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ABSTRACT

This study investigated the possibilities and constraints for an integrated use of a crop growth
model (CERES-Wheat) and earth observation techniques. The assimilation of information de-
rived from earth observation sensors into crop growth models enables regional applications and
may also help to improve the profound knowledge of the different involved processes and inter-
actions. Both techniques can contribute to improved use of resources, reduced crop production
risks, minimised environmental degradation, and increased farm income.

Up to now, crop growth modelling and remote sensing techniquices mostly have been used sep-
arately for the assessment of agricultural applications. Crop growth models have made valuable
contributions to, e.g., yield forecasting or to management decision support systems. Likewise,
remote sensing techniques were successfully utilized in classification of agricultural areas or
in the quantification of vegetation characteristics at various spatial and temporal scales. Multi-
sensoral remote sensing approaches for the quantification biophysical variables are rarely real-
ized. Normally the fusion of the data sources is based on the use of one sensor for classification
purposes and the other one for the extraction of the desired parameters, based on the map clas-
sified previously. Pixel-based fusions between multispectral and SAR data is seldom realised
for the assessment of quantitative parameters.

The integration of crop growth models and remote sensing techniques by assimilating remotely
sensed parameters into the models, is also still an issue of research. Especially, the integration
of, e.g., multi-sensor biophysical parameter time-series for the improvement of the model per-
formance, might feature a high potential.

The starting point of the presented study was the question, if it is possible to derive the values
of important crop variables from various remote sensing data? For the retrieval of these quan-
titative parameters by the use of various multispectral remote sensing sensors, intercalibration
issues between the different retrieved vegetation indices had to be taken into account, in order
to assure the comparability. Features influencing the vegetation indices are, e.g., the sensor
geometry (like viewing- and solar-angle), atmospherical conditions, topography and spatial or
radiometric resolution.

However, the factors taken into account within this study are the spectral characteristics of the
different sensors, like band position, bandwidth and centre wavelengths, which are described
by the relative spectral response functions. Due to different RSR functions of the sensor bands,
measured spectral differences occur, because the sensors record different components of the
reflectance’s spectra from the monitored targets. These are then also introduced into the derived
vegetation indices. The chosen cross-calibration method, intercalibrated the assessed Normal-
ized Difference Vegetation Index and the Weighted Difference Vegetation Index between the
various sensor pairs by regression, based on simulated multispectral sensors. Differences be-
tween the various assessed remote sensing sensors decreased form around 7% to below 1%.
The intercalibration also had a positive impact on the later biophysical retrieval performance,
producing sounder retrieval results.

For the retrieval of the biophysical parameters empirical and semi-empirical models were as-

XV



sessed. The results indicate that the semi-empirical CLAIR model outperforms the empirical
approaches. Not only for the Leaf Area Index retrieval, but also in the cases of all other assessed
parameters.

Concerning the other remote sensing data type used, the SAR data, it was analysed what po-
tential different polarizations and incidence angles have for the extraction of the quantitative
parameters. It became obvious that especially high incidence angles, as provided by the satellite
Envisat ASAR, produce sounder retrieval results than lower incidence angles, due to a smaller
amount of received soil signal. In the context of the assessed polarizations, sound results for the
VV polarization could only be achieved for the retrieval of fresh biomass and the plant water
content. For the ASAR sensor modelling fresh biomass and LAI using the HV polarization or
the dry biomass using the ratio (HH/HV) was appropriate.

As roughness aspects also have an influence on the retrieval performance from biophysical pa-
rameters using SAR data, the impact of soil surface and vegetation roughness was additionally
considered. Best results were achieved, when also considering roughness features, however due
to the need of regional modelling it is more appropriate not to consider them.

For the calibration and re-tuning of crop growth models information about important phenolog-
ical events such as heading/flowering is rather important. After this stage reproductive growth
begins, whereby the number of kernels per plant is often calculated from plant weight at flower-
ing and kernel weight is calculated from time and temperature available for dry matter distribu-
tion. By the use of the SAR VV time-series this important stage could be successfully extracted.
Further methods for pixel-based fused biophysical parameter estimations, using SAR and mul-
tispectral data were analysed. By this approach the different features, being monitored of the
two systems, are combined for sounder parameter retrieval. The assessed method of combining
the multi-sensoral information by linear regression did not bring sound results and was out-
performed by single sensor use, only taking into account the multispectral information. Only
for the parameter fresh biomass, modelling based on the NDIV and the ASAR ratio slightly
outperformed the single sensor modelling approaches. The complex combined modelling by
the use of the CLAIR and the Water Cloud Model featured no valid results. For the combi-
nation, by using the CLAIR model and multiple regression slight improvements, in contrast to
the single multispectral sensor use, were achieved. Especially, during late phenological stages,
the assessed VV information improved the modelling results, in comparison to only using the
CLAIR model.

All the findings could finally be successfully applied for regional estimations. Only the rough-
ness features could not be applied, due to the fact, that it is hard to regionally assess this needed
model input parameter. Regional parameter on the basis of remote sensing data, is the major
advantage of this technique, due to the large spatial overview given.

The second main question was, if it is possible to integrate the crop variables gained from multi-
sensoral data into a crop growth model, increasing the final yield estimation accuracy. Thus far,
beneficial linkages between both techniques have been often limited to land use classification
via remote sensing for choosing the adequate model and quantification of crop growth and de-
velopment curves using biophysical parameters derived from remote sensing images for model
calibration. Only a few studies actually considered the potentials of remote sensing for model
re-initialization of growth and development characteristics of a specific crop, as the here studied
winter wheat. Overall, the integration of remotely sensed variables into the crop growth model
CERES-Wheat led to an improved final yield estimation accuracy in comparison to an automatic
input parameter setting. The assessed final yield bias for the automatic input parameter setting
summed up to 6.6%. When re-initializing the most sensitive input parameters (sowing date and
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fertilizer application date) by the use of remotely sensed biophysical variables the biases ranged
from 0.56% overestimation to 5.4% understimation, in dependence of the data series used for
assimilation. Whereby, it was assessed that the combined dense data series, considering SAR
and multispectral information, slightly outperformed the performance of the full multispectral
data series. However, when analysing the assimilation of the multispectral data series in further
detail, it became clear that the actually information from the phenological stage ripening de-
clines the modelling performance and thus the final yield estimation accuracy. When neglecting
the information from this phenological stage the reduced multispectral data series performed as
sound as the dense data series containing SAR and multispectral information. Thus, when the
appropriate phenological stages are monitored by multispectral data, additional SAR informa-
tion does not lead to a model improvement. However, when important dates are not monitored
by multispectral images, e.g., due to cloud coverage, the additionally considered SAR informa-
tion was not able to appropriatly fill these important multispectral time gaps. They even had
a more negeative influence on the modelling performance. Overall, the best results could be
obtained by assimilating a multispectral data series, covering the crop development during the
important phenological stages stem elongation and flowering (without ripening stage), into the
CERES-Wheat model.

Finally, the integration of remote sensing data in the point-based crop growth model allowed
it‘s spatial application for prediction of wheat production at a more regional scale. This ap-
proach also outperformed another evaluated method of direct multi-sensoral regional yield es-
timation.

This study has demonstrated that biophysical parameters can be retrieved from remote sensing
data and led, when assimilated into a crop growth model, to an improved final yield estima-
tion. However, overall the SAR information did not really have a significant positive effect on
the multi-sensoral biophysical parameter retrieval and on the later assimilation process. Thus,
overall SAR information should only be considered, when multispectral data acquisitions are
tremendously hampered by cloud coverage. The assessed assimilation of remote sensing infor-
mation into a crop growth model had a positive effect on the final yield estimation performance.
The analysed method, combining remote sensing and crop growth model techniques, was succ-
sessfully demonstrated and will gain even more importance in the future for, e.g., decision
support systems fine-tuning fertilizer regimes and thus contributing to more environmentally
sound and sustained agricultural production.
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1 INTRODUCTION

1.1 Background

Land-use activities, whether converting natural landscapes for human use or changing manage-
ment practices on human-dominated lands, have transformed a large proportion of the planet’s
land surface (Foley et al., 2005). Crop lands and pastures have become one of the largest terres-
trial biomes on the planet occupying around 40% of the land surface. Modern agriculture now
feeds six billion people, whereby global cereal production has doubled within the past 40 years
(Tilman et al., 2002). Some of this increase can be attributed to a twelve % increase in world
crop land, but it is mainly due to increased yields resulting from greater inputs of fertilizer,
water and pesticides, new crop strains, and other technologies of the Green Revolution. Within
this time period there has been a 700% increase in fertilizer use and a 70% increase in irrigated
crop land area. This has enlarged the global food supply, reducing hunger, improving nutrition
and thus the ability of people to better reach their mental and physical potential, and sparing
natural ecosystems from conversion to agriculture (Ciais et al., 2005; Foley et al., 2005).

Even so modern agriculture has been successful in increasing food production, it has also caused
extensive environmental damage, e.g., degradation of water quality, heavily salinized arable
land, soil erosion or loss of native habitats (Wood et al., 2000). Modern agricultural land-use
practices may be trading short-term increase in food production for long-term losses in ecosys-
tem services.

By 2050, the global population is projected to be 50% larger than at present and global grain
demand will also double (Cassman, 1999; Tilman et al., 2001; Waggoner, 1995). Further in-
creases in agricultural output are essential for global political and social stability and equity.
Doubling food production again and keeping food production at this level, are major challenges
(Tilman et al., 2002). In this context there are a number of different national and international
programs, aiming at the enhancement of food security.

The member states of the United Nations committed themselves in 2000 to eight quantifiable
Millennium Development Goals (MDGs), until 2015, in order to improve the livelihoods for
millions of people (Worldbank, 2000). 70% of the MDG's target group live in rural areas, thus
welfare may be achieved through agriculture. The linkage with agriculture is the strongest for
the first MDG (eradicating poverty and hunger), however all other MDGs also have direct or
indirect linkages with agriculture. In MDG7 (ensure environmental sustainability) agricultural
practices can be both direct causes of, and important solutions to environmental degradation.
This is also valid for poor rural areas in less developed countries, but also for agriculture in
developed countries.

The EU/ESA Global Monitoring for Environment and Security program (GMES)! aims at the
establishment of an operational service for crop monitoring in support of food security monitor-
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ing to serve policy makers and operational users. The project has hereby an inclination towards
the use of Earth observation data where appropriate. The services provided cover three major
categories:

e Mapping, including topography or road maps, but also land-use and harvest, forestry
monitoring, mineral and water resources that do contribute to short and long-term man-
agement of territories and natural resources

e Support for emergency management in case of natural hazards and particularly civil pro-
tection institutions responsible for the security of people and property

e Forecasting, applied for marine zones, air quality or crop yield

In 1988 the Council of Ministers of the European Union (EU) set up a project to improve the
provision of agricultural statistics, which are necessary to manage the large budgets involved
in the European Common Agricultural Policy (CAP). This project is known as the Monitoring
Agriculture by Remote Sensing (MARS) and compromises different activities such as regional
crop inventories, satellite-based rapid crop area estimates, assessment of foreign agricultural
production and an agricultural information system?. The agricultural information system activ-
ity focuses on providing early crop yield forecasts for the EU countries by either using remote
sensing data or an agrometeorologic system employing crop growth models.

Also a recently started project is the SEAMLESS project (System for Environmental and Agri-
cultural Modelling; Linking European Science and Society)®. It aims at analysing the full range
of scale (farm to EU and global), while focusing on the most important issues emerging at
each scale. One other important issue is the analysis of the environmental, economic and social
contributions of a multifunctional agriculture towards sustainable rural development and rural
viability. The analysis of a broad range of issues and agents of change, such as climate change,
is also assessed in the project.

Remote sensing plays an important role within this context, providing temporal and spatial in-
formation. By coupling the acquired information with, e.g., crop growth models, it can assist in
assessing variability in crop performance and final yield and can even provide information of,
and for, e.g., agricultural management interference.

1.2 Paradigm change in the remote sensing
community

Remote sensing as a technology can actually be dated to the middle of the 19th century, with
the first aerial photographs taken from a balloon over Paris. Photography has served as a prime
remote sensor for more than 150 years. In the 1930s RADAR technologies were developed
and in the 1950s remote sensing systems continued to evolve from the systems developed for
warfare (Jensen, 2007).

The first sophisticated imaging sensors were incorporated in orbiting satellites in the course of
the 1960s. Firstly, only being basic television cameras, imaging low-resolution black and white

http://www.ena.lu/
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pictures of clouds and the earth’s surface. Since then, other sensor types were developed, also
taking images using the electromagnetic spectrum beyond the visible.

A big variety of different systems monitoring the land surface in different regions of the wave-
length spectrum with different spatial coverage and resolution have been developed, like the
Landsat missions or the commercial satellites Ikonos and QuickBird.

The successes over the last two decades and the most prominent European civilian achievements
include*: The meteorological satellite systems operated by EUMETSAT (European Organisa-
tion for Exploitation of Meteorological Satellites). They deliver weather and climate-related
satellite data and products, 24 hours a day all year long. The ESA Envisat satellite, using
advanced all-weather radar technologies and multispectral observation techniques in order to
provide continuous observation and monitoring of the Earth’s land, atmosphere, oceans and ice
caps. The ESA ERS satellites carrying a comprehensive payload including an imaging Synthetic
Aperture Radar, a radar altimeter and other powerful instruments to measure ocean surface tem-
perature and winds at sea. The recently launched TerraSAR-X radar satellite, the first German
satellite realized in Public Private Partnership (German Ministry of Education and Science, Ger-
man Aerospace Center, Astrium GmbH). The mission’s objectives are the provision of data for
scientific research, applications, the establishment of a commercial market and the development
of a sustainable EO-service business. The German satellite constellation RapidEye (5 identical
satellites), will be launched in summer 2008. The constellation will be the only commercial
Earth observing system capable of providing large-area multispectral coverage at high resolu-
tion on a daily basis. The application services range from disciplines as Agriculture to Forestry,
Power and Communications, Spatial Solutions or Government. The last prominent achievement
in Europe is the Sentinel Family developed by the ESA. It will consist of five different series
(SAR, Superspectral, Ocean, 2 time Atmospheric Chemistry), whereby the operation concept
is based on the requirements for an operational GMES system. There are of course many other
satellite missions outside of Europe, but summarizing them all would go beyond the scope of
this chapter.

Overall one can state that there rapid increase in:

e number of missions and constellations

e number of sensors

e kinds of sensed data

e sensor resolution

e number of spectral bands

e number of data formats

e number, type and size of distributed archives

e and additionally available information in geographical information systems

Nowadays, there is a variety of different remote sensing sensors in the orbit, acquiring data in
different regions of the electromagnetic spectrum, with different spatial resolution and coverage
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and due to pivoted sensors with the possibility of imaging respective regions of the land surface
in higher frequencies. Due to this increased potential, there is a slight paradigm change in
the remote sensing community. Information mining/knowledge discovery and the associated
data management are changing the paradigms of the user/data interactions. New technologies
and work flows are required to automatically analyse such data and data series (Dactu et al.,
2002). Generally, we are now at the stage, where we have a range of successful and widely
used analytical procedures and an abundance of data. This is quite contrary to the situation
at the start of the space-sensing era. Today the analyst is challenged to choose from among a
number of coincident data sets when undertaking, e.g., thematic mapping (Richards, 2005).
While the analysis used to be sensor driven, meaning that the available sensors dictated the
products and assessed questions, today the research questions and the desired products dictate
the remote sensors to be used. In a modern operational setting, the application requirements
would be specified by a client, and a consultant would have the task of choosing the datasets
and analytical methods for generating the desired product. Remote sensing, fundamentally, is
an applications driven field, and while there is still room for the development of further analysis
algorithms, the requirements of the end user will drive the outcomes. The methodologies will
now be as much about choosing the most relevant primary data types, as well as performing the
actual analysis (Richards, 2005).

Within this context also the fusion of the different data sets has become an important aspect,
whereby the advantages of each sensor system, e.g., microwave and multispectal systems, are
used for the improvement of the accuracy of the derived information. Image fusion approaches
can be divided into three main categories, based on the stage at which the fusion is performed:
pixel-based, feature-based and decision-based (Pohl & van Genderen, 1998).

In pixel-based fusion, the data are merged on a pixel-by-pixel basis. This can be achieved by
using both data types in the same algorithm or by combining, e.g., the time-series of the data,
enabling to better monitor dynamic processes like crop growth or for classification purposes
(Brakke et al., 1981; Liu et al., 2006). A last rather common option is, e.g., really combining
the different data types on the pixel basis using different algorithms (e.g., wavelet fusion, IHS-
transformation). Feature-based approaches merge the different data sources at the intermediate
level. It requires the extraction of objects recognised in the various data sources, e.g., using
segmentation procedures. The last combination option is the decision-based fusion, the outputs
of each of the single source interpretations are combined to create a new interpretation, e.g.,
the combination of different classification results on the basis of the class labels (Waske &
Benediktsson, 2007). Within the presented study the fusion was mainly done pixel based, thus
at an early analysis stage.

1.3 Challenges of combining models and remote
sensing information

Information technologies as simulation modelling and remote sensing play an important role in
agricultural research and in agricultural production systems. A substantial technical progress
has been made in both, which is still continuing, due to the increasing possibilities in computer
hard- and software and technological progress, combined with greater knowledge on modelled
and observed systems (Jongschaap, 2006). Although remote sensing and crop growth modelling
have proven their usefulness and applicability, such approaches are seldom combined.
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Concerning the remote sensing issue, the retrieval of bio- and geophysical parameters is an im-
portant field of research, and the prospect of extracting such information in an operational man-
ner with a high degree of accuracy has a strong impact on current scientific work (Rosenqvist
et al., 2003). Meaningful parameter retrieval requires not only the availability of appropriate
inversion algorithms, but also that locally developed models can be applied to an extensive re-
gional context. The issues of operational use and regional transfer (extraction to larger regional
areas) are important, when wanting to combine remotely sensed information with crop growth
models for regional analysis.

Increased process knowledge and the concurrent improvements have led to the development
of complicated crop growth models, needing a rather large amount of input parameters. This
makes it rather hard to apply the point-based model findings to a regional spatial context. Here
remotely-sensed information can be linked successfully to the crop models and help to over-
come this problem.

Combinations of remote sensing and simulation modelling can be synergetic in various ways.
The areas of interest within this thesis were:

e the use of estimates of biophysical variables that can be used to re-initialize the crop
model

e using the spatial aspect of remote sensing images to upscale the simulation results to
obtain regional results

1.4 Geographic context of the thesis

The main attention of the presented thesis is the contention with the retrieval of biophysical
parameters using different remote sensing data. The role of remote sensing data within the field
of geography experienced an increasing importance. It lies in the nature of the issue that Ge-
ography, dealing with manifold issues of the land surface, can gain spatial information about
the earth surface and it‘s interactions by interpreting and analysing remote sensing data (Al-
bertz, 2001). The part of remote sensing is quite diverse and also connected with lots of other
research disciplines as Geology or Cartography. The principle geographic method of aerial or
remote sensing analysis dates back to Carl Troll, during the second world war. It made advan-
tage of a large regional overview of data, to analysing different landscape elements. The aim
was to detect causes and effects of landscape elements, in order to identify functional relation-
ships within the landscape.

Nowadays, the possibilities of remote sensing data have become even more important and new
dimensions, through acquiring data in different wavelength regions or multi-temporal data, also
with higher spatial resolution.

Remote sensing is a tool for mapping the world and thus detecting either land cover changes or
for assessing the actual land use. This is not only important for process modelling, but also for
understanding, e.g., impacts of political decisions. Also in cases of disaster monitoring, e.g.,
after the tsunami in December 2004 remote sensing played a dominant role for not only assess-
ing the effects of the disaster, but also for the organization of first aid help. Another important
topic within the Geographic content is climate change, whereby remote sensing data are used
for monitoring large areas and to detect changes over time (Jensen, 2007).

The second focus of this thesis is the assimilation of the remotely derived information into crop
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growth models for final yield estimation. The context of modelling in order to understand pro-
cesses has a long tradition in the geographic community, whereby a great variety of models are
used, e.g., hydrological models for estimating surface run off, or climate models for assessing
the impact of, e.g., CO, in the atmosphere.

Agrargeographic hypotheses generally have a long tradition within the geography, e.g., the well
known Thiinschen Ringe (von Thiinen, 1910). Especially, since the structural changes within
the primary sector the interest of geographers in agricultural issues has increased. The Agrar-
geography deals with the description and analysis of agricultural dominated areas, their mate-
rials, shape, geographic position, structure as well as their process relationships and strengths
(Arnold, 1997). It analyses the interactions between natural (climate, relief, soil, water) and an-
thropogen geofactors (politics, war, economics, population, settlements). Whereby, nowadays
also regional yield estimations play an important role not only for improved disaster manage-
ment, or within the European report duties, but also for economic planning.

Overall, the thesis has many connections to Geography, whereby probably the strongest one is
the handling of spatial information for modelling interactions in the earth environment.

1.5 Objectives and hypotheses

There is a need for the development of methodologies with respect to the integration of soil and
crop processes, expert knowledge and observations from remote sensing techniques, to more
adequately understand the crop performance and for better agricultural management. Many
new remote sensing sensors and techniques have been developed in recent years for collecting
information on crop and soil systems in various spectral bands, hyperspectral, laser-induced
fluorescencs, microwave, etc.. Due to the fact that remotely sensed information is only a repre-
sentative of the actual soil-crop status, it is difficult to identify the processes responsible for the
observed crop and soil conditions. However, the identification of these processes is essential for
the selection of the appropriate intervention through management. In the context of such selec-
tions mono-temporal remote sensing observations are hard to interpret without using additional
information on crop and soil status. Multi-temporal measurements improve the possibilities for
identifying the relevant processes, if reliable methods are available for processing and interpret-
ing the data. In order to maximize the possibilities of identifying the appropriate management
process simulation models can be linked to the remotely sensed information. The success of
doing this largely depends on the accuracy of the retrieved remotely sensed information. Thus,
different retrieval techniques for multispectral and SAR data, as well as the combination of these
sensors for biophysical information extraction and their implementation into a process model
are explored and discussed in this thesis. Although remote sensing and crop growth modelling
both have proven their usefulness and applicability in various areas, their use is seldom com-
bined. The challenges are to analyse the effects of integrating a time-series of multispectral
and microwave information into crop growth models. The methods of biophysical parameter
retrieval are plentiful but still, especially when combining multi-sensoral data, not very well
assessed. The used remote sensing models have to stay rather simple for inversion purposes
and the ability of applying them to larger regions. The models have to be operationally and
easy, based on simply to obtain parameters. Also the impact on crop growth modelling when
integrating the retrieved information is still not clearly analysed. With regard to the current
scientific status the first challenging question within this thesis was:
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Is it possible to derive the values of important crop variables from various remote sensing
data?

Whereby, in more detail the following aims were of concern:

e to intercalibrate vegetation indices of different multispectral sensors in order to correct
the biases, introduced by differences in the relative spectral response functions (section
4.1.1)

e to evaluate the performance of the CLAIR model (Clevers, 1989) for the retrieval of
different biophysical parameters (section 4.1.3)

e to analyse the potential of different polarizations and incidence angles for the retrieval of
different biophysical parameters (section 4.2.1)

e to analyse the performance of the Water Cloud Model (Attema & Ulaby, 1978) and multi-
ple regressions using different SAR data and the additional variable vegetation roughness
(section 4.2.2 and 4.2.3)

e to extract important phenological events such as heading/flowering from remote sensing
information for the adjustment of the retrieval models and the simulation model (section

4.2.4)

e to analyse the potential of combining multispectral and SAR data for the derivation of
biophysical parameters (section 4.3)

e to invert the used models for regional biophysical parameter extraction

These derived biophysical parameters were then assimilated into a crop growth model for final
yield estimation, whereby the question was:

Is it possible to integrate important crop variables gained from multi-sensoral data into a
dynamic crop growth model in order to increase the final yield estimation accuracy?

Challenges hereby were:
e to assimilate biophysical parameter maps retrieved from different remote sensing data
into a crop growth model in order to improve the accuracy of wheat yield predictions

(section 5.4)

e to analyse the effect of assimilating separately or synergistically SAR and multispectral
time-series information (section 5.4)

e to analyse the effect of acquisition time and frequency of the assimilated multispectral
data (section 5.5)

e to assess whether time gaps in the multispectral data series can be filled by SAR informa-
tion (section 5.6)
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e to transfer the findings of the point-based crop growth model for regional final yield
prediction (section 5.8)

e to analyse the performance of the suggested approach in comparison to a simple direct
yield estimation method (section 5.9)

1.6 Synopsis

In Fig. 1.1 the organisation structure of the thesis is shown. Previous to all analysis steps and
all further considerations in chapter THEORY AND RESPECTIVE STATUS OF SCIENCE
(2) the necessary theoretical background will be given. Whereby, first considerations about
multispectral remote sensing and afterwards about SAR remote sensing will be made. Con-
cerning multispectral remote sensing only some important aspects, as multispectral features of
vegetation and multi-temporal signature characteristics, as well as differences in relative spec-
tral response functions from the various used multispectral sensors, will be highlighted. This is
followed by an introduction to the topic SAR remote sensing, describing special features of veg-
etation and soil interactions with the backscatter and multi-temporal aspects, which have to be
taken into consideration. The next aspect of the chapter will deal with the retrieval of biophys-
ical parameters from the various remote sensing data, whereby also statistical features will be
summarized. These biophysical parameters will then be assimilated into the crop growth model
CERES-Wheat. For the assimilation process, different techniques and the CERES-Wheat model
will be introduced, as well as some features of the agricultural plant winter wheat. Thus, overall
there will be three different important theoretical sections. One highlighting the sensor/target
interactions, the second one discussing methods for the derivation of biophysical parameters
from the different remote sensing sensors and the third one dealing with crop growth simulation
modelling and methods for assimilating remotely sensed information into these models.

After the introduction of the theoretical background the different data sets will be described,
which will be the collected ground truth data, as well as needed additional data and the dif-
ferent used remote sensing data (chapter DATA 3). By the use of these data in the chapter
BIOPHYSICAL PARAMETER ESTIMATION (4) the biophysical parameters of interest
will be derived from the multispectral time-series, by using empirical regressions and the semi-
empirical CLAIR model (section 4.1). Therefore, an analysis regarding the intercalibration of
the different used vegetation indices will be made, taking into account differences caused by
variations in the relative spectral response functions of the respective multispectral remote sen-
sors. In the next sections 4.2.2 and 4.2.3 the biophysical parameters will be extracted from the
SAR time-series and the retrieval performances will be discussed. In the section 4.3 the possi-
bilities of a combined retrieval approach will be analysed using the multispectral and SAR data
in a synergetic way. In the chapter CERES-WHEAT CROP GROWTH MODELLING AND
FINAL YIELD ESTIMATION (5) the remotely sensed information will be assimilated into
the CERES-Wheat model. Whereby, the modelling performances of the different assimilated
data (section 5.4) and the frequency and acquisition time of the multispectral data will also be
considered (section 5.5). Another important aspect, which will be highlighted is, if SAR infor-
mation is able to fill the time gaps in the multispectral data series, from distinctive phenological
stages (section 5.6). The findings will then be used for a regional final yield estimation in the
subsection 5.8 and finally they will be compared with a method of direct final yield estimation
in subsection 5.9.
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Figure 1.1: Graphical overview of the thesis organization.
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2 THEORY AND RESPECTIVE STATUS
OF SCIENCE

In this chapter the necessary theoretical context and literature overview will be given. In the first
section considerations about remote sensing (multispectral and SAR features) and agricultural
vegetation will be made. In the next section the retrieval of important biophysical parameters
from these different data types will be explained. The retrieved parameters will be the inputs for
the crop growth modelling. Deliberations about the assimilation of remotely sensed parameters
into crop growth models will be made. After this theoretical introduction, the thesis will be

arranged into the context of the current scientific status and the challenges within the study will
be described.

2.1 Remote sensing and agricultural vegetation

2.1.1 Multispectral characteristics of vegetation

Multispectral remote sensing has been a research topic for many years, thus it is documented in
many textbooks. Due to this fact, the introduction will be rather short only highlighting some
features, which were of concern within the study.

The interested reader is referred to, e.g., Lillesand & Kiefer (2000); Mather (1999); Schowengerdt
(1997); Ustin (2004) for a detailed introduction of multispectral remote sensing.

2.1.1.1 Multispectral features of vegetation

Especially important for vegetation monitoring and the retrieval of vegetation characteristics is
the reflectance difference between the red and the infrared spectral wavelengths of leaves. The
electromagnetic radiation gets reflected, transmitted and absorbed by healthy leaves in depen-
dency of the wavelength and leave characteristics, e.g., morphology, anatomy, physiological
features. Typical physiological features are leave structure, organization of the cells and pig-
ments.

Vital leaves feature a typical distribution of reflection, transmission and absorption. In general
the typical spectral reflectance curves of healthy leaves can be ascribed to different processes
within the plant. Pigments in the plant leaves (chlorophyll) strongly absorb energy in the wave-
lengths at 0.45m and 0.67m. If a plant is exposed to stress interrupting it‘s normal growth it
decreases chlorophyll production and therefore the absorption in the blue and green wavelength

11
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spectrum. Between 0.7um and 1.3pm the reflectance of healthy vegetation usually ranges from
40 to 50%, due to the internal structure (mesophyl) of the plants. The dips in the spectral curves
beyond 1.3m can be ascriped to the water content of the leaves.

The Fig. 2.1 displays a spectral vegetation profile taken from a hyperspectral HYMAP imagery
together with the mentioned effects (Lillesand & Kiefer, 2000). Important for the interpretation
of the remote sensing data, is that the reflectance characteristic of a single leave is not the same
as for the whole crop canopy. Due to the 3-dimensional structure of crops features like, e.g.,
leaf inclination, shadow, multiple leaf or soil scattering, also have an impact on the reflectance
signal (Bauer et al., 1986). These features are especially important when observing, e.g., whole
agricultural fields.

SPECTRAL VEGETATION PROFILE

internal leaf structure
45
401 ¢
T 35 4 "5. leaf water absorption
T
€ 251 = A\
320/ £
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10 | ] /‘\‘
5 1,
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Figure 2.1: Typical spectral vegetation profile, measured by the hyperspectral HYMAP sensor
(05/28/2005), modified after: Lillesand & Kiefer (2000).

2.1.1.2 Multi-temporal winter wheat reflectance profile

The crop phenological development and status can be monitored through multi-temporal re-
flectance profiles or multi-temporal vegetation indices (VI), e.g., the Normalized Difference
Vegetation Index (NDVI). In Fig. 2.2 a typical seasonal NDVI profile of winter wheat is shown
(Fang et al., 2005). The start of the season (SOS1) begins around October after planting. Due to
the transition from bare soil to soil with varying amounts of canopy, the red and NIR patterns as
well as the VI patterns change. The second start of the season (SOS2) begins in February, after
the winter break (EOS1). There is typically a small VI decrease during the winter break. The
end of growing season (EOS2) is marked trough minimum NDVI values. The growing season
length (GSL) is defined as the distance between SOS and EOS. The beginning of the season is
generally associated with rather low VI values. Within the crop development the values increase
achieving a peak with the maximum crop development stage. After that, the fresh biomass de-
creases due to crop maturity and thus the VI values decrease. Due to different climate, soils or
agricultural practices the crop development varies and thus the VI curves (Fontana et al., 2005;
Ustin, 2004).

12
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Figure 2.2: Seasonal NDVI profile of winter wheat (Fang et al., 2005)
(SOS: start of the growing season; GSL: growing season length; EOS: end of growing season)

2.1.1.3 Spectral sensor characteristics influencing the vegetation signal

For vegetation analyses often various sensors of different platforms have to be used, due to the
low temporal resolution of satellites, e.g., 16 days repetition for Landsat 5STM and the problem
of cloud coverage. As a consequence only the utilization of multiple platforms during a growing
season enables at least a chance for several cloud free acquisitions for crop monitoring.

These multi-sensoral observations require considerations of some sensor characteristics influ-
encing the spectral vegetation profile, in order to assure the comparability. For example, the
sensor geometry, like viewing- and solar-angle, atmospherical conditions, topography and spa-
tial or radiometric resolution influence the observed signal.

Other important factors are the spectral characteristics of the different sensors, like band posi-
tion, bandwidth and centre wavelengths, which are described by the relative spectral response
(RSR) functions. Due to different RSR functions of the sensor bands, measured spectral differ-
ences occur, because the sensors record different components of the reflectance’s spectra from
the monitored targets.

In general a spectral band of a sensor can be described by it’s spectral range, bandwidth, centre
wavelength and full width at half maximum (FWHM). More specific it can be characterized by
its RSR function, which takes into account all features describing a spectral band. The RSR
function is affected by the effective spectral quantum efficiency (QE) of the detector. It includes
not only the type-dependent sensitivity of the charge coupled device (CCD), but also losses due
to the light reflecting or transmitting components of the detector (e.g., optics, mirrors, filters,
etc.). Thus, variable sensor systems have different spectral sensitivity, which are described by
their individual RSR functions (Franke et al., 20006).

Fig. 2.3 displays the RSR functions of the different sensors used in this study. Typical spectra
of agricultural sites are plotted as reference. The functions differ in shape, central wavelength
location and the degree of overlap between the VIS and NIR band. Especially, in the region
of the red edge transition (0.68 to 0.8um) the sensors differ from each other. Hence, this has
an impact on the measured signal and the analysis of the observed spectral signal and has to
be taken into account when comparing between different multispectral systems (Franke et al.,
2006; van Leeuwen et al., 2006; Miura & Yoshioka, 2006; Steven et al., 2003; Trishchenko
et al., 2002).

13
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Figure 2.3: Variations in the relative spectral response curves of the satellites used within the
study and spectral reflectance curves of some reference targets.

2.1.2 Microwave remote sensing fundamentals

Microwave remote sensing is fundamentally different from multispectral remote sensing, re-
garding, e.g., sensor characteristics, target characteristics and thus the information content in
the received backscattered signal (Brisco & Brown, 1998; Oliver & Quegan, 2004; Ulaby et al.,
1982; Woodhouse, 2006). By using the microwave region of the electromagnetic spectrum, ca-
pabilities are gained that complement other remote sensing methods, because interactions are
driven by different physical interactions. E.g., the amount of microwave energy of a particular
wavelength scattered off a green leaf is proportional to it’s size, shape and water content, rather
than the amount of chlorophyll. Tab. 2.1 gives a brief overview of the different characteristics
of multispectral and SAR waves. A detailed introduction into microwave remote sensing will
be given in the following sections.

RADAR is an acronym for Radio Detection and Ranging, an active device transmitting and
receiving electromagnetic energy in microwave wavelengths between 1mm and Im. Typical
characteristics of these systems are the ability to penetrate clouds, getting through the top layer
of dry soils and as you provide your own illumination you are independent from the sun. Dis-
advantages on the other side are: the large required antennas for recording long wavelength and
Synthetic Aperture Radar instruments tend to be the heaviest, largest, most power consuming
and the data interpretation is mostly not that straight forward.
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Table 2.1: Remote sensing with multispectral (VIS and IR) and SAR; crop characteristics influ-
encing spectral reflection and microwaves (Kiithbauch & Hawlitschka, 2003).

