22 research outputs found

    Control and operation of multiple distributed generators in a microgrid

    Get PDF
    Small sized synchronous generator based distributed generators (DG) often have low start-up times, and can serve as dispatchable generators in a microgrid environment. The advantage is that it allows the power network to operate in a true smart grid environment. The disadvantage is that such DGs typically tend to have low inertia and the prime movers driving these resources need to be controlled in real time for them to operate effectively in islanded, grid-connected modes and during transition from grid-connected mode to islanded mode and vice versa. When multiple DGs are present in the microgrid, the overall control can become complicated because of the need for sharing the resources. A smart grid environment is then necessary to control all dispersed generation sources in the microgrid. The most common control strategy adopted for multiple DGs connected to a network is droop control. Droop control ensures that the load needed to be served is shared by all the generators in the network in proportion to their generating capability. When DGs operate in a microgrid environment, there is a need for coordinated operation between the DGs, the utility grid and the loads. A MicroGrid Central Controller (MGCC) can keep track of the status from the system standpoint and command the local Microsource Controllers (MC) to ensure system stability. In various modes of operation like grid connected, islanding and during transition, the MGCC can support the MCs by giving them necessary information to contribute towards stable operation --Abstract, page iii

    Applicability of Droop Regulation Technique in Microgrid - A Survey

    Get PDF
    Currently, the worth of power generation on the basis of renewable sources is rapidly growing. Correspondingly the microgrids and the DG units are impressed the researchers for their peculiar features. Power sharing is the major concern when various DGs are connected to the microgrid via power electronic converters. It is mandatory to achieve an appropriate power sharing when the manifold DGs are activated in parallel. For that, the two ultimate quantities - power angle δ and voltage magnitude V are regulated to acquire the real and reactive power sharing correspondingly. Many innovative control techniques have been used for load sharing. The most common method of local load sharing is the droop characteristics. Subsequently, there is a swift momentum in the advancement of researchers to meet the challenges of the droop control techniques in the power sharing concerns, an extensive literature review on active and reactive power sharing, voltage and frequency control in microgrid has been emphasized. The various conventional and modified droop control techniques/strategies that relates to power sharing issues have been highlighted in this work

    Control of distributed renewable energy generation systems in converter-dominated microgrid applications

    Get PDF
    Mención Internacional en el título de doctorThere is a growing interest in the use of renewable Distributed Energy Resources (DERs) that increase the efficiency of the transmission system and reduce the ecological impact of renewable energy infrastructures. At the same time, they reduce the associated capital requirements, thus increasing the potential installation of renewable energy. Microgrids have been proposed as a solution to improve the integration of renewable DERs. By the use of advanced control techniques, they provide a reliable frame for DERs to support the power system operation. As such, Microgrids can be a promising solution to increase renewable energy penetration. However, since renewable DERs are usually interfaced by Power Electronic Converters (PECs), they do not provide the common stabilization characteristics of traditional generation interfaced by Synchronous Generators (SGs). Therefore, there are concerns about the stability of converter-dominated Microgrids. This Thesis focus on the specific requirements of PEC-interfaced renewable DERs operating in Microgrids. An overview of available solutions show that, for PECs to support the Microgrid operation in both grid-connected and islanded modes, they require a synchronizing mechanism that does not rely on the measurement of an external frequency. A promising alternative is to emulate the behavior of traditional SGs in the PEC control system with the so-called Virtual Synchronous Machine (VSM) solutions. The synchronization system underlying to these proposals is analyzed. A comparison with the use of traditional frequency measurement systems, namely Phase-Locked Loops (PLLs), in the support of the Microgrid power balance is addressed, showing that the PEC synchronization system has a direct effect on the Microgrid stability. The Thesis includes a new proposal to ensure synchronous operation based on the use reactive power, instead of active power as in VSMs, that does not require frequency measurements. A dynamic model of a grid-connected PEC is used to demonstrate that reactive power can be used to ensure synchronism. This Reactive Power Synchronization system is used to propose a solution for the black-start of Wind Energy Conversion Systems (WECSs), so that they can contribute to the restoration of the power system following a blackout. The proposed control systems are validated with experimental results of a grid connected PEC and an isolated WECS.Programa Oficial de Doctorado en Ingeniería Eléctrica, Electrónica y Automática por la Universidad Carlos III de MadridPresidente: Luis Rouco Rodríguez.- Secretario: Emilio José Bueno Peña.- Vocal: Roberto Alves Baraciart

