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 

Abstract— Linear models for oscillator noise predict an 

improvement in frequency stability with increasing Quality 

factor. Although it is well known that this result does not apply to 

non-linear oscillators, systematic experimental investigations of 

the impact of damping on frequency stability of non-linear MEMS 

oscillators has not been previously reported. This paper studies 

the frequency stability of a nonlinear MEMS oscillator under 

variable damping conditions. Analytical and experimental 

investigation of a MEMS square-wave oscillator embedding a 

double-ended tuning fork resonator driven into the non-linear 

regime is introduced. The experimental results indicate that for a 

pre-set drive level, the variation of air-damping changes the onset 

of nonlinear behaviour in the resonator, which not only impacts 

the output frequency but also the phase/frequency noise of a 

nonlinear MEMS square wave oscillator. The random walk 

frequency noise and flicker frequency noise levels are strongly 

correlated with the non-linear operating point of the resonator, 

whereas the white phase and white frequency noise levels are 

impacted both by the output power and by operative 

nonlinearities.  

 
Index Terms—MEMS, Oscillators, Nonlinear effects, Air 

Damping, Phase Noise. 

 

I. INTRODUCTION 

ILICON microelectromechanical system (MEMS) 

resonator based oscillators are increasingly being  adopted 

for various applications in timing and frequency control [1, 2] 

due to the reduced size, demonstrated compatibility with 

semiconductor batch manufacturing and integration with IC 

technologies. MEMS resonator based oscillators are also 

essential building blocks for resonant sensors [3-5]. One of the 

technical challenges limiting translation of resonant sensors has 

historically been reliability of the vacuum package though a 

number of technical solutions have been developed in recent 

years [6-8]. A second challenge relates to the susceptibility of 

MEMS resonators to non-linear effects limiting power handling 

resulting in the device often operated at the critical point or just 

prior to the onset of bifurcation in the response [9]. It is well 

established that the quality factor of a MEMS resonator 
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typically limited by air damping at atmospheric pressure can be 

improved by operating the device in a vacuum ambient. This in 

turn brings potential benefits in terms of reduced  power 

consumption and lowered noise floor [10, 11] when 

considering a linear noise model. On the other hand, the 

nonlinear threshold for MEMS resonators under harmonic 

force excitation, corresponding to bifurcation in the response, is 

predicted to onset at lower vibration amplitudes and 

corresponding lower power levels under vacuum environments, 

potentially limiting any gains in oscillator frequency instability 

obtained [12, 13]. However, an experimental investigation of 

these potentially competing effects has not been thoroughly 

investigated. A thorough understanding of these competing 

effects may also help inform optimal strategies for vacuum 

packaging resonator devices.   

This paper investigates a MEMS square-wave (SW) 

oscillator[14] embedding a double-ended tuning fork (DETF) 

resonator in a feedback configuration. The DETF resonator has 

been previously employed for timing applications [15, 16] and 

resonant sensors [17-19]. The paper is organised as follows: in 

the following section, the SW oscillator topology is introduced. 

In section 3, analytical models are established to predict the 

linear and nonlinear behaviour of damped DETF resonators and 

the output frequency and frequency stability of the resulting 

SW oscillator under different damping conditions. Finally a 

prototype SW oscillator embedding a DETF MEMS resonator 

is implemented and experimentally characterized with results 

compared to analytical prediction. 

  

II. MEMS OSCILLATOR TOPOLOGY 

The topology of the MEMS oscillator studied in this paper is 

shown in Fig. 1. The oscillator consists of a micro-machined 

DETF resonator, a trans-impedance amplifier (TIA), an active 

band-pass filter, a comparator and a voltage divider. A 

parallel-plate electrostatic transduction mechanism is 

employed for excitation and detection of the motion of the 

DETF. The TIA amplifies and converts the motional current of 

the DETF resonator to a voltage signal which is fed to a 

band-pass filter whose output is supplied to the comparator. 