VIS and IR SAR
(A, 0,0) (A 0,p,9)
pigment composition volume (stand height)

pigment concentration | vertical and horizontal distribution
of plant organs

turgidity size, form and orientation

of plant organs

cell structure

senescence distribution of fresh and dry biomass
phenology phenology
leaf area index row direction
soil pigmentation soil roughness
soil moisture soil moisture

A=wavelenght; f=incidence angle; p=polarization; ¢=azimuth angle (look direction)

2.1.2.1 Radar operation

Airborne and spaceborne radar remote sensing uses an antenna mounted on an aircraft or space-
craft, actively transmitting a radar signal in very short bursts or pulses in a side-looking direction
(SLR) towards the earth’s surface. By electronically measuring the return time of signal echoes,
the range, or distance, between the transmitter and reflecting objects can be determined. As en-
ergy propagates in air at approximately the velocity of light (c), the slant range (S R) to an object
is given by:

ct

SR= 2.1)

with S R=slant range, c=speed of light and ¢= time between pulse transmission and echo re-

ception. The factor 2 is entered because the signal travels the distance to and from the target
(Lillesand & Kiefer, 2000).

Imaging radar systems can be divided into two major categories: Real Aperture Radar (RAR)
and the Synthetic Aperture Radar (SAR), depending on the imaging technique.

RAR

Real Aperture Radars transmit pulses from a side-looking antenna and are normally airborne,
due to technical aspects concerning the antenna length. The spatial resolution in azimuth direc-
tion is dependent on the antenna footprint, being linearly proportional to the distance between
sensor and surface target (Ulaby et al., 1982).

SAR

The synthetic aperture imaging technique in a SAR system uses the travelled distance of the sen-
sor along track (azimuth direction) to simulate a larger antenna than it’s actual size. Whereby,
the travelled length of the antenna between the pulses is the synthetic aperture. A single antenna
moves along the track acquiring data, which has a similar effect as using an array of antennas.

15
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Targets are illuminated several times from different locations along track, generating numerous
echoes. These target echoes are than recorded coherently (amplitude and phase as a function
of time) and finally combined to synthesize a linear array. By using a small antenna a higher
spatial resolution can be achieved, independently of the sensor-target distance (Ulaby et al.,
1982).

2.1.2.2 System parameters

The interactions between system parameters and target characteristics are essential for the in-
terpretation of SAR data. SAR systems have specific operational characteristics, influencing
the interactions between the transmitted pulses and the land surface targets. Frequency (wave-
length), polarization and incidence angle are the primary system parameter for the definition of
a SAR sensor and will be explained in the next section.

Frequency

Imaging SARs normally operate in a single band, which is defined by it’s frequency (wave-
length). Reason for a single band operation is the limited power supply, due to the fact that SAR
systems rely upon their own energy source. Whereby, high frequencies (short wavelengths)
transmissions require a rather large amount of power, thus excluding their use in spaceborne
systems. The microwave bands definitions are listed in Tab. 2.2, the used C-band is marked in
bold (Ulaby et al., 1981).

The frequency of a sensor is important for the penetration and infiltration of the microwave
signal into the material. The backscatter magnitude from agricultural targets is dependent upon
frequency due to:

e differences in the dielectric constant of water as a function of frequency
o the relationship between frequency and plant part size and/or penetration depth

Whereby, shorter wavelengths and thus higher frequencies have a lower penetration. As a rule
of thumb: the penetration is normally half of the wavelength.

Table 2.2: Microwave bands (Ulaby et al., 1981)

band frequency wavelength
p <390 MHz >76.9 cm

L |390MHz-155GHz | 76.9-19.35cm

S 1.55-4.20 GHz 19.35-7.14 cm

C 4.2 -5.75 GHz 7.14 - 5.22 cm

X 5.75-10.9 GHz 5.22-2.75cm

K 109 -36.0 GHz | 2.75 cm - 8.3 mm

Q 36.0 - 46.0 GHz 8.3-6.5 mm

\Y% 46.0 - 56.0 GHz 6.5 -5.4 mm
4 56.0 - 100 GHz 5.4 -3.0 mm
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2.1 Remote sensing and agricultural vegetation

Agricultural targets are composed of significant and varying amounts of water, thus the fre-
quency dependence of the dielectric constant is very important in the interaction process. With
decreasing frequency (e.g., L- or P-band), the signal penetration into the crop/soil system in-
creases and the sizes of the targets relative to the wavelength are smaller. In general, higher
frequencies (e.g., X-band) are dominated by canopy scattering, while lower frequencies (e.g., L-
band) have dominant soil backscatter contribution. Some studies have also pointed out that the
combined use of different frequencies has a high potential for, e.g., biomass retrieval. Amodeo
et al. (1996) conclude that L-band is also valid for biomass monitoring of crops with low den-
sity, while the use of L. and C-band give useful information for high density crops. Another
combined analysis was performed by Ferrazzoli et al. (2000). They studied different frequen-
cies, polarizations and incidence angles during a whole crop growth cycle. They have figured
out that at L- and C-band, the emissivity increases during the crop growth and decreases during
crop drying. While at higher frequencies, it increases during crop growth and remains close
to unity until the end of the cycle. They calculated frequency indices and analysed the corre-
lation with wheat biomass during a crop life cycle. Their synopsis was that a two-frequency
radiometer, operating at C- and X-band should be able to monitor wheat biomass during the
whole growing phase.

These studies also indicate the potential of using new satellite sensors in a combined way, when
acquisition time gaps are not to high, allowing to use the advantages of each frequency.

Polarization

Regardless of the frequency of the SAR system, SAR signals can be transmitted and/or received
in different modes of polarization. The polarization refers to the direction of the electromagnetic
wave. Microwaves are transverse, meaning that the vibrations are perpendicular to the direc-
tion of wave propagation. For SAR applications, waves are typically polarized in a plane, either
horizontally (H) or vertically (V) polarized'. The polarization is defined for the outgoing (trans-
mitted) and incoming (received) radiation. Thus, possible combinations are like-polarizations
(VV or HH) and cross-polarizations (HV or VH). ERS-2 only possesses the VV mode (like
polarization), Envisat ASAR also offers HH like polarization or modes like VV/HH, HH/HV
or VV/VH. Microwave scattering from the land surface highly depends on the polarization of
the wave transmitted. If the plane of polarization of the transmitted wave is parallel to the main
line of the targets orientation the like-polarized backscatter is stronger (Henderson & Lewis,
1998).

Important in the agricultural context is the different attenuation of grain crops at HH versus
VV. In general the vertical orientated components of crops (e.g., stems) couple much more ef-
fectively with vertically polarized signals, which results in a decreased backscatter (increased
attenuation). Whereby, the HH polarization penetrates the crops more, thus reacting more with
the soil moisture and soil roughness or the horizontally orientated leaves. This was also anal-
ysed by Mattia et al. (2003) using a ground-based scatterometer and is displayed in Fig. 2.4.
The figure shows HH and VV polarizations acquired with different incidence angles for C-band
over a crop growth cycle. For both analysed angles the VV polarization features a higher atten-
uation than the comparable HH polarization.

For many vegetation studies, the use of different polarizations, in particular cross polarization,
will improve the discrimination between vegetation (volume scattering) and soil (surface scat-
tering) and improves the retrieval of low biomass values?.

Thttp://envisat.esa.int/handbooks/asar/CNTR .htm
Zhttp://envisat.esa.int/handbooks/asar/CNTR .htm
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The cross-polarization of the transmitted wave is depended on the amount of multiple scattering
taking place at the monitored targets. Depolarization is defined as a change in polarization of
the transmitted wave into the polarization orthogonal to this transmitted wave. It occurs as a
result of significant multiple scattering within the target, as with very high surface roughness,
or as a result of significant volume scattering from the vegetation canopy. Systems with cross-
polarized receiving capabilities can also provide additional information and help understanding
the target/wave interactions (Henderson & Lewis, 1998).
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Figure 2.4: Multi-temporal backscatter values acquired at HH and VV polarizations and at 23°
and 40° incidence angle (C-band) (Mattia et al., 2003).

The multi-temporal pattern will be explained in a later section.

Incident angle

The incidence angle () is defined as the angle formed by the SAR beam and a line perpendicular
to the surface at the point of incidence®. Fig. 2.5 schematically illustrates the system and the
local incident angles. Whereby, in a flat surface the incident angle () is complementary to
the depression angle () of the sensor system. Generally, smaller incidence angles () result in
higher backscatter, only for very rough surfaces the backscatter is not dependent of the incidence
angle. The surface roughness, which will be discussed later in the section target characteristics,
changes in dependence of the local incidence angle.

Fig. 2.6 shows the angular variation (23°, 30°, 40°, 50° and 60°) of wheat backscatter (VV)
measured with a ground-based scatterometer (Mattia et al., 2003). They point out, that during
early phenological stages (tillering) the VV backscatter at 23° is very close to the backscatter
from bare soils, while at higher incidence angles the VV backscatter is significantly lower than
the measured bare soil backscatter. This means that at high incidence angles the soil backscatter
component is significantly reduced even at early growth stages, were the plants are just 0.10 -

3http://envisat.esa.int/handbooks/asar/CNTR.htm
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Figure 2.5: Radar geometry
Schematic graphics of the system (A) and local (B) incident angles (Henderson & Lewis,
1998).

0.15m high. With wheat growth (0.20 - 0.30m) the backscatter at 23° also decreases due to the
soil attenuation. But here also an increasing attenuation from low to high incidence angles can
be observed. From heading to ripening there is a moderate backscatter decrease from 23° to 40°,
indicating that there is already a significant attenuation at low incidence angles. The increase
after 40° indicates a change in the dominant scattering mechanism from soil backscatter to
canopy backscatter.

In summary these figures also underline the general assumption that higher incidence angles are
more suitable for vegetation monitoring, due to the lower soil contribution. But it also shows
that during a wheat growing season the angular response changes before and after heading. In
the 23° to 40° range, the angular dependence suggests that the dominant scattering mechanism
is the soil scattering, attenuated by the canopy. While at higher incidence angles the dominant
mechanism change to canopy scattering after heading (when a change in the plant geometry
occurs).

2.1.2.3 Target characteristics

Interactions of the microwaves with agricultural targets are significantly influenced by the sys-
tem parameters, such as geometry (and the associated roughness) and with the target character-
istics such as moisture content (and associated dielectric constant) of crops and soils as well as
their inter-relationships. In the first section the backscatter coefficient will be introduced, as it is
a quantitative measure of backscatter intensity. Surface roughness and electrical characteristics
of the land surface targets will be described afterwards.
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Figure 2.6: Backscatter values (VV) versus incidence angles during a phenological wheat cycle
(Mattia et al., 2003).

Backscatter coefficient

Targets generally scatter the energy transmitted by the SAR in all directions. Backscatter is the
portion of the transmitted SAR signal that is redirected backwards directly by the target towards
the SAR antenna. Whereby, the intensity of each pixel is proportional to the ratio between the
density of energy scattered and the density of energy transmitted from the targets on the land
surface (Waring et al., 1995).

The backscattered energy depends on the variable SAR cross-section (o), which is the amount of
transmitted power absorbed and reflected by the target. It is a measure of the reflective strength
of a SAR target. The normalized measure of the SAR return is called the backscatter coefficient
or sigma naught (c°), defined per unit on the ground. Sigma naught is a characteristic of the
scattering behaviour of all targets within a pixel. It varies over several orders of magnitude and
is normally expressed as a logarithm with decibel units.

The return power is given by (Moore, 1970):

RG,Gid
(/A04ﬁwﬁpﬂ (2.2)

with P, =transmitted power polarization dependent; p=received; q=transmitted polarization
Ap=illuminated area

P,=transmitted power

G,=receiver-antenna power gain

Gy=transmitter-antenna power gain

A=incident wavelength

R=range between target and radar

opg=radar scattering cross-section of the target; polarization dependent

It is the generalized return power equation of a radar, also taking into account differential targets,
the illuminated area and the polarization dependence.
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Generally 0V is a function of system parameters (i.e. frequency, polarization and look angle)
and target parameters (i.e. surface roughness and permittivity) (Ulaby et al., 1982).

The speckle or salt-and-pepper-effect in the SAR images is an interference phenomenon pro-
duced between backscatter coming from many targets within a pixel. Speckle represents true
electromagnetic scattering and influences the interpretation of SAR images. In chapter DATA
(3) a method for speckle reduction will be shown. Speckle filtering is an important preprocess-
ing step, when working with SAR data.

Surface roughness

Surfaces roughness is an important target characteristic influencing the strength of the backscat-
ter and has to be considered in relation to the scale of the targets observation. Three scales are
often divided: microscale, mesoscale and macroscale roughness (Lillesand & Kiefer, 2000;
Brisco & Brown, 1998).

Microscale roughness refers to rather small targets within an individual pixel, i.e. leaves and
branches of trees or stones. Microscale roughness is measured in cm and is dependent on
wavelength, depression angle target height. Normally the modified Rayleigh criterion is used
for expressing this relationship (Jensen, 2000):

A
25sinry

h < (2.3)

with h the local height of target, A the wavelength (cm) and ~ the depression angle (°). For
example, computing h using A = 3cm (X-band) and v = 45°, result in h < 0.17cm. Meaning,
that if the local height of a target is below 0.17 cm the target”s surface is considered smooth and
as a near-perfect specular reflector.

Other microscale scattering mechanisms are shown in Fig. 2.7. These are the double bounce or
corner reflector scattering occurring often in urban areas, the double bounce from two natural
smooth surfaces like grass and freshly cut tree stumps. Complex scattering forms are volumetric
scattering in trees or other plants or the volumetric scattering in ice and snow. Macroscale
surface roughness is influenced by topographic slope and the aspect of the terrain, causing
shadows. These patterns are normally many times larger than an individual pixel.

Dielectric constant

Electrical characteristics of terrain features determine next to the geometric features the inten-
sity of the backscatter. The complex dielectric constant is a parameter indicating the reflectivity
and conductivity of various materials. Whereby, with increasing reflectivity and conductivity
the value of the complex dielectric constant increases (Lillesand & Kiefer, 2000).

Most natural materials have a dielectric constant between 3 to 8 when dry, whereas water has
a dielectric constant of around 80 in the microwave region of the spectrum. Meaning that the
presence of water (moisture) in soils or vegetation will significantly increase the reflectivity.
For soils this implies that the presence of water in the top few centimetres of bare soil can be
detected in SAR imagery, becoming particularly apparent at longer wavelengths.

The vegetation canopy interacts with SAR waves as a group of volume scatterers. The canopy
is also composed of a large number of plant components (leaves, stems, stalks and so on) with
different dielectric constants. Additionally, the canopy has a subjacent soil, resulting in surface
scattering of energy that penetrates the vegetation canopy.
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Scattering Mechanisms
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Figure 2.7: Different scattering mechanisms

http://envisat.esa.int/handbooks/asar/CNTR.htm
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2.1.2.4 SAR image characteristics

SAR images can be configured either in slant range or ground range. Slant range represents
the distance measured along a line between the radar antenna and the target. Image direction
as measured along the sequence of line-of-sight rays from the radar to all reflecting points in
the illuminated scene*. The spacing between return signals on slant range imagery is directly
proportional to the time interval between echoes from adjacent terrain features. Ground range
is the perpendicular distance from the ground track to a given object of the land surface. Also
defined as the range direction of a side-looking radar image as projected onto the nominally
horizontal reference plane. Ground range projection requires a geometric transformation from
slant range, which can lead to geometric distortions on the radar images, due to the side-looking
geometry of the systems (Ulaby et al., 1982).

The mentioned geometric distortions are (see Fig. 2.8) foreshortening, where the fore slopes
appear to be compressed; layover or the reverse ordering of surface elements, resulting in imag-
ing the tops of objects before their bases (most serve at near range with steeper incident angles);
shadow caused by slopes facing away from the radar antenna with an angle that is steeper than
the radar depression angle, thus returning weak signals or no signals at all (Lillesand & Kiefer,
2000).

Geometric Distortion
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Figure 2.8: Effects of geometric distortions in SAR images (Lillesand & Kiefer, 2000).

2.1.3 Multi-temporal backscatter characteristics during the crop
growth cycle

Vegetation canopies can be divided into several groups, depending on the complexity of the
canopy architecture and the size of the scattering elements, relative to the wavelength (Ulaby
etal., 1986). The next section will focus mainly on crops with small leaves like winter wheat.

“http://envisat.esa.int/handbooks/asar/CNTR .htm
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Fig. 2.9 shows all the primary factors controlling SAR backscatter from the land surface and
their interactions. It is a complex subject and a challenge for applications extracting informa-
tion about vegetation biomass. As diurnal variations in ¢° can have various reasons and the
relationship changes during a phenological cycle. It is also important to note that there is also a
dependence on the system characteristics, e.g., wavelength, incidence angle, polarization.

In a generalized form the backscatter modelling of a canopy is done by considering:

0 2
0" = Ovegetation + T 0 s0il (24)

Thus, considering backscattering interactions from the vegetation and the soil, which is influ-
enced twice. Problematic hereby is to adequately describe the canopy, due to it’s complex and
variable geometry. And to define the soil term, due to it’s changing impact during crop growth
and the changing two-way transmissivity through the vegetation layer. These terms and all
changes during crop growth, cause a typical temporal backscatter pattern.

Fig. 2.10 shows the typical multi-temporal backscatter pattern of wheat. The generalized
backscatter pattern of cereals has rather high values during spring, with increasing plant growth
the backscatter decreases again, until May/July when it experiences a reflection minimum and
thus a absorption maximum. Afterwards, the backscatter increases again with the crop ripening.
However, it is important to keep in mind that the weather situation (wind or rainfall) also influ-
ences the backscatter signal.

Wooding et al. (1995) and Bouman & van Kasteren (1990) assume that due to wind influences
the plant geometry changes and thus the backscatter is influenced. Whereby, especially for
small plants with thin stems as wheat, with vertical leaves dominating the backscatter, the im-
pact is rather high. Also the ear orientation seems to be effected by wind, especially when the
stems of the ears are bent and the ears lay nearly horizontally in the top of the canopy. Thus, it
is hard to quantify the real influence of wind direction and wind strength.

Rainfall actually has a direct effect due to moisture changes within the canopy and on the leaves
and an indirect effect caused by increasing soil moisture (Bouman & van Kasteren, 1990). Dew
has an impact, due to an increased dielectric constant, whereby the influence is dependent on
crop type, frequency and polarization (Riedel & Schmullius, 2003; Wood et al., 2002). Thus, it
is important when comparing data from ascending and descending orbits, whereby the descend-
ing orbit (acquisition time in the morning) can be effected by dew, having higher backscattering
coefficients. If images from both orbits are combined, it may be difficult to separate dew effects
from target changes.

2.1.3.1 Early growth stages: germination-tillering

During the early growth cycle of cereals the backscatter signal is dominated by bare soils,
producing mainly surface scattering. The governing factors are soil surface roughness and soil
moisture content (Ulaby et al., 1986). Thus, the small vegetation cover plays a minor role.
Fig. 2.11 shows the SAR sensitivity to soil moisture as a function of frequency at various
angles of incidence. With increasing frequency (shorter wavelength) the sensitivity of the sensor
regarding soil moisture decreases. The C-band (4.2 - 5.75GHz) used is rather sensitive. Also
illustrated is the impact of varying incidence angles, whereby the sensitivity decreases with
increasing angle, e.g., ERS-2 having an incidence angle of around 23.5°.

Fig. 2.12 displays the measured scattering coefficient as a function of soil moisture for three
different surface roughnesses. With increasing soil moisture the backscattering coefficient in-
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Figure 2.9: Primary factors controlling the SAR backscatter, modified after: Dobson et al.
(1995).
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creases, whereas the surface roughness plays a more marginal role. In natural environments the
surface roughness also decreases due to weathering.

2.1.3.2 Middle growth stages: stem elongation-heading

With progressing crop development, volume scattering within the plant canopy increases, be-
coming the dominant scattering mechanism. This leads to a continuous increase of backscatter
values in the cross-polarization, due to depolarization of the microwaves at the coincidentally
orientated vegetation components (Ulaby et al., 1986). During stem elongation the canopy
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Figure 2.11: SAR sensitivity to soil moisture in dependence of frequency and incidence angle
(Ulaby et al., 1986).

changes from an horizontal structure to a stalk-dominated vertical structure. The vertical ori-
ented components of grain plants couple much more effectively with vertical polarized waves,
resulting in increased absorption and lower backscatter. Another feature reducing the backscat-
ter is mentioned by Schmullius et al. (1993) and Schmullius & Nithack (1995) is that due to
tillering a change of vegetation surface roughness happens. From the broad primary leaves
(high backscatter) to elongation of the plant. Another feature to mention is that crop phenol-
ogy governs plant water content and thus the crops’s dielectric properties (Brisco & Brown,
1998). As crop growths the water content increases, which generally increases the contribution
to 0¥ from the plants and decreases the penetration of the transmitted microwave energy into

the vegetation. This then decreases the soil contribution to the total backscatter signal (Ulaby
& Wilson, 1985).

2.1.3.3 Late growth stages: anthesis-senescence

During ripening the backscatter signal increases again caused by multiple effects. Due to de-
creasing plant coverage (less water content) the soil contribution to the backscatter increases
again. Spoenemann & Schieche (1997) explain the increase with a changing plant geometry.
The canopy becomes sparser, reducing the volume scattering and the soil contribution increases.
Ear appearance is another factor, having a strong contribution to the backscatter (Siqueira &
Sarabandi, 1996). But all these single effects are rather hard to quantify.

Hamacher (2000) has used this multi-temporal backscatter pattern (VV polarization) for extract-
ing the important heading/flowering date of winter wheat (see Fig. 2.13). What can be observed
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Figure 2.12: Backscattering coefficient as a function of soil moisture content for three surface
roughnesses (Ulaby et al., 1986).

in the idealized curve is a rather high backscattering coefficient in spring, which decreases with
plant growth until heading/flowering, afterwards an increase until senescence occurs, due to
the effects just explained. The heading/flowering date is marked trough a reflection minimum
-absorption maximum- and can be easily extracted by multi-temporal analysis of VV polarized
data.

The heading/flowering date is an important stage for crop growth modelling, because after re-
productive growth begins, the number of kernels per plant is often calculated from plant weight
at flowering and kernel weight is calculated from time and temperature available for dry matter
distribution, respectively. Final yield is estimated as a product of plant number, kernel number,
and kernel size (Rickman & Klepper, 1991). Thus, it is an important calibration and validation
parameter for crop growth modelling.

2.2 Retrieval of vegetation features from earth
observation data

Remote sensing is a very powerful method for providing information about the vegetation in
various wavelength. In order to retrieve the desired information or to relate the canopy state
variable to the remote sensing information there are different kinds of models: deterministic,
semi-empirical or empirical (Atzberger, 2003; Guissard et al., 2005; Moulin et al., 1998).

The complex deterministic models are based on the inversion of radiative transfer models, con-
sidering plant canopy and the underlying soil. These models are efficient techniques for de-
scribing the expected signal in the different frequencies based on variable parameters, e.g., soil
properties, leaf structure or observation geometry. Well known models for multispectral and
hyperspectral data are the coupled SAIL (Scattering Arbitrary Inclined Leaves) (Verhoef, 1984)
and PROSPECT (model of leaf optical PROperties SPECTra) (Jacquemoud & Baret, 1990)
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Figure 2.13: Idealized backscatter curve (winter wheat) with the heading/flowering date
marked, modified after: Hamacher (2000).

models. Whereby, the SAIL model calculates the directional reflectance on the upper layer
of the canopy, using a function of structural and spectral properties of the vegetation canopy
and PROSPECT provides the reflectance and transmittance of fresh leaves over the whole solar
domain. Frequently used radiative transfer models for modelling the backscatter are the second-
order radiative transfer model (RT2) (Saich et al., 1995) and the first-order Michigan Microwave
Canopy Scattering Model (MIMICS) (Ulaby et al., 1990). Difference between both models is
that RT?2 also predicts double scattering contributions from the canopy. Problematic with these
complex models is that they not allow an analytical inversion, thus other inversion techniques
like look-up-tables (LUT), numerical inversion, neural networks or predictive equations have to
be used (Atzberger, 2003). Also problematic with the deterministic models is the large amount
of necessary input variables, making it hard to transfer the findings to regional analysis.

The semi-empirical models combine a physical model, whereby for the model inversion empir-
ical relationships are used. Probably the best known semi-empirical model is the approach by
Monteith (Monteith, 1977) for estimating biomass using remote sensing data. The assumption
hereby is, that healthy plants with sufficient water and nutrition supply have a netto photosyn-
thesis and thus biomass production proportional to the absorbed photosynthetic active radiation
(PAR). Other models are, e.g., the CLAIR model for multispectral data (Clevers, 1989) (section
2.2.2) and the Water Cloud Model for SAR data (Attema & Ulaby, 1978) (section 2.2.3) used
within the presented thesis.

Empirical models are based only on the statistical analysis of experimental data. Using ground
truth data, transfer functions between the desired biophysical parameter and the remote sensing
data are modelled. This method is rather simple, but has the disadvantage that the calibrated
transfer functions are hard to transfer to other regions or within time. Classically used rela-
tionships are, e.g., the linear relationship between the NDVI and LAI (Wiegand et al., 1992) or
the exponential and linear functions between backscatter and LAI (Brakke et al., 1981; Mattia
et al., 2003), which are also analysed within this study.
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2.2.1 Statistical regression considerations

For a better understanding of the derivation of biophysical parameters some statistical con-
siderations have to be introduced, for a detailed statistical introduction please refer to, e.g.,
Schoenwiese (1992).
Major purpose of regressions is to study the dependence of one set of variables to another. Thus,
in the remote sensing context to analyse the relationship between the received signal and, e.g.,
a biophysical parameter. In a simple linear regression the relationship is assumed to be of the
form:

EY/X=z)=a+fzr+e€ (2.5)

with Y the random variable to predict, X the random variable Y is predicted from, « and (3
coefficients, which are fixed but unknown and ¢ the error term. The specification is that Y is
the dependent variable, e.g., the biophysical parameter and X the independent variable, e.g.,
the vegetation index. It can be argued that the remote sensing signal received, is dependent
on vegetation status. This, in the remote sensing literature known "specification problem" is
taken into account. The other problem is that it assumes no error in measurement of vegetation
reflectance.

In multiple regressions the relationship between several independent (predictor) variables and a
dependent variable are analysed. E.g., the SAR backscattering coefficient is not only dependent
on the vegetation parameter, but also influenced by soil characteristics.

E(Y/X, = x,) = Bo + 11 + Bowa.. + Bpn + € (2.6)
The more general non-linear regression equation is:
EY/X =z) = k(z;0) (2.7)

where k is an arbitrary function, X is a random vector, x is a corresponding vector of fixed
values and @ is a vector of parameters.

For determining the values of the unknown coefficients the sum of the residuals (difference
between the predicted and observed values) are minimized. This method is knows as ordinary
least squares.

For assessing the strength of a relationship between random variables there are different corre-
lation coefficients. Probably the best known is the Pearson product-moment correlation coeffi-
cient R, defined as the sum of the products of the standard scores of the two measures divided

by the degrees of freedom:
- 2.8)
n—1
The coefficient ranges from -1 to 1, whereby values of 1 show a perfectly positive description
of the relationship. This coefficient is restricted to 2-dimensions linear relationships.
The coefficient of determination R? is another measure for assessing the proportion of variabil-

ity in a data set. Whereby, variability is defined as the sum of squares.

_SSw_,_ SSs
T 88, S5

with S'St as the total sum of squares, SSg the regression sum of squares and S'Sg the sum of
squared errors. The coefficient ranges from O to 1, with 1 indicating that the regression line
perfectly fits the data. The advantage of using R? is that it is also applicable for non-linear
relationships and for more than 2-dimensions.

R? (2.9)
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After calibrating a regression, thus analysing the relationship and defining the unknown coeffi-
cients, a validation is necessary. This validation has to be done on the basis of an independent
data set. Thus, normally one divides the total data set into a data stack for calibration and
one for the independent validation of the constructed model. If this is not possible, due to the
amount of samples the cross-validation or rotation estimation can be used. This is a practice of
partitioning a sample of data into subsets such that the analysis is initially performed on a single
subset, while the other subsets are retained for subsequent use in the validation process. The
used leave-one-out cross-validation method uses a single observation from the original sample
as the validation data and the remaining observations as the training data. This is repeated until
each sample is once used as the validation data.

The error estimation is computed as the mean average error and the root mean square error
(rmse). The mean average error is actually a weighted average of the absolute error from a
single cross-validation run.

The root mean square error (rmse) is a measure of the difference between values predicted by
a model and the actually observed values, the residuals. It is defined as the square root of the
mean square error (mse):

rmse(f) = \/mse(8) = \/E(((8) — 0)2) (2.10)

with @ as an estimator.

2.2.2 Biophysical parameter retrieval using multispectral data

Within the following section different possibilities of retrieving biophysical parameters from
multispectral remote sensing data are described. Starting with a rather easy approach using
empirical modelling to the more sophisticated semi-empirical model CLAIR. Biophysical pa-
rameters of interest are hereby the fresh and dry biomass of winter wheat, as well as the plant
water content and the leaf area index. These are all important parameters characterising the
plants vitality and the phenological stages.

2.2.2.1 Empirical modelling

Empirical models are based on the statistical analysis of the experiment data, e.g., ground truth
data and the remote sensing data. Whereby, the multispectral vegetation profile is often trans-
ferred into vegetation indices (VI), highlighting important vegetation characteristics and trying
to minimize the soil and atmosphere influence. They normally reduce the multi-band observa-
tion to a single numerical index, typical being a sum, difference, ratio or other linear combina-
tion from two or more wavelength intervals. Generally, there is the question, which VI should
be used, because each features advantages and disadvantages. In Baret & Guyot (1991) a cou-
ple of VIs and their performances were compared, which were NDVI (Normalized Difference
Vegetation Index) (Rouse et al., 1978), PVI (Perpendicular Vegetation Index) (Jackson, 1983)
and the SAVI (Soil Adjusted Vegetation Index) (Huete, 1988). The last two VIs consider the soil
signal and are appropriate for early growth stages with low vegetation coverage. For the middle
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growth stages (middle vegetation coverage) all VIs exhibit a similar behaviour. For dense veg-
etation coverage the NDVI performs best.

The NDVI is a simple numerical indicator and most commonly used in the remote sensing com-
munity for assessing healthy green vegetation, using the near infrared and visible wavelengths
(Rouse et al., 1978). Healthy green plants absorb solar radiation in the photosynthetically ac-
tive radiation (PAR) spectral region, which is their source of energy for the photosynthesis
process. On the other hand leaf cells scatter (e.g., reflect and transmit) solar radiation in the
near-infrared spectral region. The energy level per photon in that domain would result in over-
heating the plant and possibly damage the tissues when absorbed. Hence, healthy green plants
exhibit rather high NDVI values, while diseased vegetation or non-vegetated areas feature rather
low or even negative NDVI values (e.g., water).

Various studies have already assessed the relationship of VIs to different biophysical parame-
ters (e.g., crop biomass, chlorophyll content or leaf area index) (Ustin, 2004). Wiegand et al.
(1990) gave an overview over some regression analysis and measured coefficients of determi-
nation, rms errors and residuals for retrieving LAI using different vegetation indices. The R?
within their study all vary between 0.71 using a linear NDVI regression and 0.93, when using
the greenness vegetation index and a quadratic relationship. Thus, in general in all studies very
strong relationships were found.

But these studies also point out the disadvantage of using VIs, because they saturate at high LAI
values. Also causing problems when interpreting the VIs is the soil signal, which especially in
arid regions or during early phenological stages influences the remote sensing signal.

2.2.2.2 Semi-empirical modelling

Due to all these negative effects of the simple empirical modelling using a VI the simplified,
semi-empirical reflectance model CLAIR was designed (Clevers, 1988, 1989; Clevers et al.,
2002). In this model, first of all the Weighted Difference Vegetation Index (WDVI) is as-
certained. It is defined as a weighted difference between measured near-infrared and red re-
flectance, whereby a correction of the soil background influence is performed:

WDVI = NIR - (C x RED) (2.11)

With RED and NIR notating the spectral reflectance measured in the respective spectrum and C
as the slope of the soil line, or the ratio between NIR and RED reflectance of soil. Especially for
multi-temporal analysis a background (soil) correction has to be made, when ascertaining the
relation between reflectance and a biophysical parameter. During the phenological cycle first
the juvenescent plants have a low soil cover, later the green plants totally cover the soil until the
end of the growing season, when plants show signs of senescence and turn to yellow.

In a second step the relationship between the biophysical parameter and the WDVI is com-
pounded by:

(2.12)

1 WDVI
biophysical parameter = ——In <1 )
«

- WDVI,,

The parameters o and W DV [, have to be estimated empirically from training sets, but they
have a physical nature. It is a special case of the inverse of the Mischerlich function. In the
special situation the curve runs through the origin and thus only has two parameters (Clevers,
1988). In Clevers (1988) the model was proposed for the derivation of the LAI, but because
actually the LAI is also correlated with the parameters dry biomass, fresh biomass and plant
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water content it should be possible to use the model for these parameters as well.

2.2.3 Biophysical parameter estimation using SAR data

As for the multispectral data within this section first biophysical parameter retrieval using rather
simple empirical modelling approaches and afterwards using the semi-empirical Water Cloud
Model (WCM) will be described.

2.2.3.1 Empirical modelling

Several studies have already analysed the relationship between the backscatter and vegetation
parameters by using regression analysis (Amodeo et al., 1996; Brakke et al., 1981; Bouman
& van Kasteren, 1990). Non-linear regression analysis were used by Bouman & van Kasteren
(1990) analysing X-band SAR. They tried to estimate crop parameters by second order poly-
nomial or logarithmic equations and achieved coefficients of correlation (2) for wheat between
-0.48 (crop water content) and -0.84 (crop height). Amodeo et al. (1996) tried to monitor
vegetation features using multi-temporal and multi-frequency (P-, L- and C-band) data and a
regression analysis by adopting linear relationships. Their results showed that for wheat there
is almost no relationship at P-band (R?=0.18), a moderate one was noted at L-band (R?=0.66)
with a further improvement at C-band (R?=0.75). Mattia et al. (2004) analysed the relationship
between HH/V'V ratio and LAI by using a simple power law and achieved very good corre-
lations (122=0.81). But they also mention some problems, namely that often only a relative
small number of rather homogeneous fields is analysed. Thus, a generalization of the analysed
relationship over fields with different soil surfaces or planting densities is not possible. An-
other point is that the theoretical modelling is still lacking, thus the role of soil condition (soil
moisture and soil roughness) especially for variable incidence angles is not clear.

2.2.3.2 Semi-empirical modelling

Attema & Ulaby (1978) developed the Water Cloud Model (WCM) assuming that the mi-
crowave dielectric constant of dry vegetation is smaller than the dielectric constant of water,
and because a vegetation canopy is composed of more than 99% air by volume, that the canopy
can be modelled as a water cloud, whose droplets are held in place by the vegetation matter.
The droplets within the canopy cloud are randomly distributed. By integrating scattering and
attenuation cross-section contributions of /V droplets per unit volume over the signal pathlength
through the canopy, an expression was derived for the backscattering coefficient as a function
of: volumetric soil moisture, volumetric vegetation moisture and plant height:

0" = O[1 — exp(—Dwh/cosh)]cosd + A exp(Bm, — Dwh/cost)cost (2.13)

With ¢ denoting the backscattering coefficient in dB, A,B,C,D the model coefficients, w the
water content per unit volume [kg/ m?], 0 the incidence angle [°radian], m, the volumetric soil
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moisture content [kg/m?3] and h the plant height [m]. The four coefficients needed correspond to
different features: A and B to vegetation, whereby A corresponds to the albedo of the vegetation
and B is an attenuation factor. Coefficients C and D correspond to soil features, whereby C can
be considered as a calibration constant and D is the sensitivity of the signal to soil moisture.

