2,094 research outputs found

    EUCLID : Dark Universe Probe and Microlensing planet Hunter

    Full text link
    There is a remarkable synergy between requirements for Dark Energy probes by cosmic shear measurements and planet hunting by microlensing. Employing weak and strong gravitational lensing to trace and detect the distribution of matter on cosmic and Galactic scales, but as well as to the very small scales of exoplanets is a unique meeting point from cosmology to exoplanets. It will use gravity as the tool to explore the full range of masses not accessible by any other means. EUCLID is a 1.2m telescope with optical and IR wide field imagers and slitless spectroscopy, proposed to ESA Cosmic Vision to probe for Dark Energy, Baryonic acoustic oscillation, galaxy evolution, and an exoplanet hunt via microlensing. A 3 months microlensing program will already efficiently probe for planets down to the mass of Mars at the snow line, for free floating terrestrial or gaseous planets and habitable super Earth. A 12+ months survey would give a census on habitable Earth planets around solar like stars. This is the perfect complement to the statistics that will be provided by the KEPLER satellite, and these missions combined will provide a full census of extrasolar planets from hot, warm, habitable, frozen to free floating.Comment: 6 pages 3 figures, invited talk in Pathways towards habitable planets, Barcelona, Sept 200

    Detection of Extrasolar Planets by Gravitational Microlensing

    Full text link
    Gravitational microlensing provides a unique window on the properties and prevalence of extrasolar planetary systems because of its ability to find low-mass planets at separations of a few AU. The early evidence from microlensing indicates that the most common type of exoplanet yet detected are the so-called "super-Earth" planets of ~10 Earth-masses at a separation of a few AU from their host stars. The detection of two such planets indicates that roughly one third of stars have such planets in the separation range 1.5-4 AU, which is about an order of magnitude larger than the prevalence of gas-giant planets at these separations. We review the basic physics of the microlensing method, and show why this method allows the detection of Earth-mass planets at separations of 2-3 AU with ground-based observations. We explore the conditions that allow the detection of the planetary host stars and allow measurement of planetary orbital parameters. Finally, we show that a low-cost, space-based microlensing survey can provide a comprehensive statistical census of extrasolar planetary systems with sensitivity down to 0.1 Earth-masses at separations ranging from 0.5 AU to infinity.Comment: 43 pages. Very similar to chapter 3 of Exoplanets: Detection, Formation, Properties, Habitability, John Mason, ed. Springer (April 3, 2008

    Space based microlensing planet searches

    Full text link
    The discovery of extra-solar planets is arguably the most exciting development in astrophysics during the past 15 years, rivalled only by the detection of dark energy. Two projects unite the communities of exoplanet scientists and cosmologists: the proposed ESA M class mission EUCLID and the large space mission WFIRST, top ranked by the Astronomy 2010 Decadal Survey report. The later states that: "Space-based microlensing is the optimal approach to providing a true statistical census of planetary systems in the Galaxy, over a range of likely semi-major axes". They also add: "This census, combined with that made by the Kepler mission, will determine how common Earth-like planets are over a wide range of orbital parameters". We will present a status report of the results obtained by microlensing on exoplanets and the new objectives of the next generation of ground based wide field imager networks. We will finally discuss the fantastic prospect offered by space based microlensing at the horizon 2020-2025.Comment: 8 pages, Proceedings to the ROPACS meeting "Hot Planets and Cool Stars" (Nov. 2012, Garching), invited contributio

    Using graphical and pictorial representations to teach introductory astronomy students about the detection of extrasolar planets via gravitational microlensing

    Get PDF
    The detection and study of extrasolar planets is an exciting and thriving field in modern astrophysics, and an increasingly popular topic in introductory astronomy courses. One detection method relies on searching for stars whose light has been gravitationally microlensed by an extrasolar planet. In order to facilitate instructors' abilities to bring this interesting mix of general relativity and extrasolar planet detection into the introductory astronomy classroom, we have developed a new Lecture-Tutorial, "Detecting Exoplanets with Gravitational Microlensing." In this paper, we describe how this new Lecture-Tutorial's representations of astrophysical phenomena, which we selected and created based on theoretically motivated considerations of their pedagogical affordances, are used to help introductory astronomy students develop more expert-like reasoning abilities.Comment: 10 pages, 10 figures, accepted for publication in the American Journal of Physic

    Search for exoplanets in M31 with pixel-lensing and the PA-99-N2 event revisited

    Full text link
    Several exoplanets have been detected towards the Galactic bulge with the microlensing technique. We show that exoplanets in M31 may also be detected with the pixel-lensing method, if telescopes making high cadence observations of an ongoing microlensing event are used. Using a Monte Carlo approach we find that the mean mass for detectable planetary systems is about 2MJ2 M_{\rm {J}}. However, even small mass exoplanets (MP<20M⊕M_{\rm P} < 20 M_{\oplus}) can cause significant deviations, which are observable with large telescopes. We reanalysed the POINT-AGAPE microlensing event PA-99-N2. First, we test the robustness of the binary lens conclusion for this light curve. Second, we show that for such long duration and bright microlensing events, the efficiency for finding planetary-like deviations is strongly enhanced with respect to that evaluated for all planetary detectable events.Comment: 14 pages, 8 figures. Paper presented at the "II Italian-Pakistani Workshop on Relativistic Astrophysics, Pescara, July 8-10, 2009. To be published in a special issue of General Relativity and Gravitation (eds. F. De Paolis, G.F.R. Ellis, A. Qadir and R. Ruffini

    Timing analysis in microlensing

    Get PDF
    Timing analysis is a powerful tool used to determine periodic features of physical phenomena. Here we review two applications of timing analysis to gravitational microlensing events. The first one, in particular cases, allows the estimation of the orbital period of binary lenses, which in turn enables the breaking of degeneracies. The second one is a method to measure the rotation period of the lensed star by observing signatures due to stellar spots on its surface.Comment: 11 pages, 4 figures. To be published in International Journal of Modern Physics D (IJMPD
    • …
    corecore