The DETF resonator is driven by a periodic voltage signal 

generated by the comparator of constant amplitude, pre-set by 

the voltage divider [14, 20]. 
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III. THEORETICAL ANALYSIS OF A DAMPED NONLINEAR 

OSCILLATOR 

A. Air Damping  

The air damping associated with the DETF resonator is 

primarily expected to originate from the squeeze-film effect as 

the tuning fork tine vibrates towards the fixed electrode in a 

parallel-plate electrode configuration (see Fig. 2). Depending 

on the pressure level of the ambient in which the resonator is 

operated, either continuum or molecular models of gas 

damping have been previously proposed [21] . Qualitative 

determination of applicability of the appropriate model is 

indicated by the Knudsen number (Kn) [22], which is the ratio 

of the mean free path of the gas molecule ( to the 

characteristic length of the flow. The mean free path of air 

molecule can be calculated from (1), where kB is the Boltzmann 

constant, T is the ambient temperature,  is the cross-section 

area of air molecule and P is the pressure.   

 
22Air Bk T P    (1) 

 

The characteristic length of the flow in the DETF resonator is 

approximately equal to the gap between the two electrodes. As 

elaborated in future sections, the DETF resonator in this work is 

operated in a moderate vacuum ambient (< 5 torr). According to 

(1), the free path length of air molecule for pressure less than 5 

torr is greater than 10 m at room temperature, which is 

significantly larger than the gap size and makes the value of Kn 

typically >> 0.1. Therefore, the molecular approach is relevant 

to the air damping analysis in this scenario. 

Several studies have been conducted on oscillating micro 

beams operated under low pressure conditions. The damping 

constant for resonators described in this paper are compared to 

the values predicted by Bao’s energy transfer model [23] and 

Hutcherson’s molecular dynamics model [21] which have been 

previously published with prior experimental validation at the 

MEMS-scale [24]. 
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Fig. 2.  Deformed geometry of one tine of the DETF resonator operating in 

the fundamental mode. 

  

 

Since the DETF resonator is operated in the primary 

out-of-phase mode, the motion of the tines can be modelled 

similar to that of a clamped-clamped (CC) beam resonator due 

to mode symmetry. By applying the energy transfer model [23] 

to this CC beam resonator, the quality factor of the DETF can 

be estimated as: 

 
3 2 0 1

2
eff

E

E m

M g RT
Q

A S M P


 
  

 

  (2) 

where  0.375eff Si B B E EM t L w L w  (si is the density of 

silicon and t is the thickness of the device layer) is the effective 

mass of the resonator, 
E EA L t  and  2 ES L t  , are the 

area and perimeter of the electrode, g0 is the gap between the 

two electrodes, R=8.31 kg m
2
/(s

2
K) is the universal molar gas 

constant, T is the temperature, Mm is the molar mass of the air 

and P is the ambient pressure. As previously outlined [21], a 

correction parameter, C≈0.59, is used as pre-multiplier to the 

right hand side of (2) to account for molecular collisions on the 

electrode surface. Equation 2 indicates that the quality factor Q 

for such a scenario is inversely proportional to the ambient 

pressure. If air damping dominates, the damping ratio of the 

DETF resonator, , can then be correlated to the quality factor 

as: 

 

1
2Air

EQ
     (3) 

 

B. Nonlinear MEMS Oscillator with Air Damping 

A descriptive non-linear model for a MEMS square wave 

oscillator incorporating a non-linear tuning fork resonator has 

been previously developed [25]. In this section, this model is 

extended to consider the impact of air damping on oscillator 

performance. 

1) Mechanical Nonlinearity 

The resonator is often driven to large vibration amplitudes 

with a view towards optimizing the achievable signal-to-noise 

ratio. This view is accurate as long as the resonator is operated 

in the linear regime; however as the amplitude increases 

non-linear effects govern the response with significant 

deviations from the linear regime as the amplitude continues to 

increase. A comprehensive discussion of various operative 

nonlinearities in MEMS resonators can be found in several 

excellent references [26-28]. This paper primarily focuses on 

the influence of air damping on the geometrical nonlinearity 

associated with the vibration of clamped-clamped beams 
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Fig. 1.  Schematic of a MEMS square-wave oscillator embedding a 

micromachined DETF resonator.  
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(referred to as the ‘amplitude-stiffening effect’), that primarily 

determines the non-linear response for these resonators.  