For keeping the model rather simple, the following assumptions were made:

1. The cloud representing the vegetation consists of identical water particles, uniformly dis-
tributed throughout the space.

2. Only single scattering needs to be considered.

3. The only significant variables are cloud height and cloud density, which are assumed
proportional to the volumetric water content.

In a generalized form the model can be written for the whole canopy as:

0" = Oy + T 00 (2.14)
The SAR cross-section of the canopy o for an incidence angle is hereby expressed as the
incoherent sum of the contribution of the vegetation layer (ageg), the contribution of the soil
(02 .)) and the two-way attenuation through the vegetation (72). In their study Attema & Ulaby
(1978) analysed the relationship over a period of several months, incidence angles (0-70°) and
frequencies (8-18GHz) for HH and VV polarization and achieved correlation coefficients (R)
ranging from 0.7 to 0.99.
Prevot et al. (1993) introduced a simple parametrization of the angular effect of soil roughness
allowing to process multi-incidence angle data, which is especially of interest when working
with Envisat ASAR or even when analysing different ERS-2 tracks. Another positive aspect is,
that when the density of vegetation increases, volume scattering cannot be neglected any more
and it‘s angular effects are similar to those induced by an increasing soil roughness, which might
be confusing. Main aim of their approach was to keep the model simple, because one of the
advantages of the WCM is it’s easy handling and inversion for biophysical parameter retrieval.
Therefore they introduced the angular effect as followed: several theoretical or experimental
studies have shown that for frequencies greater than 4GHz, the sensitivity of D (02, = C' +
Dmg) (ms= soil moisture) can be assumed to be constant in a first approximation. The more
important dependence with the SAR configuration and the soil roughness leaves therefore the
parameter C. The variations of C with the incidence angle can be linearised representing an
averaged behaviour of the SAR cross-section in terms of roughness effects by:
o2 = CO(F,0) + Dm, (2.15)

with

C(F,0) = Ci(F) — 0Cy(F) (2.16)

with F denoting the SAR configuration. The parametrization now considers the effect of soil
moisture (dielectric properties) and the effect of roughness (geometry of the surface) as inde-
pendent. For the inversion of the model and vegetation water content estimation the vegetation
contribution is neglected and only the attenuation of the signal returned by the underlying soil
is considered, thus simplifying the term and by expressing it in dB units it leads to a linear
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function of the surface variables:

—2x B xw
0 _ ¢ 2.1
’ cost + C(0) + D x m, 2.17)

with now o expressed in dB, @ the incidence angle [°radian], the coefficients B,C,D, w, the
total canopy water content and m,, the soil moisture. Results achieved when using this model,
e.g., for LAI retrieval range between R? around 0.51 and 0.74 depending on the used SAR
configuration.

Graham & Harris (2002) mention a limiting factor of the model, it‘s reliance upon multiple
regression in parameter fitting. Each parameter has a physical meaning, which cannot easily be
explained using regression techniques.

However, due to the need of regional and operational use it is more appropriate to employ
easy to invert models with input parameters, which are easy to obtain without intensive ground
truth.

2.2.4 Synergetic derivation of biophysical parameters using
multi-sensoral remote sensing data

Since multispectral and microwave sensors respond to very different target characteristics, their
role in crop monitoring can be seen as complementary (Liu et al., 2006). Both data types
were already used successfully in previous studies for, e.g., classification, to monitor the crop
condition or for yield forecasts. Whereby, in particular the all-weather capability of SAR and
it‘s ability to fill time gaps in multispectral data was highlighted.

Brakke et al. (1981) analysed in their study data from a truck-mounted microwave SAR system
and ground based spectral reflectance measurements individually and later in a combined way
for extracting LAI and dry matter.

The combination was hereby achieved using a multiple linear regression with the scattering
coefficient, canopy temperature and spectral reflectance ratios. They achieved the best results,
when they correlated the LAI with the scattering coefficient and the normalized difference or
the green/red ratio. For dry matter best results were achieved when using two frequencies and
the green/red ratio. But on the other hand they also point out that their limited data set demands
further research in that area.

In the study from Liu et al. (2006) it was tried to improve winter wheat yield estimation by using
an Envisat ASAR image and a Landsat TM image. First they analysed by bivariate correlation
the relationship to the single source data and then combined them in a multi-sensoral approach
and thus improved their prediction accuracy.

Another option of a multi-sensoral approach was shown by Prévot et al. (2003) and Clevers
& Van Leeuwen (1996) combining multispectral and SAR data in crop growth models. In the
first study even though the simultaneous assimilation into a crop model was feasible the SAR
information did not improve the results obtained when only using multispectral data. The study
from Clevers & Van Leeuwen (1996) concluded, that when only a few multispectral data sets
are available additional SAR data were able to improve the yield estimation. What confirms
the main advantage of SAR lying in acquiring information on crop growth when other sensors
fail.
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2.3 Crop growth modelling

Crop growth modelling and final yield estimation of winter wheat represents another important
issue within this thesis. Especially the question of assimilating remotely sensed information
into an established model for improving the model performance is one major issue. In order to
understand the whole process, firstly general assumptions about the phenologcial development
of winter wheat will be made, then the used crop growth model CERES-Wheat will be intro-
duced. Finally, different possibilities of assimilating external information into the model will
be described with a main focus of the used re-initialization method.

2.3.1 Winter wheat and phenological development

The cereal addressed within this thesis is the common winter wheat (Triticum aestivum L.),
which is the second most important food grain of the northern and southern temperate zones.
In 2005 the world acreage of wheat was estimated roughly at 217 million hectare and a harvest
of around 630 million tons. Average harvest was around 2900kg/ha and in Germany around
7500kg/ha.

The large harvest divergences and the global extent of cultivation implies a large variation in
environmental and social settings. Which are e.g., sub-optimal agroecological conditions and
situations prone to environmental degradation due to mismanagement (Jongschaap, 2006). Crop
improvement and specific crop management have played an important role in agricultural re-
search since 1970 for optimization of crop production. Whereby, especially the use of dynamic
crop growth simulation modelling has played a substantial role.

In general the phenological development of winter wheat is dependent of the environmental con-
ditions, thus it is hard to make a generalization of a standardized crop growth cycle. In Geisler
(1970) the development of winter crops and the appropriate management practices are roughly
allocated to the corresponding months and development stages (Fig. 2.14), which match the
monitored growth cycles.

Generally, standard figures of sowing dates, seed rates [kg/ha] and target plant populations
[plants/m?] are applied (HGCA, 1998, 2000, 2002; McConnell, 1995). However, in practice
the following local features are generally used to determine seed rate: time of sowing, soil type
and seed bed quality and slug risk (HGCA, 2004). Drilling date is generally set by prevailing
weather conditions and availability of labour. Weed control is required to keep weed popu-
lations at an acceptable level, usually described as the threshold value [plants/m?]. However,
the costs of applying the herbicide has to be below the value of yield lost, if the herbicide had
not been applied. The agronomist must therefore plan for or identify the type of weed, e.g.,
black-grass, wild oats and cleavers, it’s density and it’s size (growth stage) in order to select the
required type and dose of herbicide to use. Additionally, the agronomist must select a herbi-
cide at a sufficient dose to control the weeds within the most infested patches, due to their non
uniform distribution within the fields. Crop protection ensures an acceptable yield by protect-
ing the crops against pests, diseases and lodging. For winter cereals variety selection and seed
dressing are normally all the requirements to protect the crops over the winter period. Under
certain weather conditions it might be necessary to spray for aphids preventing, e.g., gout fly
and fruit fly especially for early sown crops. During spring winter cereal crops require fungicide
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Figure 2.14: Winter wheat development and management practices, modified after: Geisler
(1970).

applications, depending on feed or milling varieties. The type and dose rate of fungicide selec-
tion is based on factors like drilling date, crop variety, growth stage, canopy characteristics and
disease pressure. Also spring growth regulators normally have to be applied to prevent crops
from lodging. Whereby, large canopies and high plant population increase the risk of lodging.
Crop nutrition supply ensures that crops have the sufficient nutrients (nitrogen, phosphorus,
potassium, sulphur and other trace elements) to maintain healthy crop growth. Most significant
and also difficult to measure is nitrogen. Thus, a soil index is used, based on the previous crop
grown and soil type. Total amount of nitrogen is dependent on crop variety, soil type, soil ni-
trogen index and expected yield. Nitrogen is usually applied in three splits for wheat during
spring. The amount of phosphorus and potassium a cereal crop requires, depends on the level
of reserves in the soil, expected yield and whether the straw is removed (HGCA, 2004).

For identifying the different phenological development stages the BBCH-scale (Biologische
Bundesanstalt, Bundessortenamt and CHemical industry) is used. It uses a decimal code system,
which is divided into principal and secondary growth stages (Lancashire et al., 1991; Witzen-
berger et al., 41). Fig. 2.15 shows the development of winter wheat during a crop cycle and
corresponding ground impressions by photographs.
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Figure 2.15: Phenological growth stages and BBCH-identification keys for cereals (schematic
and photographs).
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2.3.2 Introduction to different crop growth modelling approaches

Simulation models are developed to organize and quantitatively describe the processes and in-
teractions in a systematic way, whereby all assumptions, inputs and results are quantified and
thus can be made a subject of discussion. The basis therefore is the mathematical description
of system processes linked through physical, physiological and biochemical laws. Especially,
the increase in process knowledge and improvements in computer technology have led to the
development of complex system models , e.g., crops-soil systems (Jongschaap, 2006).

Over recent years there has been a considerable progress in regional spatially explicit mod-
els of bio-geophysical processes of the land surface. The science of agroecosystem modelling
started in 1960s with the later called School of De Wit (Wit, 1965). They developed increasingly
complex dynamic simulation models, e.g., ELCROS (ELementary CROp Simulator model),
BACROS (BAsic Crop growth Simulator model), or the simple universal model SUCROS (Sim-
ple and Universal CROp Simulator (model)), still used these days (Bouman, 1992). Since that
time, many agroecosystem models have been developed with increasing complexity and mul-
tidisciplinary appendages. They model numerous vegetation types, different scales and a wide
variety of applications.

Crop models can be grouped in various ways, whereby it is hard to categorize them due to,
e.g., mixed forms. Normally one can divide them into empirical and functional (mechanistic)
models. Empirical models emulate growth patterns on the basis of statistical principles from
observed values. Hereby, they try to reproduce growth patterns under similar conditions.

The functional models, which are mainly of interest in this study, describe the physical, chem-
ical and physiological process of the plant development. Therefore, they integrate measur-
able input parameters in defined time intervals and the development is mathematically defined
(Jongschaap, 2006).

The current agroecosystem models, the mechanistic Soil-Vegetation-Atmosphere (SVAT) mod-
els, incorporate not only biological and physiological knowledge of plants, but also try to inte-
grate interactions between plants and their environment using functions quantitatively describ-
ing transfers over crop and soil boundaries and over crop internal boundary layers. In these
models the vegetation state variables, e.g., development phase, dry mass, LAI are linked to
driving variables, e.g., weather condition, nutrient availability and management variables. Out-
put of theses models is usually final yield or accumulated biomass. They use computational
iterations representing the time steps of the model, whereby at each iteration the vegetation
state variables are updated based on input driving variables and values of state variables at the
previous time step (Dorigo et al., 2007).

2.3.3 CERES-Wheat model

The DSSAT-software combines complex weather, management, soil, soil-plant-atmosphere,
plant templates and plant models, as the CERES-Wheat (Crop Environment Resource Synthesis)
model. In the next section therefore first a brief overview of the whole software system and the
implemented models will be given, followed by a detailed description of the used plant module
CERES-Wheat and an overview of some application examples.
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2.3.3.1 Decision Support System for Agrotechnology Transfer (DSSAT)

The Decision Support System for Agrotechnology 7ransfer (DSSAT) was developed by an in-
ternational network of scientists, cooperating in the International Benchmark Sites Network for
Agrotechnology Transfer project, for facilitating the application of crop models in a systematic
approach to agronomic research (Jones et al., 2003). Knowledge about soil, climate, crops, and
management for making better decisions about, e.g., transferring production technology from
one location to another where soils and climate are different, are considered. The computer
system aims at understanding how the environmental system and it‘s components function, for
predicting the behaviour of the environmental system for given conditions. After modelling cor-
rectly the real world situation, experiments with, e.g., variable management or control systems
can be performed. It was developed to operationalise the approach supporting decision-makers
by reducing the time and human resources required for analysing complex alternative decisions
and as a framework for researchers for integrating new knowledge and apply it to research
questions. The main aims of the DSSAT are (Jones et al., 2003):

1. simulation of monocrop production systems considering weather, genetics, soil water, soil
carbon and nitrogen, and management in single or multiple seasons and in crop rotations
at any location

2. providing a platform for easy incorporating modules for other abiotic and biotic factors,
e.g., soil phosphorus and plant diseases

3. providing a platform allowing easily to compare alternative modules for specific compo-
nents to facilitate model improvement, evolution and documentation

4. providing a capability for easily introducing cropping system models into additional ap-
plication programs

Fig. 2.16 shows the structure of the DSSAT software with a main driver (land unit model),
and modules for the primary components (weather, soil, plant, soil-plant-atmosphere interface,
management) making up a land unit in a cropping system (Jones et al., 2001). Collectively
the primary components describe the changes in soil and plants occurring on a single land unit
in response to weather and management. Each independent module has six operational steps,
whereby the main program controls them. There are different types of application possible
depending on the operational mode:

1. basic mode, providing interactive sensitivity analysis and comparison of simulated vs.
observed field data

2. multi-year mode, allowing to evaluate the effects of uncertain future weather conditions
on decisions made when all soil initial conditions are known

3. crop rotation mode, simulates crop rotation over a number of years

4. spatial-based mode, simulating crops over space (e.g., for precision agriculture or land
use management)
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2 THEORY AND RESPECTIVE STATUS OF SCIENCE

whereby, especially the last mode is of interest within the study. A more detailed description of
the single components, as well as further references are given by Jones et al. (2003). In the next
section only the plant module will be highlighted further.

2.3.3.2 Plant module: CERES-Wheat

In the plant module several different crop models are implemented, e.g., for maize, sorghum,
barley, rice, potato, as well as the used CERES-Wheat model (Otter-Nacke et al., 1986). A
general overview of the model and it’s inputs and outputs is given in Fig. 2.17.

For modelling, the plant life cycle is divided into 7 phenological stages (germination, emer-
gence, terminal spikelet, end ear growth, beginning grain fill, maturity, harvest) (Jones et al.,
2003). The rate of development is controlled by thermal time, or growing degree-days (GDD)
computed based on daily maximum and minimum temperatures. The GDD govern the progress
from one growth stage to another, which is influenced by cultivar-specific (genetic) coefficients
listed in Tab. 2.3.

Daily plant growth is computed by converting daily intercepted photosynthetically active ra-
diation into plant dry matter using a crop-specific radiation use efficiency parameter. Light
interception is computed as a function of LAI, plant population, and row spacing. Daily growth
may also be limited by water, nitrogen, temperature stress and it is sensitive to atmospheric
C' O, concentration. The above ground biomass has priority for carbohydrate, at the end of each
day not used carbohydrate is allocated to the roots (Jones et al., 2003). Whereby, the roots must
receive a specified stage-dependent minimum of daily carbohydrate for growth. The leaf area
is converted into new leaf weight using empirical functions. During flowering kernel numbers
per plant are calculated, based on the cultivar’s genetic potential, canopy weight, average rate
of carbohydrate accumulation and stress factors, whereby the potential kernel number is user-
defined. With the beginning of the grain filling period, the daily growth rate is calculated based
on the user-defined potential kernel growth rate, temperature influences and assimilation avail-
ability of, e.g., carbon. The actual kernel growth is either until maturity or when the plant runs
out of resources (Jones et al., 2003).

Table 2.3: Cultivar-specific coefficients (genetic) of the DSSAT CERES-Wheat model

| coefficient | description | unit
P1D Photoperiod sensitivity coefficient % reduction/h near threshold
P1V Vernalization sensitivity coefficient %/d of unfulfilled vernalization
P5 Thermal time from the onset of
linear fill to maturity °Cd
Gl Kernel number per unit stem +
spike weight at anthesis #/g
G2 Potential kernel growth rate mg/(kernel d)
G3 Tiller death coefficient. Standard stem +
spike weight when elongation ceases g
PHINT Thermal time between the
appearance of leaf tips °Cd
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Figure 2.17: Overview of the CERES-Wheat model

In general for actually running the DSSAT models a minimum data set is needed for model op-
eration. It encompasses data on the site where the model is to be operated, on the daily weather
during the growing cycle, on the characteristics of the soil at the start of the growing cycle or
crop sequence, and on the management of the crop, e.g., seeding rate, fertilizer applications,
irrigations. Required weather data encompass daily records of total solar radiation, maximum
and minimum air temperature and rainfall. If not all required weather data are available sur-
rogate values are calculated by the use of climate statistics. Additionally, soil parameters for
computing surface run off, evapotranspiration from the soil surface, and drainage are essential.
Model evaluation requires the comparison of model outputs with real data. Whereby, these data
should be an independent data set. Statements of adequacy of the model prediction include
calculation of standard errors, root mean square error, and slope and intercept of regression
of observed vs. predicted variables. For the model evaluation different data sets can be used,
e.g., date of emergence, flowering, maturity, temporal LAI or canopy dry weight profile, canopy
height or yield (Jones et al., 2003). The model outputs are a summary containing an overview of
the main development events, water and nitrogen variables, yield and yield components. Also
a growth output is produced with a summary of the growth balance variables (e.g., LAI, dry
matter) over time. Further outputs are a water output, with the soil and plant water variables
over time, nitrogen and carbon outputs, containing an overview of the soil and plant nitrogen
and carbon variables over time, as well as a pest output, with the pest variables as a function of
time.
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Generally there are various types of applications of the DSSAT crop models for all countries
(e.g., Asia, Europa, North America, Africa) and different types of application, e.g., crop man-
agement, fertilizer management, irrigation management, tillage management, variety evalua-
tion, precision farming, environmental pollution, climate change and yield forecasting (Jones
et al., 2003). The applications have been conducted by agricultural researchers using the model
with field agronomic research and socioeconomic information to answer complex questions
about production, economics, and the environment.

A main aspect of many studies was a consideration of weather influences on the performance
of crops, interacting in complex ways with soil and management. Researchers have applied the
model for studying uncertainty in crop production associated with weather variability and the
associated economic risks that farmers face under such climate variability. Rosenzweig et al.
(1995) analysed the impacts of climate change on agriculture. Therefore, they first evaluated
model performance using data from current cropping systems and then used the models to as-
sess the potential impacts of climate change on their cropping systems using different climate
scenarios.

In Patel & Shekh (2005) the sensitivity of CERES-Wheat to weather and non-weather param-
eters was analysed. The results indicated that the model has the potential for assessing impact
of climate change on the wheat production, as well as to management strategies, e.g., increased
plant population density.

Another application issue is to use the models for advising farmers. Bannayan et al. (2003) have
used the model successfully for yield forecasting within the growing season and showed that
the model can aid in pre-season and within-season management decisions for cultural practices,
such as fertilizer and irrigation applications and pest and disease management.

Another issue is the transferability of the model to other regions. Mavromatis et al. (2002)
demonstrated the value of using routinely collected data from yield trials for estimating cultivar
(genetic) characteristics and for evaluation for soybean. They used yield trial data from North
America to show the robustness of model predictions across regions. The average simulated
yields were within 2.5% of mean observed yields at each evaluated location.

Also precision farming has been an issue, for which the model can be integrated into a Geo-
graphic Information System (GIS) for diagnosing causes of yield variability and for prescribing
variable management.

Braga (2000) evaluated the ability of the CERES-Maize for accurately describing the spatial
variability on maize yields over two years for using it in precision agriculture research and
decision support. He precisely measured soil water holding parameters, including initial condi-
tions at planting and compared the simulated vs. observed maize yield. His study showed that
the model reproduced observed grain yields for these conditions, when accurate soil, weather
and cultivar (genetic) information were available.

2.3.4 Remote sensing data assimilation

Timely and accurate information on crop and soil status are essential information for the op-
timization of management decisions for crop production. Satellite remote sensing can supply
information on plant status for large regions with high temporal resolution and can provide
essential information for decision support. It allows accounting for spatial and temporal varia-
tions of environmental conditions, influencing crop growth and development, without extensive
ground surveys. Therefore, combined approaches integrating remote sensing and dynamic crop
growth models for regional yield prediction have been developed in several studies.
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In Bouman (1992) the Cloud equations for SAR backscattering and an optical canopy radiation
model were linked to the crop growth model SUCROS for sugar beet. The combined model
was initialized and re-parametrized in order to fit simulated X-band SAR backscattering and/or
multispectral reflectance values, to measured values. The simulated canopy biomass was com-
pared with simulated canopy biomass using SUCROS with standard inputs and to ground truth
information. The seasonal-average error was smaller using remote sensing information, than
with SUCROS using standard input. The SAR backscattering data adjusted SURCOS only dur-
ing early crop growth (exponential growth), whereas multispectral data still adjusted SUCROS
until late in the growing season.

In Dente et al. (2004) the information retrieved from a multi-temporal series of C-band HH/VV
backscatter ratios were assimilated into the CERES-Wheat crop model. A sensitivity analysis
showed that inaccurate knowledge of some model inputs, concerning soil properties and crop
management, can lead to erroneous predictions. When adopting a re-initialization assimilation
strategy, significant improvements in the model estimations were obtained.

The primary objective in Doraiswamy et al. (2003) was the evaluation of integrating parame-
ters retrieved from satellite data in a crop model to simulate spring wheat yields at sub-county
and county levels. The input parameters extracted from remote sensing data provided spatial
integrity, as well as a real-time calibration of model simulated parameters during the growing
season. Ensuring that the modelled and observed conditions are in agreement.

In Clevers & Van Leeuwen (1996) multispectral and microwave remote sensing data were used
in combination for crop growth monitoring. Whereby, especially the synergistic effect of using
both data types for estimating LAI was analysed by studying different data acquisition scenar-
i0s. Models were then inverted to obtain LAI estimates during the growing season for calibrat-
ing the crop growth model to actual growing conditions. The findings were that simultaneous
observations did not improve estimates of LAI over multispectral data alone. Thus, only when
few multispectral recording dates are available SAR recordings give a slight improvement of
the results of crop monitoring and yield estimation compared with the multispectral data alone.
In the absence of multispectral data, SAR data yielded a significant improvement in yield es-
timation compared with the case of no remotely observed information. Confirming the main
advantage of SAR lying in acquiring information on crop growth when other techniques fail.
Prevot et al. (1993) coupled the STICS crop model for wheat with radiative transfer (RT) mod-
els in the solar and microwave domain. Permitting the simulation of the temporal variation
of remotely-sensed data over wheat canopies. They recalibrated some of the STICS param-
eter constraining the evolution of the simulated canopy variables. Also a sensitivity analysis
of the coupled STICS+RT model was carried out selecting the parameters of STICS with the
largest influence on remotely-sensed observables and on some canopy variables (dry biomass
and LAI). The sensitivity analysis pointed out the parameters, which should be recalibrated in
the assimilation process to adequately simulate the time course of the remotely-sensed data. In a
second step they also compared the benefits of assimilating multispectral data alone, microwave
data alone and both data together into STICS+RT. However, the introduction of microwave data
did not improve the accuracy of the simulated values, thus, simultaneous assimilation is only of
great interest when cloud cover limits the number of available multispectral images.
Jongschaap & Schouten (2005) used multispectral remote sensing data to estimate winter wheat
areas in the South-east of France. Microwave data were then further used to estimate regional
wheat heading/flowering dates for calibrating a wheat growth simulation model calculating
wheat yields, subsequently estimating regional wheat production. The results demonstrated
that findings from point-based simulation models can be applied at spatially higher levels with
the aid of remote sensing data.
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In Dente et al. (2007) leaf area index retrieved from ENVISAT ASAR and MERIS data were as-
similated also into the CERES-Wheat model. Whereby, the objective was to improve the wheat
yield predictions at catchment scale. The assimilation method consisted in re-initializating the
model with optimal input parameters, allowing a better temporal agreement between the LAI
simulated by the model and the LAI estimated by the remote sensing data. The study shows that
the lack of MERIS data during critical phenological stages can be overcome by integrating SAR
data. The combined use of all LAI maps retrieved from both data types leads to an error equal
to the case of only using MERIS data, without time gaps during critical phenological stages.

The term assimilation, which will be used here, originally comes from the Latin word assim-
ilatio: alike making. 1t is used mainly in the context of metabolism physiology, describing
the process of producing body own substances from body extraneous substances by energy use
(Leser, 1998). But it is also used in other disciplines like ethnology, describing the process of
the adjustment of people into another ethnic group, taking over their behaviour and system of
values. Or in the context of geology, describing the process of fusion from foreign stones with
magma. In the framework of this work the objective of data assimilation is to characterize the
state of an agroecosystem by combining information from various sources such as mathemati-
cal models, remote sensing data or time of the variables of interest. Within a data assimilation
framework it is necessary to distinguish (1) driving variables forcing the system (e.g., net pri-
mary production, evapotranspiration), (2) state variables providing a complete description of
system behaviour (e.g., LAI, dry matter), (3) model parameters characterizing the relationship
between driving variables and state variables (e.g., development or growth parameters), and (4)
output variables, which are observable functions of the state variables (e.g., final yield) (Dorigo
et al., 2007). The coupling between a crop model and satellite data can be achieved by the use
of different methods (Bach & Mauser, 2003; Delecolle et al., 1992; Dorigo et al., 2007; Maas,
1988a; Moulin et al., 1998).

By the direct use of a driving variable, which is estimated from remote sensing information
in the model, one assumes that accurate remote sensing information is available at adequate
time steps, e.g., daily or weekly. The model does not determine values of that variable. Due to
cloud coverage and the repetition rate of the satellites this is rarely the case. To overcome the
problem of this forcing method, gaps may be filled by some interpolation procedure, usually by
fitting an empirical curve of time evolution of the state variable to the remote sensing data. The
most popular approach of this method is the already mentioned efficiency equation of Monteith
(1977). He tried to overcome the problem of remote sensing data availability by updating a
state variable, e.g., LAl derived from remote sensing data to obtain a simulation in agreement
with the variable derived from the observations. The remotely sensed observations are consid-
ered as an absolute reference for the model simulation. This assumes that the formally adequate
model may be inaccurately calibrated. Studies, e.g., by Clevers & Van Leeuwen (1996) and
Maas (1988b) show that the estimation of the biomass time profile and final yield are improved
as compared to results using the forcing method.

The re-initialization of the model, e.g., the adjustment of an initial condition defined in the
management input for obtaining a simulation in agreement with the remotely sensed observa-
tions is used in this study. Hereby, e.g., initial conditions as sowing date or wilting point are
adjusted until the error between the temporal remote sensing series and the model prediction
is minimized. Fig. 2.18 illustrates the general proceeding using this method for re-tuning an
initial condition.
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Figure 2.18: Remote sensing data assimilation by re-tuning the initial conditions, modified af-
ter: Delecolle et al. (1992).

In Fig. 2.19 the exact interaction between the remotely sensed informations and the CERES-
Wheat model is displayed. By comparing the modelled variables with the observed information,
derived from satellite data the input parameter management is retuned. In order to identify the
model input parameter mainly affecting the outputs a sensitivity analysis has to be carried out
taking into account management and e.g. soil characteristics. Afterwards the simulation is
repeated and the temporal profiles and the statistical parameters , e.g., standard deviation, mean
are compared again.

The merits and demerits of data assimilation strategies are that the observed state variables
derived trough remote sensing at regional scale also might contain some observation errors
(Bastiaanssen, 1998). In the case of the forcing method, the model rejects own information,
and follows the observed state variables, including the observation errors. Thus, the error in the
remotely sensed state variables is propagated into the model. The re-initialization and updating
methods have more flexibility in the assimilation of remotely sensed state variables and their
associated errors into the model. As the physical description of the underlying process is an
acceptable representation of the natural system, the re-initialization method is expected to give
more representative input parameters and improve model predictions. This only applies if there
were sufficient observations, and the observation error is small. A disadvantages of this method
is the large amount of computing time, due to the optimization procedure. Adopting the updat-
ing method requires only one run of the model, thus significantly reducing the computing time.
However, the drawback of this approach is the error propagation of the measured variables into
the model state variables of the system. Moreover, for the updating method it is necessary to
adjust model state variables during the model run, which often intervenes deeply into the model
structure and processing loops.
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3 DATA

In the following chapter firstly all the necessary ground truth data will be described and the
research area. The sampling design will be exemplified and all necessary additional processing
steps and considerations. In a next section remote sensing sensors used within the study will be
described. Whereby, also the respective preprocessing steps of the different used remote sensing
data will be summarized. A flowchart (Fig. 3.14) gives a rough overview of the individual
processing steps of the multispectral and SAR data.

3.1 Ground truth

3.1.1 Region Meckenheim and the research farm Klein-Altendorf

The research area, a region near the cities of Bonn and Cologne in North Rhine-Westphalia
(Germany) strechtes from the Koln-Aachener bay on the Mittelterrasse of the river Rhine, 62m
asL, to the Rhine-Sieg area close to the town Meckenheim, 175m asL (Fig. 3.1). The climate is
maritime with mild summers and winters. Average yearly temperature is 9.2°C, average rainfall
600mm with 1534 sun hours per year and a vegetation period of 165-170 days starting from
mid March until beginning of December. General information about the soil characteristics
in the region were given by the geological survey North Rhine Westphalia (Dworschak et al.,
2001). They divided the soils by soil type, soil horizon, ground water and stagnant water. More
detail about the soils of the research farm were provided by Lehmann & Pitzold (1996), they
also analysed, e.g., pH, organic content or the particle diameter. Main soils are Luvisols (FAO
system) from loess within the whole research region. Main farming crops are root crops, winter
wheat, winter barley, rape and arable crops.

The research farm Klein-Altendorf (Fig. 3.1, longitude: 6°59; latitude: 50°37), where the
ground truth campaigns were carried out, belongs to the University of Bonn and is located in
Klein-Altendorf close to Meckenheim. It‘s topography is relatively flat with an inclination of
0.5-1°. The groundwater level lies at 20m. The monitored field sizes range from 6.9 up to 8.5ha.

3.1.2 Field experiments 2005 and 2006

Within the years 2005 and 2006 two and respectively four winter wheat fields were monitored
in weekly intervals starting in April (stem elongation stage) until harvest at the beginning of
August (Fig. 3.1). The fields were treated normally in respect to, e.g., applications, seeding and
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Figure 3.1: North Rhine Westphalia (NRW) in Germany with the research region and research
farm Klein-Altendorf.
(Source: Heinzel and NRWPro Research project, ZFL)
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harvest. The collected ground data included field properties (i.e. row spacing, row direction),
wheat phenological stage, plant population density, wheat biomass, including water content,
fresh and dry weight of winter wheat separated into stems, leaves and ears, canopy structure
(e.g., height, leave and ear geometry), canopy coverage and profile, leaf area index (LAI), volu-
metric soil moisture and soil texture. The field measurements were divided into non-destructive
variables (i.e. height) and destructive variables (e.g., biomass) each with separate sampling
points or areas.

In general the measurement points were chosen considering the properties of the respective field
(e.g., field size and soil properties), the resolution of the used remote sensing data and statisti-
cal considerations. Because of the low resolution from, e.g., Landsat 5 TM or ERS-2 and the
speckle problem of the SAR images, the sampling results for each field were averaged. The
amount of sampling points ranges from three to eight destructive and non-destructive measure-
ments. They were all located on the boundaries of the fields, being far enough from the borders
to be undisturbed, but also leaving large undisturbed areas in the middle of the fields (Fig. 3.2).

Legend

© non-destructive sampling|
destructive sampling

Figure 3.2: Sampling design exemplarily for winter wheat field 1 (2005) with a false colour
QuickBird imagery (04/22/2005) as background.

Destructive sampling

Fig. 3.3 illustrates the biomass sampling design exemplarily for winter wheat field 1 (2005).
Destructive biomass sampling plots for each date were 4.5m x 5m, whereby the biomass cut-
ting was done in the first part (1.5m x 2m) of each plot. The leftover remainder area to the
next sampling area guaranteed that previous sampling did not influence the new sampling on
the next date. The cutting volume for each sample cut was three examples from different plant
rows over a length of 0.5m, which ensured getting representative samples. This was done twice
for each cutting area in order to get a representative average over the whole field. The numbers
(1-16) in the sampling plots indicate the different dates of the ground truth campaigns.

Samples were separated into stems, leaves and ears, depending on the phenological stage, and
then weighed to obtain the fresh biomass. Plant water content (PWC) and dry biomass (DM)
were also collected separately for each plant component by drying the samples in an oven at
105°C for 24 to 48h, depending on the phenological stage. This was done due to the fact that the
ears need longer for drying when they are in the corn filling phase then just before harvest. The
values of the measured biophysical parameters were all calculated into kg/m?, due to compara-
bility reasons and retrieval from the remote sensing data. For the later assimilation process into
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Figure 3.3: Layout of destructive biomass sampling, exemplarily for winter wheat field 1
(2005).

the CERES-Wheat model, they were converted into kg/ha, whereby one ha equals 10,000m2.
Fig. 3.4 shows the total fresh and dry biomass development in kg/m? averaged over all fields
monitored within that specific year. The generalized growth curves of the biomass development
from the two years studied are rather similar. While the fresh biomass curves differ a little from
each other, the dry biomass curves run nearly parallel to each other. Only end of May and end of
June the 2006 dry matter curve shows a slight decrease, probably due to measurement errors in
the laboratory while drying, because this trend cannot be clearly observed in the fresh biomass
curves. In order to get an impression of the homogeneity of the monitored fields and to ensure
that the averaged field measurements represent the field condition correctly, a statistical analy-
sis of the individual measurements within each field was done. Therefore, arithmetic average,
standard deviation, and the percental standard deviation of the single field measurements were
analysed. Tab 3.1 illustrates exemplarily the results of the destructive sampling in 2005. By the
interpretation of the percental standard deviation of each field it becomes clear that the fields
were rather homogeneous, only for one measurement date it exceeded 10%. For the 2006 data
the results were comparable.

TOTAL FRESH (FM) AND DRY BIOMASS (DM)[kg/m?]

7,0

FM and DM [kg/m?]

B T T
April May June July August
""TM 2005 *® TM 2006 & FM 2005 =*=FM 2006 ‘

Figure 3.4: Fresh and dry biomass curves [kg/m?], averaged over all fields.
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Table 3.1: Statistics of the destructive sampling 2005, exemplarily for dry biomass [kg/m?].
With the arithmetic average [kg/m?], standard deviation, percental standard deviation
and variance for field 1 and field 2 of the field campaign 2005.

field 1 field 2
date a S spercent a S spercent
04/11/05 | 0.09 | 0.02 6.3 0.18 | 0.03 7.5
04/18/05 | 0.14 | 0.02 4.0 0.23 | 0.04 9.1
04/25/05 | 0.23 | 0.04 5.8 0.36 | 0.08 11.3
05/02/05 | 0.35 | 0.02 2.1 0.47 | 0.05 5.1
05/09/05 | 0.49 | 0.09 6.0 0.61 | 0.05 4.3
05/17/05 | 0.56 | 0.09 6.0 0.75 0.1 6.9
05/23/05 | 0.72 | 0.06 2.8 0.9 0.14 7.46
05/30/05 1.0 0.11 3.7 1.11 | 0.17 7.87
06/06/05 | 1.08 | 0.15 4.9 1.16 | 0.12 5.29
06/13/05 | 1.27 | 0.15 4.2 1.38 | 0.09 3.38
06/20/05 | 1.47 | 0.19 4.6 1.56 | 0.22 7.09
06/27/05 | 1.48 | 0.19 4.7 1.99 |0.12 3.00
07/04/05 | 2.01 0.4 7.1 1.96 | 0.25 6.42
07/11/05 | 1.97 0.2 3.7 2.23 | 0.35 7.83
07/18/05 | 1.89 | 0.23 4.3 1.94 | 0.18 4.84
07/25/05 | 1.72 0.2 4.2 1.8 0.39 10.91
08/01/05 | 1.59 | 0.16 3.6 1.96 0.2 5.05

Non-destructive sampling

Tab. 3.2 displays all non-destructive parameters divided into parameters measured in weekly
intervals and constant parameters.

