composition of the soil. Remote characterization of these and other key properties of the soil offers advantages over conventional in situ or laboratory-based measurements: information may be acquired rapidly over large, or inaccessible areas; samples do not need to be collected; and the measurements are non-destructive. A field-deployable, ground-based remote sensor, designated the Soil Observation Laser Absorption Spectrometer (SOLAS), was developed to infer parameters of bare soils and other natural surfaces over intermediate (100 m) and long (1,000 m) ranges. The SOLAS methodology combines hyperspectral remote sensing with differential absorption and laser ranging measurements. A transmitter propagates coherent, near-infrared light at on-line (823.20 nm) and off-line (847.00 nm) wavelengths. Backscattered light is received through a 203-mm diameter telescope aperture and is divided into two channels to enable simultaneous measurements of spectral reflectance, differential absorption, and range to the target. The spectral reflectance is measured on 2151 continuous bands that range from visible (380 nm) to shortwave infrared (2500 nm) wavelengths. A pair of photodetectors receive the laser backscatter in the 820–850 nm range. Atmospheric water vapor is inferred using a differential absorption technique in conjunction with an avalanche photodetector, while range to the target is based on a frequency-modulated, self-chirped, homodyne detection scheme. The design, fabrication, and testing of the SOLAS is described herein. The receiver was optimized for the desired backscatter measurements and assessed through a series of trials that were conducted in both indoor and outdoor settings. Spectral reflectance measurements collected at proximal range compared well with measurements collected at intermediate ranges, demonstrating the utility of the receiver. Additionally, the noise characteristics of the spectral measurements were determined across the full range of the detected wavelengths. Continued development of the SOLAS instrument will enable range-resolved and water vapor-corrected reflectance measurements over longer ranges. Anticipated applications for the SOLAS technology include rapid monitoring of earth construction projects, geohazard assessment, or ground-thruthing for current and future satellite-based multi- and hyperspectral data

    Assimilation de données satellitaires pour le suivi des ressources en eau dans la zone Euro-Méditerranée