For the DETF resonator operated in its fundamental in-plane 

flexural mode, the linear mechanical restoring force can be 

derived from classical beam theory: 
3

1 1, 16.23 B
k m m

B

w
F k x k Et

L

 
   

 

  (4) 

where, km1 is the linear mechanical spring constant, x is the 

transverse displacement of the resonator beam and E is the 

Young modulus of silicon. At higher vibration amplitudes, 

non-linearities in the restoring force arise due to the large beam 

deformation. This effect can be approximated by a cubic 

function of displacement being added to the restoring force 

defined by the spring constant, km3, as [25]: 

 

 3 1
1 3 3 2

, 0.751 m
nk m m m

B

k
F k x k x O x k

w
      (5) 

As the DETF resonator is driven by an external harmonic force 

in the oscillator, the resonator response with nonlinear spring 

constant can be approximated as a lumped 1-DOF Duffing 

equation[25]: 

 3

1 1 32 coseff eff m m m ActM x M k x k x k x F t       (6) 

where   is the linear damping ratio,  cosActF t  is the external 

actuation force. An approximate solution to Eq.6 can be 

obtained by using perturbation analysis. The nonlinear 

amplitude-frequency,  PNx  , and phase-frequency,  N  , 

responses of the DETF resonator can be determined as[13]: 
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where Lis the resonant frequency of DETF considering the 

linear spring term only.  

Beyond a certain critical amplitude, the frequency response 

of the resonators starts to exhibit severe distortion from linear 

behaviour with the response curves kneeling over to the right 

describing multi-valued hysteretic behaviour. The critical 

bifurcation amplitude at which the resonator transitions from a 

single-valued to a multi-valued response can be related to the 

beam width (wB) and the damping ratio[29] as:  

2c Bx C w     (9) 
Depending on the mode shape approximation used in the 

derivation, the coefficient, C, varies from 1.209[30] to 

1.463[29]. Moreover, Equation 9 indicates that with increasing 

damping ratio, the critical amplitude also increases. This 

implies that for a given excitation force, a resonator operating 

in the nonlinear regime can be made linear by increasing the 

damping ratio. 

 

2) Oscillation Criteria and Output Frequency 

 

With reference to Fig. 1, the loop gain and phase 

conditions for the square wave oscillator can be expressed as: 

  2

0
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  (11) 
where  is the dielectric coefficient, LE and t are the length and 

height of the parallel-plate electrode, g0 is the gap between the 

two electrodes, VF is the excitation voltage applied on the 

DETF, VDC is the bias voltage applied on DETF, RTIA is the gain 

of TIA, xP is the vibration amplitude of DETF at oscillation, 

Opt is the output angular frequency of the oscillator,is the 

phase shift of DETF resonator,  is the phase shift resulting 

from other circuit components and  is the phase shift 

contributed from other sources including electrical parasitics. 

  Although the DETF resonator may be operated in the 

nonlinear regime after stable oscillation is established, the 

linear model of DETF resonator can be still employed to 

analyze oscillation start-up criteria. Within the linear regime, 

the vibration amplitude and phase response of the beam of the 

DETF resonator at the resonant frequency can be estimated as: 
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where r is the linear angular resonant frequency of the DETF 

and F
’
Act is the transient actuation force applied to the DETF 

resonator approximated by: 
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where VF0 is the set excitation voltage set by the comparator and 

voltage divider. Combining (10) – (15) we get: 
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 (17) 
where Cst is a non-dimensional number representing the gain 

margin for oscillator start-up, normally larger than 1 [31]. 

Equation 16 indicates that for a specific DETF resonator, the 
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increase of air damping will require a higher DC bias voltage 

(VDC) and larger gain resistor to initiate oscillator start-up.  

 The growing oscillation amplitude is ultimately limited by a 

form of engineered non-linearity resulting in steady limit-cycle 

behaviour such that the excitation voltage applied to the DETF 

approaches the set value (VF0). This set point may involve the 

resonator operating in the non-linear regime as shown in (6). 

However, there is always a unique solution of (6) associated 

with any initial condition[13]. As the dominant nonlinear 

spring constant is positive (i.e. the amplitude-stiffening 

nonlinearity) in this case, the angular frequency of the oscillator 

must increase to meet the oscillation criteria previously 

outlined. The output frequency of the nonlinear SW oscillator 

(fOpt) can be derived by solving for the nonlinear response of the 

DETF resonator as shown in [25]: 

 
2 2
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  (18) 
Equation 18 describes the output frequency of the nonlinear 

SW oscillator as a function of the damping ratio.  

 

3) Phase/Frequency Noise 

Phase/frequency noise[32] is a critical metric underlying 

oscillator frequency stability. For the nonlinear MEMS SW 

oscillator, phase/frequency noise may arise from the DETF 

resonator, the DC polarisation bias source, and the electronic 

components in the circuit. A discussion on the interaction of 

noise and non-linearity in MEMS oscillators has been 

previously discussed and predictive models to describe this 

interaction have been outlined[33, 34].  