Constant parameters

Information about the exact seed dates, species, field sizes, previous crops were given by the
local farmer Mr. Huober, who manages the research farm (see Tab. 3.3). Row direction and
spacing were recorded once each vegetation period for the separate fields. The plant population
density (ppd) [plants/m?] was assessed during an early vegetation stage, when the different
plants could still be distinguished from each other. Counts were done 4 times on each field for
different rows over a length of Im. Harvesting was between July to August by the local farmer.
The actual grain yield was recorded by an on-board combine harvester, whereby measurements
were taken every 3-5m, depending on the actual speed of the tractor. These point measurements
were then interpolated using an ordinary kriging method, in order to produce actual final yield
maps. Fig. 3.5 displays these grain yield maps for the different fields monitored in the years
2005 and 2006, transferred into kg/ha for comparability reasons. The coding of the fields stands
for: WW: winter wheat, numbers from 1-4 the respective monitored fields and -05 indicating
the studied year. For example: WW1-05 codes the winter wheat field 1 monitored in 2005.
Regions with very low grain yield (red) could be due to headland, especially at the boarders of
the fields, or to animal damage and differences in the soil properties, e.g., because of old roads
or old construction sides. Due to the resolution of the remote sensing sensors grain yield was
averaged for each field.
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Table 3.2: Non-destructive parameters measured

constant parameters weekly measured parameters
seed date phenological stage
row direction and spacing plant height
plant population density | plant geometry (leave and ear)
harvest canopy coverage
soil parameters leaf area index (LAI)

vegetation profile
volumetric soil moisture
soil roughness
agricultural management

5608500

357500 358500

Figure 3.5: Grain yield [kg/ha] for the winter wheat fields monitored in 2005 and 2006.
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Table 3.3: Constant field parameters during the research years 2005 and 2006

= | g | T E
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1) ~" = ) Q <
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g 5 8 |2 |5 | & |28 > Z
o] o) Q o] > R >
3 2 2 |2 | 2|28 |%|8| 8 g
WW1-05 | 11/02/2004 | Dekan | 7.7 | 90 | 12.5 | 232 | s.b. | 7970 | 08/11/2005
WW2-05 | 10/16/2004 | Tommi | 6.9 | 90 | 12.5 | 190 | s.b. | 9850 | 08/10/2005
WW1-06 | 10/13/2005 | Tommi | 8.8 | 70 | 12.5 | 170 | w.r. | 7440 | 07/26/2006
WW?2-06 | 11/14/2005 | Tommi | 6.6 | 90 | 12.5 | 180 | s.b. | 7820 | 08/07/2006
WW3-06 | 10/07/2005 | Tommi | 8.9 | 160 | 12.5 | 160 | s.b. | 6980 | 07/25/2006
WW4-06 | 10/11/2005 | Dekan | 8.2 | 220 | 12.5 | 220 | s.b. | 8920 | 07/27/2006

s.b.=sugar beet; w.r.=winter rye

Weekly measured parameters
The sampling design for the non-destructive parameters is also displayed in Fig. 3.2, whereby
the dots indicate the single measurement points.

Phenological stage The phenological stages of each field were recorded over the whole mea-
surement campaigns and documented in the BBCH code (Lancashire et al., 1991). Fig. 3.6
illustrates the phenological development of two wheat fields in the years 2005 and 2006. What
becomes obvious is that the development until June (heading - flowering) is nearly parallel.
After this stage the development for the crops in 2006 becomes a little faster, because of better
meteorological conditions. Another point of interest is that harvest was rather late in 2005, due
to a rainy period.

Plant height The plant height was measured five times at each of the non-destructive mea-
surement points and was then averaged over the whole field. Plant height was also a good
indicator for wind blow within the fields, which was a problem especially in 2005.

Plant geometry At each measurement point the geometry of three plants was measured ex-
emplarily. Geometry features were the leaf amount, leaf length, leaf width and the percentage of
healthy green leaf. The information was needed to model the leaf area index in a non destructive
way in order to compare it with the performances of the Plant Canopy Imager CI-110.

Canopy coverage Also measured was the canopy coverage in percentage. Which was es-
timated on field using an estimation frame (50 x 50cm with a 10 x 10cm raster). The other
estimation method was by taking a nadir digital picture at two points per sampling point. These
were then classified into the classes: shadow, vegetation and soil using a Maximum Likeli-
hood classification procedure. When comparing these two methods, it becomes obvious that
field estimations are mostly overestimated during rather early phenological stages and just be-
fore harvest (by 10-25%). During the other phenological stages differences between them only
added up to around 5% (Fig. 3.7).
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BBCH STAGES - PHENOLOGICAL DEVELOPMENT
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Figure 3.6: Phenological development of two exemplarily wheat fields (2005, 2006) coded in
the BBCH system.

stem elongation

Figure 3.7: Digital picture (05/09/2005) of the wheat coverage with the estimation frame and
the classification result of the image.

Field coverage estimation on field was 90% the classification estimated 85%.

Leaf area index The leaf area index (LAI) is one of the most important parameters for veg-
etation canopy characterization and is used by many scientists for different purposes. It was
defined by Watson (1947) as the total one-sided area of leaf tissue per unit ground surface
area. LAI is one state parameter of many crop growth models, whereby its values directly con-
tribute to the determination of the potential plant assimilated absorption (Guissard et al., 2005).
Therefore, it is derived from remotely sensed vegetation indices, which are cross-calibrated on
ground-based LAI estimates. Thus, it is important to determine it correctly in the ground truth
campaign, wherefore different destructive and non-destructive methods were tested during the
field campaigns. In Fig. 3.8 (A) the destructive measurement method is illustrated, for which
twice during the vegetation periods several cuts of 50 x 50cm were taken within each field.
The leafs and steams were then separated and fixed to a white background with a defined area
(50 x 50cm), whereby around three to four sheets were necessary for each sampling point.
Sheets were then photographed with a nadir viewing geometry. These images were afterwards
classified using a Maximum Likelihood classification algorithm into the classes background and
leaf. Over the relative area of the sheet covered by the class leaf and the size of the sheet the
actual LAI was then calculated. Problematic with this method is the destructive character and
the expenditure of time, especially when a high spatial and temporal resolution is necessary.

Also illustrated in Fig. 3.8 (B) is an image captured by the digital Plant Canopy Imager CI-110
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using a fish-eye lens (150). A special software (CI-110) calculates the solar beam transmission
coefficients, using a user-defined number of zenith and azimuthal divisions. For the calcula-
tion of the LAI, diffuse radiation transmission coefficients, mean foliage inclination angles and
plant canopy extinction coefficients the gap-fraction inversion procedure is used (Norman &
Campbell, 1989; Colombo et al., 2003):

In(P(0))cos(0)
G(0)

LAI = 3.1

with P(f) as the gap fraction and G(6) as the G-function independent of the leaf-angle dis-
tribution. Problematic is that actually the plant area index (PAI) is calculated, because, e.g.,
stems are still included. This indirect measurement method represents rather effective LAI for
agricultural crops, but no published results of cross-comparison are available yet (Bréda, 2003).
Measurements were taken twice per non-destructive sampling point and were then averaged
over the whole field.

In Fig. 3.8 (C) another non-destructive LAI estimation method used is displayed. It is based on
leaf dimensions such as length, width and a conversion factor (Hoyt & Bradfield, 1962; Tewolde

et al., 2005):
LAI = C x (M X ppd> 3.2)

whereby, C' equals the conversion coefficient, [ the leaf length, w the leaf width measured
at the broadest location and ppd the plant population density in plants per m?. The value of
the conversion factor was estimated from the field data (destructive LAI measurement) using
regression analysis.

Fig. 3.9 displays the results of the different LAl measurement methods and a modelled LAI
curve as reference for the year 2006. The modelling was done with the DSSAT software and
the appropriate weather data for 2006 (section 2.3). When comparing the different measurement
methods with the modelled curve, it becomes obvious that the measurement results are all lower
than the modelled curve and never exceed a LAI of 2.5, whereby winter wheat can have LAIs
around 5 or even higher. Especially, the leaf dimension method produces rather low LAISs,
but one should take hereby into account that for this index only green leafs were taken into
account, while with the CI-110 canopy Imager brown leafs and the stems are also regarded as
vital leaf tissue. The destructive method gives rather reasonable results, but measurements were
only done during vegetation stages with relatively low LAI. This also effects the leaf dimension
method, because the conversion coefficient is calibrated with these data. Thus, all these different
measurement methods contain different error sources. Further calibration of the retrieval models
for the remotely sensed data is done with the LAI captured by the leaf dimension method. For
these method the highest correlations to the remote sensing data were found and the data series
using this method is the densest.

Vegetation profile The vegetation profile was recorded in weekly intervals for the years 2005
and 2006 and is a good indicator for the roughness of the vegetation and the height differences
within the crops. For the assessment, digital pictures of a board, vertically in placed the crops,
were taken from a horizontal viewing point. The board was 100 x 80cm (height x width) with
a 10 x 10cm raster. In a first processing step digital pictures were rectified with the assistance
of the screened board to UTM WGS-84, zone 1, north projection with a pixel size of 0.1m.
In a second step the vegetation profiles (see picture Fig. 3.10) were digitized using a point
shape with 2cm sampling raster. The Y-coordinates of each point were than finally used for
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Figure 3.8: Different methods for LAI estimation.
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Figure 3.9: LAI measurements from the different techniques used.
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3.1 Ground truth

the calculation of the standard deviation of vegetation height (s) and the correlation length (/).
Both are presented in units of centimetres. For the series z;; 1=1,2,...N s is given for the discrete
one-dimensional case by:

1 N i 2
where,

1
T (3.4)

7

N
z =

=1
and N is the number of samples. The relationship between height above an arbitrary plane
of one point located at a point a and the height of another point a,, distant from a can be
statistically expressed in form of an autocorrelation coefficient. The variation in the value of
the autocorrelation coefficient as the distance between the two points increases is referred to as
the autocorrelation function. On the occasion this function can be mapped to a mathematical
function such as the exponential or Gaussian (normal) distributions. The correlation length (1) is
the displacement from the original point, a, when there exists no statistical relationship between
two points. The normalized autocorrelation function, r(a,,) in the discrete case is given by:

) = B B
N
Zifl Zz2

for a spatial displacement (a,) = (j — 1)Dx, where j is an integer. The surface correlation
length 1 is usually defined as the displacement (a,,) for which r(a,,) is equal to 1/e:

(3.5)

pla) =1/e (3.6)

Considering, e.g., an agricultural field and a flat asphalt surface. The randomly distributed, non-
uniform shape and size of the agricultural field should yield relatively short correlation lengths,
because of a quickly diminishing relationship between displacement from the origin and the
surface height measurement. Alternatively on a flat, asphalt surface with almost no variations
in surface height, even points with a large displacement from the origin will be highly correlated
with the height measurement of the origin point.

Both of these variables were then averaged for each field, Fig.3.11 displays the temporal de-
velopment exemplarily for winter wheat field 1 (2006) for the dates being later correlated with
remote sensing data. The temporal trend, especially of s is a steady linear increase until the end
of blossom (anthesis)(06/14/2006). After this date the ripening process starts, thus it seems that
the roughness decreases because the crops tend to bend a bit and the ears expend as well.

Soil roughness The soil roughness was only measured during early vegetation stages (until
booting), when it still had an impact on the microwave signal. The actual method is the same as
for the retrieval of the vegetation roughness. The board was only 50 x 20c¢m (height x width)
with a 2.5 x 2.5¢m raster. During the digitalization the point distance was only 1cm instead of
2cm.
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Figure 3.10: Digitalisation of the vegetation profiles, using a point distance of 2cm. Exemplarily
shown for 04/12/2006 (tillering) and 06/07/2006 (heading).
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Figure 3.11: Standard deviation of vegetation height (s) and the correlation length (/) for wheat
field 1 (2006).
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Soil moisture content The soil moisture content was measured within the ground truth cam-
paign. Thus, it was measured on the basis of weekly intervals and not in overflight synchrony
with ERS-2 or Envisat ASAR, which was hard to realize because acquisitions (Envisat ASAR)
were never really confirmed and the overflight times in the ascending orbits were rather late
at night. Gravimetric (GSM) and volumetric (VSM) soil moisture content were measured at
0-5cm depth using a cylinder with a defined volume of 169cm3. Soil samples were dried at
110C for 24 hours in an oven.

Wyw — Wh

GSM (%) = W X 100 (3.7)
and
VSM(%) = GSM(%) x DBD(gem™®) (3.8)

With Wy, the weight of wet soil, W, the weight of dry soil and the dry bulk density (DBD)
defined as the weight of the dry soil per unit volume.

In order to obtain information about the soil moisture content during the overflight times re-
gression analysis between the measured soil moisture and the actual precipitation, which was
measured hourly by a climate station were calculated. Best regression results (R? = 0.7) were
found when taking a five days precipitation sum before the actual overflight time. Because

soils are rather homogeneous in Klein-Altendorf this relationship was used for all experimental
fields.

Agricultural management  All experimental fields were normally managed by the local
farmer, who reported the treatments within the AGRO-NET. Pest management was done around
nine times within the vegetation period, starting from end of March. Fertilization was applied
around three times from March until June.

3.1.3 Additional information sources

Winter wheat cultivation

Within two extensive field campaigns in the years 2005 and 2006 the agricultural use of the
region was mapped, whereby the main interest were winter wheat fields. Fig. 3.1 shows the
mapped area. In 2005 665 and in 2006 435 winter wheat fields were mapped within the research
region.

Climatic data

During the vegetation growth periods 2005 and 2006 (April until August) a mobile climate sta-
tion from the company ThiesClima! was placed within one of the research fields. The station
measured in hourly intervals the precipitation [I/ m?], air temperature [°C], soil temperature
[°C], relative humidity [%] and leaf wettness [%]. The measured variable precipitation was
summed up for the whole day [I/m?/d], while all others were averaged and respectively the

lwww.thiesclima.com
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minimum and maximum were calculated for that day. During the rest of the years (autumn,
winter) a stationary climate station, belonging to the research farm measured all above men-
tioned parameters and the global radiation [1W//m?], as well as the daily sunshine hours. When
comparing the two different climate stations the agreement between both was very good. Fig.
3.12 displays the measured variables precipitation -as monthly sum [mm]- and air tempera-
ture -averaged daily temperature [°C]- for the years 2005, 2006 and a long year average, from
1956 to 2000. When comparing these two years with each other and the long year average it
becomes obvious that for both years temperatures from April until August were higher than
the average. In 2006 the precipitation was higher as the average until July, where it decreased
to around half of the long time average. For 2005 precipitation was rather high in April and
May, and in the months June and July slightly lower than average. In general the year 2005
was wetter between the months March until July (2005: ) 314.6mm, 2006: > 278.0mm and
average: »  273.9mm) then the average and 2006. The temperatures of both years were nearly
the same, thus being in general higher than the average (2005: ¢13.4°C, 2006:¢13.2°C'" and
average 11.7°C).
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Figure 3.12: Monthly precipitation [mm] and averaged daily temperature [°C] values in 2005
and 2006 in comparison to a long year average

3.2 Remote sensing data and preprocessing

Within the study different kinds of multispectral sensors and SAR systems were used. Mul-
tispectral and SAR data need a slightly different kind of preprocessing, whereby especially
the final step of geometric correction to one single reference image, is important when using
different multi-temporal and multi-sensoral data.
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3.2.1 Multispectral data

For generating a dense time-series different multispectral sensors were used, however still the
amount of cloudy images and therefore not usable ones was rather high. In 2005 from seven
planned Landsat 5 TM and three QuickBird imagery only two Landsat 5 TM and two QuickBird
imageries were actually usable. In the year 2006 16 SPOT data sets were planned, whereby 8
imagery could only be taken into consideration. This illustrates the problem of cloud coverage
in the mid-latitudes under current repetition rates. Tab. 3.4 lists all used data for both research
years.

Table 3.4: Multispectral data used in 2005 and 2006 with the according phenological stage as

reference.
S o S o
= = = =
= Q S — Q S
g 3 £ z 5 &
ASTER 04/03/2005 | elongation SPOT 4 | 05/04/2006 | elongation
QuickBird | 04/22/2005 | elongation SPOT 2 | 05/10/2006 | elongation
Landsat 5 TM | 05/05/2005 | elongation SPOT 5 | 05/11/2006 | elongation
SPOT 5 05/12/2005 | elongation SPOT 5 | 06/24/2006 | flowering
Landsat 5 TM | 05/28/2005 | heading ASTER | 07/03/2006 | ripening
QuickBird 06/20/2005 | flowering SPOT 5 | 07/14/2006 | ripening

ASTER The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER)
was launched in December 1999 by the NASA (Earth Observing System) and Japans Ministry
of Economy Trade and Industry (MET]I) on the satellite Terra®>. The ASTER instrument consists
of the three separate instrument subsystems: Visible and Near Infrared (VNIR), Shortwave
Infrared (SWIR) and Thermal Infrared (TIR) (Tab. 3.5).

Landsat 5 TM The Landsat Thematic Mapper 5 (TM) was launched 1984 in a series of
satellites by the NASA. A commercialization of the Landsat system was realized from 1985
until 2001 (Space Imaging EOSAT later, Space imaging), afterwards control was returned to the
federal government again. The TM sensor primarily detects reflected radiation from the Earths
surface in the visible, through the mid-IR, into the thermal-IR portion of the electromagnetic
spectrum. Sixteen detectors for the visible and mid-IR wavelength and four detectors in the
thermal-IR band provide information on each active scan® (Tab. 3.5).

“http://asterweb.jpl.nasa.gov
3http://edc.usgs.gov/guides/landsat_tm.html
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QuickBird The QuickBird satellite was launched in 2001 by the company DitialGlobe from
California, USA. It is designed to efficiently and accurately image large areas with a capability
of acquiring over 75 million square kilometres of imagery data annually* (Tab. 3.5).

SPOT SPOT Image operates the used SPOT 2, SPOT 4 and SPOT 5 satellites and is the
worldwide distributor of geographic information products and services derived from the SPOT
Earth observation satellites. Data were made freely available within the Optimizing Access
to SPOT Infrastructure for Science (OASIS), a European project coordinated by CNES and
financed by the European Commission® (Tab. 3.5).

3.2.2 Preprocessing of the multispectral data

All data were ordered in the basic 1B processing level with radiometric and geometric correc-
tions already applied. The radiometric correction included the application of a linear model for
compensating instrument effects and normalizing CCD detector response. The geometric cor-
rection applied, accounts for systematic effects, including: panoramic distortion, Earths rotation
and curvature, and variations in the satellites orbital altitude relative to the reference ellipsoidé.
For further processing and analysis the ASTER SWIR (4-9) and TIR bands (10-14), as well as
Landsat 5 TM TIR band (6) were not considered any more, either because of their geometric
resolution or their spectral characteristics.

Before actual image analysis all data have to undergo a standardized preprocessing (radiomet-
ric and geometric correction), because they still feature systematic defects or undesirable sensor
characteristics (Lillesand & Kiefer, 2000; Richards, 1993; Schowengerdt, 1997). Especially for
multi-temporal or multi-sensoral image analysis radiometric corrections, considering sensor
and atmospheric influences, and geometric corrections (the allocation to an uniform coordi-
nation system) are very important processing steps. A schematic overview of the different
preprocessing steps is given in Fig.3.14.

Radiometric correction

In general the radiometric correction can be divided into two different steps. The first is the con-
version of the sensors digital numbers (DN) to at-sensor radiance, whereby sensor calibration
information is needed (sensor calibration). In a second step the at-sensor radiance is trans-
formed into the radiance at the earth surface, considering the atmospheric condition at the time
and location of image acquisition (atmospheric correction).

Sensor calibration
In this step the DN values are converted into radiances by the use of calibration coefficients
(cal_gainy, and cal_of fset,) with units of radiance-per-DN, which are normally given by the

*http://www.digitalglobe.com
Shttp://www.spotimage.fr
Ohttp://spot4.cnes.fr/spotd_gb/acquisit.htm
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3 DATA

data provider. The coefficients can be applied to the pixel values in each band (D N,) by:
at-sensor Ly = cal_gain, X DNy, + cal_of fsety, 3.9

producing band-integrated radiance values (L}).

Atmospheric correction

Aim of the atmospheric correction is to remove wavelength dependent effects of the atmo-
sphere, such as scattering and absorption processes and thus the various paths and the different
components of sky radiance and path radiance (Lillesand & Kiefer, 2000; Mather, 1999).

The scattering processes occur when particles or gas molecules are present in the atmosphere
and interact with and cause the electromagnetic radiation to be redirected from its original path.
The magnitude of the scattering process depends on factors like the wavelength of the radia-
tion, the abundance of the particles or gases, and the distance the radiation travels through the
atmosphere. Three different scattering types are taking place:

e Rayleigh scattering, when particles are very small compared to the wavelength of the
radiation

e Mie scattering, occurring when particles (e.g., dust, pollen, smoke, water vapour) are just
about the same size as the wavelength of the radiation

e non-selective scattering, if particles (e.g., water droplets) are much larger than the wave-
length of the radiation

Absorption, being the other main mechanism, causes molecules in the atmosphere to absorb
energy at various wavelengths. For example absorbs Ozone, the “harmful” ultraviolet radiation,
carbon dioxide strongly absorbs the far infrared portion of the spectrum and water vapour much
of the incoming long wave infrared and shortwave microwave radiation. Through this, different
radiance paths in the sun-earth-sensor system are possible, like the direct path (sun-earth target-
sensor), or the path sun-atmospheric scattering-sensor, or paths like sun-foreign target-sensor
(Mather, 1999).

Actual radiometric correction was done with ATCOR 2, a model developed by Richter (1990)
for the atmospheric correction of flat terrain, assuming Lambertian reflection. Whereby, lookup-
tables are used and not an exact physical modelling of the atmosphere. Main variable parameters
within the model are:

e water vapour (between 0.8-4.75 g/ cm?)

e aerosol type (rural, urban, maritime, oceanic or desert)
e visibility (between 5-120km)

e height above sea level

e solar zenith angle

e incidence and azimuth angle for tilting sensors
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3.2 Remote sensing data and preprocessing

e interpolated atmospheric functions

For each single image in a first step the fixed parameters: sensor (e.g., Landsat 5 TM, SPOT 5),
acquisition date and time, solar zenith angle, average relief hight and incidence angle have to be
configured. In a second step the sensor specific calibration factors were defined, either coming
from the data header or from the image provider. In a third step the visibility during acquisi-
tion was specified, whereby the true visibility was chosen taken from www.wetter-online.de. In
the last step the atmospheric condition and the aerosol type had to be defined. For Germany
generally the aerosol type urban is recommended, due to the rather high site density in com-
parison to North America. Only the parameter atmospheric condition had to be varied until
the modelled reflectance curves corresponded the reference curves from different land surface
targets, e.g., water, urban, forest, grass. For the actual correction the option no haze removal
was taken, because the haze removal seemed to introduce artefacts into the images. In a last
step a bi-directional reflectance factor (BRDF) correction was performed.

Geometric correction

Although data were ordered in level 1B format, whereby systematic geometric corrections have
already been applied, images still have a location bias due to topographic effects and are not all
in the same coordination system. Therefore, an image-to-image geometric correction method
was used, projecting all images (as well as later the SAR data) to one reference image into the
coordinate system UTM WGS 84, zone 32 north. Images were ortho-rectified using a digital
elevation model (30m resolution) and a 3rd order polynomial transformation with rmse < 0.5.
The chosen resampling strategy was cubic convolution, whereby the new pixel values are com-
puted from weighting 16 (4 x 4) surrounding pixels, which smoothest the image but on the other
hand slightly modifies the pixel values.

3.2.3 SAR data

Different kind of SAR sensors were used within the study for analysing the potential of different
polarizations and incidence angles for applications with an agricultural background. Due to the
SAR advantage of being weather (cloud) independent the time-series for ERS-2 are actually
rather dense. For Envisat ASAR data ordering problems occurred, especially for some tracks
and Alternating Polarization (AP) modes, due to conflicts with commercial and other scientific
users, thus not all ordered images were actually acquired. All data used within the study are
listed in Tab. 3.6 (ERS-2 SAR) and 3.7 (Envisat ASAR), together with the phenological stages
and other data relevant features.

ERS-2 The second European Remote Sensing satellite (ERS-2) was launched by the European
Space Agency (ESA)’ in 1995. The used Active Microwave Instrument (AMI) can operate in
three modes, whereby especially the Synthetic Aperture Radar (SAR) is of interest for land
applications (Tab. 3.8).

Thttp://www.esa.int/
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Table 3.6: ERS-2 SAR data used in 2005 and 2006 with the according phenological stage.

2005 2006
5] &)
1) o
S S
g g
=1 =
2 2
c )
= = 4 = = ~
= 2 € | B = 2 € | B
o) (o o = o) o o =
04/05/2005 | elongation | desc. | 108 04/06/2006 | elongation | desc. | 337
04/15/2005 | elongation | asc. | 258 04/25/2006 | elongation | desc. | 108
04/21/2005 | elongation | desc. | 337 05/11/2006 | elongation | desc. | 337
05/10/2005 | elongation | desc. | 108 05/30/2006 | heading | desc. | 108
05/26/2005 | heading | desc. | 337 06/09/2006 | heading asc. | 258
06/05/2005 | heading asc. | 487 07/20/2006 | ripening | desc. | 337
06/24/2005 | flowering | asc. | 258
07/19/2005 | ripening | desc. | 108
08/04/2005 | ripening | desc. | 337

asc.= ascending; desc.=descending

Envisat The Environmental satellite (Envisat)® is an Earth-observing satellite launched (2002)
by the ESA. It carries nine instruments, whereby several of them are advanced versions of the
six instruments from the earlier ERS-1 and ERS-2 missions.

The Advanced Synthetic Aperture Radar ASAR instrument used, has an active phased array
antenna, allowing the independent control of phase and amplitude of the transmitted radiators
from different regions of the antenna surface and a weighting of these received signals. This
allows the operation in different modes: the conventional stripmap SAR or the ScanSAR mode
(used). The stripmap SAR allows the Image Mode operating in seven predetermined swaths
with either vertically or horizontally polarized radiation. The Wave Mode uses the same swaths
and polarizations as the Image Mode, but only images small areas at regular intervals (5 x 5km
vignettes). For the ScanSAR Modes the normal limitation of the stripmap SAR (narrow swath)
is overcome by widening the use of an antenna beam, which is electronically steerable in ele-
vation. Operational modes are the Wide Swath Mode and the Global Monitoring Mode, as well
as the used Alternating Polarization (AP) mode. The distinctive feature of the AP mode is that
instead of scanning between different elevation sub-swath, scanning is performed between two
polarizations (HH, VV) (Fig. 3.13). Additionally cross-polar modes are possible, where the
transit pulses are either H or V, with an alternatively receiving in H or V (see Tab. 3.8), thus
allowing the recording of the cross-polarizations HV or VH.

3.2.4 Preprocessing of the SAR time-series

SAR data were ordered in the PRecision /mage (PRI) format, which are multi-looking (speckle-
reduced) ground range images. These images are calibrated and corrected for the SAR antenna

8http://envisat.esa.int/
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3.2 Remote sensing data and preprocessing

Table 3.7: AP Envisat ASAR data (HH and HV) used in 2005 and 2006 with the according
phenological stage.

o o

%D —

N q-)

z =)

-

) 0

E .

o = = = s S

3 £ 5| E|z| B
04/12/2005 elongation desc. | 208 | 6 | 39.1-42.8
07/10/2005 ripening asc. | 487 | 2 | 19.2-26.7
07/13/2005 ripening desc. | 029 | 3 | 26.0-31.4
07/22/2005 senescence asc. | 158 | 3 | 26.0-31.4
04/16/2006 elongation asc. | 487 | 2 | 19.2-26.7
05/02/2006 elongation desc. | 208 | 6 | 39.1-42.8
05/21/2006 elongation asc. | 487 | 2 | 19.2-26.7
06/06/2006 | fruit development | desc. | 208 | 6 | 39.1-42.8
06/25/2006 | fruit development | asc. | 487 | 2 | 19.2-26.7

asc.= ascending; desc.=descending

L 4
"
a-"f#

Flight
Drection

Figure 3.13: Alternating polarization mode

http://envisat.esa.int/handbooks/asar/CNTR.htm
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Table 3.8: Technical data of the used SAR systems.

=
X N
% <
QN 3
83 m
inclination [°] 98.5 98.5
orbit type sun-syn. | sun-syn.
orbit period [min] 100 101
orbit repetition [days] 35 35
frequency [GHz] 3.5 5.331
wavelength [cm] 5.66 5.62
polarization \'A% VV/VH
HH/HV
VV/HH
incidence angles [°] | 19.2-26.7 | 15.0-22.9
19.2-26.7
26.0-31.4
31.0-36.3
35.8-39.4
39.1-42.8
42.5-45.2
pixel spacing [m] 12.5 12.5
swath width 100 56-105%*

*= incidence angle dependent; sun-syn. = sun-synchronous




3.2 Remote sensing data and preprocessing

pattern and range-spread loss, thus SAR backscatter can be derived from the product for geo-
physical modelling, but no correction for terrain-induced radiometric effects is applied. The
images are not geometrically corrected, and terrain distortion (foreshortening and layover) has
not been removed (for further detail please refer to: Laur (1998); Oliver & Quegan (2004);
Woodhouse (2006)). A detailed overview of all the preprocessing steps is given in Fig. 3.14.

Calibration

In general for the calibration of PRI images a flat terrain is considered, thus the incidence angle
a only depends on the ellipsoid and varies from near to far range (e.g., ERS-2: from 19.5° to
26.5°). Since the study site is rather flat (inclination around 0.5°-1°) the assumption is valid and
no further topographic normalization has been performed. The SAR backscattering coefficient
0¥ is related to the SAR brightness 3° and the according incidence angle o. Whereby, the SAR
brightness 3° is defined as the property of an image in which the strength of the SAR reflectivity
is expressed as being proportional to a digital number.

o? = 3% x sina (3.10)

Due to the assumption of a flat terrain PRI images are coded as SAR brightness 3°. The pixel
intensity values are directly proportional to the brightness by:

0

[DN]? = constant x 3° = constant x —— = constant(a) x o° (3.11)
sina
with constant(«) defined as:
constant(a) = K X SNOref (3.12)
sina

whereby, K is the calibration constant and «,..s the mid-range incidence angle, e.g., for ERS
SAR 23 (for further details please refer to: Laur (1998)).

Co-registration

Co-registration between images of the same track, having the same image geometry, was per-
formed with the software tool BEST?. In an initial step the initial registration is performed using
the satellite orbit parameters. In a second step a coarse registration is carried out using a cross-
correlation operation on a series of “cells”, which are defined across the images. In the final
step a further fine registration is carried out by maximizing the complex coherence between
the images for a series of “cells”. This allows a further improvement of the cross-correlation
function. By doing this one actually gains a transfer function for the co-registration process for
each point.

Speckle filtering

A distinctive characteristic of SAR images is the so called speckle or random “salt and pepper”
noise, due to the actual distribution of scatterers at the level of wavelength. Even on a bare

“http://earth.esa.int/services/best/
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multispectral data (L1B) SAR data (PRI)
\ 4
[ radiometric correction] | calibration I
\ 4 \ 4
[ atmospheric correction] [ co-registration ]

[ speckle filtering ]

\ 4 DEM \ 4
[ geometric correction geometric correction ]

multispectral
.master-image*“

Figure 3.14: Preprocessing chain for the multispectral and SAR data

field, appearing homogeneous on the ground, characteristics like surface roughness, normally
being statistically homogeneous over the field, cause small variations of the scatterer location
(Woodhouse, 2006). By ordering PRI images the speckle effect was already reduced through
multi-looking, whereby the single looks, corresponding to multiple measurements of the same
resolution cell, are averaged. In order to further decrease the speckle the enhanced Frost Filter
(5 x 5 window) was applied, trying to average across homogeneous areas but preserving bound-
aries. This filter assumes that speckle is a multiplicative noise and belongs to the category of
adaptive-weighted-mean filters (Lopes et al., 1990).

Geometric correction

After co-registration of the same tracks, the geometric correction of the different acquired tracks
to a single “master” image and the projection to the coordinate system (UTM, WGS-84, zone
32 north) is necessary. As a master image a multispectral Landsat 5 TM mosaic from the year
2000 was used (same as for the multispectral data). The correction was performed by using the
orbit information, ground control points and a digital elevation model. For the resampling the
cubic convolution method was chosen.
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4 BIOPHYSICAL PARAMETER
ESTIMATION

In the following chapter firstly the retrieval of biophysical parameters using multispectral data
will be analysed. Then the use of SAR data for biophysical parameter estimation will be eval-
uated, followed by a combined approach using both multispectral and SAR data. In Fig. 4.1
a rough overview of the different analysed retrieval methods is given. From the multispec-
tral data different vegetation indices are calculated, from the SAR data the phenological stage
heading/flowering, the local incident angle and the backscatter coefficients are derived. This
information is then used with additional information about precipitation for empirical and semi-
empirical parameter modelling, either on the basis of one sensor system or by fusing the infor-
mation from the different sensors. Previous to all analysis steps there are some additional con-
siderations necessary for generating multispectral and SAR time-series. For the multispectral
data only cloud free images were chosen, leaving out five Landsat 5 TM and five SPOT im-
ages within the years 2005 and 2006 (already not mentioned in Tab. 3.4). For the SAR images
precipitation is an important feature, because intense rain can hamper the image interpretation.
For each image the precipitation, measured at the local climate station, was considered. E.g.,
ERS-2 acquisitions on the 06/30/2005 and 06/15/2006 are not considered for the analysis and
not mentioned in Tab. 3.6.

Another important feature is the precision of the measured ground truth data. Therefore the
standard deviation of each field and the multi-temporal dynamics of each parameter were con-
sidered for each image (see section Ground Truth Data 3.1). Due to variabilities, e.g., the ERS-2
image from 05/26/2005 was only taken into account for field 1, from 05/30/2006 only for fields
2, 3 and 4 and from 06.15.2006 only fields 1 and 2. Concerning the multispectral data for the
Landsat 5 TM image (05/28/2005) field 2 was not considered and during the year 2006 field 2
for the SPOT 5 image (06/24/2006) and field 4 for the ASTER image (07/03/2006).

4.1 Biophysical parameter extraction using
multispectral data

Within this section the main question analysed was:

Is it possible to derive the values of important crop variables from various remote sensing
data?