    Get PDF
    Une estimation plus prĂ©cise de l'Ă©tat des variables des surfaces terrestres est requise afin d'amĂ©liorer notre capacitĂ© Ă  comprendre, suivre et prĂ©voir le cycle hydrologique terrestre dans diverses rĂ©gions du monde. En particulier, les zones mĂ©diterranĂ©ennes sont souvent caractĂ©risĂ©es par un dĂ©ficit en eau du sol affectant la croissance de la vĂ©gĂ©tation. Les derniĂšres simulations du GIEC (Groupe d'Experts Intergouvernemental sur l'Evolution du Climat) indiquent qu'une augmentation de la frĂ©quence des sĂ©cheresses et des vagues de chaleur dans la rĂ©gion Euro-MĂ©diterranĂ©e est probable. Il est donc crucial d'amĂ©liorer les outils et l'utilisation des observations permettant de caractĂ©riser la dynamique des processus des surfaces terrestres de cette rĂ©gion. Les modĂšles des surfaces terrestres ou LSMs (Land Surface Models) ont Ă©tĂ© dĂ©veloppĂ©s dans le but de reprĂ©senter ces processus Ă  diverses Ă©chelles spatiales. Ils sont habituellement forçés par des donnĂ©es horaires de variables atmosphĂ©riques en point de grille, telles que la tempĂ©rature et l'humiditĂ© de l'air, le rayonnement solaire et les prĂ©cipitations. Alors que les LSMs sont des outils efficaces pour suivre de façon continue les conditions de surface, ils prĂ©sentent encore des dĂ©fauts provoquĂ©s par les erreurs dans les donnĂ©es de forçages, dans les valeurs des paramĂštres du modĂšle, par l'absence de reprĂ©sentation de certains processus, et par la mauvaise reprĂ©sentation des processus dans certaines rĂ©gions et certaines saisons. Il est aussi possible de suivre les conditions de surface depuis l'espace et la modĂ©lisation des variables des surfaces terrestres peut ĂȘtre amĂ©liorĂ©e grĂące Ă  l'intĂ©gration dynamique de ces observations dans les LSMs. La tĂ©lĂ©dĂ©tection spatiale micro-ondes Ă  basse frĂ©quence est particuliĂšrement utile dans le contexte du suivi de ces variables Ă  l'Ă©chelle globale ou continentale. Elle a l'avantage de pouvoir fournir des observations par tout-temps, de jour comme de nuit. Plusieurs produits utiles pour le suivi de la vĂ©gĂ©tation et du cycle hydrologique sont dĂ©jĂ  disponibles. Ils sont issus de radars en bande C tels que ASCAT (Advanced Scatterometer) ou Sentinel-1. L'assimilation de ces donnĂ©es dans un LSM permet leur intĂ©gration de façon cohĂ©rente avec la reprĂ©sentation des processus. Les rĂ©sultats obtenus Ă  partir de l'intĂ©gration de donnĂ©es satellitaires fournissent une estimation de l'Ă©tat des variables des surfaces terrestres qui sont gĂ©nĂ©ralement de meilleure qualitĂ© que les simulations sans assimilation de donnĂ©es et que les donnĂ©es satellitaires elles-mĂȘmes. L'objectif principal de ce travail de thĂšse a Ă©tĂ© d'amĂ©liorer la reprĂ©sentation des variables des surfaces terrestres reliĂ©es aux cycles de l'eau et du carbone dans le modĂšle ISBA grĂące Ă  l'assimilation d'observations de rĂ©trodiffusion radar (sigma°) provenant de l'instrument ASCAT. Un opĂ©rateur d'observation capable de reprĂ©senter les sigma° ASCAT Ă  partir de variables simulĂ©es par le modĂšle ISBA a Ă©tĂ© dĂ©veloppĂ©. Une version du WCM (water cloud model) a Ă©tĂ© mise en Ɠuvre avec succĂšs sur la zone Euro-MĂ©diterranĂ©e. Les valeurs simulĂ©es ont Ă©tĂ© comparĂ©es avec les observations satellitaires. Une quantification plus dĂ©taillĂ©e de l'impact de divers facteurs sur le signal a Ă©tĂ© faite sur le sud-ouest de la France. L'Ă©tude de l'impact de la tempĂȘte Klaus sur la forĂȘt des Landes a montrĂ© que le WCM est capable de reprĂ©senter un changement brutal de biomasse de la vĂ©gĂ©tation. Le WCM est peu efficace sur les zones karstiques et sur les surfaces agricoles produisant du blĂ©. Dans ce dernier cas, le problĂšme semble provenir d'un dĂ©calage temporel entre l'Ă©paisseur optique micro-ondes de la vĂ©gĂ©tation et l'indice de surface foliaire de la vĂ©gĂ©tation. Enfin, l'assimilation directe des sigma° ASCAT a Ă©tĂ© Ă©valuĂ©e sur le sud-ouest de la France.More accurate estimates of land surface conditions are important for enhancing our ability to understand, monitor, and predict key variables of the terrestrial water cycle in various parts of the globe. In particular, the Mediterranean area is frequently characterized by a marked impact of the soil water deficit on vegetation growth. The latest IPCC (Intergovernmental Panel on Climate Change) simulations indicate that occurrence of droughts and warm spells in the Euro-Mediterranean region are likely to increase. It is therefore crucial to improve the ways of understanding, observing and simulating the dynamics of the land surface processes in the Euro-Mediterranean region. Land surface models (LSMs) have been developed for the purpose of representing the land surface processes at various spatial scales. They are usually forced by hourly gridded atmospheric variables such as air temperature, air humidity, solar radiation, precipitation, and are used to simulate land surface states and fluxes. While LSMs can provide a continuous monitoring of land surface conditions, they still show discrepancies due to forcing and parameter errors, missing processes and inadequate model physics for particular areas or seasons. It is also possible to observe the land surface conditions from space. The modelling of land surface variables can be improved through the dynamical integration of these observations into LSMs. Remote sensing observations are particularly useful in this context because they are able to address global and continental scales. Low frequency microwave remote sensing has advantages because it can provide regular observations in all-weather conditions and at either daytime or night-time. A number of satellite-derived products relevant to the hydrological and vegetation cycles are already available from C-band radars such as the Advanced Scatterometer (ASCAT) or Sentinel-1. Assimilating these data into LSMs permits their integration in the process representation in a consistent way. The results obtained from assimilating satellites products provide land surface variables estimates that are generally superior to the model estimates or satellite observations alone. The main objective of this thesis was to improve the representation of land surface variables linked to the terrestrial water and carbon cycles in the ISBA LSM through the assimilation of ASCAT backscatter (sigma°) observations. An observation operator capable of representing the ASCAT sigma° from the ISBA simulated variables was developed. A version of the water cloud model (WCM) was successfully implemented over the Euro-Mediterranean area. The simulated values were compared with those observed from space. A more detailed quantification of the influence of various factors on the signal was made over southwestern France. Focusing on the Klaus storm event in the Landes forest, it was shown that the WCM was able to represent abrupt changes in vegetation biomass. It was also found that the WCM had shortcomings over karstic areas and over wheat croplands. It was shown that the latter was related to a discrepancy between the seasonal cycle of microwave vegetation optical depth (VOD) and leaf area index (LAI). Finally, the direct assimilation of ASCAT sigma° observations was assessed over southwestern France

