210 research outputs found

    Random walks on mutual microRNA-target gene interaction network improve the prediction of disease-associated microRNAs

    Get PDF
    Background: MicroRNAs (miRNAs) have been shown to play an important role in pathological initiation, progression and maintenance. Because identification in the laboratory of disease-related miRNAs is not straightforward, numerous network-based methods have been developed to predict novel miRNAs in silico. Homogeneous networks (in which every node is a miRNA) based on the targets shared between miRNAs have been widely used to predict their role in disease phenotypes. Although such homogeneous networks can predict potential disease-associated miRNAs, they do not consider the roles of the target genes of the miRNAs. Here, we introduce a novel method based on a heterogeneous network that not only considers miRNAs but also the corresponding target genes in the network model. Results: Instead of constructing homogeneous miRNA networks, we built heterogeneous miRNA networks consisting of both miRNAs and their target genes, using databases of known miRNA-target gene interactions. In addition, as recent studies demonstrated reciprocal regulatory relations between miRNAs and their target genes, we considered these heterogeneous miRNA networks to be undirected, assuming mutual miRNA-target interactions. Next, we introduced a novel method (RWRMTN) operating on these mutual heterogeneous miRNA networks to rank candidate disease-related miRNAs using a random walk with restart (RWR) based algorithm. Using both known disease-associated miRNAs and their target genes as seed nodes, the method can identify additional miRNAs involved in the disease phenotype. Experiments indicated that RWRMTN outperformed two existing state-of-the-art methods: RWRMDA, a network-based method that also uses a RWR on homogeneous (rather than heterogeneous) miRNA networks, and RLSMDA, a machine learning-based method. Interestingly, we could relate this performance gain to the emergence of "disease modules" in the heterogeneous miRNA networks used as input for the algorithm. Moreover, we could demonstrate that RWRMTN is stable, performing well when using both experimentally validated and predicted miRNA-target gene interaction data for network construction. Finally, using RWRMTN, we identified 76 novel miRNAs associated with 23 disease phenotypes which were present in a recent database of known disease-miRNA associations. Conclusions: Summarizing, using random walks on mutual miRNA-target networks improves the prediction of novel disease-associated miRNAs because of the existence of "disease modules" in these networks

    BioGraph: unsupervised biomedical knowledge discovery via automated hypothesis generation

    Get PDF
    We present BioGraph, a data integration and data mining platform for the exploration and discovery of biomedical information. The platform offers prioritizations of putative disease genes, supported by functional hypotheses. We show that BioGraph can retrospectively confirm recently discovered disease genes and identify potential susceptibility genes, outperforming existing technologies, without requiring prior domain knowledge. Additionally, BioGraph allows for generic biomedical applications beyond gene discovery. BioGraph is accessible at http://www.biograph.be

    Heterogeneous network embedding enabling accurate disease association predictions.

    Get PDF
    BackgroundIt is significant to identificate complex biological mechanisms of various diseases in biomedical research. Recently, the growing generation of tremendous amount of data in genomics, epigenomics, metagenomics, proteomics, metabolomics, nutriomics, etc., has resulted in the rise of systematic biological means of exploring complex diseases. However, the disparity between the production of the multiple data and our capability of analyzing data has been broaden gradually. Furthermore, we observe that networks can represent many of the above-mentioned data, and founded on the vector representations learned by network embedding methods, entities which are in close proximity but at present do not actually possess direct links are very likely to be related, therefore they are promising candidate subjects for biological investigation.ResultsWe incorporate six public biological databases to construct a heterogeneous biological network containing three categories of entities (i.e., genes, diseases, miRNAs) and multiple types of edges (i.e., the known relationships). To tackle the inherent heterogeneity, we develop a heterogeneous network embedding model for mapping the network into a low dimensional vector space in which the relationships between entities are preserved well. And in order to assess the effectiveness of our method, we conduct gene-disease as well as miRNA-disease associations predictions, results of which show the superiority of our novel method over several state-of-the-arts. Furthermore, many associations predicted by our method are verified in the latest real-world dataset.ConclusionsWe propose a novel heterogeneous network embedding method which can adequately take advantage of the abundant contextual information and structures of heterogeneous network. Moreover, we illustrate the performance of the proposed method on directing studies in biology, which can assist in identifying new hypotheses in biological investigation

    A New System for Human MicroRNA functional Evaluation and Network

    Get PDF
    MicroRNAs are functionally important endogenous non-coding RNAs that silence host genes in animal and plant via destabilizing the mRNAs or preventing the translation. Given the far-reaching implication of microRNA regulation in human health, novel bioinformatics tools are desired to facilitate the mechanistic understanding of microRNA mediated gene regulation, their roles in biological processes, and the functional relevance among microRNAs. However, most state-of-the-art computational methods still focus on the functional study of microRNA targets and there is no e ective strategy to infer the functional similarity among microRNAs. In this study, we developed a new method to quantitatively measure the functional similarity among microRNAs based on the integrated functional annotation data from Gene Ontology, human pathways, and PFam databases. Through analyzing human microRNAs, we further demonstrated the use of the derived microRNA pairwise similarities to discover the cooperative microRNA modules and to construct the genome-scale microRNAmediated gene network in human. The complete results and the similarity assessment system can be freely accessed at (http://sbbi.unl.edu/microRNASim). Adviser: Juan Cu