Whereby, in more detail the following challenges were of concern:
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multispectral SAR
data data
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Figure 4.1: Overview of the biophysical parameter retrieval.

e to intercalibrate vegetation indices of different multispectral sensors in order to correct
the biases, introduced by differences in the relative spectral response functions (section
4.1.1)

e to evaluate the performance of the CLAIR model for the retrieval of different biophysical
parameters (section 4.1.3)

e to invert the used models for regional biophysical parameter extraction (section 4.1.3)

As a first analysis step, different vegetation indices (VI) were calculated. The most impor-
tant ones for further investigations were the Normalized Difference Vegetation /ndex (NDVI)
(Rouse et al., 1978) and the Weighted Difference Vegetation Index (WDVI) (Clevers, 1988,
1989; Clevers et al., 2002). As a last processing step, average VIs were calculated for all anal-
ysed fields and the parcel boundaries were buffered with 30m zones. Buffering was necessary
in order to avoid image pixels (mixed pixels) near parcel boundaries, partly covering other
classes, e.g., roads or other agricultural fields. Finally the ground truth information and satellite
data were matched into pairs by considering the acquisition dates trying to minimize the time

gaps.

4.1.1 Normalized Difference Vegetation Index

For the retrieval of the different biophysical parameters using the NDVI the following linear
model was chosen:

EY/X=z)=a+fx+e¢ 4.1)

72



4.1 Biophysical parameter extraction using multispectral data

with Y the biophysical parameter and X the NDVI, the unknown coefficients o and 3 and e
the error term. Tab. 4.1 shows the adjusted coefficients and the coefficient of determination
(R?) for the independent validation process. For modelling the leave-one-out cross-validation
method was chosen, considering all available datasets within the study years 2005 and 2006. In
a second step it was tried to minimise the differences between the VIs, introduced by variations
in the RSR functions of the respective used remote sensing sensors, as differences in the VI
have an impact on the retrieval performances.

Table 4.1: Fitted coefficients and coefficients of determination (validation) for the linear empir-
ical biophysical parameter modelling using the NDVI.

— [ O
28| 5| ¢

a || 279 || 0.83 || -1.76 || 0.47
B || 1.05 ]| 0.06 || 3.82 || 2.82
R?* | 0.67 || 042 || 0.46 | 0.70

(FM= fresh biomass [kg/m?]; DM= dry biomass [kg/m?]; LAl= leaf area index [m?/m?];
PWC= plant water content [kg/m?])

Cross-calibration of the NDVI

Several studies already have analysed the discrepancies in VIs due to different relative spectral
reflectance curves of the remote sensing sensors and attempted to correct them by using empir-
ical cross-calibration methods. Based on a multispectral sensor simulation using hyperspectral
HyMap data these resulting discrepancies were analysed and are shown here for the NDVI. For
the sensor simulation only the spectral characteristics of the sensors were simulated by constant
side-parameters like, e.g., geometric features (Franke et al., 2006). As a prerequisite for data
simulation, the RSR values of each multispectral band were fitted to the according wavelengths
of the 126 hyperspectral HyMap bands. Therefore, each HyMap center wavelength was linked
with the mean RSR value (in the range of FWHM of the hyperspectral band) of the simulating
band. A comparison between the generated RSR functions, which were calculated by the mean
RSR value, maximum RSR value and the actual RSR value at HyMap’s center wavelength,
showed that the mean RSR value approach best corresponds to the true RSR functions of the
sensors. For the simulation process the 126 HyMap reflectance values of each pixel were mul-
tiplied by the 126 wavelength corresponding RSR values of the simulating band. The sum of
these products is divided by the sum of the 126 band-specific RSR values. For a multispectral
sensor simulation, each band must be simulated according to the following equation, where
Rim, 1s the simulated pixel reflectance value of the simulated band, R; is the pixel reflectance
value of the HyMap band and rsr;; is the RSR value of the simulating band at each HyMap
corresponding wavelength:

126
R Do Rioxrsry
simp 126
D iy TSTh

The results were simulated multispectral bands, providing spectral information similar to those
of the original sensor bands. Nevertheless, differences to original data caused by different

4.2)
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4 BIOPHYSICAL PARAMETER ESTIMATION

spatial resolution or sun/sensor/target geometry still exist. This fact has to be considered by the
validation of the simulation (Franke et al., 2006).

In order to assess the accuracy of the simulation method an extensive evaluation was performed
by the use of a real Landsat 5 TM image acquired on the same day, round about 1.30 hours
after the HyMap acquisition. As a first indicator for the simulation quality, the differences in
the overall statistics of the imagery were assessed regarding each band and the NDVI (Franke
et al., 2006) (Tab. 4.2). The differences of both data sets do not vary significantly with values
between 0.08% and 1.45% reflectance, by a mean of 0.79%. Highest congruence between real
and simulated data was achieved in band 3, widest differences existed in band 7. Obvious was
a general underestimation of pixel values in the simulated data. Validation of the NDVI differ-
ences between original and simulated Landsat 5 TM showed a very high congruence as well.
Only marginal differences of 0.004 (0.62%) were found (Tab. 4.2). In general the validation
by the comparison between real and simulated data demonstrated a good performance of the
simulation method.

Table 4.2: Bandwise mean and standard deviation of reflectance (%), as well as NDVI for the
real and simulated Landsat 5 TM scene and the reflectance plus NDVI differences
between them.

simulated Landsat real Landsat

Mean | STDEV || Mean | STDEV || abs. difference
Band 1 | 4.0% 4.0% 5.0% 3.3% 0.96%
Band2 | 6.9% 5.4% 7.7% 4.8% 0.80%
Band 3 | 7.5% 6.6% 7.5% 6.1% 0.08%
Band 4 | 34.3% | 12.4% 34.8% | 10.2% 0.46%
Band 5 | 18.0% 8.3% 19.0% | 7.3% 1.01%
Band 7 | 11.0% 8.7% 12.4% 8.1% 1.45%
NDVI | 0.635 0.277 0.639 0.258 0.004

The slight statistical differences had various reasons. For example, in comparison to the real
Landsat 5 TM data set, the simulation did not consider variations due to different spatial resolu-
tion or sun/sensor/target geometry of the data. Additionally, different atmospheric corrections
of real and simulated data, caused slight variations as well. Generally, variations in reflectance
values occur due to different overpass time and off-nadir viewing. The last point is particularly
critical for airborne sensors (Schiefer et al., 2006). In our study BRDF effects caused by dif-
ferent illumination and observation angles within the HyMap scene were negligible due to a
south to north flight direction at noon. For the validation only areas in the centre of the HyMap
scene (nadir) were taken into account. The solar illumination geometry was similar at Landsat
5 TM and HyMap overpass times (within 1.6). In the study of Kerekes & Landgrebe (1989),
a simulation of a Landsat TM imagery on the basis of AVIRIS data was accomplished. The
comparison showed an offset of the mean DN values from 0.4% up to 5.3%, according to the
band. Teilet et al. (2001) compared Landsat 5 TM and 7 ETM+ and showed a spectral band
difference in the range of 2-7% depending on the band leading to NDVI differences of 1% to
4% (mean 2.5%).

For a detailed trend analysis between the sensors the land cover types urban, forest, crops,
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4.1 Biophysical parameter extraction using multispectral data

fallow and root crops were examined. In order to illustrate the differences between the two sen-
sors (high minus low NDVI) in a comprehensible way, the sensors were all compared with each
other (Fig. 4.2) taking the sensor with the higher NDVI values as a reference (x-axis) and the
curves for a second order polynomial (R?) as a reference and an indicator for the trend analysis
(Heinzel et al., 2006).

The trend between SPOT 5 vs. Aster (Fig. 4.2 A) is relatively linear (second order polynomial,
R?=0.84), with a high difference and scattering increase towards the high NDVI range. The
differences between SPOT 5 vs. QuickBird (Fig. 4.2 B) are the widest of all compared sensors.
The trend is nearly linear (R?=0.97), with a peak in differences towards the high NDVI values.
The observed trend (Landsat 5 TM vs. SPOT 5) (Fig. 4.2 C) shows a concave shape (R*=0.97),
with a high dynamic in the NDVI range from 0.8 to 1 and a plateau in the differences trend in
the middle NDVI range (0.2-0.6). The offset between Landsat 5 TM and Aster (Fig. 4.2 D)
is described by a convex shape (122=0.76). It begins with relatively low differences (0.01) for
low NDVI values (0.2), increasing up to 0.03 in the middle NDVI range (0.4-0.6) and finally
decreasing again (0.01) for high NDVI values (0.8-1). The trend Landsat 5 TM vs. QuickBird
(Fig. 4.2 E) occurs to have a convex form (R2=0.86), when looking at the general overall trend,
with the highest differences (0.03) in the middle NDVI range (0.4-0.6). The offset between
QuickBird vs. Aster (Fig. 4.2 F) seems to be nearly even (R?=0.73), with trend change in the
differences.

In Tab. 4.3 the overall differences between the simulated sensors are shown. In regard to
them the intercalibration performance will be assessed. Here again it becomes obvious that the
differences between SPOT 5 and QuickBird are the highest, while the sensors QuickBird and
Aster feature relatively similar NDVI. In general cross-calibration methods can be categorized

Table 4.3: MIN, MAX and MEAN NDVI differences and percentage difference between the
simulated sensors. Percentage differences were calculated considering the NDVI
mean of the corresponding sensor and the mean NDVI difference of the respective
Sensor pair.

7 7 3

S | 2| 5

o = 5

(] = L: /e\
, S5 2 ¢
o e = I
o= > (D]
g, 2 | 2| 8 | ¢
5 Z z = 5
2 £ 5 S =
3 = > = A

SPOT5-Aster -0.116 | 0.104 | 0.012 | 1.818

SPOTS5-Landsat 5STM -0.157 | 0.126 | 0.009 | 1.364
SPOTS5-QuickBird -0.064 | 0.099 | 0.045 | 7.087
Landsat 5STM-Aster -0.088 | 0.091 | 0.003 | 0.472
Landsat 5STM-QuickBird | -0.074 | 0.083 | 0.013 | 1.970
QuickBird-Aster -0.058 | 0.040 | -0.002 | -0.322

into two groups: calibration by regression (Miura & Yoshioka, 2006; Steven et al., 2003; Tr-
ishchenko et al., 2002) and by weighted averaging (Gao, 2000; Gittelson & Kaufman, 1998;
Miura & Yoshioka, 2006). After analysing the trends in differences between the sensors it
can be clearly seen that the cross-calibration cannot be easily modelled by linear regression as
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Figure 4.2: Absolute differences for high NDVI between the studied sensors.




4.1 Biophysical parameter extraction using multispectral data

Steven et al. (2003) did for only vegetated areas. In Miura & Yoshioka (2006) both methods (re-
gression and weighted averaging) were tested and both performed well. But he stresses the fact,
that when trying to cross-calibrate the whole NDVI range using the regression method, higher
order polynomials are needed. This was also found in the study of Heinzel et al. (2007), when
actually comparing the performance of second and sixth order modelling. When looking at
the coefficients of determination, describing the relationship between two sensors for different
polynomial orders, using a higher order, e.g., sixth order is also reasonable here (Tab. 4.4):

NDV Ligrget = ao + a1 NDV Liguree + covee. an A NDVI" 1 4+ aq NDVI"

source source —"_ €

4.3)

where the subscripts source and target indicate the sensor to be translated as well as the refer-
ence sensor, n the order of the polynomial chosen, the different a the coefficients to be adjusted
and e the unexplained error term.

The translation coefficients for the sixth order regression translating one NDVI into the other
are shown in Tab. A.l in chapter ATTACHMENT (A). In order to asses the intercalibration
performances of the sixth order modelling the overall minimum, maximum and mean NDVI
differences and percentage differences between the simulated sensors were analysed (Tab. 4.5)
and compared with the original values (Tab. 4.3).

When comparing the sensor differences they generally indicate a significant reduction after
intercalibration. For example the highest improvement was found for SPOT 5 and QuickBird
were the differences decreased from 7.087% to 0.152% or 0.161% (depending on the used target
sensor). Overall, the best results with the smallest bias errors were obtained for translating Aster
or QuickBird into SPOT 5. The magnitudes of error from translating the sensors into each
other were between 0.152 and 0.606%. In general the approach delivers reasonable results,
in comparison to the results from Steven et al. (2003) or Miura & Yoshioka (2006). In these
studies a precision of 1-2% and 2% was achieved.

Table 4.4: Coefficients of determination for modelling the NDVI relationships using different
polynomial orders.

5 o}

.s e

) 8

g, £ g, =

5 g 5 g

17 >~ 2] >
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SPOT 5 - ASTER 2 10.84 Landsat 5 TM - ASTER 2 10.76
6 | 0.95 6 [ 098
SPOT 5 - QuickBird 2 |1 0.97 || Landsat 5 TM - QuickBird | 2 | 0.86
6 | 0.99 6 | 0.99
SPOT 5 - Landsat5TM | 2 | 0.97 QuickBird - ASTER 2 10.79
6 | 098 6 | 093

Parameter retrieval using the intercalibrated NDVI

Due to the fact that the amount of data pairs (ground truth samples and multispectral images)
is relatively small, a multi-sensoral biomass retrieval approach was realized after the intercal-
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4 BIOPHYSICAL PARAMETER ESTIMATION

Table 4.5: MIN, MAX, MEAN NDVI differences and % difference between the original NDVI
imagery and the cross-calibrated image for the sixth order polynomial modelling.

Differences were taken between the original sensor (org) and the cross-calibrated sensor
(cross), which is still named after its origin.

0rg-cross MIN | MAX | MEAN %
SPOT 5-ASTER -0.445 | 0.068 | -0.001 | -0.152
SPOT 5-LANDSAT 5 TM || -0.797 | 0.106 | 0.004 | 0.606
SPOT 5-QuickBird -0.330 | 0.052 | -0.001 | -0.152

Landsat 5 TM-ASTER -0.100 | 0.964 | -0.002 | -0.315
Landsat 5 TM-QuickBird || -0.084 | 0.910 | -0.004 | -0.630
Landsat 5 TM-SPOT 5 -0.107 | 0.954 | -0.003 | -0.472

QuickBird-ASTER -0.057 | 0.031 | 0.001 | 0.161
QuickBird-Landsat 5 TM || -0.609 | 0.078 | 0.004 | 0.483
QuickBird-SPOT 5 -0.049 | 0.221 | 0.001 | 0O.161
ASTER-Landsat 5 TM -0.675 | 0.096 | 0.002 | 0.320
ASTER-QuickBird -0.030 | 0.058 | -0.001 | -0.160
ASTER-SPOT 5 -0.067 | 0.225 | -0.001 | -0.160

ibration of the NDVI. Thus, as an intermediate step the sensors were all intercalibrated to the
reference Landsat 5 TM. The actual empirical modelling of the biophysical parameters was
performed by using the leave-one-out cross-validation method. Fig. 4.3 illustrates exemplarily
the relationships between the modelled and observed fresh biomass [kg/m?] using the intercal-
ibrated NDVI and the original NDVI. The coefficients of determination (linear regression) for
the different NDVI versions are shown in Tab. 4.6. It becomes clear that the NDVI intercali-
brated to Landsat 5 TM using a sixth order polynomial model describes the relationship best.
R? are the highest for all retrieved parameters and the scattering around the 1:1 line is the low-
est.

Regarding the biophysical parameters the best performance was found for the fresh biomass
and the plant water content, while the LAI retrieval performance was rather poor. In general
all findings are still relatively poor compared to the literature. Especially, concerning the LAI
modelling were Ustin (2004) achieved R? of around 0.9. However, in their study it became not
clear if independent validations of the models were performed, which of course has an impact
on the gained R?.

Table 4.6: Fitted coefficients and coefficients of determination (validation) for the linear empir-
ical biophysical parameter modelling using the intercalibrated NDVI.

FM | DM | LAI | PWC
a | 3.03083]|-1.61| 0.79
6 1072 10.06 | 3.71 | 2.50

R*10.73 | 054 | 0.53 | 0.72

(FM= fresh biomass [kg/m?]; DM= dry biomass [kg/m?]; LAl= leaf area index [m?/m?];
PWC= plant water content [kg/m?])
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Figure 4.3: The relationships between observed versus modelled fresh biomass [kg/m?], using
the different NDVI modelling approaches.

4.1.2 Other indices and empirical regressions

On the basis of the ground truth measurements and the remotely sensed information also the re-
lationships between different VIs and the biophysical parameters were analysed by considering
different empirical modelling approaches, using the leave-one-out cross-validation method.
Indices analysed next to the NDVI, were the Perpendicular Vegetation /ndex (PVI) (Jackson,
1983):

PVI=0.647 x NIR —0.763 x red — 0.02 (4.4)

which uses a statistical relationship to remove effects of soil background on vegetation esti-
mates. The Soil-Adjusted Vegetation Index (SAVI) (Huete, 1988) also accounts for the soil
background using an adjustment factor (L = 0.5) for increasing the sensitivity, when separating
canopy and soil at low ground cover amounts.

NIR — red
AV = 14+ L 4.
SAVIE= SR rear 0t (4.5

And finally a simple ratio of NIR and red reflectance (NIR/red) was evaluated.

The relationships of these VIs and the biophysical parameters were analysed using different
empirical regressions, e.g., linear, exponential, polynomial, power.

The Fig. 4.4 (A) illustrates exemplarily the power regression modelling using the different VIs
for fresh biomass, whereby the PVI is not displayed, because retrieval results were out of range.
The SAVI actually failed modelling the fresh biomass, the IR/RED VI had some problems in
the higher biomass range, saturating there. The NDVI modelled the fresh biomass best with the
lowest scattering for the whole biomass range. Concerning the dry biomass modelling using
the SAVI outperformed the achievement, using the NDVI concerning the scattering and the R?.
This was also for the biophysical parameter LAI. For the plant water content modelling by the
use of the NDVI was most explicit. Independently of the biophysical parameter and the empir-
ical model used, the NDVI however was the most suitable for all cases.
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4 BIOPHYSICAL PARAMETER ESTIMATION

Different empirical models using the NDVI are shown exemplarily for the modelled versus the
observed fresh biomass in Fig 4.4 (B). Generally, it seems that for low biomass, smaller than 4
kg/m?, there was an overestimation, while for higher biomass there was rather an underestima-
tion. Overall, the power regression seems to model the fresh biomass over the whole range with
the highest accuracy (R? = 0.77).

Regarding the dry biomass the exponential model in combination with the SAVI, for LAI the

(A) 70 FRESH BIOMASS - POWER REGRESSIONS (B) 70 FRESH BIOMASS - NDVI REGRESSIONS
- SAVI  R’=0.59 -
E 607 IR/REDR?=0.01 £ 607 A
g NDVI R2=0.77 [ ] g 5.0 e
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9 [ ] .. @ 4.0
E 404 ) .S *
3 . 5 3.0 [
H =
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Figure 4.4: (A) Modelled versus observed fresh biomass for modelling using different VI. (B)
Modelled versus observed fresh biomass for different regression models using the
NDVIL

polynomial model using the SAVI and for the water content the NDVI in combination with the
power modelling were most suitable. The best performance for all biophysical parameters was
achieved using the NDVI and the power modelling approach. The achieved R? is within the
lower range of the results in the reviewed literature, however, some of them propose a more
linear relationship.

4.1.3 Semi-empirical CLAIR model

In an approach to overcome the negative effects of empirical modelling, meaning the problems
when trying to transfer the findings in time or space and the relative poor modelling perfor-
mance, also the modelling performance using a semi-empirical model (CLAIR) was assessed.
The CLAIR model was actually designed for the parameter LAI. Thus, first of all the hypothesis
that the parameters fresh and dry biomass as well as the plant water content are correlated with
the LAI and therefore it might be possible to also retrieve them by the use of the CLAIR model,
has to be analysed.

Fig. 4.5 illustrates the relationship between the WDVI and the LAI for the research years 2005
and 2006 during the whole growing season. The parameters v and W DV [, were fitted with
the leave-one-out cross-validation method.

The results for all biophysical parameters analysed were not significant with coefficients of de-
termination (R?) below 0.5, only for the LAI R? was slightly above 0.5. Other research findings
(Clevers et al., 2002) have also assessed this and suggested to divide the time-series into two
different phenological phases, before heading/flowering and after heading/flowering. This was
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4.1 Biophysical parameter extraction using multispectral data

done by either using the ground truth information or by analysing the ERS-2 time-series and ex-
tracting the heading/flowering dates (section 4.2.4). Fig. 4.5 displays the relationship between
the WDVI and the LAI when dividing the time-series (blue boxes=before heading, red trian-
gle=after heading). For all assessed biophysical parameters the extraction accuracy increased
significantly, when dividing the time-series into different distinctive phenological stages. Re-
trieval results were sounder than for the previous modelling approaches, using different empiri-
cal models and VIs. However, due to differences in the RSR functions of the used multispectral
sensors a intercalibration of the WDVI is performed in order to improve the modelling accuracy.

WDVI ~ LAl RELATIONSHIP
3.5

2 _
30| RP=058 /
A
— 25
2.0 a %-
15 AAA A

1.0 4 A | |
0.5 4

LAI [m?/m?
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WDVI

[mbefore heading/flowering A after heading/flowering|

Figure 4.5: WDVI-LAI relationship.

WDV!I intercalibration

As for the NDVI, first on the basis of simulated sensors the WDVI differences between the
sensor pairs were analysed (Tab. 4.7). Highest differences due to different RSR functions were
again found between SPOT 5 and QuickBird, followed by the sensor pair Landsat 5 TM and
QuickBird. Smallest differences were assessed between QuickBird and Aster. Intercalibration
studies for the NDVI have shown that using a sixth polynomial order modelling approach re-
duces the differences significantly. Thus, this approach was also chosen for the WDVI. The
sensor differences introduced by different RSR functions decreased significantly (Tab. 4.8),
now being below 1% for all assessed sensor pairs. Results are comparable with the findings of
the NDVI intercalibration.

Parameter retrieval using the intercalibrated WDVI and the CLAIR model

In Fig. 4.6 the modelled versus observed parameters are displayed using the CLAIR model with
the intercalibrated WDVI. For the fresh biomass the scattering is rather large in the mid range
biomass between 4 to Skg/m?. For the lower and higher range the fit between modelled and
observed fresh biomass is satisfactory.

For the dry biomass retrieval findings were the poorest compared to the other biophysical pa-
rameters. For early phenological stages the scattering around the 1:1 line is not high, but the
R? is not as significant as for the other parameters. After the phenological stage heading the
scattering increases significantly and the dry biomass is underestimated, even so the R? did not
decrease that much.
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4 BIOPHYSICAL PARAMETER ESTIMATION

Table 4.7: MIN, MAX and MEAN WDVI differences and percentage difference between the
simulated sensors. Percentage differences were calculated considering the WDVI
mean of the corresponding sensor and the mean WDVI difference of the respective
sensor pair.

2 | 5| &
S| 2|5
()
£z = |5 3
&, o |8 § g
5 = = = 5
& £ 5| 8| &
2 = = | = @
SPOTS5-Aster =772 | 786 | 123 | 5.11
SPOT5-Landsat 5STM -484 | 828 | 36 | 1.52
SPOT5-QuickBird -676 | 677 | 187 | 7.80
Landsat STM-Aster -511 | 667 | 86 | 3.66
Landsat 5STM-QuickBird | -389 | 602 | 151 | 6.38
QuickBird-Aster -230 | 147 | -64 | -2.91

Concerning the plant water content R? are rather high for all phenological stages. For the early
stages, the scattering is very low with only some bolters at high plant water content around
4kg/m?. For later phenological stages R? decreased a little, as well as the overall scattering.
During these late phenological stages generally an underestimation of the plant water content
can be observed.

Results modelling the LAI were also especially for early phenological stages very good featur-
ing very low scattering, whereby it increased slightly for higher LAI values. For late phenolog-
ical stages there was an underestimation in the higher LAI range obvious.

Generally, results using this approach outperformed the other introduced multispectral models,
concerning the scattering and the R? for all parameters. Only modelling the dry biomass during
late phenological stages was critically. For all other times and biophysical parameters assessed
one can conclude that the CLAIR model, actually developed for LAI, can also be used, due to
the fact that the derived parameters are all highly correlated with each other. A saturation of
the signal could not clearly be assessed, even so the R? decreased slightly for higher biomass
values and there was a slight underestimation of the derived parameters, the effect was not that
distinctive. When comparing this findings with the literature (Clevers, 1988, 1989) it can be
recorded that they are in agreement with other studies, maybe the results feature slightly more
scattering. This is probably due to the fact that different multispectral sensors (still featuring
differences after the intercalibration due to other sensor characteristics), two research years and
altogether six different winter wheat fields were assessed.

On the basis of the mapped fields from the ground truth campaign the models were finally
inverted for the whole research region and averaged for each mapped field. The ERS-2 data
series (section 4.2.4) was used to extract the heading/flowering dates of the individual fields.
In Fig. 4.7 exemplarily for the fresh biomass four different dates are shown, two were before
heading/flowering (05/04/2006 and 05/11/2006) and two after heading/flowering (06/24/2006
and 14/07/2006). What becomes obvious is the dynamic development of the fresh biomass.
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Figure 4.6: Modelled and observed biophysical parameters, divided into before and after head-
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4 BIOPHYSICAL PARAMETER ESTIMATION

Table 4.8: MIN, MAX, MEAN WDVI differences and % difference between the original WDVI
imagery and the cross-calibrated image sextic order polynomial modelling.

Differences were taken between the original sensor (org) and the cross-calibrated sensor
(cross), which is still named after its origin.

0rg-cross MIN | MAX | MEAN | %
SPOT 5-ASTER -3567 | 676 20 0.86
SPOT 5-LANDSAT 5 TM || -3628 | 813 10 0.43
SPOT 5-QuickBird -2020 | 375 11 0.49
Landsat 5 TM-ASTER -365 | 541 9 0.38

Landsat 5 TM-QuickBird || -646 | 1376 | -0.806 | -0.03
Landsat 5 TM-SPOT 5 =707 | 3018 -11 -0.49

QuickBird-ASTER -2324 | 278 5 0.26
QuickBird-Landsat 5 TM -555 711 1 0.09
QuickBird-SPOT 5 -315 | 1344 -10 -0.49
ASTER-Landsat 5 TM -676 309 -10 -0.45
ASTER-QuickBird -325 882 -9 -0.42
ASTER-SPOT 5 -518 | 1382 -22 -0.98

For the first acquisition data values are rather low around 1.5kg/m?. Within one week (second
acquisition) the values increase rapidly up to 2.5-3kg/m?. This rapid increase of around 1kg/m?,
was also measured in the ground truth campaign of the monitored fields. Thus, it is probably
due to a real biomass increase and not due to modelling biases. Until end of June the steady
biomass increase goes on, up to values of around 6kg/m?, these high values were also observed
within the ground truth campaign. After this date the ripening of the crops start, thus the fresh
biomass values decrease again due to the process of drying.

4.1.4 Conclusions

Within this section the overall question:

Is it possible to derive the values of important crop variables from various remote sensing
data?

was assessed, whereby in detail it was tried:

e to intercalibrate vegetation indices of different multispectral sensors in order to correct
the biases, introduced by differences in the relative spectral response functions

e to evaluate the performance of the CLAIR model for the retrieval of different biophysical
parameters

e to invert the used models for regional biophysical parameter extraction
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Figure 4.7: Modelled fresh biomass for four different images, using the CLAIR model and the

intercalibrated WDVI.
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Concerning the overall question, it was possible with all applied approaches to derive the de-
sired parameters, fresh and dry biomass, plant water content and LAI from the multispectral
time-series. Generally the different results showed that when using different multispectral data
for the derivation of quantitative values an intercalibration of the VIs from the different sensors
is appropriate. The NDVI differences decreased rapidly, e.g., between SPOT 5 and QuickBird
from 7.087% to 0.152% or 0.161% (depending on the used target sensor), improving the ex-
traction accuracy, e.g., in the case of NDVI retrieval and fresh biomass from R? 0.67 to 0.73.
In a next step the performance of the CLAIR model was assessed, whereby it was also tried
to transfer the model to other biophysical parameters. After the WDVI intercalibration and
when considering different phenological stages all biophysical parameters could be derived
with a satisfactory accuracy. Findings for dry biomass were overall the poorest, especially after
heading/flowering. For the fresh biomass and the plant water content the CLAIR model, even
outperformed the empirical models evaluated before. Findings for the parameter LAI, however,
were still the soundest, whereby the agreement between modelled and observed was highest
before the phenological stage heading.

By the use of this rather simple semi-empirical model it was also possible to regionally extract
the desired parameters by simple model inversion.

4.2 Biophysical parameter retrieval using SAR data

In this section also the overall question was again:

Is it possible to derive the values of important crop variables from various remote sensing
data?

now assessed for the SAR data, whereby in detail it was tried:

e to analyse the potential of different polarizations and incidence angles for the retrieval of
different biophysical parameters (section 4.2.1)

e to analyse the performance of the Water Cloud model and multiple regressions using
different SAR data and the additional variable vegetation roughness (section 4.2.2 and
4.2.3)

e to extract important phenological events such as heading/flowering from remote sensing
information for the adjustment of the retrieval models and the simulation model (section
4.2.4)

e to invert the used models for regional biophysical parameter extraction (section 4.2.2 and
4.2.3)

Like for the multispectral sensors average intensities were calculated for all analysed fields and
the parcel boundaries were buffered with 30m zones.
Another processing step was the transformation of the linear backscattering coefficient into
decibels:

olam) = 10 X logipo” (4.6)
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However, for some mathematical calculations, e.g., multiple regression analysis, linear values
are more suitable, thus only for the calculations using the Water Cloud Model and for displaying
purposes linear values are transformed into decibels.

As an additional information the local incident angle was also calculated by use of the DEM
and the respective acquisition angle ranging from near to far range. This information is essential
for each field and acquisition date and is especially important when using the ASAR data, due
to the differences in the acquisition geometry.

4.2.1 Empirical regressions

In a first step the general relationship between C-band backscatter measurements and biophys-
ical parameters of winter wheat were analysed by using simple empirical regressions for all
acquired data in the years 2005 and 2006. This was done by just plotting the backscatter co-
efficients against the biophysical parameter and assassing the relationship without any further
independent validation. No additional information like incidence angle or soil characteristics
were considered. Of interest were the performances of the different polarizations and incidence
angles for the biophysical parameter estimation.

VV-polarization

In Fig. 4.8 the relationship using a logarithmic regression between the backscatter coefficient
[ERS-2] and the different biophysical parameters is displayed. Obvious is that the agreement
is only valid for the fresh biomass and the water content. For these two the coefficients of de-
termination (R?) were significant, but the scattering was rather large in the mid value range.
Generally no clear trend of under- or overestimation was obvious. When considering exem-
plarily the fresh biomass of the two research years individually (Fig. 4.9), slight differences
between the two years become obvious. For the year 2005 the coefficient of determination is
not as high, however the scattering seems to be less, especially concerning the biomass range
from 3 to 5kg/m?. This might be due to different meteorological conditions or different manage-
ment practices. Overall there seems to be no major disagreement in the relationship between the
two years. In summary concerning the inter-year comparison, the findings seem to remain valid
in time. This is important, because due to the small number of data pairs, findings become more
stable when looking at both years together. For modelling the leave-one-out cross-validation
strategy was chosen, always neglecting one data pair of the time-series 2005 and 2006.

HH and HV-polarizations and ratio

In Fig. 4.10 the relationship between the HH, HV and the ratio (HH/HV) with the different
biophysical parameters is shown. A third order polynomial described the patterns best. Only
for the fresh biomass the ratio combining the HH and HV polarization outperformed the others,
concerning R? and the scattering. For the other parameters the HH polarization showed the
strongest relationship. For the dry biomass retrieval, the highest R? was found, but also the
scattering seemed to be more present than for the other parameters. Due to the different inci-
dence angles in a second analysis, different acquisition geometries were taken into account.
When comparing the findings for the different polarizations it becomes appearend that the
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Figure 4.9: Logarithmic relationship between the ERS-2 backscatter and fresh biomass [kg/m?]
for the two research years individually.

HH polarization, or for the fresh biomass the ratio outperform the results achieved for the VV
polarization. In order to statistically validate these findings, in a next step multiple regression
analysis and actual modelling will be done. Analysis combining the HH and VV polarization
could not be assessed, due to the rather large time gaps between the acquisitions of ERS-2 and
ASAR data.

Different ASAR swaths

Exemplarily for the biophysical parameter fresh biomass and the relationship between the dif-
ferent ASAR polarizations, under consideration of the two different used swaths (Fig. 4.11),
are studied and compared to the above findings (Fig. 4.10). What becomes obvious is that the
relationship between the backscatter and the fresh biomass increases when looking at the swath
separately. Especially swath 6 features a strong relationship with the biophysical parameters,
which is reasonable due to the fact that the soil signal, when using this acquisition geometry is
rather low and thus, the proportion of the vegetation signal is higher.

Due to the few ASAR acquisitions and the fact that in the next analysis steps the local incidence
angle will be considered additionally, the two different swath will be analysed together.
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ical parameters.
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Figure 4.11: Polynomial relationship between the two used ASAR swaths and the observed
fresh biomass.

4.2.2 Multiple linear regression analysis

The above findings and the literature show that the backscatter signal is not only influenced
by the biophysical parameter, but also by sensor characteristics, e.g., incidence angle and other
target characteristics, e.g., soil moisture. Therefore, in a next step modelling and the inversion
of the models was done by considering also parameters like soil moisture, represented here by
the precipitation sum over five days before the overflight, soil roughness, vegetation roughness
and the actual local incidence angle. This was done by taking into account all available data
sets, using the leave-one-out cross validation method, based on the term:

biophysical parameter = A+ B x ¢ +C xlia+ D xvr+ E xnd+ F x sr  (4.7)

with ¢¥ the backscattering coefficient [linear], lia the local incidence angle [radian], vr the
vegetation roughness [cm], nd the precipitation sum [mm], sr the soil roughness [cm] and
the unknown coefficients A to F'. The actually fitted coefficients of the respective multiple
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regression models are listed in the chapter ATTACHMENT (A, Tab. A.2, Tab. A.3, Tab. A4
and Tab. A.5).

The parameter vegetation roughness, as described in the chapter DATA (3) perfectly describes
the crop development, firstly increasing until the end of flowering and afterwards with advanced
ripening decreasing again, due to crop bending and expending ears. It is correlated with the
biophysical parameters to be extracted and might also influence the backscattering coefficients,
due to their sensitivity to roughness aspects. For the acquisition times of ERS-2 the R? between
the respective biophysical parameter and the vegetation roughness were: FM=0.57, DM=0.45,
LAI=0.33, PWC=0.36. For the acquisition date of the ASAR sensor a stronger relationship was
found with R? of: FM=0.65, DM=0.56, LAI=0.28 and PWC=0.5. The strongest impact of the
parameter vegetation roughness should be on the retrieval of the fresh biomass using ASAR or
ERS-2 data.

Firstly multiple regression analysis are done for all parameters concerning the ERS-2 (VV polar-
ization) time-series, shown in Fig. 4.12. The figure displays the modelled versus the observed
parameters together with the coefficient of determination (1?) for the independent validation
process. For the fresh biomass the modelled and observed values are in very good agreement
with each other, featuring a very high R? with 0.71. The rms error between the estimated fresh
biomass and in-situ measurements is at approximately 1.6kg/m?. The scattering around the
1:1 line increases slightly with increasing biomass values (>3 kg/m?). Findings for the plant
water content are also reasonable, featuring a R? of 0.55 (rmse= 1.3kg/m?). The scattering
is quite high for low values in contrast to the fresh biomass. For the parameters dry biomass
and LAI the coefficients of determination are not significant with values below 0.5 and rather
high divergence of the values around the 1:1 line. For low LAI values there is a trend of value
overestimation and for high LAI values an underestimation obvious.
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Figure 4.12: Measured versus observed biophysical parameters, modelled by multiple regres-
sion using ERS-2 data (VV) from 2005 and 2006.