    Retrieval of biophysical parameters from multi-sensoral remote sensing data, assimilated into the crop growth model CERES-Wheat

    Get PDF
    This study investigated the possibilities and constraints for an integrated use of a crop growth model (CERES-Wheat) and earth observation techniques. The assimilation of information derived from earth observation sensors into crop growth models enables regional applications and may also help to improve the profound knowledge of the different involved processes and interactions. Both techniques can contribute to improved use of resources, reduced crop production risks, minimised environmental degradation, and increased farm income. Up to now, crop growth modelling and remote sensing techniquices mostly have been used separately for the assessment of agricultural applications. Crop growth models have made valuable contributions to, e.g., yield forecasting or to management decision support systems. Likewise, remote sensing techniques were successfully utilized in classification of agricultural areas or in the quantification of vegetation characteristics at various spatial and temporal scales. Multisensoral remote sensing approaches for the quantification biophysical variables are rarely realized. Normally the fusion of the data sources is based on the use of one sensor for classification purposes and the other one for the extraction of the desired parameters, based on the map classified previously. Pixel-based fusions between multispectral and SAR data is seldom realised for the assessment of quantitative parameters. The integration of crop growth models and remote sensing techniques by assimilating remotely sensed parameters into the models, is also still an issue of research. Especially, the integration of, e.g., multi-sensor biophysical parameter time-series for the improvement of the model performance, might feature a high potential. The starting point of the presented study was the question, if it is possible to derive the values of important crop variables from various remote sensing data? For the retrieval of these quantitative parameters by the use of various multispectral remote sensing sensors, intercalibration issues between the different retrieved vegetation indices had to be taken into account, in order to assure the comparability. Features influencing the vegetation indices are, e.g., the sensor geometry (like viewing- and solar-angle), atmospherical conditions, topography and spatial or radiometric resolution. However, the factors taken into account within this study are the spectral characteristics of the different sensors, like band position, bandwidth and centre wavelengths, which are described by the relative spectral response functions. Due to different RSR functions of the sensor bands, measured spectral differences occur, because the sensors record different components of the reflectance’s spectra from the monitored targets. These are then also introduced into the derived vegetation indices. The chosen cross-calibration method, intercalibrated the assessed Normalized Difference Vegetation Index and the Weighted Difference Vegetation Index between the various sensor pairs by regression, based on simulated multispectral sensors. Differences between the various assessed remote sensing sensors decreased form around 7% to below 1%. The intercalibration also had a positive impact on the later biophysical retrieval performance, producing sounder retrieval results. For the retrieval of the biophysical parameters empirical and semi-empirical models were assessed. The results indicate that the semi-empirical CLAIR model outperforms the empirical approaches. Not only for the Leaf Area Index retrieval, but also in the cases of all other assessed parameters. Concerning the other remote sensing data type used, the SAR data, it was analysed what potential different polarizations and incidence angles have for the extraction of the quantitative parameters. It became obvious that especially high incidence angles, as provided by the satellite Envisat ASAR, produce sounder retrieval results than lower incidence angles, due to a smaller amount of received soil signal. In the context of the assessed polarizations, sound results for the VV polarization could only be achieved for the retrieval of fresh biomass and the plant water content. For the ASAR sensor modelling fresh biomass and LAI using the HV polarization or the dry biomass using the ratio (HH/HV) was appropriate. As roughness aspects also have an influence on the retrieval performance from biophysical parameters using SAR data, the impact of soil surface and vegetation roughness was additionally considered. Best results were achieved, when also considering roughness features, however due to the need of regional modelling it is more appropriate not to consider them. For the calibration and re-tuning of crop growth models information about important phenological events such as heading/flowering is rather important. After this stage reproductive growth begins, whereby the number of kernels per plant is often calculated from plant weight at flowering and kernel weight is calculated from time and temperature available for dry matter distribution. By the use of the SAR VV time-series this important stage could be