Mechanical-thermal noise in resonators has been previous 

studied [35-37] and there are two effects involved as the 

damping ratio is increased – 1) Quality factor is reduced, and 2) 

the onset of non-linearity appears at higher amplitudes limiting 

the role of noise up-mixing via non-linearity [38].  

The noise in the DC polarization voltage of the resonator 

can also be converted to the phase/frequency noise of the SW 

oscillator in two ways. The first mechanism is mediated by 

transducer non-linearity. The ‘electrostatic spring softening 

effect’ can also translate DC polarization voltage noise into 

frequency fluctuations of the oscillator output [39] mediated 

through the ‘amplitude-frequency’ mixing effect when the 

resonator operated in the nonlinear regime. Since electrostatic 

spring softening is primarily determined by the design of 

parallel-plate electrodes and magnitude of the DC bias voltage, 

variation of the damping factor is not expected to significantly 

modulate this noise mechanism. However, the second noise 

conversion mechanism will be directly impacted by the 

variation of air damping of the DETF resonator as the 

amplitude-frequency nonlinear mixing effect is attenuated with 

increased damping. 

The ‘low frequency’ component of amplitude noise injected 

by the electronics can also induce fluctuations in the excitation 

force that can be converted into frequency noise by the 

‘amplitude-frequency’ mixing effect when the resonator is 

operated in the nonlinear regime. According to (7) and (18), 

increased damping will attenuate the ‘amplitude-frequency’ 

mixing effect as well as decreasing the vibration amplitude of 

the DETF resonator. As damping is increased, the ‘linearized’ 

DETF resonator will eliminate the phase/frequency noise 

arising due to the ‘amplitude-frequency’ mixing effect from the 

SW oscillator output signal. However, the reduced vibration 

amplitude of the DETF resonator will worsen the 

signal-to-noise ratio at the input of the TIA resulting in a 

degradation of the phase/frequency noise level. 

 

IV. EXPERIMENTAL RESULTS 

A series of experiments were conducted to validate the 

theoretical analysis of the nonlinear SW oscillator under 

varying damping ratios. The geometrical dimensions of the 

DETF resonator employed is provided in Table 1. First, the 

response of the DETF resonator was measured open-loop in a 

pressure controlled vacuum chamber using a network analyser 

(Agilent 4396B) to extract the Q factors/damping ratios of the 

resonator under varying ambient pressure. Then, the open-loop 

amplitude/phase responses of DETF resonator under varying 

excitation voltage magnitudes and varying ambient pressures 

were tested. Finally, the DETF resonator was packaged and 

integrated together with the SW oscillator circuit on a PCB. The 

oscillator PCB was then inserted into a custom-designed 

pressure controllable vacuum chamber and the pressure in the 

chamber was gradually varied while simultaneously logging 

the output frequency of the oscillator using a frequency counter 

(Agilent 53230A).  

 
TABLE I 

CRITICAL DIMENSIONS OF THE DETF RESONATOR 

DETF Beam Length (LB) 360 m 

DETF Beam Width (wB) 3.5 m 

Device Layer Thickness (t) 25 m 

Electrode Length (LE) 177 m 

Electrode Width (wE) 7.5 m 

Gap between Electrodes 
(g0) 

3 m 

 

A. Q Factor of DETF Resonator 

Fig. 3 plots the experimentally measured Q factors of the 

DETF resonator under varying ambient pressure at room 

temperature. The predicted Q-factors as dictated by the two 

analytical models introduced in section 3.A are plotted as well. 
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Fig. 3.  Measured Quality factor of the DETF resonator under varying 

ambient pressure. 

 

An independent pressure gauge was used to record the 

ambient pressure in the chamber which was varied from 30 

mTorr to 1 Torr. As seen in Fig. 3, the measured quality factor 

of DETF resonator (square dots) decreases with the increasing 

pressure, in agreement with the trend predicted by the 

analytical models. This result indicates that the quality 

factor/damping ratio of this DETF resonator is dominated by air 

damping when the ambient pressure is greater than 40 mTorr. 

Also, the measured Q value is lower than that predicted by 

analytical models, indicating other operative energy loss 

mechanisms, not sensitive to the ambient pressure limiting Q at 

lower ambient pressure levels, such as anchor loss[40] and 

thermo-elastic damping. 