In Fig. 4.13 in contrast to the findings for the VV-polarization the results for biophysical pa-
rameter modelling using HH, HV and the ratio are displayed. Concerning the fresh biomass,
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Figure 4.13: Measured versus observed biophysical parameters, modelled by multiple regres-
sion using ASAR data (HH, HV and ratio) from 2005 and 2006.

overall the soundest results were achieved, when using the HH polarization (R? = 0.87, rmse =
1.6kg/m?). Also the performances when using HV polarization or the ratio are very good and
scattering is rather low for all three models. The biggest scattering can be observed around the
fresh biomass range from 2 -3 and 4.5 - 5kg/m?. Concerning the plant water content the R?
of the three models were quite different from each other. The highest relationship was found
when using the ratio (R? = 0.85, rmse = 1.2kg/m?) and the lowest when using the HH polar-
ization (R? = 0.41,rmse = 1.3kg/m?). The overall scattering was not that high and a trend
of over or underestimation could not be clearly detected. For the parameter dry biomass the
ratio (R? = 0.85, rmse = 0.6kg/m?) outperformed the models using a single polarization. For
larger dry biomass values a slight tendency of underestimation can be detected. Concerning
the parameter LAI modelling with the HV polarization had the highest R? (0.61)(rmse = 0.6).
When comparing the scattering behaviour with the other parameters, it is rather large in regard
to the small data range, but also not featuring a clear trend. For the parameters FM and LAI
these findings are slightly different to the previous first relationship analysis. This is probably
due to the fact that for the first time now an independent validation was performed and also
other features are considered. For the DM and the PWC the same polarization (HH) as in the
first general overall trend analysis still performed best. Generally, it was not possible to define
a here studied ASAR polarization, performing sufficently for all considered biophysical param-
eters.

When comparing the results achieved using the ASAR sensor (HH, HV, ratio) with the ERS-2
sensor (VV) it becomes apparent that the models using the ASAR sensor outperformed (except
for HH polarization for plant water content) the ERS-2 sensor. The results are compared with
the literature (Dente et al., 2007; Mattia et al., 2003) appropriate and within a reasonable range.
Due to the fact that the results will be later used for regional biophysical parameter extraction,
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the parameters vegetation and soil roughness are not that appropriate to use. For the regional
extraction also the parameter soil moisture could not be used and therefore the soil moisture
impact was represented, as also already done in the previous analysis, by precipitation sums.
For regional applications it is important to only use model input parameters, which can be ob-
tained without a complex ground truth campaign of the whole region. In a next step multiple
regression analysis was done only using the term:

biophysical parameter = A+ B x ¢° + C x lia + E x nd (4.8)

with ¢¥ the backscattering coefficient [linear], lia the local incidence angle [radian], nd the
precipitation sum [mm] and the unknown coefficients A, B, C' and E.

Fig. 4.14 displays the observed versus the modelled biophysical parameters considering the
ERS-2 sensor (VV). Like for the results in Fig. 4.12 only for the biophysical parameters
fresh biomass and plant water content significant retrieval results, with B > 0.5 could be
achieved. Whereby, for both the scattering has increased a little (rmse 1.7kg/m?* (FM),
rmse = 1.4kg/m? (PWC)). There is again for both a trend of value overestimation within the
low value range and of underestimation within the high value range obvious. Generally, it seems
that the roughness parameters have a higher influence, when retrieving the fresh biomass, as as-
sumed previously, due to the high correlation of the vegetation roughness and the fresh biomass.
In Fig. 4.15 achievements using the ASAR sensor are displayed. For the fresh biomass, results
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Figure 4.14: Measured versus observed biophysical parameters, modelled by multiple regres-
sion (without considering vegetation and soil roughness) using ERS-2 data from
2005 and 2006.

have decreased for all polarizations, compared to the multiple regressions shown in Fig. 4.13.
Especially, for the ratio the scattering has increased significantly (from rmse 1.7 to 1.9kg/m?),
which becomes very obvious in the high biomass range. In contrast to the previous results now
modelling using the HV polarization outperforms the others concerning R? (0.83) and the scat-
tering behaviour (rmse=1.7kg/m?), especially obvious in the biomass range above 4.5kg/m?. It
seems that the roughness parameters, especially have an influence on the HH polarization and
the ratio. As expected previously due to the high correlation between the fresh biomass and the
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vegetation roughness the modelling results have decreased. For the plant water content there
is no clear relationship any more for all studied polarizations. The coefficients of determina-
tion are all below 0.5 and the scattering increased drastically over the whole range. For this
parameter the backscatter influence by vegetation and soil roughness is rather high. For the dry
biomass the coefficients of determination did not decrease as much. The scattering, regarding
modelling with the HH polarization increased (from rmse=0.7 to 0.8kg/m?), especially in the
high biomass range. For the HV and the ratio the scattering and 122 nearly stayed the same, here
the roughness informations have the largest impact on the HH polarization. When using the
ratio the modelling results slightly outperform the HV polarization concerning the scattering
(rmse: HV=0.69, HH/HV= 0.67). Concerning the biophysical parameter LAI, only for the HV
polarization significant results in regard to R? and the scattering behaviour (rmse=0.6kg/m?)
were achieved. The largest scattering can be found around LAI values between 1 and 1.5. Even
so for the ratio, R? is above 0.5, the scattering is rather high. For this parameter again roughness
informations had the highest impact, when modelling with the HH polarization.

In this analysis it is possible to define a suitable polarization for all biophysical parameters
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Figure 4.15: Measured versus observed biophysical parameters, modelled by multiple regres-
sion (without considering vegetation and soil roughness) using ASAR data (HH,
HYV and ratio) from 2005 and 2006.

together. The HV polarization outperforms all other polarizations, which stands in contrast to
the previous findings (except for the DM).

Overall, in regard to all derived parameters and polarizations (Fig. 4.14 and Fig. 4.15) the
analysed ASAR polarizations exceeded the ERS-2 polarizations, except for the parameter plant
water content. For all other parameters using the ASAR sensor gave more reliable results. In
agreement to the findings from the section Empirical regressions (section 4.2.1) the findings
underline the fact that the used ASAR polarizations outperform the VV polarization from ERS-
2, for the retrieval of nearly all analysed biophysical parameters (except plant water content).
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The assumption that the HH polarization for fresh biomass and for the others the ratio would
perform best could not be stressed. Instead the HV polarization surpasses the others. Only in
the case of the dry biomass, the assessed scattering is slightly lower, when modelling with the
ratio.

It might be possible to actually improve the results by using generalized assumptions of the
vegetation and soil roughness over the vegetation period. For the vegetation roughness one
could presume increasing values until end of flowering and afterwards decreasing values. For
the soil roughness one could imply high values during early phenological stages and lower
values with increasing plant development. Due to the fact that the precipitation has a decreasing
impact on the soil roughness and because with increasing vegetation coverage, the soil impact
on the backscattering coefficient decreases as well.

4.2.3 Semi-empirical Water Cloud Model

In a next analysis step the retrieval performance of the semi-empirical Water Cloud Model
was analysed considering all available polarizations. Especially, of interest were the results
for extracting the plant water content from the used ASAR polarizations and the biophysical
parameters dry biomass and LAI from the ERS-2 VV polarization, because the just previously
mentioned results were not valid. Firstly retrieval results, when also using the parameter veg-
etation roughness are discussed and afterwards, the model without considering the roughness
parameters. Model calibration and validation, based again on the leave-one-out cross-validation
method, was used. The individually fitted coefficients for each model are listed in the chapter
ATTACHMENT (A, Tab. A.6, Tab. A.7, Tab. A.8, Tab. A.9).

The assessment of the impact, when integrating the vegetation roughness into the semi-empirical
Water Cloud Model, the model original introduced in chapter 2.2.3 was extended by A x

Veged:
—2xBxb
0 p
= 4.
7 cosf + C(0) + A x Vege) + D x m, “49)

with ¢ expressed in dB, @ the incidence angle [radian], the coefficients A,B,C,D, b, the re-
spective biophysical parameter, V ege the vegetation roughness in cm and m,, the soil moisture
(expresses as precipitation sum). In the literature the impact of the soil roughness is described
as incidence depended, therefore the vegetation roughness is formulated as depended on the
incidence angle.

In Fig. 4.16 the modelled versus observed biophysical parameters are displayed with the 1:1
line, as a first indicator of the relationship and the respective R2. Explicit is that for all param-
eters there was a trend of underestimation in the higher value regions. Only for the parameter
fresh biomass a significant R? > (.5 was achieved. When comparing the findings with Fig.
4.12, R? has decreased while the rmse has increased to 1.7kg/m?. For all other observed pa-
rameters results are even less consistent, featuring rather dominant scattering.

In the next figure (Fig. 4.17) modelling results for the ASAR sensor using the different polar-

izations are displayed. The results are not really valid, featuring a clear trend of underestimation
for all parameters and polarizations. Only for the fresh biomass (HH polarization) and the plant
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Figure 4.16: Measured versus observed biophysical parameters, modelled with the Water Cloud
model extended by the parameter vegetation roughness (ERS-2 data from 2005 and
2006).

water content (HH polarization) significant R? could be observed. Compared to Fig. 4.13,
results for the fresh biomass and the plant water content have decreased featuring also a high
scattering.

Due to the already mentioned problem of the need for the model to be utilized to larger regions
and the not very sound results just described, in a next step the performance of the original
Water Cloud Model, without considering roughness parameters, was assessed (section 2.2.3).
In Fig. 4.18 the results using the ERS-2 data are displayed. For the parameters fresh biomass
and plant water content a clear trend of underestimation within the higher value region can
be observed. For the other two parameters, a rather dominant scattering around the 1:1 line,
featuring no clear trend, becomes obvious. Compared to Fig. 4.16, there was no clear mod-
elling improvement. Results for the fresh biomass and the plant water content stayed nearly
the same and for the other two the scattering increased enormously. Concerning the modelling
performances using the ASAR sensor (HH, HV, ratio) displayed in Fig. 4.19, there is again a
clear trend of underestimation for the higher value range. Only for the LAI using HH or HV
polarization there is actually a distribution around the 1:1 line, featuring a tremendous scat-
tering behaviour. Compared to Fig. 4.17 the modelling performances did really improve, still
exhibiting rather high biases for all analysed parameters and polarizations.

Overall, when comparing all modelling approaches using SAR data, simple multiple regression
analysis outperformed the semi-empirical modelling. Best results were achieved when also con-
sidering roughness features, however by virtue to regional application, it is more reasonable to
neglect them.
When using the ERS-2 sensor (VV) only the retrieval of fresh biomass and plant water content
delivered significant results. For the ASAR sensor, modelling fresh biomass and LAI using the
HV polarization or the dry biomass using the ratio was appropriate.
The use of the Water Cloud Model delivered no valid results, as opposed to literature conclu-
sions, where especially for the plant water content retrieval results were reasonable (Attema &
Ulaby (1978); Jongschaap & Schouten (2005); Prevot et al. (1993)).
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Figure 4.17: Measured versus observed biophysical parameters, modelled with the Water Cloud
model extended by the parameter vegetation roughness, using the ASAR data from
2005 and 2006.

On basis of the mapped fields during the ground truth campaign in 2006 the multiple regressions
were inverted and applied to all winter wheat fields in the region of Meckenheim. In Fig.
4.20 exemplarily for four images, fresh biomass maps are calculated. During the phenological
development fresh biomass increases until ripening. The heterogeneity of the mapped fields is
the largest for images taken during maximum LAI (fresh biomass). For the first and last fresh
biomass maps shown, the value variety is not as high. In this figure also the trend of over- and
underestimation, as shown in Fig. 4.14 becomes obvious. As the multi-temporal fresh biomass
dynamics, especially between the last three dates is not as dominant as the monitored ground
truth information suggested.

4.2.4 Heading/flowering date

Flowering is a very important and distinctive phenological event in wheat production, marking
the start of grain growth in ears at the top of the canopy, it is an essential parameter for crop
growth modelling. Ear biomass per unit area increases over time, through the increase in the
number of flowering plants, through grain growth from current photosynthesis products and
through translocation of carbohydrates from temporary storage organs to the developing grains.
The growing ears significantly affect the SAR backscatter signal in VV polarization, through the
increasing biomass at the top of the canopy. This modifies the crop geometry and crop moisture
distribution, hence attenuating the SAR signal. ERS-2 time-series (late 2004 to late 2006) of
winter wheat fields were assessed for the extraction of the phenological stage heading/flowering
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Figure 4.18: Measured versus observed biophysical parameters, modelled with the Water Cloud
model using the ERS-2 data from 2005 and 2006.

(Fig. 4.21). During phenological development, both curves start with a local maximum for
soil backscattering, to a local minimum, when the soil backscattering is fully suppressed at
heading/flowering, continuing to a local maximum at maturity, when the soil characteristics
increasingly influence the signal again. The heading/flowering date of the winter wheat crops
can be detected by finding the local backscatter minimum (i.e. at maximum attenuation) in the
studied ERS-2 time-series. It denotes the maximum water content per unit surface area and
hence the heading/flowering date. For the two fields shown in Fig. 4.21 this is the case at the
beginning of June. The findings were in a second step extracted to the whole research region.
In order to enable the extraction of the exact date, it is important to have a dense time-series,
especially during the important phenological development stages.

4.2.5 Conclusions

In this section also the overall question:

Is it possible to derive the values of important crop variables from various remote sensing
data?

was assessed, now using the SAR data, in detail it was attempted:

e to analyse the potential of different polarizations and incidence angles for the retrieval of
different biophysical parameters

e to analyse the performance of the Water Cloud model and multiple regressions using
different SAR data and the additional the variable vegetation roughness
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Figure 4.19: Measured versus observed biophysical parameters, modelled with the Water Cloud
model using the ASAR data from 2005 and 2006.

e to extract important phenological events such as heading/flowering from remote sensing
information for the adjustment of the retrieval models and the simulation model

e to invert the used models for regional biophysical parameter extraction

Considering the potential of the different polarizations and incidence angles for retrieval pur-
poses the findings were contradictory. Satisfactory results for the VV polarization could only
be achieved for the retrieval of fresh biomass and the plant water content. For the ASAR sensor
modelling fresh biomass and LAI using the HV polarization or the dry biomass using the ratio
was appropriate. It was not really possible to make an overall assumption about the most ap-
propriate polarization to use. Concerning the incidence angle, first simple analysis have shown
that higher incidence angles, like the ASAR swath 6 outperform lower incidence angles, due to
a smaller soil signal amount in the backscattered.

Regarding the performance of empirical and semi-empirical modelling and the additional pa-
rameter vegetation roughness, modelling approaches using simple multiple regression analysis
outranged the semi-empirical modelling. Best results were achieved when also considering
roughness features, due to the need of regional modelling and operational use, it is more appro-
priate to not consider them. Without considering the roughness features, a reasonable regional
retrieval of all desired parameters was achieved. The phenological stages heading/flowering
could be derived satisfactorily from the VV time-series. The VV time-series was dense enough
during the important and highly dynamic stages of the crop growth period. Findings could also
be easily applied for regional extraction of the heading/flowering date.
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Figure 4.20: Modelled fresh biomass for four different ERS-2 acquisitions, using multiple re-
gression without roughness information.
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Figure 4.21: Identification of the heading/flowering date using the ERS-2 time-series, exem-
plarily shown for one winter wheat field within each study year.

4.3 Biophysical parameter derivation using
multi-sensoral data

Within the following section the overall question was:

Is it possible to derive the values of important crop variables from various remote sensing
data?

assessing in further detail:

e the potential of combining multispectral and SAR data for the derivation of biophysical
parameters (section 4.3)

e the inversion of the used models for regional biophysical parameter extraction (section
4.3)

For the combined modelling approach only those data pairs (multispectral and SAR) were con-
sidered with acquisition dates within one week. This was done, because otherwise the biophys-
ical field parameters at the focus of the retrieval, would have changed to drastically mean wise.
In Tab. 4.9 multispectral and ERS-2 data pairs and in Tab. 4.10 for ASAR and the multispectral
data, together with the used ground truth data are listed. As for the previous studies the multi-
spectral vegetation indices used (NDVI, WDVI), were all intercalibrated to the reference sensor
Landsat 5 TM. The modelling was done with the leave-one-out cross-validation method.
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Table 4.9: Multspectral and ERS-2 data pairs together with the used ground truth date (GT).

| multispectral sensor | date || ERS-2 date | GT |

ASTER 04/03/05 || 04/15/05 | 04/11/05
QuickBird 04/22/05 04/21/05 | 04/25/05
Landsat 5 TM 05/05/05 05/10/05 | 05/09/05
Landsat 5 TM 05/28/05 05/06/05 | 05/30/05

QuickBird 06/20/05 || 06/24/05 | 06/20/05
SPOT 4 05/04/06 || 04/25/06 | 05/03/06
SPOT 2 05/11/06 || 05/11/06 | 05/10/06
SPOT 5 06/24/06 || 06/15/06 | 06/21/06
SPOT 2 07/14/06 || 07/20/06 | 07/19/06

Table 4.10: Multspectral and ASAR data pairs together with the used ground truth date (GT).

| multispectral sensor | date || ASAR date | Swath | GT |

ASTER 04/03/05 || 04/12/05 6 04/11/05
SPOT 4 05/04/06 || 05/02/06 6 05/03/06
SPOT 5 06/24/06 || 06/25/06 2 06/28/06

4.3.1 Combined modelling using a simple linear approach

In a first analysis a combined modelling approach using the NDVI and the backscattering coef-
ficients by linear regression was assessed (Brakke et al., 1981), by using the term:

by=A+Bx NDVI+C x ¢° (4.10)

with b, the respective biophysical parameter, the intercalibrated vegetation index NDVI, the
backscattering coefficient o0 and the unknown to be fitted coefficients A,B and C. The fitted co-
efficients for this approach are listed for all analysed polarizations and biophysical parameters
in Tab. A.10 in the chapter ATTACHMENT (A).

In Fig. 4.22 the retrieval results for combining the NDVI with the ERS-2 VV backscattering
coefficients are displayed, together with the 1:1 line, the R? and the rmse for all derived bio-
physical parameters. Statistically reasonable results could only be achieved for the dry biomass
and the plant water content. When comparing the findings with the performances of the multi-
spectral CLAIR model there was a decrease in the accuracy. Compared to the performance of
the multiple regression results (VV polarization), there was a slight improvement for the plant
water content and the LAI retrieval. Generally combing the two sensors does not make sense in
this case, one should rather instead use the multispectral data alone.

In Tab. 4.11 the statistical results for combining the NDVI with the ASAR HH, HV polariza-
tion or the ratio are shown. Concerning the fresh biomass valid results could be achieved for
the HH polarization and the ratio combinations, both featuring rather low rmse. Combing the
NDVI with the ratio actually slightly outperforms findings for the CLAIR model or the mul-
tiple regression results, when only using the ratio. The combination also outperforms the HH
polarization modelling, concerning the height of the scattering. For this biophysical parameter
a combined modelling using the ratio and the NDVI makes sense. In this case actually the ratio
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Figure 4.22: Combined biophysical parameter modelling using linear regression, considering
the NDVI (intercalibrated) and the ERS-2 backscatter.
FM=fresh biomass [kg/m?], DM= dry biomass [kg/m?], LAI [m?/m?], PWC= plant water
content [kg/m?]

exceeded the other used ASAR polarizations, whereby for the single sensor case it was the HV
polarization.

Concerning the dry biomass, the combination with the ratio clearly surpasses the CLAIR model.
In regard to the multiple regressions using the ASAR sensor, even though the R? for the non
combined modelling is higher, for the ratio the rmse has decreased from 0.6 to 0.38, giving a
sounder performance. For the HH or HV polarization the findings were not as valid. Also for
the single sensor case modelling using the ratio outperformed the other polarizations.
Concerning the plant water content and the LAI the combined approach outnumbered the single
ASAR use for all polarizations. Using the CLAIR model for the retrievals, still gives sounder
results, featuring less scattering. Overall, for these parameter it makes no sense to combine the
sensors by linear regression.

4.3.2 CLAIR model combined with multiple linear regression for
SAR data

As findings for the NDVI and ERS-2 VV combination approach were not as sound, in a next
step other fusion approaches were assessed. The fusion was realised by combining the CLAIR
model (before and after heading/flowering) with the backscatter coefficient, the local incidence
angle of the ERS-2 acquisition and the precipitation sums, were analysed by using the following
term:

WDVI

1
bp = WCLAIR X |:—aln (1 — m

)} + Wi x [A+ B x 0”4+ C x lia + E x nd]
(4.11)
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Table 4.11: Combined biophysical parameter modelling using linear regressions, considering
the NDVI (intercalibrated) and the ASAR backscatter.

bio. parameter pol. R? | rmse
FM HH 0.60 | 0.85

HV 0.08 | 0.87
HH/HV || 0.76 | 0.88
DM HH 0.35 | 0.73
HV 0.41 ] 0.34
HH/HV || 0.78 | 0.38
PWC HH 0.53 | 0.57
HV 0.01 | 0.46
HH/HV || 0.59 | 0.59
LAI HH 0.63 | 0.26
HV 0.64 | 0.25
HH/HV || 0.66 | 0.23
bio. parameter= biophysical parameter, pol.=polarization, FM=fresh biomass [kg/ha], DM= dry

biomass [kg/ha], LAI [m?/m?], PWC= plant water content [kg/ha]

With the following terms: the vegetation index WDVI, ¢ the backscattering coefficient [linear],
lia the local incidence angle [radian], nd the precipitation sum [mm], the coefficients W DV I,
a, A, B, C'and E. In order to contribute to the different modelling performances of the single
sensor analysis, weighting factors were used. Weparr (Fig. 4.6) stands for the coefficients of
determination, when modelling with the CLAIR model, either before or after heading/flowering
and W), for the multiple regression coefficients of determination for the respective biophys-
ical parameter (Fig. 4.14). The previous findings for each sensor and biophysical parameter
are taken into account through the different weighting factors. The fitted coefficients for this
modelling approach are listed in Tab. A.11 within the chapter ATTACHMENT(A).

Due to the fact that the ASAR time-series was not dense enough, only three combined data pairs
(4.10) could be matched, covering six fields before heading and only four fields after heading.
Therefore, the analysis could not be done for the ASAR sensor, due to statistical reasons.

In Fig. 4.23 the retrieval results with the 1:1 line, the R? and the rmse for each biophysical pa-
rameter are displayed. Generally, when comparing the findings with the combination of NDVI
and the backscattering coefficients (Fig. 4.22), they have improved significantly for all retrieved
parameters. Also when collating them with the Fig. 4.14, showing the multiple regression re-
sults for the ERS-2 analysis they have improved. Especially, the results for the LAI and the
dry biomass feature a significant improvement. When comparing them with the multispectral
findings, using the CLAIR model there is no clear trend of improvement. For the fresh biomass
during early phenological stages even though the R? has increased slightly, the trend of under-
estimation has also increased rapidly. During late phenological stages there is no clear trend of
the scattering phenomena, but the R? has decreased in comparison to using the CLAIR model
alone. For this biophysical parameter the shown combined approach does not really improve
the results and the multispectral retrieval alone outperforms it. For the dry biomass in contrast,
this approach features a high improvement in comparison to the CLAIR model. Especially,
for late phenological stages the scattering around the 1:1 line has decreased and the trend of
underestimation can not be observed any more. Although the weighting of the ERS-2 informa-
tion was rather low with just 0.28 it improved the findings. For the LAI retrieval during early
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Figure 4.23: Combined biophysical parameter modelling using the CLAIR model and multiple
regression, considering the WDVI (intercalibrated) and the ERS-2 backscatter.
FM=fresh biomass [kg/m?], DM= dry biomass [kg/m?], LAI [m?/m?], PWC= plant water
content [kg/m?]

phenological stages, even though the scattering is not that high, the R? has decreased. During
late phenological stages the findings are very good featuring a high R? and hardly any scatter-
ing. The actually little weighted (0.33) ERS-2 information has improved the performance. The
modelling of the parameter plant water content has also improved for late phenological stages.
Overall, especially during late phenological stages the ERS-2 information improved the mod-
elling results in comparison to only using the CLAIR model (exception fresh biomass).

4.3.3 Combining the CLAIR and Water Cloud model

Finally the combination of the CLAIR and Water Cloud Model is analysed for all biophysical
parameters. Again only the performances using the ERS-2 sensor could be assessed, due to
the small amount of appropriate ASAR scenes. The fitted coefficients are in Tab. A.12 in the
chapter ATTACHMENT (A). Biophysical parameter modelling was done by the term:

_ WbDVI LW " (6 —C x 0 — D x nd) x cos()
WDV I e —2x B

bp = WCLAIR X [—éln (1

(4.12)
with the vegetation index WDVI, ¢ the backscattering coefficient [dB],  the local incidence
angle [radian], nd the precipitation sum [mm], the coefficients WDV I, «, B, C and D.
For contributing to the performances of the different sensor systems weighting factors were
used. Werparr (Fig. 4.6) stands for the R?, when modelling with the CLAIR model, either
before or after heading/flowering and Wy, ¢y, for the R? of the performances from the Water
Cloud Model, for the respective biophysical parameter retrieval (Fig. 4.18). The coefficients
of determination are retrieved from the previous single sensor analysis. This way the single
modelling performances for each respective parameter and sensor are taken into account. In
Fig. 4.24 the respective results for each biophysical parameter are displayed. Generally, the
results for modelling during early phenological stages are sounder than for the later stages.
When, comparing the findings with Fig. 4.23 there is a decrease in the performance, except for
the parameter fresh biomass there is an increase in modelling accuracy, especially concerning
the scattering behaviour. But still the CLAIR model outperformed the combined approach for
fresh biomass.
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Figure 4.24: Combined biophysical parameter modelling using the CLAIR model and the Water
Cloud model, considering the WDVI (intercalibrated) and the ERS-2 backscatter.
FM=fresh biomass [kg/m?], DM= dry biomass [kg/m?], LAI [m?/m?], PWC= plant water
content [kg/m?]

4.3.4 Conclusions

Again within this section the overall question was:

Is it possible to derive the values of important crop variables from various remote sensing
data?

here assessed in further detail:

e the potential of combining multispectral and SAR data for the derivation of biophysical
parameters

e the inversion of the used models for regional biophysical parameter extraction

The analysed method of combining the multi-sensoral information by linear regression did not
bring satisfactory results and was outperformed by single sensor use, only taking into account
the multispectral information. Only for the fresh biomass modelling, using the NDVI and the
ASAR ratio, a marginal improvement in regard to single multispectral sensor modelling was
assessed. For the combined use of the CLAIR and Water Cloud Model no sound results were
achieved. The combination by using the CLAIR model and multiple regression featured slight
improvements, in contrast of the single multispectral sensor use. Especially, during late phe-
nological stages the assessed VV information improved the modelling results, in comparison
to only using the CLAIR model. Due to the use of rather simple input parameters it was also
possible to enable regional parameter modelling.
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4.4 Summary of the previous findings

When comparing all the various modelling approaches, using the different sensor systems for
the four analysed biophysical parameters, there appears to be no generalized answer concern-
ing the best sensor (polarization) to use. For the fresh biomass multispectral data using the
CLAIR model and the ASAR multiple regression analysis, based on the HV polarization per-
formed valid. The multispectral sensors outperform the ASAR HV polarization, in regard to
low biomass and rather high biomass value (above 5kg/m?) modelling. The ASAR HV po-
larization performs sounder in the biomass range between 4 - Skg/m?. Using the ERS-2 VV
polarization functions satisfactory and modelling can be done over the whole biomass range.
Concerning the parameter dry biomass modelling by the use of the VV polarization is not valid.
The ASAR ratio exceeds the results using the CLAIR model before and after heading/flowering.
Even so the scattering in the low biomass range for the multispectral sensor modelling seems
to be a bit less. There is a clear trend of underestimation for modelling the high biomass range,
where the SAR ratio outranges the multispectral data. For the plant water content retrieval, the
multispectral data clearly outperform the SAR data for all considered times. But also modelling
by the use of the VV polarization is appropriate. For the LAI retrieval the multispectral data
deliver the best results, over the whole value range, with a slight underestimation in the high
LAI range. The HV polarization is valid for LAI retrieval, however the scattering around the
1:1 line is dominanter than for the multispectral data. By just using the Water Cloud Model
alone the retrieval results are not as sound.

The first assessed fusion method, by simple linear regression performed more valid, than the sin-
gle multispectral modelling in the case of ASAR ratio combined with the NDVI, for the fresh
biomass retrieval. Concerning all other biophysical parameters and combinations, the single
multispectral modelling approach performed sounder. Regarding the other fusion approaches,
the presented retrieval model combining the CLAIR model (multispectral data) and multiple
linear regressions (SAR data) exceeded the synergetic modelling using the CLAIR and the Wa-
ter Cloud model. The used weighting factors, coming from the previous single sensor analysis,
improved the results. Especially, when the mutispectral information is weighted slightly higher
than the SAR information. The suggest combined modelling approach improved the retrieval
results in contrast to single sensor modelling, especially during late phenological stages. Large
improvements were assessed for the dry biomass modelling especially, during early phenolog-
ical periods, but also for stages after heading/flowering. The findings might even be improved
by tuning the weighting factors, but this might be critical because there is no scientific reason.
It would more or less be a try and error fitting of the coefficients. By the use of the different
ASAR polarizations combined with the multispectral data the results of the suggested fusion
approaches also might improve.
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5 CERES-WHEAT CROP GROWTH
MODELLING AND FINAL YIELD
ESTIMATION

Within the following section the overall assessed question was:

Is it possible to integrate important crop variables gained from multi-source data into a
dynamic crop growth model in order to increase the final yield estimation accuracy?

Challenges hereby were:

e to assimilate biophysical parameter maps retrieved from different remote sensing data
into a crop growth model in order to improve the accuracy of wheat yield predictions
(section 5.4)

e to analyse the effect of assimilating separately or synergistically SAR and multispectral
time-series information (section 5.4)

e to analyse the effect of acquisition time and frequency of the assimilated multispectral
data (section 5.5)

e to assess whether time gaps in the multispectral data series can be filled by SAR informa-
tion (section 5.6)

e to transfer the findings of the point-based crop growth model for regional final yield
prediction (section 5.8)

e to analyse the performance of the suggested approach in comparison to a simple direct
yield estimation method (section 5.9)

The retrieved remotely sensed information will finally be assimilated into the CERES-Wheat
model for crop growth modelling and final yield estimation. Therefore, first additional infor-
mation will be prepared and the genetic coefficients listed in Tab. 2.3 will be calibrated. The
used biophysical parameters dry biomass and final yield are converted into kg/ha (1kg/ha equals
10,000kg/m?), due to comparability reasons with the CERES-Wheat outputs. In order to use
the suggested assimilation method of input parameter re-initialization, a sensitivity analysis of
the initial model parameters will be performed. The CERES-Wheat modelling results, when
assimilating the different remote sensing information, will be analysed. The advantage of the
suggested assimilation is that the retrieval errors from the remotely sensed parameters are not
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that drastically forwarded into the model, as by, e.g., using the updating or forcing method.
This is especially important, when assimilating the parameters gained from SAR data, as these
findings were not that sound. Then a sensitivity analysis of frequency and acquisition time of
the multispectral data will be assessed, due to the fact that multispectral data acquisitions are
often hampered by cloud coverage. The question hereby is, if SAR information can overcome
a lack of multispectral data. Finally, the data set performing best in the assimilation process in
regard to the final yield, will be used for crop yield estimation within the whole research region.
These results will be then compared to an approach of direct multi-sensoral yield estimation.

5.1 Additional information

Firstly, the additionally needed information had to be prepared, which were multi-temporal in-
puts, e.g., weather information and spatially varying inputs, e.g., soil information. Also general
assumptions about the management practices, e.g., row spacing were made on the basis of the
in-situ information observed in the research years. Concerning the set management practices
the row spacing was set to 12cm and the planting depth to 5.5cm. The daily weather data, mea-
sured at the climate station in Klein-Altendorf from 2004 until 2006 were transformed into daily
temperature minimum and maximum [°C], daily precipitation [mm] and daily values of incom-
ing solar radiation [MJ/m?2-day]. The soils were grouped into four major classes, which were:
Luvisols, Cambisols, Gleysols and Stagnic Gleysols. For each field the soil type with the largest
surface fraction, of that respective field, was taken. Slope aspect, elevation and obstruction to
sun information were extracted from a digital elevation model.

5.2 Calibration of genetic coefficients

An important step when using the CERES-Wheat model, is the model calibration, i.e. the
estimation of the genetic characteristics (Tab. 2.3) reported in the genotype input file, in order
to obtain accurate predictions. The calibration of the CERES-Wheat model was performed by
using the experimental data collected over the two winter wheat fields monitored in 2005.

For the determination of the genotype parameters of the wheat varieties typically sown in the
region of Meckenheim, the modelled temporal course of the dry biomass divided into stems,
leaves and ears, the total above ground biomass, the LAI, the final predictions of total above
biomass, the final yield and the flowering dates were compared with the in-situ data. For the
assessment the simulation error, e.g., the mean absolute difference between the estimated and
the observed data were considered. Then the genetic coefficients (Tab. 2.3) were varied, in order
to minimize the differences between the simulated and measured values within acceptable error
limits. For this procedure the GENCALC program utility (Hunt et al., 1993) was used, varying
first the coefficients regarding the phenology (P1V, P2D, P5 and PHINT) and in a second step
the production related parameters (G1, G2 and G3). Fig. 5.1 shows exemplarily for 2005 the
finally modelled and observed total dry biomass development.

After calibration the flowering dates were simulated exactly by +/- 0 days. The measured R?
and rmse for the dry biomass were for field 1: 0.952 and 1662kg/ha and for field 2: 0.934 and
1830kg/ha (Heinzel et al., 2007). Final grain yield differences between modelled and observed
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Figure 5.1: CERES-Wheat calibrated simulation results and measured dry biomass [kg/ha], ex-
emplarily shown for the two winter wheat fields observed in 2005.

were 985 and 694kg/ha, having an error of 12% and 7%. Compaired to Dente et al. (2007), who
achieved a yield prediction error of 24% for the calibration process of winter wheat in Matera
(Italy), the results are very sound.

To validate the prediction capabilities of the model, a different independent set of experimental
data, consisting of data collected from four winter wheat fields in 2006, were compared with the
simulated parameters. The measured R? for the four fields was 0.91 (yield) and the final grain
yield difference was 1080kg/ha, which was an error of 13%. This indicates a sound quality
of the model estimates, also being able to account for wheat variety and different climatic
conditions.

5.3 Sensitivity analysis of the initial model
parameters

Even though the genotype parameters are identified during the calibration procedure, the CERES-
Wheat model still requires a large amount of input parameters. Among them, climatic data,
which were less critical to obtain, due to the meteorological station. But the model also needs
management information, which can be largely variable. Under these circumstances, a crucial
point is to determine whether or not there is a relatively small subset of model inputs, with
especially high impact on the modelling output. This subset would influence more than others,
the temporal behaviour of the state variables of interest. Consequently, a sensitivity study was
carried out in order to identify initial conditions, having the highest influence on the final re-
sults, which was done exemplarily for the monitored fields in 2005. In regard to this different
management characteristics (sowing and nitrogen fertilization date, planting density) were anal-
ysed. The analysis did not include climatic inputs, which were considered known, as well as
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plant density and row spacing, which were almost constant in the area and soil characteristics,
which were given by the geological survey North Rhine Westphalia (Dworschak et al., 2001)
and in further detail for the research farm by Lehmann & Pitzold (1996).