successfully extracted. Further methods for pixel-based fused biophysical parameter estimations, using SAR and multispectral data were analysed. By this approach the different features, being monitored of the two systems, are combined for sounder parameter retrieval. The assessed method of combining the multi-sensoral information by linear regression did not bring sound results and was outperformed by single sensor use, only taking into account the multispectral information. Only for the parameter fresh biomass, modelling based on the NDIV and the ASAR ratio slightly outperformed the single sensor modelling approaches. The complex combined modelling by the use of the CLAIR and the Water Cloud Model featured no valid results. For the combination, by using the CLAIR model and multiple regression slight improvements, in contrast to the single multispectral sensor use, were achieved. Especially, during late phenological stages, the assessed VV information improved the modelling results, in comparison to only using the CLAIR model. All the findings could finally be successfully applied for regional estimations. Only the roughness features could not be applied, due to the fact, that it is hard to regionally assess this needed model input parameter. Regional parameter on the basis of remote sensing data, is the major advantage of this technique, due to the large spatial overview given. The second main question was, if it is possible to integrate the crop variables gained from multisensoral data into a crop growth model, increasing the final yield estimation accuracy. Thus far, beneficial linkages between both techniques have been often limited to land use classification via remote sensing for choosing the adequate model and quantification of crop growth and development curves using biophysical parameters derived from remote sensing images for model calibration. Only a few studies actually considered the potentials of remote sensing for model re-initialization of growth and development characteristics of a specific crop, as the here studied winter wheat. Overall, the integration of remotely sensed variables into the crop growth model CERES-Wheat led to an improved final yield estimation accuracy in comparison to an automatic input parameter setting. The assessed final yield bias for the automatic input parameter setting summed up to 6.6%. When re-initializing the most sensitive input parameters (sowing date and fertilizer application date) by the use of remotely sensed biophysical variables the biases ranged from 0.56% overestimation to 5.4% understimation, in dependence of the data series used for assimilation. Whereby, it was assessed that the combined dense data series, considering SAR and multispectral information, slightly outperformed the performance of the full multispectral data series. However, when analysing the assimilation of the multispectral data series in further detail, it became clear that the actually information from the phenological stage ripening declines the modelling performance and thus the final yield estimation accuracy. When neglecting the information from this phenological stage the reduced multispectral data series performed as sound as the dense data series containing SAR and multispectral information. Thus, when the appropriate phenological stages are monitored by multispectral data, additional SAR information does not lead to a model improvement. However, when important dates are not monitored by multispectral images, e.g., due to cloud coverage, the additionally considered SAR information was not able to appropriatly fill these important multispectral time gaps. They even had a more negeative influence on the modelling performance. Overall, the best results could be obtained by assimilating a multispectral data series, covering the crop development during the important phenological stages stem elongation and flowering (without ripening stage), into the CERES-Wheat model. Finally, the integration of remote sensing data in the point-based crop growth model allowed it‘s spatial application for prediction of wheat production at a more regional scale. This approach also outperformed another evaluated method of direct multi-sensoral regional yield estimation. This study has demonstrated that biophysical parameters can be retrieved from remote sensing data and led, when assimilated into a crop growth model, to an improved final yield estimation. However, overall the SAR information did not really have a significant positive effect on the multi-sensoral biophysical parameter retrieval and on the later assimilation process. Thus, overall SAR information should only be considered, when multispectral data acquisitions are tremendously hampered by cloud coverage. The assessed assimilation of remote sensing information into a crop growth model had a positive effect on the final yield estimation performance. The analysed method, combining remote sensing and crop growth model techniques, was succsessfully demonstrated and will gain even more importance in the future for, e.g., decision support systems fine-tuning fertilizer regimes and thus contributing to more environmentally sound and sustained agricultural production

    Biomass estimation in Indonesian tropical forests using active remote sensing systems

