1,017 research outputs found

    Analytical Modeling of a Novel High-\u3cem\u3eQ\u3c/em\u3e Disk Resonator for Liquid-Phase Applications

    Get PDF
    To overcome the detrimental effects of liquid environments on microelectromechanical systems resonator performance, the in-fluid vibration of a novel disk resonator supported by two electrothermally driven legs is investigated through analytical modeling and the effects of the system’s geometric/material parameters on the dynamic response are explored. The all-shear interaction device (ASID) is based on engaging the surrounding fluid primarily through shearing action. The theory comprises a continuous-system, multimodal model, and a single-degree-of-freedom model, the latter yielding simple formulas for the fundamental-mode resonant characteristics that often furnish excellent estimates to the results based on the more general model. Comparisons between theoretical predictions and previously published liquid-phase quality factor (Q) data (silicon devices in heptane) show that the theoretical results capture the observed trends and also give very good quantitative estimates, particularly for the highest Q devices. Moreover, the highest Q value measured in the earlier study (304) corresponded to a specimen whose disk radius-to-thickness ratio was 2.5, a value that compares well with the optimal value of 2.3 predicted by the present model. The insight furnished by the proposed theory is expected to lead to further improvements in ASID design to achieve unprecedented levels of performance for a wide variety of liquid-phase resonator applications

    Silicon on Nothing Mems Electromechanical Resonator

    Get PDF
    The very significant growth of the wireless communication industry has spawned tremendous interest in the development of high performances radio frequencies (RF) components. Micro Electro Mechanical Systems (MEMS) are good candidates to allow reconfigurable RF functions such as filters, oscillators or antennas. This paper will focus on the MEMS electromechanical resonators which show interesting performances to replace SAW filters or quartz reference oscillators, allowing smaller integrated functions with lower power consumption. The resonant frequency depends on the material properties, such as Young's modulus and density, and on the movable mechanical structure dimensions (beam length defined by photolithography). Thus, it is possible to obtain multi frequencies resonators on a wafer. The resonator performance (frequency, quality factor) strongly depends on the environment, like moisture or pressure, which imply the need for a vacuum package. This paper will present first resonator mechanisms and mechanical behaviors followed by state of the art descriptions with applications and specifications overview. Then MEMS resonator developments at STMicroelectronics including FEM analysis, technological developments and characterization are detailed.Comment: Submitted on behalf of EDA Publishing Association (http://irevues.inist.fr/EDA-Publishing

    A CubeSAT payload for in-situ monitoring of pentacene degradation due to atomic oxygen etching in LEO

    Get PDF
    This paper reports and discusses the design and ground tests of a CubeSat payload which allows to measure, in-situ and in real time, the degradation of a polymer of electronic interest due to atomic oxygen etching in LEO. It provides real-time information on how the degradation occurs, eliminating the need to work with samples recovered once the mission has finished. The polymer, TIPS-Pentacene, is deposited on the surface of a microelectromechanical (MEMS) cantilever, which works as a resonator embedded in a Pulsed Digital Oscillator circuit. The mass losses in the polymer due to atomic oxygen corrosion produce variations in the resonant frequency of the MEMS, which is continuously sensed by the circuit and transmitted to the ground. This way, polymer mass losses around 10-12 kg can be detected during the mission. The payload is a part of the 3Cat-1 mission, a nano-satellite aimed at carrying out several scientific experiments.Peer ReviewedPostprint (author's final draft