B. Nonlinear Response of DETF Resonator 

In order to validate the analysis presented in section III.B, 

two stepped parametric open-loop characterization experiments 

were performed on the resonator in a customized vacuum 

chamber. For the first set of measurements, the pressure level 

inside the vacuum chamber was set at 30 mTorr and the 

amplitude and phase frequency response of the resonator is 

measured while the excitation voltage applied is gradually 

increased from 3mV to 120mV (See Fig. 4). In the second set of 

measurements, the excitation voltage on the DETF resonator 

was fixed at 120mV and the amplitude and phase responses of 

DETF resonator were measured with the ambient pressure in 

the chamber gradually increased from 40m Torr to 3 Torr (See 

Fig. 5). Since the DETF resonator was operated at a vibration 

amplitude that is significantly smaller than a third of 

transduction gap, the measured output current/voltage is 

proportional to the vibration amplitude (xP) of the DETF 

beams[25] and the non-linearity of the transducer is 

significantly smaller. 

 
Fig. 4.  Measured open-loop amplitude (a) and phase (b) frequency response 

of the DETF resonator with varying excitation voltage magnitude at a pressure 

level of 30 mtorr. 

 
Fig. 5.  Measured amplitude (a) and phase (b) frequency response of the 

DETF resonator with varying damping ratios. 

  

As shown in Fig. 4, with increasing excitation voltage 

magnitudes, the frequency response of the DETF resonator 

moves from the linear regime (described by (12) and (13)) to 

the nonlinear regime (described by (7) and (8)). For this 

particular DETF resonator, the linear threshold excitation 

voltage magnitude is about 10mV when Q equals 

approximately 9,000. Small signal excitation conditions may be 

assumed at oscillation start-up and hence the amplitude/phase 

responses of DETF resonator can be assumed to be linear to 

analyse start-up conditions. Assuming the oscillation criteria 

(described by (11)) are satisfied, the output signal of the 

oscillator grows until the amplitude is limited by specific 

non-linearity for e.g. by an automatic amplitude control 

mechanism built into the circuit (in this case limiting the 

amplitude to a value pre-set by the comparator and voltage 

divider in the oscillator circuit). Fig. 4 shows that the non-linear 

phase frequency response will dictate the operating point for 

the oscillator as the amplitude criterion is always satisfied 

within the feedback loop.  

Increasing the damping ratio results in the onset of 

non-linearity at higher excitation voltages as shown in the 

previous section and this is also consistent with the 

experimental results shown in Fig. 5. As the ambient pressure 

in the vacuum chamber increases, increased air damping results 

in reduced nonlinear behaviour of the DETF resonator for the 
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same excitation voltage conditions and the resonator can be 

operated in the linear regime at sufficiently high damping levels 

(as shown in the plot in Fig. 5).  However, it should be noted 

that increase in air damping will also increase the motional 

resistance of the DETF resonator ultimately resulting in the 

oscillation criteria not being met.  

C. Resonant Frequency Variation with Air Damping  

The DETF resonator and electronic circuit components are 

integrated on a single PCB to implement the SW oscillator. The 

DC polarization voltage applied on the resonator is 10 V and 

the feedback excitation voltage is set to 120 mV. The oscillator 

board is placed inside the pressure controllable vacuum 

chamber as before and the output frequency of the oscillator is 

recorded using an Agilent 53230A frequency counter. 

Fig. 6 plots the measured output frequency of the SW 

oscillator under varying resonator damping ratios with a 

comparison provided with respect to the analytical model (18). 

It is seen that the measured output frequencies matches well 

with the analytical model. Additionally, it was noted that the 

SW oscillator stopped working when ambient pressure 

increased to about 3 Torr, corresponding to a damping ratio of 

1E-3.  

 
Fig. 6.  Plot of the output frequency of the SW oscillator with varying 

damping ratios of the DETF resonator. 

