82,170 research outputs found

    Superconducting Material Diagnostics using a Scanning Near-Field Microwave Microscope

    Full text link
    We have developed scanning near-field microwave microscopes which can image electrodynamic properties of superconducting materials on length scales down to about 2 ÎĽ\mum. The microscopes are capable of quantitative imaging of sheet resistance of thin films, and surface topography. We demonstrate the utility of the microscopes through images of the sheet resistance of a YBa2Cu3O7-d thin film wafer, images of bulk Nb surfaces, and spatially resolved measurements of Tc of a YBa2Cu3O7-d thin film. We also discuss some of the limitations of the microscope and conclude with a summary of its present capabilities.Comment: 6 pages with 9 figures, Proceedings of the Applied Superconductivity Conference 199

    Sample holder support for microscopes

    Get PDF
    A sample filter holder is disclosed for use with a microscope for holding the filter in a planar condition on the stage of the microscope so that automatic focusing of the microscope can be performed on particle samples dispersed on the filter. The holder includes a base having a well that communicates with an inlet port which is connected to a suction pump. A screen assembly is positioned within the well. The screen assembly includes a disk having a screen positioned on its top surface and secured to the disk at the peripheral edge of the screen. Small bores allow the outer surface of the screen to communicate with the well. The filter is placed on the screen and is held in a flat disposition by the suction forces

    Modeling Brain Circuitry over a Wide Range of Scales

    Get PDF
    If we are ever to unravel the mysteries of brain function at its most fundamental level, we will need a precise understanding of how its component neurons connect to each other. Electron Microscopes (EM) can now provide the nanometer resolution that is needed to image synapses, and therefore connections, while Light Microscopes (LM) see at the micrometer resolution required to model the 3D structure of the dendritic network. Since both the topology and the connection strength are integral parts of the brain's wiring diagram, being able to combine these two modalities is critically important. In fact, these microscopes now routinely produce high-resolution imagery in such large quantities that the bottleneck becomes automated processing and interpretation, which is needed for such data to be exploited to its full potential. In this paper, we briefly review the Computer Vision techniques we have developed at EPFL to address this need. They include delineating dendritic arbors from LM imagery, segmenting organelles from EM, and combining the two into a consistent representation

    Informing students using virtual microscopes and their impact on students' approach to learning

    Get PDF
    This research is an exploratory study of students ’ approaches to studying histology and pathology. With the introduction of virtual microscopes in Health Science at Murdoch University, Australia, in 2006, it was crucial to investigate how this new technology impacted on students ’ approaches to learning. The ASSIST survey was implemented at the beginning and end of the semester to identify any changes. Results indicate that, when the technology was integrated into the curriculum with appropriate learning activities, students using virtual microscopes moved more towards a strategic approach to learning but expressed a preference for a deep approach to teaching

    Momentum transfer to small particles by aloof electron beams

    Get PDF
    The force exerted on nanoparticles and atomic clusters by fast passing electrons like those employed in transmission electron microscopes are calculated and integrated over time to yield the momentum transferred from the electrons to the particles. Numerical results are offered for metallic and dielectric particles of different sizes (0-500 nm in diameter) as well as for carbon nanoclusters. Results for both linear and angular momentum transfers are presented. For the electron beam currents commonly employed in electron microscopes, the time-averaged forces are shown to be comparable in magnitude to laser-induced forces in optical tweezers. This opens up the possibility to study optically-trapped particles inside transmission electron microscopes.Comment: 6 pages, 5 figure

    Fast automated scanning of OPERA emulsion films

    Get PDF
    The use of nuclear emulsions to record tracks of charged particles with an accuracy of better than 1 micron is possible in large physics experiments thanks to the recent improvements in the industrial production of emulsions and to the development of fast automated microscopes. The European Scanning System (ESS) is a fast automatic system developed for the mass scanning of the emulsions of the OPERA experiment, which requires microscopes with scanning speeds of about 20 cm2^2/h. Recent improvements in the technique and measurements with ESS are reported.Comment: 3 pages, 5 figures, presented at the 10th Topical Seminar on Innovative Particle and Radiation Detectors, 1-5 October 2006, Siena, Ital

    Accessing the Microscopic World

    Get PDF
    The Exploratorium in San Francisco offers museum visitors the opportunity to use and manipulate state-of-the-art microscopes to visualize an array of living specimen
    • …
    corecore