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The force exerted on nanoparticles and atomic clusters by fast passing electrons like those employed in
transmission electron microscopes are calculated and integrated over time to yield the momentum transferred
from the electrons to the particles. Numerical results are offered for metallic and dielectric particles of different
sizes(0–500 nm in diameter) as well as for carbon nanoclusters. Results for both linear and angular momen-
tum transfers are presented. For the electron beam currents commonly employed in electron microscopes, the
time-averaged forces are shown to be comparable in magnitude to laser-induced forces in optical tweezers.
This opens up the possibility to study optically trapped particles inside transmission electron microscopes.
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I. INTRODUCTION

Electromagnetic forces in optical tweezers are currently
employed to trap small particles ranging in size from nanom-
eters to several microns,1,2 and to manipulate them in all
spatial directions.3,4 This type of force is also used to char-
acterize the elastic properties of deformable tiny objects
(e.g., living cells5), to obtain quantitative information on me-
chanical properties at small length scales,2 and in general, to
fix the position of those particles so that they can be manipu-
lated at will.

In this context, transmission electron microscopy offers a
potentially useful tool to study optically trapped particles,
providing excellent spatial resolution(sometimes below 1 Å)
when subnanometer electron beams are employed,6 while al-
lowing spectroscopic characterization with sub-electronvolt
accuracy. Actually, transmission electron microscopes are
routinely exploited to probe local optical response
properties,7 and more recently, also to determine photonic
structures of complex materials.8

A major problem that may arise when combining electron
microscopy with optical tweezers or other types of optical
trapping (e.g., optical lattices9–11) is that the passing elec-
trons can kick the particles out of the trapping locations(see
Fig. 1). In this work, we show that the momentum trans-
ferred from the passing electrons to the particles can be well
below the threshold needed to kick them out for commonly
employed trapping laser intensities, although a detailed com-
parison between trapping forces and electron-induced forces
suggests that both weak and strong perturbation regimes are
possible depending on the distance between the particles and
the beam, all of them within the range that allows a suffi-
ciently large electron-particle interaction as to perform elec-
tron energy loss spectroscopy(EELS) with significant statis-
tics for in vacuooptically trapped particles.

The moving electrons can be in fact regarded as a source
of evanescent electromagnetic field that probes the sample
locally, and in this sense, they can be also used to produce
deformation in elastic particles, oscillations of trapped par-
ticles around their equilibrium positions, and other interest-
ing effects associated to the transfer of momentum within
accurately controlled spatial regions.

The present work addresses, in a quantitative way, the
issue of both linear and angular momentum transfer from an

electron beam to small particles. This applies to optically
trapped particles, as mentioned above, but also to other
forms of trapping, like particles deposited on solid sub-
strates, or particles trapped by a tip[e.g., in a scanning tunnel
microscope(STM) set up].

II. THEORY

The electromagnetic force exerted on a particle in vacuum
is given by the integral of Maxwell’s stress tensor over a
surfaceS embedding the particle12 as

Fstd =
1

4p
E

S

dsFEss,tdEss,td · n̂ + Hss,tdHss,td · n̂

−
n̂

2
suEss,tdu2 + uHss,tdu2dG ,

wheren̂ is the surface normal and Gaussian units are used.
The momentum transferred to the particle,Dp, is obtained by
integrating ofFstd over the time. This yields

FIG. 1. (Color online). Schematic representation of the process
considered in this work: a fast electron moving with impact param-
eterb and velocityv with respect to a polarizable particle transfers
momentum Dp=sDpx,Dpzd to the particle via electromagnetic
interaction.
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Dp =E Fstddt =E
0

`

Fsvddv, s1d

where

Fsvd =
1

4p2 ReHE
S

dsFEss,vdfEss,vd · n̂g * + Hss,vd

3fHss,vd * · n̂d * −
n̂

2
suEss,vdu2 + uHss,vdu2gGJ ,

s2d

and the Fourier transform is defined asEsr ,vd
=edtEsr ,tdexphivtj.