    Design of a Power Electronics Based Diesel Engine Generator Emulator for Study of Microgrid Related Applications

    Get PDF
    In the following thesis, design and implementation of an emulator is provided to emulate the parallel operation of a hybrid diesel engine generator (GENSET) and hydrokinetic energy conversion system (HKECS) in a microgrid with the aim of improvement in overall performance of the genset in terms of fuel consumption, emission and efficiency. The mechanical and electrical parts of a typical genset are modeled mathematically in a digital controller (ds-1103, dSpace) and the model is fed to a current and voltage controlled voltage source inverter (VSI) which is designed for the emulation of the generator output voltage to produce the same output power characteristics as in a real diesel engine generator. Output available power of a second source (only steady state behaviour of a HKECS) is emulated using a current controlled VSI (CCVSI); which is fed by reference signals determined by the available power flow of the water. In addition, a novel method for combination of the genset and HKECS is proposed to enforce the genset to operate in the least brake specific fuel consumption (BSFC), most efficient or less emission operating points. Since no dedicated physical communication channel is desirable and generally does not exist in real applications, yet there is a demand to communicate between two sources to keep one in a particular operating point, a modified droop control scheme is defined to communicate indirectly. A detailed analysis show that efficiency, emission and fuel consumption are significantly improved in comparison with conventional methods. For experimental validation, the control algorithm is implemented in dSpace using the DS-1103 controller. The experimental results confirm improvements in fuel consumption for a specific BSFC curve to 1 gr in 10 seconds for a load of P=1200 W by engaging the proposed method

    Controle coordenado em microrredes de baixa tensão baseado no algoritmo power-based control e conversor utility interface