    Get PDF

    Earth Resources, A Continuing Bibliography with Indexes

    Get PDF
    This bibliography lists 460 reports, articles and other documents introduced into the NASA scientific and technical information system between July 1 and September 30, 1984. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economical analysis

    The application of Earth Observation for mapping soil saturation and the extent and distribution of artificial drainage on Irish farms

    Get PDF
    Artificial drainage is required to make wet soils productive for farming. However, drainage may have unintended environmental consequences, for example, through increased nutrient loss to surface waters or increased flood risk. It can also have implications for greenhouse gas emissions. Accurate data on soil drainage properties could help mitigate the impact of these consequences. Unfortunately, few countries maintain detailed inventories of artificially-drained areas because of the costs involved in compiling such data. This is further confounded by often inadequate knowledge of drain location and function at farm level. Increasingly, Earth Observation (EO) data is being used map drained areas and detect buried drains. The current study is the first harmonised effort to map the location and extent of artificially-drained soils in Ireland using a suite of EO data and geocomputational techniques. To map artificially-drained areas, support vector machine (SVM) and random forest (RF) machine learning image classifications were implemented using Landsat 8 multispectral imagery and topographical data. The RF classifier achieved overall accuracy of 91% in a binary segmentation of artifically-drained and poorly-drained classes. Compared with an existing soil drainage map, the RF model indicated that ~44% of soils in the study area could be classed as “drained”. As well as spatial differences, temporal changes in drainage status where detected within a 3 hectare field, where drains installed in 2014 had an effect on grass production. Using the RF model, the area of this field identified as “drained” increased from a low of 25% in 2011 to 68% in 2016. Landsat 8 vegetation indices were also successfully applied to monitoring the recovery of pasture following extreme saturation (flooding). In conjunction with this, additional EO techniques using unmanned aerial systems (UAS) were tested to map overland flow and detect buried drains. A performance assessment of UAS structure-from-motion (SfM) photogrammetry and aerial LiDAR was undertaken for modelling surface runoff (and associated nutrient loss). Overland flow models were created using the SIMWE model in GRASS GIS. Results indicated no statistical difference between models at 1, 2 & 5 m spatial resolution (p< 0.0001). Grass height was identified as an important source of error. Thermal imagery from a UAS was used to identify the locations of artifically drained areas. Using morning and afternoon images to map thermal extrema, significant differences in the rate of heating were identified between drained and undrained locations. Locations of tiled and piped drains were identified with 59 and 64% accuracy within the study area. Together these methods could enable better management of field drainage on farms, identifying drained areas, as well as the need for maintenance or replacement. They can also assess whether treatments have worked as expected or whether the underlying saturation problems continues. Through the methods developed and described herein, better characterisation of drainage status at field level may be achievable

    Inland Valley Wetland Cultivation and Preservation for Africa’s Green and Blue Revolution Using Multi-Sensor Remote Sensing

    Get PDF
    Africa is the second largest continent after Asia with a total area of 30.22 million km2 (including the adjacent islands). It has great rivers such as the River Nile, which is the longest in the world and flows a distance of 6650 km, and the River Congo, which is the deepest in the world, as well as the second largest in the world in terms of water availability. Yet, Africa also has vast stretches of arid, semiarid, and desert lands with little or no water. Further, Africa’s population is projected to increase by four times by the year 2100, reaching about four billion from the current population of little over one billion. Food insecurity and malnutrition are already highest in Africa (Heidhues et al., 2004) and the challenge of meeting the food security needs of the fastest-growing continent in the twenty-first century is daunting. So, many solutions are thought of to ensure food security in Africa. These ideas include such measures as increasing irrigation in a continent that currently has just about 2% of the global irrigated areas (Thenkabail et al., 2009a, 2010), improving crop productivity (kg m−2), and increasing water productivity (kg m−3). However, an overwhelming proportion of Africa’s agriculture now takes place on uplands that have poor soil fertility and water availability (Scholes, 1990). Thereby, the interest in developing sustainable agriculture in Africa’s lowland wetlands, considered by some as the “new frontier” in agriculture, has swiftly increased in recent years. The lowland wetland systems include the big wetland systems that are prominent and widely recognized (Figure 9.1) as well as the less prominent, but more widespread, inland valley (IV) wetlands (Figures 9.2 through 9.8) that are all along the first to highest order river systems..
    • 

    corecore