The force acting on the particle is due in part to radiation
emitted as a result of interaction with the electron and in part
to the reaction force experienced by the projectile. For small
particles, the effect of radiation emission is negligible and
the trajectory is deflected by an angle<Dp/mv, wherem
andv are the mass and velocity of the electron. Nonretarded
calculations have shown that this angle is too small to be
easily measured.13

A. Small particles

Let us first consider a small isotropic particle sufficiently
far away from the electron beam as to neglect higher multi-
poles beyond induced dipoles. The particle is then character-
ized by its frequency-dependent polarizabilityasvd, and the
force exerted by each frequency component of the external
field Esr ,vd reduces to14

Fsvd = ReHao
j

Ej
extsr ,vd ¹ fEj

extsr ,vdg * J . s3d

This expression can be derived from Eq.(2) by considering
an integration surface arbitrarily close to the object and by
using the expressions for the electric and magnetic fields
induced by a small polarizable particle in terms of its polar-
izability a. For an electron moving with velocityv toward a
positive z direction and passing by the origin att=0, the
external field is readily calculated from Maxwell’s equations
to yield

Eextsr ,vd =
− 2ev

v2g
eivz/vFK1SvR

vg
DR

R
−

i

g
K0SvR

vg
DẑG ,

s4d

whereR=sx,yd and g=1/Î1−v2/c2. Inserting Eq.(4) into
Eq. (3), one obtains

Fsvd =
2e2v3

v5g3 F− Rehajf8Svb

vg
Dx̂ + 2g ImhajfSvb

vg
DẑG ,

s5d

where

fszd = K1
2szd + K0

2szd/g2,

and the particle is taken to be situated atR=s−b,0d with
respect to the beam(see Fig. 1).

Symmetry considerations lead to the conclusion that Ray-
leigh scattering of the external-electron evanescent field(4)
produces a radiation pattern with inversion symmetry with
respect to a plane perpendicular to the trajectory. This means
that the overall transfer of momentum to the induced radia-
tion is zero in the small-particle limit, so thatDpz accounts
for all momentum transfer to the moving electron alongz.
Then, the contribution of eachv component to the electron
energy loss rate is, within the nonrecoil approximation valid
for sufficiently energetic electrons,vFzsvd. Actually, one
finds that the identityvFzsvd="vPsvd is satisfied, where
Psvd is the frequency-resolved loss probability as previously
obtained for small particles.15 As a consequence,Fz vanishes
in the v→0 limit, sincePsvd remains finite.

This behavior is quite different fromFx, which goes
to a finite value for small v’s, namely, Fxsv=0d
=4e2Rehas0dj /v2b3. (Incidentally, momentum transfer along
x produces negligible energy transfer in the nonrecoil ap-
proximation.) This latter formula can be used to derive a
close expression forDpx valid for arbitrarily large, finite ob-
jects in the large impact parameter limit. In that case, only
smallv’s contribute toFsvd, due to the effective exponential
cut-off imposed by the modified Bessel functionsK0 andK1.
This means that only long wavelengths are relevant(to
which the object appears as small), so that it can be described
by its static polarizability. Then, thev integral can be per-
formed numerically to yield

Dpx = S5.55165g +
1.85055

g
De2Rehas0dj

vb4 . s6d

For comparison, the momentum transferred to a chargee at a
distanceb from the beam isDp=−s2e2/bvdx̂.

The large-b limit given by Eq. (6) is compared in Fig. 2
with more detailed calculations that include higher-multipole
moments, as described below. Also, the small particle limit
of Eq. (5) is discussed in Fig. 3.

B. Arbitrary size

For larger particles or for close electron-particle encoun-
ters, higher multipoles become relevant in the induced
forces.16 Then, it is convenient to express the evanescent
field of the electron in terms of multipoles centered at the
particle, so that the external electric and magnetic fields ad-
mit the following decomposition:15,17

Eextsr ,vd = o
L
Fc L

M,extL −
i

k
c L

E,ext¹ 3 LG jLskr d

and

Hextsr ,vd = − o
L
Fc L

E,extL +
i

k
c L

M,ext¹ 3 LG jLskr d,

where L=sl ,md, k=v /c, jLskr d=i l j lskrdYLsr̂ d, L =−i"r 3¹
is the orbital angular momentum operator, andcL

n,ext (for n
=E,M) are multipole coefficients given by15,17
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Fc L
M,ext

c L
E,extG =

− 2pi1−lek

lsl + 1d"c
F2mALv/c

BL/g
GKmFvb

vg
G , s7d

with

AL =Î2l + 1

p

sl − umud!
sl + umud!

s2umu − 1d ! !

3
i l+umusm

sv/cdsvg/cdumuCl−umu
sumu+1/2dS c

v
D ,

BL = Al,m+1C+ − Al,m−1C−,

and

C± = Îsl ± m+ 1dsl 7 md.

Here, sm=1 if mù0, sm=s−1dm if m,0, and Cm
snd is the

Gegenbauer polynomial.18 The impact parameterb is defined
in Fig. 1.