    In-silico prediction of blood-secretory human proteins using a ranking algorithm

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Computational identification of blood-secretory proteins, especially proteins with differentially expressed genes in diseased tissues, can provide highly useful information in linking transcriptomic data to proteomic studies for targeted disease biomarker discovery in serum.</p> <p>Results</p> <p>A new algorithm for prediction of blood-secretory proteins is presented using an information-retrieval technique, called <it>manifold ranking</it>. On a dataset containing 305 known blood-secretory human proteins and a large number of other proteins that are either not blood-secretory or unknown, the new method performs better than the previous published method, measured in terms of the area under the recall-precision curve (AUC). A key advantage of the presented method is that it does not explicitly require a negative training set, which could often be noisy or difficult to derive for most biological problems, hence making our method more applicable than classification-based data mining methods in general biological studies.</p> <p>Conclusion</p> <p>We believe that our program will prove to be very useful to biomedical researchers who are interested in finding serum markers, especially when they have candidate proteins derived through transcriptomic or proteomic analyses of diseased tissues. A computer program is developed for prediction of blood-secretory proteins based on manifold ranking, which is accessible at our website <url>http://csbl.bmb.uga.edu/publications/materials/qiliu/blood_secretory_protein.html</url>.</p

    Random Walks: A Review of Algorithms and Applications

    Get PDF
    A random walk is known as a random process which describes a path including a succession of random steps in the mathematical space. It has increasingly been popular in various disciplines such as mathematics and computer science. Furthermore, in quantum mechanics, quantum walks can be regarded as quantum analogues of classical random walks. Classical random walks and quantum walks can be used to calculate the proximity between nodes and extract the topology in the network. Various random walk related models can be applied in different fields, which is of great significance to downstream tasks such as link prediction, recommendation, computer vision, semi-supervised learning, and network embedding. In this paper, we aim to provide a comprehensive review of classical random walks and quantum walks. We first review the knowledge of classical random walks and quantum walks, including basic concepts and some typical algorithms. We also compare the algorithms based on quantum walks and classical random walks from the perspective of time complexity. Then we introduce their applications in the field of computer science. Finally we discuss the open issues from the perspectives of efficiency, main-memory volume, and computing time of existing algorithms. This study aims to contribute to this growing area of research by exploring random walks and quantum walks together.Comment: 13 pages, 4 figure

    \u3ci\u3eIn-silico\u3c/i\u3e prediction of blood-secretory human proteins using a ranking algorithm

    Get PDF
    Background: Computational identification of blood-secretory proteins, especially proteins with differentially expressed genes in diseased tissues, can provide highly useful information in linking transcriptomic data to proteomic studies for targeted disease biomarker discovery in serum. Results: A new algorithm for prediction of blood-secretory proteins is presented using an information-retrieval technique, called manifold ranking. On a dataset containing 305 known blood-secretory human proteins and a large number of other proteins that are either not blood-secretory or unknown, the new method performs better than the previous published method, measured in terms of the area under the recall-precision curve (AUC). A key advantage of the presented method is that it does not explicitly require a negative training set, which could often be noisy or difficult to derive for most biological problems, hence making our method more applicable than classification-based data mining methods in general biological studies. Conclusion: We believe that our program will prove to be very useful to biomedical researchers who are interested in finding serum markers, especially when they have candidate proteins derived through transcriptomic or proteomic analyses of diseased tissues. A computer program is developed for prediction of blood-secretory proteins based on manifold ranking, which is accessible at our website http://csbl.bmb.uga.edu/publications/materials/qiliu/ blood_secretory_protein.html

    Machine Learning Methods for Effectively Discovering Complex Relationships in Graph Data

    Get PDF
    Graphs are extensively employed in many systems due to their capability to capture the interactions (edges) among data (nodes) in many real-life scenarios. Social networks, biological networks and molecular graphs are some of the domains where data have inherent graph structural information. Built graphs can be used to make predictions in Machine Learning (ML) such as node classifications, link predictions, graph classifications, etc. But, existing ML algorithms hold a core assumption that data instances are independent of each other and hence prevent incorporating graph information into ML. This irregular and variable sized nature of non-Euclidean data makes learning underlying patterns of the graph more sophisticated. One approach is to convert the graph information into a lower dimensional space and use traditional learning methods on the reduced space. Meanwhile, Deep Learning has better performance than ML due to convolutional layers and recurrent layers which consider simple correlations in spatial and temporal data, respectively. This proves the importance of taking data interrelationships into account and Graph Convolutional Networks (GCNs) are inspired by this fact to exploit the structure of graphs to make better inference in both node-centric and graph-centric applications. In this dissertation, the graph based ML prediction is addressed in terms of both node classification and link prediction tasks. At first, GCN is thoroughly studied and compared with other graph embedding methods specific to biological networks. Next, we present several new GCN algorithms to improve the prediction performance related to biomedical networks and medical imaging tasks. A circularRNA (circRNA) and disease association network is modeled for both node classification and link prediction tasks to predict diseases relevant to circRNAs to demonstrate the effectiveness of graph convolutional learning. A GCN based chest X-ray image classification outperforms state-of-the-art transfer learning methods. Next, the graph representation is used to analyze the feature dependencies of data and select an optimal feature subset which respects the original data structure. Finally, the usability of this algorithm is discussed in identifying disease specific genes by exploiting gene-gene interactions
    • …
    corecore