    Get PDF
    Orientadores: José Antenor Pomilio, Fernando Pinhabel MarafãoTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de ComputaçãoResumo: Esta tese apresenta uma possível arquitetura e sua respectiva estratégia de controle para microrredes de baixa tensão, considerando-se a existência de geradores distribuídos pela rede. A técnica explora totalmente a capacidade dos geradores distribuídos em ambos os modos de operação: conectado à rede e ilhado. Quando conectado à rede, sob o modo de otimização global, o controle busca a operação quase ótima da microrrede, reduzindo as perdas de distribuição e os desvios de tensão. Quando em modo ilhado, a técnica regula de forma eficaz os geradores distribuídos disponíveis, garantindo a operação autônoma, segura e suave da microrrede. A estratégia de controle é aplicada a uma estrutura de microrrede completamente despachável, baseada em uma arquitetura de controle mestre-escravo, em que as unidades distribuídas são coordenadas por meio do recém-desenvolvido algoritmo Power-Based Control. As principais vantagens da arquitetura proposta são a expansividade e a capacidade de operar sem sincronização ou sem conhecimento das impedâncias de linha. Além disso, a microrrede regula as interações com a rede por meio do conversor chamado de Utility Interface, o qual é um inversor trifásico com armazenador de energia. Esta estrutura de microrrede permite algumas vantagens como: compensação de desbalanço e reativo, rápida resposta aos transitórios de carga e de rede, e suave transição entre os modos de operação. Em contrapartida, para compartilhar a potência ativa e reativa proporcionalmente entre as unidades distribuídas, controlar a circulação de reativos, e maximizar a operação, a comunicação da microrrede requer em um canal de comunicação confiável, ainda que sem grandes exigências em termos de resolução ou velocidade de transmissão. Neste sentido, foi demonstrado que uma falha na comunicação não colapsa o sistema, apenas prejudica o modo de otimização global. Entretanto, o sistema continua a operar corretamente sob o modo de otimização local, que é baseado em um algoritmo de programação linear que visa otimizar a compensação de reativos, harmônicos e desbalanço de cargas por meio dos gerador distribuído, particularmente, quando sua capacidade de potência é limitada. Esta formulação consiste em atingir melhores índices de qualidade de energia, definidos pelo lado da rede e dentro de uma região factível em termos de capacidade do conversor. Baseado nas medições de tensão e corrente de carga e uma determinada função objetiva, o algoritmo rastreia as correntes da rede ótima, as quais são utilizadas para calcular os coeficientes escalares e finalmente estes são aplicados para encontrar as referências da corrente de compensação. Finalmente, ainda é proposta uma técnica eficiente para controlar os conversores monofásicos conectados arbitrariamente ao sistema de distribuição trifásico, sejam conectados entre fase e neutro ou entre fase e fase, com o objetivo de compensar o desbalanço de carga e controlar o fluxo de potência entre as diferentes fases da microrrede. Isto melhora a qualidade da energia elétrica no ponto de acoplamento comum, melhora o perfil de tensão nas linhas, e reduz as perdas de distribuição. A arquitetura da microrrede e a estratégia de controle foi analisada e validada através de simulações computacionais e resultados experimentais, sob condições de tensão senoidal/simétrica e não-senoidal/assimétrica, avaliando-se o comportamento em regime permanente e dinâmico do sistema. O algoritmo de programação linear que visa otimizar a compensação foi analisado por meio de resultados de simulaçãoAbstract: This thesis presents a flexible and robust architecture and corresponding control strategy for modern low voltage microgrids with distributed energy resources. The strategy fully exploits the potential of distributed energy resources, under grid-connected and islanded operating modes. In grid-connected mode, under global optimization mode, the control strategy pursues quasi-optimum operation of the microgrid, so as to reduce distribution loss and voltage deviations. In islanded mode, it effectively manages any available energy source to ensure a safe and smooth autonomous operation of the microgrid. Such strategy is applied to a fully-dispatchable microgrid structure, based on a master-slave control architecture, in which the distributed units are coordinated by means of the recently developed power-based control. The main advantages of the proposed architecture are the scalability (plug-and-play) and capability to run the distributed units without synchronization or knowledge of line impedances. Moreover, the proposed microgrid topology manages promptly the interaction with the mains by means of a utility interface, which is a grid-interactive inverter equipped with energy storage. This allows a number of advantages, including compensation of load unbalance, reduction of harmonic injection, fast reaction to load and line transients, and smooth transition between operating mode. On the other hand, in order to provide demand response, proportional power sharing, reactive power control, and full utilization of distributed energy resources, the microgrid employs a reliable communication link with limited bit rate that does not involve time-critical communications among distributed units. It has been shown that a communication failure does not jeopardize the system, and just impairs the global optimization mode. However, the system keeps properly operating under the local optimization mode, which is managed by a linear algorithm in order to optimize the compensation of reactive power, harmonic distortion and load unbalance by means of distributed electronic power processors, for example, active power filters and other grid-connected inverters, especially when their capability is limited. It consists in attain several power quality performance indexes, defined at the grid side and within a feasible power region in terms of the power converter capability. Based on measured load quantities and a certain objective function, the algorithm tracks the expected optimal source currents, which are thereupon used to calculate some scaling coefficients and, therefore, the optimal compensation current references. Finally, the thesis also proposes an efficient technique to control single-phase converters, arbitrarily connected to a three-phase distribution system (line-to-neutral or line-to-line), aiming for reduce unbalance load and control the power flow among different phases. It enhances the power quality at the point-of-common-coupling of the microgrid, improve voltage profile through the lines, and reduce the overall distribution loss. The master-slave microgrid architecture has been analyzed and validated by means of computer simulations and experimental results under sinusoidal/symmetrical and nonsinusoidal/asymmetrical voltage conditions, considering both the steady-state and dynamic performances. The local optimization mode, i.e., linear algorithm for optimized compensation, has been analyzed by simulation resultsDoutoradoEnergia EletricaDoutor em Engenharia Elétrica2012/24309-8, 2013/21922-3FAPES