The induced field around the particle is given by similar
expressions obtained by substitutingcL

n,ext by coefficients
cL

n,ind, and j l by the Hankel functionhl
s+d.19 In particular,L

=sl ,md is conserved for spherical particles and one has a
linear dependencecL

n,ind= tl
ncL

n,ext, wheretl
n are scattering ma-

trices that are given by analytical expressions in the case of
homogeneous particles of dielectric functione and radiusa15

tl
M =

− j lsr0dr1j l8sr1d + r0j l8sr0d j lsr1d
hl

s+dsr0dr1j l8sr1d − r0fhl
s+dsr0dg8 j lsr1d

and

tl
E =

− j lsr0dfr1j lsr1dg8 + efr0j lsr0dg8 j lsr1d
hl

s+dsr0dfr1j lsr1dg8 − efr0hl
s+dsr0dg8 j lsr1d

,

wherer0=ka, r1=r0
Îe with Imhr1j.0, and the prime de-

notes differentiation with respect tor0 andr1.
At this point, it is convenient to write the operatorsL and

s1/kd¹ in matrix form. One finds

L jL = o
L8

L LL8 jL8

and

1

k
¹ jL = o

L8

NLL8 jL8,

respectively, where

L LL8 = "dl,l8fC+dm+1,m8sx̂ − iŷd/2 + C−dm−1,m8sx̂ + iŷd/2

+ mdm,m8ẑg,

ẑ ·NLL8 = idm,m8sdl+1,l8 + dl−1,l8d
sl8 + mdsl8 − md

s2l8 − 1ds2l8 + 1d
, s8d

and thex̂ and ŷ components ofN are obtained from Eq.(8)
by rotating the reference frame using rotation matrices for
spherical harmonics.19 Exactly the same matrices as above
apply toL ands1/kd¹ acting on Hankel functionshL

s+d. Fur-
thermore, these matrices satisfy the propertiesL +=L and
N+=−N.

Now, the electric field admits an expansion of the form

Eextsr ,vd = o
L

EL
extjLskr d,

where the coefficients

FIG. 3. (Color online). Particle size dependence of the momen-
tum transfer normalized to the particle massM under the same
conditions as in Fig. 2: small particle limit(dashed curves) versus
full multipole calculation(solid curves). The particle is made of
Al2O3 (densityr=4.02 g/cm3), the electron energy is 200 keV, and
the distance from the trajectory to the particle surface is 10 nm.
Dotted curves show the momentum transferred from light in an
optical trap(see text for details).

FIG. 2. (Color online). Momentum transfer to small spherical
particles by a passing 200-keV electron as a function of the distance
from the trajectory to the center of the spheresb. The momentum
transfer has been scaled using the velocityv=0.7c, the sphere ra-
dius a, and the impact parameterb. The perpendicular component
of the momentum transfer with respect to the trajectoryDpx (solid
curves) has been represented for spheres of radiusa=10, 50, 200,
and 500 nm(notice the rapid increase inDpx nearb=a). The par-
allel componentDpz (dashed curves) is only shown fora=200 and
500 nm. Dielectric alumina spheres and metallic silver spheres are
considered(left and right plot, respectively), respectively. The large
b limit for perpendicular momentum transfer[Eq. (6)] is shown by
horizontal dotted lines.
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EL
ext = o

L8

L LL8cL8
M,ext+ i o

L8L9

NLL9
*

3 L L9L8
* cL8

E,ext

are obtained from the above expressions. Similar formulas
are obtained forHext and for the induced fieldsEind andH ind

in terms of multipole coefficients. Finally, we insert them

into Eq. (2) and perform the integral over a sphere in thes
→` limit. Then, the first two terms inside the integrand give
a vanishing contribution because the induced far-field is
transverse. The remaining part of the integral can be recast,
noticing that only real terms must be retained

Fsvd =
1

s4pkd2o
LL8

Rehn̂LL8 3 sifEL
extsEL8

indd * + HL
extsHL8

indd * gs1 − s− 1dld − ifEL
indsEL8

extd * + HL
indsHL8

extd * gs1 − s− 1dl8d

+ 2fEL
indsEL8

indd * + HL
indsHL8

indd * gdj, s9d

where

n̂LL8 =E dVYL8
* sVdn̂sVdYLsVd s10d

and n̂sVd=Î4p /3fsx̂+iŷdY1−1/Î2−sx̂−iŷdY11/Î2+ẑY10g is
the radial vector as a function of the polar directionV.

III. RESULTS AND DISCUSSION

Figure 2 shows the dependence of the momentum transfer
on electron impact parameterb for alumina and silver
spheres of different radius, as calculated from Eqs.(1) and
(9). Measured optical data have been used for the dielectric
function of these materials.7 One can observe a nearly expo-
nential decay of the momentum transfer withb. Besides, the
momentum transferred along the direction of the electron
velocity vector(Dpz, dashed curves) is generally smaller than
the remaining perpendicular component(Dpx, solid curves),
which finds an explanation in the fact that the contribution of
these components to the energy loss"v is vDpz+sDpxd2/m,
wherem is the electron mass: sincemv@Dp, Dpx is allowed
to take larger values thanDpz for each fixedv.