 

D. Allan Variance with Variable Air Damping 

In order to investigate the influence of air damping on 

oscillator noise, the Allan Variance (y
2
)[41] was calculated for 

a series of oscillator frequency measurements with different 

damping ratios (see Fig. 7). For the Allan Variance/Deviation 

plot, various noise mechanisms underlying the measured 

response can be distinguished by the different slopes on the 

graph[32]. As seen in Fig. 7, the measured frequency stability 

of the nonlinear SW oscillator exhibits strong dependence on 

the damping ratio of the DETF resonator (limited by air 

damping for these measurements). When the air damping is 

relatively low, the oscillator output frequency stability is seen 

to be relatively poor with evidence for at least four noise 

mechanisms (). With increasing level of air damping 

(, the random walk frequency noise level 

decayed rapidly and the flicker frequency noise level also 

reduced. However, the white phase noise and white frequency 

noise level is not significantly impacted at this stage. When the 

air damping is further increased (, the 

flicker frequency noise level is seen to reduce and the random 

walk frequency noise process is not observed for averaging 

times up to 10s. The white phase and white frequency noise 

levels are also seen to reduce. However, when air damping is 

further increased (, the white phase and white 

frequency noise levels are significantly increased with no 

corresponding increase in the levels of the random walk 

frequency and flicker frequency noise levels. The minimum 

fractional frequency deviation of the square wave oscillator is 

approximately 25 ppb for an 8 second averaging time when the 

damping ratio is about 2.8E-4, which is approximately 15 times 

smaller than for the case of the same oscillator operating at low 

pressure when the damping ratio is about 4.8E-5. 

 
Fig. 7.  Allan Deviation of the SW oscillator output signal with different 

resonator damping ratios. 

 

 
Fig. 8.  Measured open-loop amplitude and phase frequency response of the 

DETF resonator with resonator damping ratios corresponding to the measured 
Allan Deviation results shown in Fig. 7. 

 
 

According to (7)-(9) and the open-loop measurement results 

shown in Fig. 8, an increase in the damping factor will allow for 

operation at higher elevated amplitudes. In the meantime, the 

random walk frequency and flicker frequency noise levels in 

the square-wave oscillator are also significantly reduced, 

indicating that these two noise components appear to strongly 

correlate with resonator nonlinearity due to the nonlinear 

amplitude-frequency mixing effect. The white phase and white 

frequency noise regimes in the SW oscillator exhibit a 
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dependence on the damping factor as well. The increase of 

air-damping does not significantly influence the white phase 

and white frequency noise level of the SW oscillator until the 

resonator starts to transition from the critical nonlinear regime 

to the linear regime with increasing air-damping. However, 

upon further increase in air-damping in the linear regime, the 

white phase and white frequency noise components show a 

significant increase over and beyond what is observed when the 

DETF resonator operated in nonlinear regime. The increase in 

this noise level is due to the reduced vibration amplitude of the 

tines corresponding to a reduced output power and reduced 

quality factor.  

In summary, the experimental results show that the random 

walk frequency noise and flicker frequency noise level are 

strongly related to the non-linearity of the DETF resonator, 

whereas the white phase and white frequency noise levels are 

impacted both by the output power and by resonator 

non-linearity. Therefore, there exists an optimal damping level 

for a particular SW oscillator coinciding with the transition 

between the linear and nonlinear regimes to optimize the 

frequency stability of the oscillator. In practice, the excitation 

voltage amplitude produced by the oscillator circuit should set 

the resonator operating point just at the onset of the nonlinear 

regime and not well into the regime described by hysteresis in 

the frequency response or well within the regime described by a 

linear model for best results. Further, the experimental results 

indicate that the design regime for optimized frequency 

stability is not necessarily restricted to a single operating point; 

however, further detailed investigation will be necessary to 

investigate the degree of sensitivity to small changes to device 

parameters and ambient conditions about the optimal operating 

regime. 

V. CONCLUSION 

This paper investigates the impact of air-damping on the 

output frequency and phase/frequency stability of a nonlinear 

MEMS square wave oscillator. Analytical models are 

constructed for the air-damped nonlinear DETF resonator and 

the square wave oscillator to provide physical insight into the 

prediction of the influence of damping on oscillator 

performance. The analysis and predictions are then examined 

and validated by a series of carefully designed laboratory tests. 

Both theoretical and experimental studies indicate that when 

air-damping dominates the damping ratio of the DETF 

resonator, the increase of pressure will impact the output 

frequency of the nonlinear square-wave oscillator. The 

variation of the damping ratio also influences the 

phase/frequency noise of the square-wave oscillator. For a 

particular design of the DETF resonator and specified circuit 

parameters, an optimal air-damping/pressure level exists for the 

case of optimal frequency stability. This finding indicates that 

the DETF resonator or other similar resonators used for the SW 

oscillator topology may not require very low pressure levels to 

achieve optimal frequency stability since the noise floor of the 

oscillator may increase in low damping conditions due to the 

onset of significant nonlinearities. 
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