    Optimal generation scheduling for renewable microgrids using hydrogen storage systems

    Get PDF
    The topic of this thesis is the development of a tool for an optimal energy management strategy (EMS) of the generators and energy storage systems constituent microgrids, both grid-connected or isolated (stand-alone power system) powered by Renewable Energy Sources (RES). In particular, a novel control system is designed based on the resolution of the unit commitment problem. For each time step, the proposed control system compares the expected power produced by the renewable generators with the expected load demand and determines the scheduling of the different energy storage devices and generators for the next few hours, which minimizes the operating cost of the overall microgrid. To take into account for forecasting uncertainties, the generation of the different scenarios is carried out through a discretization of the probability distribution function of the forecasting errors for wind speed, solar radiation and load requests by a set of finite states. A set of various scenarios are therefore analyzed and compared by the control system to find the minimum operating costs. The proposed algorithm is firstly applied to a microgrid at LABH2FER (Sardegna Ricerche, Italy). Since the microgrid is under construction, the expected performance is evaluated through a simulation modeling, implemented in Matlab-Simulink. Furthermore, in order to highlight the benefits of including weather forecasts and operating costs in the EMS, a comparative analysis with a simpler EMS based on control states of storage devices is carried out. The results of the comparative study demonstrate that a reduction of almost 5-10% in the annual operating costs and energy losses is achieved thanks to the implementation of the proposed control system. Moreover, the proposed control strategy is implemented and tested to a microgrid present at the University of Seville. Experimental results demonstrate the feasibility and the actual functionality of the control system. Additional benefits are also observed, such as the reduction in power exchanged with the upstream grid thanks to a better management of the storage systems

    Microgrids

    Get PDF
    Integration of renewable energy sources in the electrical power system is key for enabling the decarbonization of that system. The connection of renewable generation to the electrical system is being performed in a centralized form (large renewable power plants like wind or solar power plants connected at the transmission system) and in a decentralized manner (through the connection of dispersed generation connected at the distribution system). The connection of renewable generation at distribution levels, together with other generating sources as well as energy storage systems (the so-called DER, Distributed Energy Resources) close to consumption sites, is promoting the development of microgrids: DER installations that have the capability to operate grid connected and grid isolated. The uncertainty and variability of the renewable energy sources that integrate microgrids, as well as the need for coordination with other energy sources, pose challenges in the operation, protection, control, and planning of microgrids. The five selected papers published in this Special Issue propose solutions to address these challenges.Peer ReviewedObjectius de Desenvolupament Sostenible::7 - Energia Assequible i No ContaminantObjectius de Desenvolupament Sostenible::7 - Energia Assequible i No Contaminant::7.1 - Per a 2030, garantir l’accés universal a serveis d’energia assequibles, confiables i modernsObjectius de Desenvolupament Sostenible::7 - Energia Assequible i No Contaminant::7.2 - Per a 2030, augmentar substancialment el percentatge d’energia renovable en el con­junt de fonts d’energiaPostprint (published version