Notice also thatDpx converges quickly to the largeb limit
[Eq. (6), dotted curves], producing a finite result under the
scaling of Fig. 2, unlikeDpz, which goes faster to 0 for large
b. In this limit, the electron induces a dipole in the particle
directed toward the electron, which results in an attractive
force between these two similar to the image potential at
surfaces,20 leading to a momentum transferDp<Dpxx̂. For
small metallic particles and closer encounters this picture is
no longer valid andDpx can actually reverse its sign and
have a net repulsive behavior(e.g., in Fig. 2 for Ag particles
of radiusa=10 nm and also for the fullerenes of Fig. 4).

A more detailed analysis of the magnitude of the momen-
tum transfer effect is given in Fig. 3. The momentum transfer
is normalized to the particle massM and the result is the
change in the particle velocity induced by the passage of the
electron as a function of particle radiusa. The trajectory of
the 200-keV electron under consideration passes 10 nm
away from the surface of the spherical alumina particles. The

full-multipole calculation [Eqs. (1) and (9), solid curves]
agrees well with the small particle limit[Eqs. (1) and (5),
dashed curves] when a is much smaller thanb−a=10 nm.
Even though the electron-particle interaction increases with
the radiusa, the actual change in the particle velocity shows
a nearly exponential decay with increasinga.

In a situation where the particle is trapped by lasers(e.g.,
in optical tweezers4 or in optical stretchers5), one should
compare the interaction with the electrons to the interaction
with the laser light. To this end, we will consider a trapping
cw-Ti:sapphire 100-mW laser emitting at a wavelengthl
=785 nm and focused on a region of radiusRf =10 mm. Fur-
thermore, we will contemplate the momentum transferred by
the laser during the average time spanDt between two con-
secutive passing electrons in a transmission electron micro-
scope operating at a current of 1 nA. The particle polarizabil-
ity a is all that is needed to calculate light forces for the
small radii under discussionsa!ld, according to Eq.(3).
Now, for reala this equation defines a conservative gradient
force that responds to the potential −sa /2duEu2, whereE is
the laser light field, whereas the imaginary part ofa repre-
sents photon absorption by the particle that translates into
light pressure.21 These two components are represented sepa-

FIG. 4. (Color online). Momentum transferred from a 5-keV
electron to a C60 cluster as a function of impact parameterb. The
momentum is normalized to the cluster massM.
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rately in Fig. 3 after multiplication byDt /M (dotted curves).
The light pressure contribution is calculated for an incidence
plane wave with the same photon flux as the laser at its
focus. The gradient force component is obtained from the
maximum force in the focus region assuming a Gaussian
profile for the laser field intensity(i.e., uEu2~expf−R2/
sRf / ln 2d2g). Finally, it is convenient to define the polariz-
ability from its relation to the scattering matrix, which upon
inspection permits writinga=3t1

E/2k3. Unlike the well-
known expression12 a=a3se−1d / se+2d, the former relation
predicts a nonzero value for Imhaj even for particles with
reale (like our alumina spheres), arising as a pure retardation
correction associated to radiation scattering(this is actually
the origin of the light pressure component of Fig. 3). (Inci-
dentally, gravity would produce a velocity changegDt
=1.56 nm/s, which is well compensated for in currently
available optical trapping systems.)

An important conclusion that can be extracted from Fig. 3
is that the crossover of trapping light into the main source of
momentum occurs for particles of 20 nm in diameter when
the electrons pass at a distance of 10 nm from the particles
surface, thus allowing one to perform energy loss analysis of
the transmitted electrons with significant statistics. There-
fore, transmission electron microscopy can be combined
with in vacuo optical trapping to study particles of sizes
above some tens nm.

While the transfer of momentum by the trapping light
occurs in a continuous smooth fashion, the electrons deposit
all of the momentum during a small time interval,a/v
(!Dt=0.16 ns for 1 nA electron current). However, the
change in particle velocity per electron(vertical scale in Fig.
3) produces a minute particle displacement duringDt
(smaller than 1.6310−9 nm!a), and therefore, the effect of
the passing electrons is experienced by the particle as a
nearly continuous source of momentum that is describable
by an average forceDp /Dt. Actually, Fig. 3 suggests that
using more intense electron beams(with even smaller impact
parameters) acting during periods of the order of one second
will still not produce ejection of the particles from their trap-
ping locations.