In a first step the parameter planting date was varied between the 10/15/2004 and 01/01/2005,
with constant other parameters. The sowing date is an important management feature, as it
establishes the period of the season, when wheat growth occurs and then, depending on the
temperature of that period, the length of the phenological stages. For the second sensitivity
study the parameter plant population at seeding was varied between 300 to 450 plants/m?,
keeping constant other input parameters. In a third study the dates of the fertilizer applications
were varied in two weeks steps for each of the three respective treatments. Starting from 1.
March, 1. April and 1. May for the respective three applications (early version) until 1. April,
1. May and 1. June (late version) for the three applications, but always applying a constant
amount of nitrogen fertilizer, 180kg/ha in total. In Tab. 5.1 the variations within the final yield
for the three sensitivity studies are shown. In relation to the actual final yield (9850kg/ha) the
variations within the different planting dates are from +0.5% to -12%, for the different plant
populations 0.5% to 3.9% and for the different fertilizer application dates from -5% to +12%.
Overall, the variation of the different resonable planting dates featured a high variation from
12.5% in the final yield and the different fertilization dates from nearly 17%, thus these two
seem to have the highest impact on the modelling performance (Heinzel et al., 2007).

Table 5.1: Final yield results [kg/ha] for varying planting dates (dates), planting density
(density) and fertilizer application dates (application).

dates density application
10/15/2004 | 9897 || 300 | 10236 || early version | 11536
11/01/2004 | 9456 || 400 | 9897 || mid version | 9897
11/15/2004 | 9099 || 450 | 9780 || late version | 9434
12/01/2004 | 8755
12/15/2004 | 8853
01/01/2005 | 9411

The other important unknown parameters were set to a constant value, e.g., the plant density to
300 plants/m? with a row spacing of 12.5cm. Tillage was also considered to be constant for the
whole research region and exemplarily taken from the research fields. Tillage was considered
during autumn, first with a row crop cultivator (tillage depth 15cm) and than with a row crop
planter (tillage depth 2cm). Chemical applications were given automatically when necessary.
Organic amendments were not considered, as well as irrigation, which is not necessary in the
research region.

5.4 CERES-Wheat modelling by assimilating remotely
sensed information

The actual crop growth simulation was done for the research year 2006, thus having a totally
independent data set, where no CERES-model calibration was conducted. Firstly, modelling
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was only done for the four wheat fields monitored on the research farm, in a second step for the
best data assimilation results the findings were transferred to the whole research region. The
assimilation method adopted (section 2.3.4) performs a re-initialization of the CERES-Wheat
model. It consists of a procedure that tunes the model initial conditions, until the temporal be-
haviour of the model state variables, e.g., LAI or dry biomass reach the best agreement with
the multi-temporal remotely sensed information. It is assumed that the CERES model and the
retrieval algorithm estimating the state variable values are not biased. In order to search for
the optimal configuration of the model the mean simulations and observations, the mean ra-
tio, the standard derivations of both, the R?, the mean difference, mean absolute difference,
the rmse and the flowering dates were taken into consideration. Additionally, also the original
retrieval performances from the remote sensing data were considered. In regard to their tem-
poral behaviour initial conditions were set. There was a constraint on the variability ranges
of these parameters, in order to avoid unrealistic conditions and to take into account the site
characteristics, considering all the information, concerning the respective parameters collected
in the two years of campaigns, into account. The error on the initial information was set equal
to half of the variability range of these parameters. The initial sowing dates (sowing) were
fixed at the beginning of November with a standard variation of approximately one month (the
observed variability was from beginning of October until first of December). The fertilization
dates (fertilization) were varied within the in the sensitivity study used range (early, mid and
late version). In general there were 16 simulation runs performed. In the first five variable
planting dates in combination with the early fertilization option were varied, for the next five
the variable planting dates were combined with the mid fertilization dates, in the next five the
planting dates were combined with the late fertilization dates. For the 16 simulation run the
in-situ information, gained from the local farmer were used. After determining sowing and
fertilization, the CERES-Wheat model was re-initialized with the respective optimum set of
input parameters.

The described assimilation method was first assessed for the research farm and afterwards ex-
tracted to the whole region considering the remote sensing information set performing best in
regard to final yield estimation. The used biophysical parameter maps were dry biomass and
LAI maps retrieved from the respective remote sensing data. Generally, first the dry biomass
maps were considered and in a second step the retrieved LAI maps, but also considering the
respective retrieval performance from the remote sensing data. In case of large differences be-
tween the retrieval performances the parameter with the better results was weighted higher. For
the ERS-2 data this can be quite problematic due to the poor retrieval results featuring only a
R? = 0.33 for the LAI and a R? = (.28 for the dry biomass. The following databases were
tested for the model re-initialization:

e automatic sowing and fertilizer date setting, which will be named automatic yield

e the biophysical parameter maps retrieved from multi-temporal multispectral data using
the CLAIR model (before and after heading), named CLAIR yield

e the biophysical parameter maps retrieved from the ERS-2 time-series using multiple re-
gressions, named ERS-2 yield

e biophysical parameter maps retrieved from the ASAR data using the respective best po-
larization and the multiple regression approach, named ASAR yield
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e biophysical parameter maps retrieved by combining the multispectral CLAIR model with
the multiple regression for the ERS-2 data, named Combined yield

e time-series of biophysical parameter maps retrieved from ERS-2 and ASAR data, named
SAR time-series yield

e time-series of biophysical parameter maps retrieved from all available SAR and multi-
spectral data, named Multispectral and SAR time-series yield

5.4.1 Automatic sowing date and fertilizer date setting (automatic
yield)

In a first step CERES-wheat yield modelling was done without considering any further informa-
tion. Sowing dates and fertilizer dates were set automatically, by the DSSAT software. Sowing
was performed on the four fields within the period of 09/01/2005 and 12/01/2005, when the soil
temperature was around 10C and the soil water content was reasonable for sowing. Fertilization
was done when needed, with a threshold of N stress factor at 50.

The automatic sowing for the four analysed fields was 10/01/2007 with 180kg/ha fertilizer ap-
plied and final yields of 7273kg/ha. There were only slight simulation differences between the
four fields due to very similar soils and the same weather data. The rms error between auto-
matic yield and the measured yield is rather high with 629kg/ha and a low R? of only 0.07. An
overestimation of 6.6% of the final yield occurred averaged over the four fields. This proves
the assumption that it is rather critically to model final yield without a sufficient amount of
additional information.

5.4.2 Multispectral information (CLAIR yield)

The LAI and dry matter maps retrieved by the different multispectral images from 2006 (Tab.
3.4) provided a temporal series from stem elongation to ripening during the wheat growth pe-
riod, to estimate for each field the optimum input parameters and re-initialize the CERES-Wheat
model. The LAI estimates errors from the remote sensing data were 0.42 and 0.43m?/m?
(rmse) (R? = 0.85/0.65), for the dry matter estimates errors were 1600 and 5400kg/ha (rmse)
(R? = 0.58/0.54). These errors will also influence the model performance and have to be taken
into account when adjusting the input parameters to the remotely sensed information. Due to
the slightly sounder findings for the LAI retrieval this parameter was weighted higher.

In Fig. 5.2 exemplarily the modelled LAI and dry biomass (wheat field 1) using variable plant-
ing dates and fixed fertilization dates (mid version) are shown. Additionally, the achieving using
the in-situ data together with the respective remotely sensed variables are listed. By only re-
garding the different curves it is hard to conclude, which setting would be the optimal solution.
In a second step the statistics of the models were analysed taking especially into account the
different rms errors (Tab. 5.2). What becomes apparent is that the LAI rms varies between 1.1
and 0.6 and the dry biomass rms between 4373 and 6568kg/ha, however for both parameters
the lowest values were obtained for simulation 11. The model for wheat field 1 is re-initialized
using the planting date 10/01/2005 and the late fertilization option. This means a bias to the
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Figure 5.2: Modelled LAI [m?/m?] and DM [kg/ha] with variable planting dates, plotted
against the days of the year (DoY).

Dates for fertilization were set (mid March, mid April and end of May) for this modelling
case. Results for the 10/13/2005 were achieved by using the ground truth information for the
local farmer.

in-situ data of 12 days for the planting (to early) and fertilization is delayed for all three appli-
cations around two weeks. However, the final yield is only overestimated by 15kg/ha, which is
a splendid result. Overall, fertilization dates were after the assimilation process in rather good

Table 5.2: Rms errors for LAI and dry biomass [kg/ha](wheat field 1) and the final yield [kg/ha]
using the 16 simulation runs and the remotely retrieved parameters.

run || LAlrms | DM rms | yield ||| run || LAIrms | DM rms | yield
1 1.1 4385 | 7415 9 0.8 6097 | 9036
2 1.1 4843 | 7703 ||| 10 0.9 6568 | 9439
3 0.9 5766 | 8650 ||| 11 0.6 4373 | 7455
4 0.9 5721 8495 ||| 12 0.9 4732 | 7682
5 0.9 6198 | 8928 ||| 13 0.7 5466 | 8429
6 0.9 4919 | 8349 ||| 14 0.7 5411 8211
7 0.8 5239 | 8280 ||| 15 0.7 5748 | 8470
8 0.8 6169 | 9240 ||| 16 0.9 4943 | 7896

agreement with the in-situ data. Only for field 1 the late version was chosen. But the planing
dates varied by nearly one month, i.e. the estimated sowing dates were delayed with respect to
the observed ones.

Generally, when using the suggest assimilation strategy for the four monitored fields there was
an average yield of 7716kg/ha with a rms error between the simulation and the real average of
562kg/ha. This is a slight yield underestimation of 0.9%, when using six multispectral data sets,
covering the wheat growing season from stem elongation over flowering to ripening. Concern-
ing the variabilty of the bias for the respective fields it is rather high. For the first three fields
there was a slight overestimation (between 15 to 850kg/ha). Regarding the last field, featuring
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a rather high in-situ yield there was a big understimation obvious (1548kg/ha). In this case the
model can not simulate the observed yield variations. This might be due to the biases within
the remotely sensed parameters, because especially for high amounts of dry biomass and LAI
the retrieval performance was not that sound, featuring a slight saturation of the remote sensing
signal. Or the calibrated genetic coefficients were not appropriate for high final yield modelling.
A deeper analysis about yield variation estimates goes beyond the limit of this work, because
it would require a higher number of monitored fields featuring a larger dispersion between the
measured yields.

5.4.3 Information retrieved from ERS-2 data (ERS-2 yield)

The ERS-2 data for the retrieval of the LAI and dry biomass are listed in Tab. 3.6. The six data
sets cover the wheat growth period from stem elongation over stem elongation and heading to
the ripening, in contrast to the multispectral data they cover a longer time period. Generally, the
errors of the LAI and dry biomass estimation were rather high. For the dry biomass the error
amounts to 5600kg/ha (R? = 0.28) and for the LAI 0.62m? /m? (R? = 0.33), the relationship
between modelled and observed parameter were slightly higher for the LAI, therefore it will be
decisive.

When assimilating these data into the model it was found that compared with the in-situ data the
fertilization dates were in good agreement. The planting dates varied especially for two fields,
there was a bias of nearly one month, once being delayed and once being to early. For the other
two fields there was only a bias of +/- 2 days.

The estimated yield map for the four fields featured an average yield of 7928kg/ha with a rms
error of 612kg/ha and a yield overestimation of 1.8%. Concerning the variabilty of the bias for
the individual fields it is rather high. While the first three fields are overestimated between 387
and 816kg/ha, again the field with the high measured yield features a high underestimation of
around 1082kg/ha. Actually the trends of over and underestimation from the individual fields
sum up to a valid average final yield estimation. In regard to the remotely sensed parameters as
for the multispectral data the bias in the high value ranges was bigger featuring an underestima-
tion of the respective parameters. Generally, the findings for assimilating ERS-2 data into the
model are sound, especially when considering the poor retrieval performance from the remote
sensing data.

5.4.4 Assimilation of information from ASAR data (ASAR yield)

In a third step of the analysis the biophysical parameter maps retrieved from the ASAR data
were assimilated into the model. The five ASAR data only cover a rather short crop growth
period with some acquisitions at stem elongation and some at the important stage of fruit de-
velopment. For the dry biomass the error amounts to 6700kg/ha (R? = 0.82) and for the
LAI 0.6m?/m? (R? = 0.6). The relationship between modelled and observed parameter were
slightly better for the dry biomass, therefore it will be decisive. Again for this simulation setting
for all four fields the mid version of fertilization dates was picked, but the planing dates varied
again. Especially, for field two, which was sown on 11/14/2005 there was a bias of nearly one
month, while for the other three the bias was only around 1-2 weeks.
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The averaged estimated final yield was 8013kg/ha featuring a rms error of 621kg/ha, which is
an actual overestimation of the final yield by 2.8%. The variablity of the results is a bit different
than for the previous findings. Now there was a yield underestimation for field 1 (73kg/ha),
while for the other three fields there was a trend of overestimation obvious. For field 2 the bias
was 436kg/ha, which is slightly higher than with the assimilated ERS-2 information. Now there
was a high overestimation of the final yield obviuosly for field 3 (1236kg/ha) and an under-
estimation of 699kg/ha for field 4. This trend can be explained by the retrieval performances,
when using the ASAR data (Fig. 4.15). Especially, for the dry biomass extraction there was
no clear trend of over or underestimation obvious. The LAI retrieval featured a scattering in
the mid value range. The problems of a high value underestimation for high values, described
previously, is not obvious. For the field 3 probably the high overestimation is due to the higher
weighting of the dry matter findings. While for all other fields LAI and dry matter findings
are normally in good agreement with each other, for this field there was a high bias between
them.

5.4.5 Assimilation of synergetically retrieved biophysical
parameter maps (Combined yield)

In a next analysis step biophysical parameters retrieved synergetically from multispectral and
ERS-2 data (Tab. 4.9) were assimilated into the crop growth model. The time-series for 2006
only includes four data pairs from May until mid July, thus being not very dense. For the
dry biomass the error amounts to 1700kg/ha (R? = 0.73) for early phenological stages and
4400kg/ha (R? = 0.55) for late stages. For the LAI 0.38m?/m? (R? = 0.48) and 1.04m?/m?
(R? = 0.94). The relationship between modelled and observed parameter were slightly better
for the dry biomass, thus it will be decisive. Considering the chosen initial settings for all
four wheat fields the mid fertilization dates and the planting date 10/01/2005 was taken. This
means that the planting date picked was to early for all fields. The average final yield was
7367kg/ha with a rms error of 585kg/ha, which are around 5.4% of yield underestimation.
Again, especially for wheat field 4, having the highest real final yield the bias is rather high
with an underestimation of 1548kg/ha. For field 3, with the lowest measured final yield, there
was again an overestimation obvious of 388kg/ha.

5.4.6 Assimilation of the information from the SAR time-series
(SAR time-series yield)

The big difference to the previously described assimilation procedures is that the temporal se-
quence of the SAR time series is much denser now covering 11 acquisitions (Tab. 3.6 and Tab.
3.7). The retrieval biases from both SAR data sets now have to be taken into account. Due to
the lower retrieval bias of the ASAR data, these will be weighted slightly higher as well as the
dry matter, for which the retrieval performance using ASAR data was more stable.

Considering the fertilization date again the mid version was chosen. Planing dates picked were
correct for field 1, two weeks too early for field 2 and around 40 days to late for the fields 3 and
4. The final averaged yield was 8044kg/ha with a rms error 580kg/ha, hence an overestimation
of 3.3%. As for the other data assimilations there was a yield overestimation for the first 3 fields
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and a rather large yield underestimation (1081kg/ha) for the 4 wheat field. Compared, to using
the ERS-2 or ASAR data individually, the bias slightly increased.

5.4.7 Information of the multispectral and SAR time-series
(Multispectral and SAR time-series yield)

In a final data assimilation examination all available data sets from 2006 were taken into consid-
eration for the re-initialization of the CERES-Wheat model. By using this assimilation strategy
the temporal sequence of the biophysical parameter is the densest covering the whole growing
season with 17 single acquisitions. However, also the retrieval errors from the different remote
sensing data have to be considered now and will probably be resumed in the re-initialization
process. Due, to the fact that the assimilation performance using the multispectral information
outperformed all other tested runs the multispectral information (especially the LAI) will have
the highest weight. As already previously, for the fertilization dates the mid version was chosen.
Concerning the planting dates they were set in all cases around one month later than the in-situ
observations. There was a slight yield overestimation of around 0.56%, with an average yield
of 7833kg/ha (rmse=541kg/ha). The trends for the individual monitored fields were the same
as for the previously described assimilation strategies.

5.5 Sensitivity to frequency and acquisition time of the
multispectral data

Due to the fact that multispectral acquisitions are often hampered by frequent cloud coverage,
the assimilation performance was evaluated with different time gaps in the multispectral data
series. In a first step single multispectral acquisition dates were left out analysing the impact
when specific inputs from distinctive phenological periods were missing. The data series (Tab.
3.4) contains three scenes during stem elongation, one during flowering and two during the
ripening process. It is expected that especially when leaving out the remote sensing information
from dates with maximum LAI, should have an impact on the assimilation performance, as this
are distinctive periods during crop growth. When using all multispectral data sets for the as-
similation there is a slight yield underestimation of 0.9%. When neglecting the first acquisition,
there is a final yield overestimation by 3.1%, for leaving out the second acquisition there is an
underestimation of 0.8%, for neglecting the last acquisition from the stem extention period an
overestimation of 0.5% occures. Leaving out the remotely sensed information during flowering
an underestimation of 0.8%, and for the last two an overestimation of 0.5% and an understima-
tion of 0.8% occure. It seems that, especially the first acquisition is rather important for an exact
yield estimation. During other phenological stages a lack of one multispectral image actually
improved the yield estimation in regard to using all data, regardless which acquisition date was
missing. The rms error between the modelled and remotely sensed biophysical parameters also
did not vary that much for these last five assimilation runs. Generally, it can be concluded, that
actually a too dense data series declines the final crop yield estimation. This is probably due
to the different retrieval errors, when estimating the biophysical parameters from the remote
sensing data. They are also introduced into the assimilation process. The impact of the absence
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of one out of six images is negligible, as long as one image during an early phenologcial stage
is present. However, this is not really a conclusion to be generalized due to the fact that actually
acquisitions were not that good distributed during the whole crop growth period. Another fact
is the large impact of the first date, which should not be that high, due to the fact that there are
also two more acquisitions during this phenological stage and because it is not acquired in the
period of maximum LAI, which is one of the most important stages for the determination of the
final yield.

In a next step the model performance was evaluated with data gaps from specific phenological
stages (Tab. 5.3). Firstly leaving out all data during stem elongation, then during flowering
and finally during the ripening stage, in order to actually assess the importance of data during
specific phenological stages. When the acquisitions during stem elongation were missing, the
effect of the data lack is more pronounced. The total final yield was underestimated by 5.4%
(7367kg/ha). When neglecting the multispectral image during flowering the final yield underes-
timation was not as high with only 0.8% (7725kg/ha). Leaving out the last acquisitions during
ripening only results in a final yield overestimation of 0.56% (7833kg/ha). This trend is also
obvious in the LAI and dry matter rmse between the modelled and remotely sensed informa-
tion. Especially, the LAI rmse was rather high when leaving out the images acquired during
stem elongation. For the dry matter this trend is not that distinctive. The approach leaving out
images during ripening produces the smallest LAI rms, featuring a rather good agreement.
This shows that especially early acquisitions from stem elongation have a higher impact on the
final yield modelling results, than images after this stage. Especially, images during the ripening
seem to hardly influence the final yield estimation. When leaving out these images final yield
estimation bias was rather small. In regard to using all available data sets final yield estimation
seems to actually improve when leaving out the information during flowering or ripening. Com-
pared to the achievements using the SAR time series yield approach the final yield estimation
performance only decreases when leaving out the data set during stem elongation. For all other
time gaps the multispectral data assimilation still outperforms the SAR data series or ERS-2 or
ASAR data assimilation method.

5.6 Filling multispectral acquisition time gaps, by
considering SAR information

Finally, the sensitivity of the assimilation procedure to a lack of multispectral data in the differ-
ent periods of the wheat growth season, considering additionally SAR information, was evalu-
ated. Multispectral data acquisitions are often hampered by cloud coverage, thus it is of interest
if SAR information are able to overcome these time gaps. The time-series of SAR and multi-
spectral data was used, with simulated gaps in the multispectral time-series. Firstly neglecting
all data during stem elongation, then during flowering and finally during the ripening process.
The question hereby was, if multispectral time gaps, especially during stem elongation, are neg-
ligible when a large number of SAR data are available for obtaining a reasonable result.

In Tab. 5.4 the rms errors between the simulated and the remotely retrieved LAI, dry matter
as well as the modelled final yield and the percental bias to the real observed yield are listed.
In total 240 individual simulation runs were performed for the four monitored winter wheat
fields varying the planting dates (5 different dates), the fertilization dates (early, mid and late
version) and missing multispectral data from distinctive phenological stages (3 phenological
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Table 5.3: Rms errors for LAI and dry biomass [kg/ha], final simulated yield [kg/ha] and yield
bias in regard to in-situ measurements [%].

run | wheat field || LAIrms | DM rms | final yield | yield bias
run 1 1 0.6 4373 7455 0.2
2 0.5 5283 7455 -4.6
3 0.6 5605 7833 12.2
4 0.6 6083 7833 -12.1
run 2 1 0.84 5457 7367 -0.98
2 0.83 4660 7367 -5.79
3 0.86 5417 7367 5.54
4 0.83 5160 7367 -17.36
run 3 1 0.57 5345 7833 5.28
2 0.49 4757 7833 0.16
3 0.56 5363 7833 12.22
4 0.57 6041 7403 -16.96
run 4 1 0.33 5415 7833 5.28
2 0.50 6051 7833 0.16
3 0.38 5669 7833 12.2
4 0.36 6506 7833 -12.1

run 1= all multispectral data, run 2= only multispectral data from flowering and ripening stage,
run 3= multispectral data from stem elongation and ripening stages, run 4= multispectral data
from stem elongation and flowering stages

stages) used for the assimilation process, whereby in Tab. 5.4 only the simulation statistics of
the chosen run are shown. Using the SAR and multispectral data series without multispectral
information from stem elongation again featured the largest final yield bias with an overestima-
tion 5.8% (average final yield: 8246kg/ha). The bias has even increased in regard to only using
multispectral images from flowering and ripening. The SAR information was not able to fill this
important time gap. The same can also be observed for leaving out the multispectral informa-
tion during flowering stage. Then the bias increased to 1.8% (average final yield: 7928kg/ha),
which was an overestimation 1% higher than only using the multispectral information during
stem elongation and ripening. Leaving out the multispectral information during ripening in
combination with the SAR information producess the same bias (0.56% overestimation) than
modelling without additional SAR information and no further multispectral information about
the ripening stage.

Concluding one can say that the SAR information is not appropriate for filling missing time gaps
in the multispectral time-series. It more appears that the modelling performance even decreased
in regard to using a multispectral data series containing time gaps of distinctive phenological
periods.
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5.6 Filling multispectral acquisition time gaps, by considering SAR information

Table 5.4: Rms errors for LAI and dry biomass [kg/ha], final simulated yield [kg/ha] and yield
bias in regard to in-situ measurements [%].

run | wheat field || LAl rms | DM rms | final yield | yield bias
run 1 1 0.54 5263 7833 53
2 0.51 5431 7833 0.2
3 0.5 5388 7833 12.2
4 0.8 4604 7833 -12.1
run 2 1 0.54 5009 8256 10.9
2 0.51 4976 8256 5.6
3 0.57 5144 8256 18.3
4 0.51 4838 8216 -7.8
run 3 1 0.53 5180 7833 5.3
2 0.47 5265 7833 0.2
3 0.47 5260 7833 12.2
4 0.54 4685 8126 -7.8
run 4 1 0.47 5180 7833 5.3
2 0.47 5520 7833 0.2
3 0.4 5386 7833 12.2
4 0.39 5717 7833 12.1

run 1= all SAR and multispectral data, run 2= all SAR, multispectral data from stem

elongation left out, run 3= all SAR, multispectral data from flowering left out, run 4= all SAR,
multispectral data from ripening left out
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5.7 Discussion and conclusions

In the previous section a method to assimilate remotely sensed dry matter and LAI maps into
the CERES-Wheat crop growth model, in order to improve the accuracy of the final wheat yield
estimates, was assessed. The assimilation strategy consisted of tuning a set of management
characteristics, until the differences between the modelled LAI and dry matter curves and the
remotely retrieved biophysical parameters were minimized. Then the CERES-Wheat model
was re-initialized using the optimal input parameters. A preliminary sensitivity analysis of the
CERES-Wheat model helped to identify the most suitable model inputs to be involved in the
re-initialization. It showed that planting and fertilization dates mostly effected the LAI and the
dry matter development and therefore the final yield.

The method was firstly applied and validated with the four monitored ground truth wheat fields
(2006) in Klein-Altendorf.

After the assimilation of the six different data series and modelling using an automatic setting,
yield maps with different accuracies were obtained (Fig. 5.3 and Tab. 5.5). When using an au-
tomatic model setting the achieved results were biased with a yield overestimation of 6.6% over
the four monitored fields. The algorithm integrated into the DSSAT software for choosing the
right settings did not performe very well in the case of Klein-Altendorf. Regardless, which other
data series were assimilated into the CERES-Wheat model, the final yield estimation accuracy
increased. The assimilation of the six LAI and dry matter maps, retrieved from the multispectral
data, led to a wheat yield map featuring an estimated rmse of 562kg/ha and an average yield of
7716kg/ha. In contrast to the automatic yield modelling the estimated final yield bias decreased
to an underestimation of only 0.9%. The results obtained for assimilating the ERS-2 data series,
were in comparision to the findings from CLAIR yield slightly poorer with an overestimation of

1.8%. The results achieved for ASAR yield featured a higher bias with a final yield overestima-
tion of 2.8%. This is probably due to the fact that there were only four acquisitions available,
covering a rather short phenological period. The actual biophysical retrieval results from this
sensor were very precise. The finding for the Combined yield approach were not as good as the
achievments, when using the multispectral data or SAR data alone, with a yield underestimation
of 5.4%. Also featuring the trend of high yield underestimation for high in-situ measured yield
(e.g., field 4). Using a denser SAR time-series (SAR time series yield) did not improve the final
yield estimation accuracy, in regard to only using the ERS-2 or ASAR time series. There was
now a final yield overestimation of 3.3% in contrast to only 1.8%, when only using the ERS-2
data or 2.8% for the ASAR data. The final yield estimation using the dense SAR time-series,
led to a decreasing modelling performance. Overall, the best results could be obtained when
using a very dense data series by combining all 17 available satellite data. The bias was then
only 0.56% overestimation. This is a bit contradictornary to the findings from the multispectral
time gap analysis. There the results actually improved, when leaving out data from specific
phenological stages, as long as information from stem elongation was available. The sound
result might be due to the fact that generally for the multispectral data series assimilation, there
was a final yield underestimation, while for the SAR data series an overestimation trend could
be observed.

However, except for the retrieval results from ASAR yield there were problems when estimating
rather high final yields as for wheat field 4. They all featured then a clear trend of a high final
yield underestimation. A deeper analysis about yield variations would actually be necessary,
which goes beyond the limit of this work. It would require a higher number of monitored fields
featuring a greater final yield variety. The calibrated genetic coefficients should actually allow
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Figure 5.3: Final wheat yield estimates (fields 1-4), using the different data series for the assim-
ilation procedures.

a higher yield estimates, which was done for field 4 in the ASAR yield assimilation procedure.
The sensitivity of the assimilation process to acquisition time and frequency of the multispec-

Table 5.5: Statistics of the yield maps obtained after the assimilation of remote sensing data into

the model.
assimilated data no. of data | mean [kg/ha] | rmse [kg/ha] | bias [%]
ground truth 7788
automatic yield 7273 629 6.6
CLAIR yield 6 7716 577 -0.9
ERS-2 yield 6 7929 612 1.8
ASAR yield 5 8013 621 2.8
Combined yield 4 7367 585 -5.4
SAR time-series yield 11 8044 580 33
Multispectral and
SAR time-series yield 17 7833 541 0.56

tral data was also investigated. Multispectral data acquisitions are often hampered, due to cloud
coverage. It is interesting to know how many multispectral images are needed and at which
phenological stages, in order to improve the yield estimation accuracy in regard to just using
SAR data. Results indicated that the lack of multispectral data in the assimilation process does
not significantly effect the accuracy of the predicted yield maps, provided that the remaining
assimilated maps cover the most important early wheat stages. The analysis proposed that the
multispectral information from flowering or ripening stages only slightly influence the predic-
tion performance, when information from stem elongation was present. It even appeared that a
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too dense multispectral time-series had a negative effect on the final yield prediction accuracy.
Results were preciser when not considering the full multispectral time-series, as long as the first
LAI and dry matter maps were regarded from beginning of May. When trying to fill the gaps
within the multispectral time-series by using SAR information, the precision for the first two ap-
proaches (no multispectral information from stem elongation or flowering) even decreased the
final yield modelling performance. When leaving out multispectral information during ripening
the result was comparable to the achievement without considering SAR information. The SAR
information was not able to fill multispectral time gaps during important phenological stages.
Overall, the best yield prediction results were achieved, when using all available remote sensing
data (SAR and multispectral data). The same final yield biases were also achieved, when using
only multispectral information, without considering data from the phenological stage ripening.
Also the same final bias was found when regarding all available SAR information together with
the multispectral data, without the data from the phenological stage ripening.

One can conclude: Multispectral information from the phenologcial stage ripening actually had
a negative impact on the final yield estimation accuracy. Information from this phenological
stage led to a higher final yield estimation bias. When neglecting the multispectral information
from this phenological stage, it made no difference if the SAR information was additionally
taken into account. By just considering the multispectral information the same results were
found as when also regarding the SAR information.

This is contradictory to the findings from Dente et al. (2007). They figured out that a lack of
LAI maps from multispectral data during critical time periods can be overcome by additionally
using SAR information, providing the same results as when using the whole multispectral data
series. Within this study it more seemed that the additional SAR information actually declined
the modelling performance, when multispectral information from stem elongation or flowering
were missing. For neglecting multispectral information from the phenological stage ripening,
the SAR information had actually no impact on the modelling result.

In conclusion the assimilation method described, is a promising technique to apply crop growth
models, such as CERES-Wheat, when no further information is available and the management
decisions are set automatically instead. The main critical aspect related to this is that the em-
ployed crop growth model needs a calibration of the genetic coefficients (2.3) for the assessed
wheat variety. This implies that the illustrated approach might only be appropriate for agricul-
tural areas relatively homogeneous in terms of wheat crop variety. This will be evaluated in a
next step, applying the findings of the best assimilation approach, containing the least amount
of information (multispectral data series, without phenological stage ripening) and an automatic
setting approach to the whole region of Meckenheim. The results will then be compared to a
direct yield estimation method.

Another more general aspect, which has to be kept in mind, is that it can be problematic when
trying to assimilate remote sensing data into a well established model. Biases coming from the
retrieval of the remotely sensed biophysical parameters might get introduced into the model.
Due to the fact that only the initial conditions were fitted to the remote sensing data the re-
initialization strategy is not as sensitive to parameter biases as, e.g., when forcing or updating
model variables by the use of remote sensing data. In the presented approach it was also tried
to account for the biases from dry matter and LAI estimation by weighting the parameters in re-
spect to the achieved coefficients of determination from the remote sensing retrieval models.
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5.8 Regional crop growth modelling

5.8 Regional crop growth modelling

On the basis of mapped winter wheat fields in 2006, the soil map, slope, aspect and height infor-
mation derived from the digital elevation model and the weather data in a first step regional yield
estimation was done using the automatic yield approach. Overall, for the 435 mapped winter
wheat fields, there was an average calculated final yield of 5655kg/ha. Using the multispectral
data, without information about the ripening stage, the mean overall yield of all 435 mapped
fields sums up to 7694kg/ha. In order to validate the findings, results were compared with the
official statistics. The statistics of DESTATIS ! list a total wheat yield for whole North Rhine
Westphalia of 7840kg/ha. Compared to this the automatic yield approach underestimated the
average final yield by 72%, which is a rather high bias. For the second used regional approach
the bias sums up to only 1.86% underestimation. However, it is problematic to compare the
modelling results with these statistics, due to the fact that the DESTATIS results cover a larger
region. The final yield for the region of Meckenheim probably also lies above the mean for the
whole North Rhine Westphalia, due to very good soils.

The described assimilation method, thus appears to be a promising technique to apply to crop
growth models at regional scale, when no accurate in-situ information is available to run the
model. The main critical aspect related to the presented approach is that the employed crop
growth model needs to be calibrated, the genetic coefficients need to be adjusted, for the present
wheat variety. The selected assimilation method provides an adjustment of management deci-
sions, but not of the calibration properties (genetic coefficients). Concluding one can point out,
that the illustrated approach can only be applied to agricultural areas relatively homogeneous
in terms of crop variety, which is the case for the research region. Another critical aspect is,
that the model also needs daily weather information for the whole region, which can become
problematic when only one weather station is available for a large region.

5.9 Comparison to direct multi-sensoral yield
modelling

Satellite remote sensing data have a long tradition in the field of crop yield modelling. The
assumption hereby is, that the gained remote sensing information is strongly related to various
crop parameters, e.g., biomass or LAI. These crop parameters are themselves, depending on the
phenological stage, significantly related to final yield.

The combined yield retrieval can be formulated as:

Yield = Ax (NDVI — B) x (¢° — C) (5.1)
with Yield as the actual corn grain [kg/ha], NDVI as the used vegetation index, ¢° as the
backscatter intensity and the coefficients A, B and C (Heinzel, 2006; Liu et al., 2006). The
calibration and validation of the model was done using the ground truth data from 2006 and a
multispectral and ERS-2 image, acquired during stem elongation. Using this combination gave
the best results, however the sampling amount was not that high, causing statistical limitations.
The fitted coefficients for this modelling approach were: A=82397, B=-0.118 and C=-0.063

Thttp://www.destatis.de
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with a R2=0.98. When applying this model to the whole region, including the four monitored
winter wheat fields, there was an underestimation of 3.03% for wheat field 1, and an underesti-
mation for wheat field two by 11.64%. The other two fields were overestimated by 2.51% and
10.84%. When caluclating the total yield of these fields the trends of over- and underestima-
tion cancel out, so that the overall yield estimation bias is only 0.02%. Concerning the total
yield modelled for the whole region of Meckenheim it amounts to 7612kg/ha. Compared to the
statistics of DESTATIS statistic (final average yield: 7840kg/ha), the modelled result for the
region of Meckenheim features a bias of 2.91%. However, again the same regards as for the
previously mentioned approach have to be made. It is problemtic to compare both, due to the
fact that the DESTATIS results cover a larger region and probalby the final yield for the region
of Meckenheim lies above the mean for the whole North Rhine Westphalia.

Compared to the findings of Liu et al. (2006) the result is reasonable. They achieved a R = 0.83
for final yield modelling using a Landsat TM and an ASAR (HH) scene during heading stage.

In Fig. 5.4 the final yield differences [kg/ha] between the just shown direct yield estimation
method and the approach using the CERES model with multispectral data assimilation (with-
out information about ripening stage). The majority of the fields feature a difference of +/-
1000kg/ha in final yield between both modelling approaches. Larger differences between both
approaches can also be observed (red and darker green fields). When comparing these dif-
ferences with the used soil map, it becomes apparent that especially on Stagnic soils the bias
between both approaches was rather high. This is due to the fact, that the CERES-Wheat mod-
elling actually takes into account different soils and the direct method does not.