    Control of voltage source converters for distributed generation in microgrids

    Get PDF
    Microgrids are the near future candidate to reduce the dependence on the carbon-based generation, towards a more environmentally friendly and sustainable energy paradigm. The popularization of the use of renewable energy sources has fostered the development of better technologies for microgrids, particularly power electronics and storage systems. Following the improvements in microgrid technologies achieved in the last decade, a new challenge is being faced: the control and management of microgrids for its operation in islanded mode, in addition to its large scale integration into the current electrical power system. The unregulated introduction of distributed generation based on renewable energy sources into the power system could cause as many problems as it would solve. The unpredictability of the generated power would introduce large disturbances into the electric system, making it difficult to control, and eventually resulting in an unstable system. To overcome these issues, the paradigm of microgrids has been proposed: a small power system, able to operate islanded from the main grid, which will permit the large scale introduction of renewable energy sources interfaced with power electronic converters together with energy storage systems into the distribution grids. Microgrids¿ ability to allow their users to operate islanded from the utility grid, brings the potential to offer a high quality of service. It is in the islanded operation mode, particularly in microgrids with a high proportion of renewable based generation, where the major technical challenges are found. This thesis focuses in three of the main challenges of islanded and weak electrical grids: the power converter control of electrical storage systems, its decentralized control design, and also the improvement of power quality in grids disturbed by renewable generation. These topics are addressed from a control point of view, that is, to tackle the electrical problems, modelling them and proposing advanced control strategies to improve performance of microgrids. Energy storage system are a vital element to permit the islanded operation of microgrids, either in the long or short term. New control strategies are proposed in this thesis for the improvement of the converters¿ performance. In addition to the control of the converter, the management and control of different energy storage systems for microgrids are also studied. In particular, supercapacitors and batteries have been considered for the short and long term operation, respectively. Then, the control of islanded microgrids is addressed. Typical controls for islanded microgrids are analysed and new tools for designing stable controllers are proposed. Also, methodologies to analytically obtain the operating point (power flow) of droop controlled grids are studied and proposed. The high penetration of renewable energy sources in weak low-voltage grids results in undesirable electrical disturbances. This problematic in power quality is tackled and innovative solutions to mitigate it are proposed. In particular, a novel power smoothing scheme with simultaneous state of charge regulation of the ESS and power filtering. The new power smoothing scheme, along with the proposed control strategies for storage systems have been experimentally validated in a laboratory test bench, using a supercapacitor bank and a high power lithium-ion battery available at IREC's facilities.Les microxarxes són les candidates en un futur a curt termini, a substituir la generació basada en el carbó, de cara a assolir un sistema energètic més respectuós amb el medi ambient i més sostenible. La popularització de l'ús d'energies renovables ha fomentat la millora de les tecnologies per a microxarxes, en particular els sistemes d'emmagatzematge i l'electronica de potència. Desprès de les millores en tecnologies de microxarxes aconseguides durant l'última dècada, hi ha un nou repte al qual fer front: el control i gestió de microxarxes per la seva operació aïllada, a més de la integració a gran escala dins del sistema elèctric actual. La introducció descontrolada de fonts de generació distribuides en el sistema elèctric pot causar tants problemes com els que podria sol·lucionar. La incertesa en la producció elèctrica pot introduir grans pertorbacions al sistema elèctric, fent-lo difícil de controlar, i fins i tot el pot arribar a inestabilitzar. Per tal de fer front a aquestes dificultats, es proposa el paradigma de microxarxa: un petit sistema elèctric capaç d'operar de forma aïlla de la xarxa de distribució elèctrica, el qual hauria de permetre la integració a gran escala d'energies renovables a través de l'electrònica de potència, juntament amb sistemes d'emmagatzematge d'energia, dins de les xarxes de distribució. Les microxarxes permeten als seus usuaris a funcionar aillats de la xarxa elèctrica, donant la possibilitat d'oferir una alta qualitat de servei. És en el mode de funcionament aïllat, particularment en microxarxes amb una altra proporció de generació basada en renovables, on es troben la major part de reptes tecnològics. Aquesta tesi es centra en tres d'aquests reptes de les xarxes aillades i dèbils: el disseny del control per a convertidors de potència per a sistemes d'emmagatzematge elèctric, el control descentralitzat de les microxarxes i també la millora en la qualitat de subministre elèctric en xarxes afectades per generació renovable. Aquestes temes es tracten des d'el punt de vista de la teoria de control de sistemes, aixó significa, abordar el problema elèctric, modelar-lo, i proposar estrategies de control avançades per millorar el funcionament de les microxarxes. Els sistemes d'emmagatzematge són un element vital per permetre l'operació aïllada de les microxarxes, tant a llarg com a curt termini. En aquesta tesi es proposen noves estratègies de control per millorar el funcionament dels convertidors d'electrònica de potència. A més del control del convertidor, també s'estudia la gestió i control de diferents sistemes d'emmagatzematge d'energia per a microxarxes. En particular, supercondensador i bateries s'han considerat per l'operació a curt i llarg termini respectivament. Seguidament, s'enfila el control de microxarxes aïllades. S'analitzen els controls típics per a microxarxes i es proposen noves eines de disseny que permeten garantitzar l'estabilitat. A més a més, metodologies per a obtenir el punt d'operació (el flux de potènica) per a xarxes amb control tipus "droop" també s'estudien i proposen. L'alta penetració de fonts d'energia renovables en xarxes de baixa tensió i febles resulta en pertorbacions elèctriques indesitjables. Aquesta problematica en la qualitat de subministrament s'aborda i es proposen solucions inovadores per mitigar els efectes negatius. En particular, s'ha proposat un nou sistema de suavitzat de potència que regula simltaneament l'estat de càrrega del sistema d'emmagatzematge i filtra la potencia fluctuant. El nou esquema de suavitzat de potència, juntament amb les estrategies proposades per als sistemes d'emmagatzematge elèctric s'han validat experimentalment en un banc de laboratori, emprant superconsadors i una bateria d'alta potència, disponibles a les instal·lacions de l'IREC