    Acoustic Wave Based MEMS Devices, Development and Applications

    Get PDF
    Acoustic waves based MEMS devices offer a promising technology platform for a wide range of applications due to their high sensitivity and the capability to operate wirelessly. These devices utilize acoustic waves propagating through or on the surface of a piezoelectric material. An acoustic wave device typically consists of two layers, metal transducers on top of piezoelectric substrate or thin films. The piezoelectric material has inherent capabilities of generating acoustic waves related to the input electrical sinusoidal signals placed on the transducers. Using this characteristic, different transducer designs can be placed on top of the piezoelectric material to create acoustic wave based filters, resonators or sensors. Historically, acoustic wave devices have been and are still widely used in telecommunications industry, primarily in mobile cell phones and base stations. Surface Acoustic Wave (SAW) devices are capable of performing powerful signal processing and have been successfully functioning as filters, resonators and duplexers for the past 60 years. Although SAW devices are technological mature and have served the telecommunication industry for several decades, these devices are typically fabricated on piezoelectric substrates and are packaged as discrete components. Considering the wide flexibility and capabilities of the SAW device to form filters, resonators there has been motivation to integrate such devices on silicon substrates as demonstrated in (Nordin et al., 2007; M. J. Vellekoop et al., 1987; Visser et al., 1989). One such example is illustrated in (Nordin et al., 2007) where a CMOS SAW resonator was fabricated using 0.6 m AMIs CMOS technology process with additional MEMS post-processing. The traditional SAW structure of having the piezoelectric at the bottom was inverted. Instead, the IDTs were cleverly manufactured using standard complementary-metal-oxide-semiconductor (CMOS) process and the piezoelectric layer was placed on the top. Active circuitry can be placed adjacent to the CMOS resonator and can be connected using the integrated metal layers. A SAW device can also be designed to have a long propagation path between the input and output transducer. The propagating acoustic waves will then be very sensitive to ambient changes, allowing the device to act as a sensor. Any variations to the characteristics of the propagation path affect the velocity or amplitude of the wave. Important application for acoustic wave devices as sensors include torque and tire pressure sensors (Cullen et al., 1980; Cullen et al., 1975; Pohl et al., 1997), gas sensors (Levit et al., 2002; Nakamoto et al., 1996; Staples, 1999; Wohltjen et al., 1979), biosensors for medical applications (Andle et al., 1995; Ballantine et al., 1996; Cavic et al., 1999; Janshoff et al., 2000), and industrial and commercial applications (vapor, humidity, temperature, and mass sensors) (Bowers et al., 1991; Cheeke et al., 1996; Smith, 2001; N. J. Vellekoop et al., 1999; Vetelino et al., 1996; Weld et al., 1999). In recent years, the interest in the development of highly sensitive acoustic wave devices as biosensor platforms has grown. For biological applications the acoustic wave device is integrated in a microfluidic system and the sensing area is coated with a biospecific layer. When a bioanalyte interacts with this sensing layer, physical, chemical, and/or biochemical changes are produced. Typically, mass and viscosity changes of the biospecific layer can be detected by analyzing changes in the acoustic wave properties such as velocity, attenuation and resonant frequency of the sensor. An important advantage of the acoustic wave biosensors is simple electronic readout that characterizes these sensors. The measurement of the resonant frequency or time delay can be performed with high degree of precision using conventional electronics. This chapter is focused on two important applications of the acoustic-wave based MEMS devices; (1) biosensors and (2) telecommunications. For biological applications these devices are integrated in a microfluidic system and the sensing area is coated with a biospecific layer. When a bioanalyte interacts with this sensing layer, physical, chemical, and/or biochemical changes are produced. Typically, mass and viscosity changes of the biospecific layer can be detected by analyzing changes in the acoustic wave properties such as velocity, attenuation and resonant frequency of the sensor. An important advantage of the acoustic wave biosensors is simple electronic readout that characterizes these sensors. The measurement of the resonant frequency and time delay can be performed with high degree of precision using conventional electronics. Only few types of acoustic wave devices could be integrated in microfluidic systems without significant degradation of the quality factor. The acoustic wave based MEMS devices reported in the literature as biosensors are film bulk acoustic wave resonators (FBAR) and surface acoustic waves (SAW) resonators and SAW delay lines. Different approaches to the realization of FBARs and SAW resonators and SAW delay lines used for various biochemical applications are presented. Next, acoustic wave MEMS devices used in telecommunications applications are presented. Telecommunication devices have different requirements compared to sensors, where acoustic wave devices operating as a filter or resonator are expected to operate at high frequencies (GHz), have high quality factors and low insertion losses. Traditionally, SAW devices have been widely used in the telecommunications industry, however with advancement in lithographic techniques, FBARs are rapidly gaining popularity. FBARs have the advantage of meeting the stringent requirement of telecommunication industry of having Qs in the 10,000 range and silicon compatibility

    Mems device with large out-of-plane actuation and low-resistance interconnect and methods of use

    Full text link
    Source: United States Patent and Trademark Office, www.uspto.gov”The present application is directed to a MEMS device. The MEMS device includes a substrate having a first end and a second end extending along a longitudinal axis, the Substrate including an electrostatic actuator. The device also includes a movable plate having a first end and a second end. The device also includes a thermal actuator having a first end coupled to the first end of the substrate and a second end coupled to the first end of the plate. The actuator moves the plate in relation to the substrate. Further, the device includes a power source electrically coupled to the thermal actuator and the Substrate. The application is also directed to a method for operating a MEMS device

    Piezoelectric aluminum nitride thin films for microelectromechanical systems

    Get PDF
    This article reports on the state-of-the-art of the development of aluminum nitride (AlN) thin-film microelectromechanical systems (MEMS) with particular emphasis on acoustic devices for radio frequency (RF) signal processing. Examples of resonant devices are reviewed to highlight the capabilities of AlN as an integrated circuit compatible material for the implementation of RF filters and oscillators. The commercial success of thin-film bulk acoustic resonators is presented to show how AlN has de facto become an industrial standard for the synthesis of high performance duplexers. The article also reports on the development of a new class of AlN acoustic resonators that are directly integrated with circuits and enable a new generation of reconfigurable narrowband filters and oscillators. Research efforts related to the deposition of doped AlN films and the scaling of sputtered AlN films into the nano realm are also provided as examples of possible future material developments that could expand the range of applicability of AlN MEM

    Nanoscale Imaging of Super-High-Frequency Microelectromechanical Resonators with Femtometer Sensitivity

    Full text link
    Implementing microelectromechanical system (MEMS) resonators calls for detailed microscopic understanding of the devices, such as energy dissipation channels, spurious modes, and imperfections from microfabrication. Here, we report the nanoscale imaging of a freestanding super-high-frequency (3 ~ 30 GHz) lateral overtone bulk acoustic resonator with unprecedented spatial resolution and displacement sensitivity. Using transmission-mode microwave impedance microscopy, we have visualized mode profiles of individual overtones and analyzed higher-order transverse spurious modes and anchor loss. The integrated TMIM signals are in good agreement with the stored mechanical energy in the resonator. Quantitative analysis with finite-element modeling shows that the noise floor is equivalent to an in-plane displacement of 10 fm/sqrt(Hz) at room temperatures, which can be further improved under cryogenic environments. Our work contributes to the design and characterization of MEMS resonators with better performance for telecommunication, sensing, and quantum information science applications.Comment: 19 pages, 6 Figure
    • …
    corecore