When comparing the bias of both methods with the DESTATIS results, the CERES-Wheat final
yield estimation slightly outperforms the direct method by being 1.05% preciser. However, as
already mentioned both methods underestimated the final yield in comparison to the DESTATIS
results. Which is critical, because the actual final yield within the region of Meckenheim might
even be higher, as noted by the DESTATIS statistic, due to very good soils.

Another aspect, which has to be considered is, that using the direct yield estimation method is
not as complicated as the use of the CERES-Wheat model, by still providing reasonable results.
The method has the disadvantage of not being based on physical, physiological and biochemical
laws. This can become problematic, when trying to transfer the findings in time or space. As
it is also not based on other ground truth data like weather or management information, the
approach has problems in situations of sudden weather anomalies occurring after the remote
sensing data acquisition.
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5.9 Comparison to direct multi-sensoral yield modelling

Final yield differences [kg/ha] between CERES- Wheat modelling
and direct yield estimation
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Figure 5.4: Final yield differences between modelling using the CERES-Wheat model and di-
rect final yield estimation [kg/ha].
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5.10 Conclusion of the crop growth modelling

Within this last application section the following question and assumptions were assessed:

Is it possible to integrate important crop variables gained from multi-source data into a
dynamic crop growth model in order to increase the final yield estimation accuracy?

Challenges hereby were:

e to assimilate biophysical parameter maps retrieved from different remote sensing data
into a crop growth model in order to improve the accuracy of wheat yield predictions

e to analyse the effect of assimilating separately or synergistically SAR and multispectral
time-series information

e to analyse the effect of acquisition time and frequency of the assimilated multispectral
data

e to assess whether time gaps in the multispectral data series can be filled by SAR informa-
tions

e to transfer the findings of the point-based crop growth model for regional final yield
prediction

e to analyse the performance of the suggested approach in comparison to a simple direct
yield estimation method

The previous analysis has shown that overall the integration of additional information, as re-
motely sensed biophysical parameters, improved the final yield estimation accuracy of the
CERES-Wheat model. When using an automatic setting the bias in final yield estimation was
around 6.6%, this improved significantly for all assimilated time-series. The best results for this
first analysis were achieved by integrating the whole available multi-sensoral time-series (SAR
and multispectral information), ending up with a bias of only 0.56% in final yield for the four
intensively monitored winter wheat fields.

It was further assessed that the acquisition time and amount of multispectral information also
has an impact on the final yield modelling. Especially, during rather early phenological stages
(stem elongation) the multispectral information was very important. However, in the case of
missing multispectral information during this stage additional SAR information were not able
to fill the multispectral time gap. As also for missing multispectral information during flowering
the modelling bias even increased when also regarding the SAR information. Concerning the
multispectral information during the ripening stage, it actually had a negative influence on the
results, no matter if the SAR information was also additionally considered.

The transfer of the actually point-based model to regional modelling worked satisfactory, whereby
areally statistically based assessment was not possible. But it appears that, with the used the cal-
ibrated genetic coefficients and the remotely sensed information, regional modelling performed
sound. Also in comparison to an automatic parameter setting of the CERES-Wheat model, or a
direct multi-sensoral regional yield estimation approach, the suggested approach outperformed
the others.
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6 GENERAL DISCUSSION AND
CONCLUSIONS

Population growth, increasing living standards, globalization, and global climate change in-
crease the pressure on the limited natural resources. Natural resources have to be carefully man-
aged in order to ensure their sustainable use. Food security and safety, environmental friendly
production technologies, sustained use of renewable and other resources are important issues.
Remote sensing technologies can help monitoring the landscape, assessing changes as well as
predicting final yield. Especially, the large spatial coverage and multi-sensoral data are of ad-
vantage. Crop growth modelling is also an important technology in this context. The models
can help to understand the complex relationships and interactions between the different sys-
tems, e.g., plants, water, atmosphere. But they can also be used for final yield prediction, or as
decision support systems, assessing, e.g., the impact of climate change, or herbicide, fungicide
and pesticide applications, also within the context of precision farming and the minimisation
of the application amount. Combining crop growth modelling and remote sensing technologies
enables to take advantage of each and allows to apply the actually point-based crop growth
models into a more spatial context.

In the presented study the scope and constraints of biophysical parameter derivation from multi-
sensoral remote sensing data and their integration into a crop growth model for regional yield
assessment were investigated.

6.1 Gained insights

Biophysical parameter estimation from remotely sensed data is a challenging and important
topic, especially for regional applications. The biophysical parameters assessed were fresh and
dry biomass, plant water content and leaf area index of winter wheat, as well as the important
phenological stage heading/flowering. Crop growth models can be successfully applied if their
limitations are taken into account and if the huge amount of required input data are provided.
The combination of both leads to better yield predictions, and when used for decision support
to improved management practices and reduced environmental impact. Whereby, still random
or unexpected events, e.g., pest or disease infections or extreme weather conditions or flood-
ing, may cause the model to fail or simulation results to differ from reality, if remotely sensed
information, covering that time period, are not available. Here lies the advantage of using multi-
sensoral data and especially the weather-independent SAR data.

In chapter 1, the thesis started with the formulation of a number of research objectives and
hypotheses, which were afterwards examined and analysed. The first general objective was to
assess the possibilities of deriving biophysical parameters from different remote sensing data,
with an appropriate accuracy and statistically validated. Therefore, either single source remote
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sensing data or multi-sensoral data were analysed. One important feature was to use operational
models, which were easy to invert enabling regional applications. The used models should be
in agreement with theoretical findings, but not as complex as deterministic models. The other
general objective was the integration of the derived crop variables into a dynamic crop growth
model in order to increase the final yield simulation accuracy and enable regional applications.
In chapter 2 the complex theoretical background was introduced. The first concerns were con-
siderations about multispectral remote sensing data and vegetation monitoring, multi-temporal
vegetation signatures and intercalibration issues between vegetation indices derived from dif-
ferent multispectral sensors. In the following theoretical subsection, issues dealing with SAR
system features and vegetation target features, as well as their multi-temporal changes were
introduced. After this more general introduction of the remote sensing methods, different re-
trieval options of vegetation features from these data were introduced. Important issues were the
regional and operational use of the suggested methods and the issue of multi-sensoral deriva-
tion methods, using the advantages of each remote sensing system. Within the last theoretical
section general concerns of the phenological development from the assessed crop winter wheat
as well as its management, crop growth modelling and final yield estimation, and finally the
possibilities of assimilating remotely sensed information into these models, were introduced.
After presenting the complex theoretical background, the used data were introduced in chapter
3. In the first section the complex ground truth campaigns were summarized. These campaigns
were accomplished in weekly intervals during the vegetation periods 2005 and 2006. Important
issues were the data sampling set up and the different measurement methods of the monitored
variables, as well as their statistical analysis. The following section in chapter 3 dealt with
the various multispectral data and the used SAR data. The important issues were their multi-
temporal coverage and the different necessary preprocessing steps. An accurate preprocessing
is especially important when working with multi-temporal and multi-sensoral data, due to com-
parability issues. Concerning the multispectral data one feature was the accurate atmospherical
correction, but also an accurate geometrical correction of all used data.

In chapter 4 all the previously described issues and data were considered for the actual applica-
tions, analysis and assessments of the first work hypotheses.

The biophysical estimation example (section 4.1) focussed on the extraction of the desired bio-
physical parameters from multispectral remote sensing data. Different empirical modelling
methods using different vegetation indices were assessed. It became evident, that when work-
ing with different multispectral sensors an intercalibration of the different calculated vegetation
indices is an necessary additional processing step, due to differences in the respective relative
response functions. For the intercalibration process an empirically based method was proposed,
developed and validated on the basis of simulated multispectral remote sensing sensors. Af-
ter intercalibration the vegetation index differences, introduced by different relative response
functions, decreased significantly. Differences introduced by other sensor characteristics, e.g.,
different spatial resolution or acquisition geometry aspects, were still present in the data. Over-
all, even after intercalibration, the proposed empirical models did not derive the wbiophysical
parameters with the desired accuracy. In a next step the retrieval performance of the semi-
empirical CLAIR model, actually designed for LAI retrieval, was assessed. Findings indicated
that the model can also be used for the extraction of other biophysical parameters and outper-
forms the other previously evaluated empirical models. It generally was necessary to inter-
calibrate the used vegetation index WDVI to one reference sensor and to divide the assessed
time-series into before and after heading/flowering. Findings then also enabled regional param-
eter estimation.
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6.1 Gained insights

Further analyses (section 4.2) addressed the parameter retrieval from the SAR time-series.
One important aspect were the performances of the different used polarizations (VV, HH, HV,
HH/HYV ratio). In a first step modelling performances were assessed by using simple empirical
regressions. Due to the complexity of the target/sensor interactions it was found that multi-
ple regression, taking into account the local incidence angle, roughness features (vegetation
and soil) and precipitation sums, as an indicator of the soil moisture, outperformed the simple
regressions. Because of regional parameter retrieval and the problem of regionally assessing
roughness features, these variables were later left out. Even the reduced multiple regression
exceeded the simple regressions. The performance of the semi-empirical Water Cloud Model
for biophysical parameter extraction was also assessed, once with the additional parameter veg-
etation roughness, and once without. Generally, the reduced multiple regressions outperformed
both Water Cloud Model types in the retrieval performance. Concerning the potential of the
different polarizations and incidence angles for retrieval purposes the findings were a bit con-
tradictory. Reasonable results for the VV polarization could only be achieved for the retrieval
of fresh biomass and the plant water content. For the ASAR sensor modelling fresh biomass
and LAI using the HV polarization or the dry biomass using the ratio was appropriate. No
valid results could be achieved for the ASAR modelling and the plant water content. It was not
possible to make an overall assumption about the most appropriate polarization to use. Con-
cerning the incidence angle the first simple analysis showed that higher incidence angles like
the ASAR swath 6 outranges lower incidence angles, due to a smaller soil signal amount in the
backscattered signal. The heading/flowering date extraction on the basis of VV time-series anal-
ysis worked sound for all assessed fields and years. All findings could be applied for regional
parameter estimation. In comparison to the multispectral retrieval performances SAR findings
feature a higher bias in the parameter estimation as modelling with the use of the CLAIR model.
In section 4.3. multi-sensoral biophysical parameter estimation methods were analysed. These
methods take advantage of the fact that multispectral and SAR systems interact in different ways
with the monitored targets. In a first step combined modelling was realized for all polarizations
using a simple linear approach for the combination of the NDVI and the backscatter. Overall the
findings were not reasonable for the assessed parameters and polarizations. Only for the NDVI
and ASAR ratio the combined fresh biomass retrieval method slightly outperformed the single
sensor modelling. In the next steps more complex combination methods, also using different
weighting factors for the respective parameters and data types were applied. The most appropri-
ate combined method was the CLAIR model combined with multiple regression for the ERS-2
data. In comparison to the single sensor modelling approaches, there was a clear improvement
of the results, especially during late phenological stages. Only for the parameter fresh biomass
there was an obvious trend of parameter underestimation.

The remotely sensed information was then finally assimilated into the CERES-Wheat crop
growth model (chapter 5). Therefore first of all a sensitivity analysis of the CERES-Wheat
input parameters was necessary, in order to assess, whether there are input conditions, strongly
affecting the crop growth. Seeding and fertilization date appeared to have the strongest impact
on the final yield and crop growth (section 5.3). These two parameters were then re-initialized
by the use of the different remotely sensed variables. When assimilating the different time-
series (first approach) into the model, it became obvious that the best performance could be
achieved when the full remote sensing data time-series, containing SAR and multispectral data
was used (section 5.4). Concerning the performance of the multispectral data assimilation, the
performance actually increased when leaving out the LAI and dry matter maps from late phe-
nological stages (ripening). The achieved final yield estimation quality was then as sound as
using the full multi-sensoral data series (section 5.5).
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When trying to fill the gaps in the multispectral time-series by using SAR information, the
precision for the first two approaches (no multispectral information from stem elongation or
flowering) even decreased the final yield estimation accuracy. When leaving out multispectral
information during ripening the result was comparable to the achievement without considering
SAR information. The SAR information was not able to fill multispectral time gaps during
important phenological stages (section 5.6). Overall, modelling by the use of remotely sensed
data assimilation outperformed the CERES-Wheat modelling with automatic input condition
setting. For regional application the suggested method outperformed the automatic alternative
and another evaluated method of direct yield estimation using one ERS-2 acquisition and the
NDVI (section 5.9).

6.2 Validation of the hypotheses

In chapter 1 a number of objectives and questions to be examined were formulated. In the fore-
going section the different application examples were briefly summarized. Now the hypotheses
will either be accepted or rejected, with a short reasoning. The short forms and numbers in the
brackets, introduced below, are used in the following table (Tab. 6.1), showing the validation of
the different hypotheses in three different categories.

The examined hypotheses were:

Is it possible to derive the values of important crop variables from various remote sensing
data (1 parameter derivation)?

The answers to the following challenges are finally given in Tab. 6.1:

e to intercalibrate vegetation indices of different multispectral sensors in order to correct
the biases, introduced by differences in the relative spectral response functions (1.1 inter-
calibration)

e to evaluate the performance of the CLAIR model for the retrieval of different biophysical
parameters (1.2 CLAIR model)

e to analyse the potential of different polarizations and incidence angles for the retrieval of
different biophysical parameters (1.3 SAR system aspects)

e to analyse the performance of the Water Cloud model and multiple regressions using
different SAR data and the additional the variable vegetation roughness (1.4 vegetation
roughness)

e to extract important phenological events such as heading/flowering from remote sensing
information for the adjustment of the retrieval models and the simulation model (1.5
heading/flowering)
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e to analyse the potential of combining multispectral and SAR data for the derivation of
biophysical parameters (1.6 combined modelling)

e to invert the used models for regional biophysical parameter extraction (1.7 regional ap-
plication)

These derived biophysical parameters were then assimilated into a crop growth model for final
yield estimation, whereby the answers to the following questions are also given in Tab. 6.1:

Is it possible to integrate important crop variables gained from multi-source data into a
dynamic crop growth model in order to increase the final yield estimation accuracy (2 final
yield estimation)?

Challenges hereby were:

e to assimilate biophysical parameter maps retrieved from different remote sensing data
into a crop growth model in order to improve the accuracy of wheat yield predictions (2.1
assimilation)

e to analyse the effect of assimilating separately or synergistically SAR and multispectral
time-series information (2.2 data sources)

e to analyse the effect of acquisition time and frequency of the assimilated multispectral
data (2.3 time and frequency)

e to assess whether time gaps in the multispectral data series can be filled by SAR informa-
tions (2.4 SAR filling)

e to transfer the findings of the point-based crop growth model for regional final yield
prediction (2.5 point-based to regional)

e to analyse the performance of the suggested approach in comparison to a simple direct
yield estimation method (2.6 comparison)

Overall, both main questions were satisfactorily fulfilled and most sub-hypotheses can be ac-
cepted. It was possible to derive statistically valid the biophysical parameters from the remote
sensing data (question 1).

Hypothesis 1.1 (intercalibration) can also be accepted as the suggested intercalibration method
performed well for the evaluated vegetation indices (NDVI, WDVI) and reduced the sensor dif-
ferences significantly. This also had a positive impact on the biophysical parameter estimation
accuracy.

Hypothesis 1.2 (the biophysical parameter modelling by the use of the CLAIR model) can only
be partly accepted, due to the fact that modelling the dry matter biomass during late pheno-
logical stages featured a high trend of parameter underestimation and only a R? of 0.56. For
all other assessed parameters and times the model performed valid, hence the CLAIR model,
actually designed for LAI retrieval, can also be used for the derivation of the other analysed
parameters.
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Table 6.1: Hypotheses acceptance or rejection (short forms are explained in the text above).

hypotheses accepted | half accepted | rejected
1 parameter derivation X
1.1 intercalibration X
1.2 CLAIR model X
1.3 SAR system aspects X

1.4 vegetation roughness
1.5 heading/flowering
1.6 combined modelling X
1.7 regional application

ol

2 final yield estimation
2.1 assimilation
2.2 data sources
2.3 time and frequency
2.4 SAR filling X
2.5 point-based to regional X
2.6 comparison X

el bl

(accepted = hypotheses fully valid; half accepted= there were some problems; rejected=
hypothesis has to be rejected.)

Hypothesis 1.3 the analysis of the potential of different SAR incidence angles and polarizations
can also only be partly accepted. First analysis showed that higher incidence angles (ASAR
swath 6) feature a high potential in biophysical parameter estimation, however due to the small
amount of ASAR data with different incidence angles, the hypothesis could not be validated
statistically. Concerning the different evaluated polarizations (VV, HH, HV, HH/HV (ratio)) no
clear conclusion can be drawn; there was no polarization outperforming all others for all evalu-
ated parameters. For the parameters fresh biomass and LAI the HV polarization outperformed
the others, for the plant water content best retrieval results were achieved using the VV polar-
ization and for the dry biomass the ratio (HH/HV) outperformed the others.

The 1.4 hypothesis concerned the integration of the parameter vegetation roughness for the re-
trieval using SAR data. For all tested retrieval algorithms the additional use of this variable
improved the modelling performances significantly, especially for the parameter fresh biomass.
Heading/flowering date extraction (hypothesis 1.5) was fully achieved by the use of the ERS-2
(VV) time-series. The findings could also be used for regional heading/flowering date estima-
tion.

The multi-sensoral parameter estimation (hypothesis 1.6 combined modelling) was successful
for most of the tested times and parameters, outperforming the previous single sensor estima-
tions. However, the findings for the parameter fresh biomass, especially during early phenologi-
cal stages were slightly poorer than the performance just using the CLAIR model (multispectral
data).

The last hypothesis concerning the biophysical parameter estimation (1.7 regional application)
can be accepted. The chosen models only needed input parameters, which could be easily
gained for large areas and the model inversion also featured no problems. Only the roughness
parameters (soil and vegetation) could not be measured for larger regions, hence the modelling
approaches using these variables could not be used for regional modelling.
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The second main question (2 final yield estimation) dealing with the improvement of final yield
estimation by assimilating remotely sensed information into the CERES-Wheat model was also
successfully answered. For all assimilated data series there was a clear improvement in the final
yield estimation in comparison to automatically input condition setting of the CERES-Wheat
model or direct final yield estimation. Hence, the hypothesis 2.1 (assimilation) can also be ac-
cepted.

Concerning the different data sources (hypothesis 2.2), actually the multispectral data series
and the dense data series using all remotely sensed information in a combined data series (SAR
and multispectral) outperformed the other options evaluated. The combined data series slightly
outperformed the full multispectral series.

The analysis of different time gaps in the multispectral data series (2.3 time and frequency)
was also analysed successfully. Time gaps during early phenological stages (stem elongation)
increased the bias in the final yield estimation. Gaps after this phenological stage, actually im-
proved the modelling performance, hence a too dense data series can also have a negative effect
on the final yield estimation, probably due to the biases in the remotely sensed information.
The hypothesis 2.4 (SAR filling) dealt with the question, if data gaps in the multispectral data
series can be filled by using information from SAR data. Within this study the hypothesis ac-
tually has to be rejected. The modelling performance when filling the time gaps was either the
same or even featured a decreased performance, as in the cause of no available multispectral
information during stem elongation or flowering. One can actually state, that the SAR infor-
mation is not appropriate for filling missing time gaps in the multispectral time-series. It more
appears, that the modelling performance even decreased in regard to only using a multispectral
data series, containing time gaps of distinctive phenological periods.

Using the remotely sensed information (2.5 point-based to regional) for regional crop growth
with the CERES-Wheat model worked sound and delivered reasonable results. Problematic is
that, the results could not be evaluated finally, due to the fact that actual final yield data were
not available for each field within the analysed region. The used DESTATIS data for the com-
parison might not be that appropriate to use. It covers a larger region than the assessed region
of Meckenheim.

Compared with other methods (2.6 comparison) the suggested method using the CERES-Wheat
model with assimilated multispectral data (no information about ripening) outperformed the op-
tion of automatic input parameter setting of the CERES-Wheat model and another tested method
of direct yield estimation using the vegetation index NDVI and one SAR acquisition.
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6.3 OUTLOOK - future research and challenges

Finally, an outlook will be given highlighting the possibilities of future research and chal-
lenges.

New satellite sensors and application fields

Future satellite missions and just recently started satellites, e.g., TerraSAR-X, bring new chal-
lenges and options concerning all remote sensing fields. The new SAR satellites possess new
features. TerraSAR-X is a X-band sensor with a higher spatial resolution and the ability of
acquiring in a full polarimetric mode. The Japanese ALOS satellite is a L-band system, also
with the ability of full polarimetric data acquisition. First acquired data of this satellite have
already shown the high potential. Additionally, there are also future missions as Radarsat-2 or
the Sentinel mission, both C-band systems.

These new systems have a high potential of synergetic use, e.g., combining the different fre-
quencies. Also the higher spatial resolution and the ability of some sensors providing data in
full polarimetric mode, feature new possibilities.

New multispectral or hyperspectral satellites (RapidEye or EnMap) with high spatial resolution
and high repetition rate (RapidEye), increase the possibilities of monitoring high dynamic pro-
cesses as plant growth.

Overall, each system features a new potential itself, but also the combined use of the different
sensor systems will be an important research topic in the future.

Biophysical parameter retrieval

Within the discussions during the BioGeoSAR 2007 in Italy, it became clear that there is a big
need for new developments concerning the modelling of biophysical parameters from crops.
The last achievements, models and detailed analysis are rather old from Attema (Attema &
Ulaby, 1978) or Ulaby (Ulaby et al., 1986). New approaches have to stay rather simple, making
it possible to invert the respective models for regional estimations and operational use. How-
ever, they should still be in agreement with physical based models. A challenge in this context
is to take into account roughness and soil moisture features, maybe by using generalized as-
sumptions or by coupling with other models. Models also have to take into account new SAR
satellite missions, with other frequencies, e.g., L.-band and or X-band, and the possibility of full
polarimetric data acquisition.

Due to new multispectral and hyperspectral satellites, there will also be a need for the adjust-
ment of the semi-empirical models to these data. The issue of intercalibration between different
satellites will be a topic in the future, due to the huge variety of different multispectral/hyper-
spectral satellites, each featuring different relative response functions.

For all new sensor systems the topic of different spatial resolution and higher repetition rate will
bring new challenges and opportunities for biophysical parameter retrieval.

Considering the combined use of different satellite systems, developing new methods and mod-
els also for other crop characteristics, e.g., plant stress, different phenological stages, will be a
challenging topic in the future. The presented thesis can be seen as a first basis for synergetic
biophysical parameter retrieval. Other fusion techniques might also have to be considered, like
the decision based fusion. Fusing maybe the individual mono-sensorally retrieved biophysical
parameters in a later processing step, by using different weighting factors.
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Crop growth modelling

Crop growth modelling has experienced a great increase within the last years, due to new tech-
nologies and a better understanding of the underlying processes and interactions. A great chal-
lenge still is to apply the point-based models to a spatial scale by running them on a grid of
pixels or for a set of polygons, resulting from image analysis and classification procedures.
This spatial analysis would bring the possibility of analysing specific spatial patterns of larger
regions or in the context of precision farming. Also within the context of decision support
systems or the impact of climate change on crops, there is still scientific research demand.

Data assimilation

It may be attractive to derive additional crop state variables from remote sensing data and inte-
grate those in crop growth simulation models, especially if the observation frequency is high.
Regarding this, the topic of different assimilation methods should also be taken into account, as
well as the use of filters like the Kalman filter and the handling of biases in the remotely sensed
parameters. This is especially important, if multi-source data are used containing different error
sources. As well as when using e.g., classification algorithms for the derivation of land cover
maps, which are integrated into the models for regional modelling purposes.

The presented thesis can be seen as a first basis, highlighting the possibilities of new satellite
sensors. Especially, in regard to multi-sensoral analysis, fusing multispectral and SAR infor-
mation, appears to be a promising technique for the future. It is expected that in the context
of biophysical parameter retrieval the suggested approaches can lead to an improvement of the
estimation accuracy. Exacter biophysical parameter estimation will then also have a positive
impact on the crop growth modelling performances. As shown in the thesis, remote sensing
information can help re-initializing the models and enable spatial modelling.
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A ATTACHMENT

Table A.1: Translation coefficients for sixth order polynomial NDVI intercalibration. Where
the subscripts SOURCE and TARGET indicate the sensor to be translated and the

reference sensor.

TARGET NDVI
SOURCE NDVI SPOT 5 | Landsat 5 TM | QuickBird ASTER
SPOT 5 a0=0.005 | ag=-0.001 | a¢=0.001
a1=0.833 | @;=0.867 | a;=0.832
a9=0.278 | a9=0.109 | ay=0.153
CL3:O.247 (13:0. 157 (l3:0.293
as=-0.858 | a4=-0.292 | a,=-0.455
a5=0.381 | a5=0.042 | a5=-0.033
a6=0.082 | a=0.068 | as=0.168
Landsat 5 TM 5 an=-0.006 ap=-0.006 | ag=-0.005
a; =1.181 a1=1.033 | a;=1.001
as=-0.282 a9=-0.154 | a»,=-0.114
a3=-0.392 a3=-0.159 | a3=-0.012
a4=1.009 a4=0.609 | a,=0.448
as=-0.178 as=-0.211 | a5=-0.334
ag=-0.313 ag=-0.137 | as=0.001
QuickBird a0=0.001 ap=0.006 ap=0.001
a; =1.144 a1=0.969 a1=0.966
as=-0.139 a2=0.186 a2=0.052
a3=-0.187 a3=0.088 a3=0.144
a,=0.424 as=-0.721 a,=-0.209
as=-0.115 a5=0.535 a5=-0.062
ag=-0.081 ae=-0.038 ag=0.118
ASTER a0=0.001 a0=0.005 | ag=-0.001
a1=1.178 a1=1.00 | a;=1.033
as=-0.194 a2=0.122 | a9=-0.052
a3=-0.331 a3=-0.042 | a3=-0.136
a4=0.635 as=-0.480 | a,=0.203
as=-0.052 a5=0.528 | a5=-0.052
ag=-0.202 ag=-0.125 | a¢=-0.109
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A ATTACHMENT

Table A.2: Fitted coefficients for the multiple regression analysis of fresh biomass using SAR
data.

all input parameters

A | B | C|DJ|E/|F
ERS-2 (VV)

-5.58 | -0.35 | 8.66 | 0.40 | 0.26 | -0.30
ASAR (HH)

543 | -8.65 | -3.06 | 0.38 | -0.20 | -3.51
ASAR (HV)

4.79 | -39.51 | -2.19 | 0.41 | -0.09 | -3.96

ASAR (HH/HV)

3.18 | 344 | -1.77 | 038 | -0.12 | -3.95
without roughness

ERS-2 (VV)

-5.31 | -0.42 | 10.61 | | 0.24 |
ASAR (HH)

581 | 438 | -3.21 | | -0.37 |
ASAR (HV)

8.02 | -48.06 | -3.53 | | -0.47 |

ASAR (HH/HV)
8.34 | -8.74 | -4.48 | | -0.44 |

Table A.3: Fitted coefficients for the multiple regression analysis of plant water content using
SAR data.

all input parameters

A | B | C |DJ|E/|F
ERS-2 (VV)

-8.10 | -0.39 | 13.61 | 0.15 | 0.23 | 0.42
ASAR (HH)

2.13 | -7.14 | -0.63 | 039 | 0.18 | -1.97
ASAR (HV)

1.85 | -36.45 | 0.07 | 0.41 | 0.13 | -2.42

ASAR (HH/HV)

-0.08 | 5.23 | -0.02 | 0.40 | 0.24 | -2.07
without roughness

ERS-2 (VV)

-7.36 | -0.41 | 12.85 | | 0.24 |
ASAR (HH)

2.57 | 6.17 | -1.46 | | -0.01 |
ASAR (HV)

512 | 4523 | -1.49 | | -0.13 |

ASAR (HH/HV)
532 | -8.98 | -2.26 | | -0.10 |
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Table A.4: Fitted coefficients for the multiple regression analysis of dry biomass using SAR
data.

all input parameters
A| B | C| D|E|F
ERS-2 (VV)
248 | 0.03 | -4.84 | 0.26 | 0.03 | -0.74
ASAR (HH)
3.29 | -1.52 | -2.41 | -0.02 | -0.36 | -1.52
ASAR (HV)
3.11 | -3.74 | -2.16 | -0.02 | -0.35 | -1.64
ASAR (HH/HV)
3.24 | -1.81 | -1.75 | 0.01 | -0.36 | -1.86

without roughness

ERS-2 (VV)

2.02 | -0.01 | -2.15 | | -0.01 |
ASAR (HH)

3.25 | -1.80 | -1.76 | | -0.37 |
ASAR (HV)

2.93 | -3.27 | -2.07 | | -0.34 |

ASAR (HH/HV)
3.05 | -1.21 | -2.25 | | -0.34 |

Table A.5: Fitted coefficients for the multiple regression analysis of LAI using SAR data.

all input parameters
A | B| C|D| E | F
ERS-2 (VV)
-4.09 | -0.13 | 9.66 | 0.07 | 0.02 | -0.09
ASAR (HH)
1.92 | 1.70 | -0.62 | 0.04 | -0.07 | -1.77
ASAR (HV)
2.23 | 1.22 [ -0.94 | 0.02 | -0.08 | -1.62
ASAR (HH/HV)
3.06 | -547 | 0.01 | 0.07 | -0.13 | -2.22

without roughness

ERS-2 (VV)

-3.95 | -0.14 | 9.50 | | 0.03 |
ASAR (HH)

3.54 | -5.29 | -0.25 | | -0.17 |
ASAR (HV)

2.33 | 022 | -0.90 | | -0.08 |

ASAR (HH/HV)
2.09 | 1.65 | -0.68 | | -0.08 |
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A ATTACHMENT

Table A.6: Fitted coefficients for the Water Cloud model (WCM) and the retrieval of fresh
biomass (with (+VEGE) and without vegetation roughness considerations).

WCM+VEGE
A |B]|] C | D
ERS-2 (VV)
0.36 | 0.63 | -16.55 | 0.613
ASAR (HH)
-0.16 | 0.47 | -12.72 | -0.60
ASAR (HV)
-0.35 | 0.52 | -19.97 | -1.75
ASAR (HH/HV)
-0.24 1 0.05 | -7.24 | -1.15

WCM
ERS-2 (VV)

| 0.86 | -21.89 | 0.56
ASAR (HH)

| 0.49 | -12.96 | -0.58
ASAR (HV)

| 0.57 | -20.48 | -1.64

ASAR (HH/HV)

| 0.08 | -7.79 | -1.10

Table A.7: Fitted coefficients for the Water Cloud model (WCM) and the retrieval of plant water
content (with (+VEGE) and without vegetation roughness considerations).

WCM+VEGE
A | B | c | D
ERS-2 (VV)
049 | 0.54 | -14.83 | 0.54
ASAR (HH)
-0.43 | 0.56 | -12.61 | -0.55
ASAR (HV)

-1.91 | 0.26 | -18.38 | -2.05
ASAR (HH/HV)
-1.04 | -0.22 | -6.96 | -1.37
WCM
ERS-2 (VV)
| 0.66 | -18.15 | 0.68

ASAR (HH)
| 0.64 | -12.56 | -0.44
ASAR (HV)
| 0.64 | -22.53 | -1.56
ASAR (HH/HV)
| -0.01 | -9.00 |-1.12
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Table A.8: Fitted coefficients for the Water Cloud model (WCM) and the retrieval of dry
biomass (with (+VEGE) and without vegetation roughness considerations).

WCM+VEGE
A |B]|] C | D
ERS-2 (VV)
-1.62 | 0.40 | -17.74 | 0.46
ASAR (HH)
-1.20 | 0.88 | -11.18 | -1.03
ASAR (HV)
-0.50 | 1.79 | -19.14 | -2.17
ASAR (HH/HV)
1.01 [ 0.95] -9.26 | -1.08
WCM
ERS-2 (VV)
| 0.86 | -21.89 | 0.56
ASAR (HH)
| 1.25 | -14.56 | -0.86
ASAR (HV)
| 1.95 | -20.53 | -2.10
ASAR (HH/HV)
| 0.70 | -5.98 | -1.23

Table A.9: Fitted coefficients for the Water Cloud model (WCM) and the retrieval of LAI (with
(+VEGE) and without vegetation roughness considerations).

WCM+VEGE
A | B|] C | D
ERS-2 (VV)
-0.95 | 0.48 | -13.06 | 0.32
ASAR (HH)
-1.86 | 0.39 | -10.18 | -0.91
ASAR (HV)
-1.52 | 1.12 | -17.01 | -1.79
ASAR (HH/HV)
0.31 | 0.66 | -6.91 | -0.85
WCM
ERS-2 (VV)
| 0.83 | -20.07 | 0.56
ASAR (HH)
| 0.93 | -15.26 | -0.44
ASAR (HV)
| 1.55 | -21.08 | -1.41
ASAR (HH/HV)
| 0.62 | -5.86 | -0.97
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A ATTACHMENT

Table A.10: Fitted coefficients for the combined (multi-sensoral) biophysical parameter re-
trieval, using the different polarizations and the NDVI.

\'AY
A B C
FM | -6.43 | -0.57 | 4.60
DM | -0.82 | -0.19 | -0.46
LAI | 943 | -035 | -12.92
PWC | -5.61 | -0.38 | 5.06

FM | 247 | -046 | -3.92
DM | 334 | -0.14 | -4.93
LATI | -271 | 0.03 | 5.53
PWC | -0.87 | -0.32 | 1.01

FM | 1045 | -0.46 | -3.92
DM | 6.25 | 0.26 | -0.83
LAI | -3.32 | -0.08 | 4.12
PWC | 420 | -0.77 | .2.31
ratio

FM | 190 | .0.58 | 7.69
DM | 2.79 | 0.20 | -0.71
LAI | -2.55 | -0.04 | 4.65
PWC | -0.89 | 0.37 | 8.40

Table A.11: Fitted coefficients for the combined (multi-sensoral) biophysical parameter re-
trieval, using the VV polarization regression, the CLAIR model and respective
weighting factors.

early phenological stages

a | WDVIg A B C E
FM | 1000 1000 -1.23 | -20.10 | 17.02 | 048
DM | 900 950 -1.94 | -7.70 | 10.01 | 0.15
LAI | 980 850 1.39 0.01 2.14 0.07
PWC | 1100 1050 -0.61 | -26.35 | 21.47 | 0.76
late phenological stages
a | WDV A B C E
FM | 1029 1044 -212.23 | 5.19 | 54438 | 5.31
DM | 999 978 118.58 | -43.51 | -273.73 | -4.60
LAI | 1080 1090 -155.01 | -2.49 | 389.29 | 3.42
PWC | 1046 4052 -358.06 | 32.42 | 898.65 | 14.47

152



Table A.12: Fitted coefficients for the combined (multi-sensoral) biophysical parameter re-
trieval, using the Water Cloud Model (VV polarization), the CLAIR model and
respective weighting factors.

early phenological stages
a |WDVI,| B C D
FM | 1011 1030 1.14 | -8.62 | 1.47
DM | 4482 4571 0.01 | -7.39 | 1.47
LAI | 1090 1010 0.84 | 3.01 | 0.27
PWC | 1090 1110 1.61 | -841 | 147
late phenological stages
a |WDVI, | B C D
FM | 901 1013 0.67 | -7.21 | 2.19
DM | 1032 1035 2.74 | 46311 | -3645
LAI | 1000 1005 0.28 | -14.23 | 0.75
PWC | 1001 999 0.76 | -17.72 | 3.10
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