It should be stressed that the momentum transfers that we
have calculated using classical electromagnetic theory must
be understood as the average value over many incoming
electrons, since the actual strength of the interaction is not
large enough as to guarantee that many photons are ex-
changed between each electron and a given particle. Like in
aloof EELS experiments,8 most electrons will not interact
with the particles at all, so that the present results must be
understood under the perfectly valid perspective of a statis-
tical average performed over many beam electrons. The qua-
dratic deviation from these average forces can also play a
role (similar to straggling in stopping power theory), but this
subject is left for future consideration.

We have also studied momentum transfer to C60 clusters
(Fig. 4). The scattering matricestl

n have been obtained within
the discrete-dipole approximation,22,23 where each carbon
atom is described by an induced dipole whose polarizability
is fitted to reproduce correctly the measured optical response
of graphite.7 Further details concerning the procedure fol-

lowed to obtaintl
n will be given elsewhere.24 At relatively

small interaction distancesb, thez component of the momen-
tum is larger than thex component and the latter is negative.
These are effects that can be hardly found in the above ex-
amples and that originate in high-order multipoles(actually,
l ø5 are needed for convergence within the range ofb under
consideration). Even at a distance of 9 nm(notice that C60
has a diameter of only 0.7 nm) the change in velocity pro-
duced by the passing electron can be substantial. Therefore,
the interaction of fast electrons with small clusters can pro-
duce dramatic effects if these are not mightily bound by a
mechanism stronger than optical trapping.

Finally, the passing electron can induce a torque on the
particle that changes its angular momentumsDLyd and makes
it rotate. This is the effect discussed in Fig. 5. Like the elec-
tromagnetic force above, the torqueG is obtained from the
integral of Maxwell’s stress tensor,12 which yields

G =
− s3

4p
ReHE

S

dŝfsn̂ ·Ed * sE 3 n̂d + sn̂ ·Hd * sH 3 n̂dgJ ,

wheres is the radius of a sphere where the particle is em-
bedded. Proceeding in a way similar to the derivation of the
force presented in Sec. II, this expression can be written in
terms of multipole components as

G =
1

4pk3 o
lml8m8

lsl + 1dReHF1

2
Îsl + m+ 1dsl − mddm+1,m8sx̂

− iŷd +
1

2
Îsl − m+ 1dsl + mddm−1,m8sx̂ + iŷd + mdmm8ẑG

3 fcL
E,indscL8

E,indd * + cL
M,indscL8

M,indd *

+ icL
E,indscL8

E,extd * + i cL
M,indscL8

M,extd * gJ . s11d

Equation(11) has been used to obtain Fig. 5, which shows
the change in angular velocity of the particle per incident

FIG. 5. (Color online). Change in the particle angular velocity
as a result of the torque exerted by the electron. The particle is
made of Al2O3 (density r=4.02 g/cm3), the electron energy is
200 keV, and the distance from the trajectory to the particle surface
is 10 nm.

MOMENTUM TRANSFER TO SMALL PARTICLES BY… PHYSICAL REVIEW B 70, 115422(2004)

115422-5



electron,DV=DLy/ I, whereI =s2/5da2M is the moment of
inertia of the alumina sphere.

Averaging over the electrons of a 1 nA electron beam
passing at 10 nm from the surface of an alumina sphere of
radius a=20 nm, one finds an angular acceleration of
39 MHz/s. Under these conditions, the linear momentum
transferred by the electrons can be absorbed by the trapping
light, as discussed above. However, the angular momentum
is not absorbed, and the particle will spin with increasing
angular velocity until either the centrifugal force breaks it
apart or radiation emission at the rotation frequency(vacuum
friction) compensates for the electron-induced torque.

In conclusion, we have shown that fast electrons follow-
ing aloof trajectories(i.e., without direct overlap with the
sample) in a transmission electron microscope can exert
time-averaged forces on small particles of similar magnitude
as those forces associated to trapping in optical tweezers and
stretchers, and therefore, this effect can be used for analytical
studies of mechanical properties of such particles, while
electron energy loss spectra can be actually taken without

causing ejection of the particles from their trapping posi-
tions. The experimental challenge consists in combining
electron microscopy with optical trapping in vacuum, and we
hope that this work can contribute to stimulate further re-
search in this direction. Besides, the linear and angular mo-
mentum transfers discussed here can play a relevant role in
other types of trapping, like for particles deposited on a sub-
strate, or for particles trapped by a tip, where the forces and
torques induced by the passing electrons can push, pull, re-
position, or reorient the trapped particles.
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