    Primary and Secondary Frequency Control Techniques for Isolated Microgrids

    Get PDF
    Isolated microgrids have been shown to be a reliable and efficient solution to provide energy to remote communities. From the primary control perspective, due to the low system inertia and fast changes in the output power of wind and solar power sources, isolated microgrids' frequency can experience large excursions and thus easily deviate from nominal operating conditions, even when there is sufficient frequency control reserves; hence, it is challenging to maintain frequency around its nominal value. From the secondary control perspective, the generation scheduling of dispatchable units obtained from a conventional Unit Commitment (UC) are considered fixed between two dispatch time intervals, yielding a staircase generation pro file over the UC time horizon; given the high variability of renewable generation output power, committed units participating in frequency regulation would not remain fixed between two time intervals. The present work proposes techniques to address these issues in primary and secondary frequency control in isolated microgrids with high penetration of renewable generation. In this thesis, first, a new frequency control mechanism is developed which makes use of the load sensitivity to operating voltage and can be easily adopted for various types of isolated microgrids. The proposed controller offers various advantages, such as allowing the integration of significant levels of intermittent renewable resources in isolated/islanded microgrids without the need for large energy storage systems, providing fast and smooth frequency regulation with no steady-state error, regardless of the generator control mechanism. The controller requires no extra communication infrastructure and only local voltage and frequency is used as feedback. The performance of the controller is evaluated and validated using PSCAD/EMTDC on a modified version of the CIGRE benchmark; also, small-perturbation stability analysis is carried out to demonstrate the contribution of the proposed controller to system damping. In the second stage of the thesis, a mathematical model of frequency control in isolated microgrids is proposed and integrated into the UC problem. The proposed formulation considers the impact of the frequency control mechanism on the changes in the generation output using a linear model. Based on this model, a novel UC model is developed which yields a more cost e efficient solution for isolated microgrids. The proposed UC is formulated based on a day-ahead scheduling horizon with Model Predictive Control (MPC) approach. To test and validate the proposed UC, the realistic test system used in the first part of the thesis is utilized. The results demonstrate that the proposed UC would reduce the operational costs of isolated microgrids compared to conventional UC methods, at similar complexity levels and computational costs
    corecore