2,000 research outputs found

    Expanding the medical physicist curricular and professional programme to include Artificial Intelligence

    Get PDF
    Purpose: To provide a guideline curriculum related to Artificial Intelligence (AI), for the education and training of European Medical Physicists (MPs). Materials and methods: The proposed curriculum consists of two levels: Basic (introducing MPs to the pillars of knowledge, development and applications of AI, in the context of medical imaging and radiation therapy) and Advanced. Both are common to the subspecialties (diagnostic and interventional radiology, nuclear medicine, and radiation oncology). The learning outcomes of the training are presented as knowledge, skills and competences (KSC approach). Results: For the Basic section, KSCs were stratified in four subsections: (1) Medical imaging analysis and AI Basics; (2) Implementation of AI applications in clinical practice; (3) Big data and enterprise imaging, and (4) Quality, Regulatory and Ethical Issues of AI processes. For the Advanced section instead, a common block was proposed to be further elaborated by each subspecialty core curriculum. The learning outcomes were also translated into a syllabus of a more traditional format, including practical applications. Conclusions: This AI curriculum is the first attempt to create a guideline expanding the current educational framework for Medical Physicists in Europe. It should be considered as a document to top the sub-specialties' curriculums and adapted by national training and regulatory bodies. The proposed educational program can be implemented via the European School of Medical Physics Expert (ESMPE) course modules and - to some extent - also by the national competent EFOMP organizations, to reach widely the medical physicist community in Europe.Peer reviewe

    Quantum-Inspired Machine Learning: a Survey

    Full text link
    Quantum-inspired Machine Learning (QiML) is a burgeoning field, receiving global attention from researchers for its potential to leverage principles of quantum mechanics within classical computational frameworks. However, current review literature often presents a superficial exploration of QiML, focusing instead on the broader Quantum Machine Learning (QML) field. In response to this gap, this survey provides an integrated and comprehensive examination of QiML, exploring QiML's diverse research domains including tensor network simulations, dequantized algorithms, and others, showcasing recent advancements, practical applications, and illuminating potential future research avenues. Further, a concrete definition of QiML is established by analyzing various prior interpretations of the term and their inherent ambiguities. As QiML continues to evolve, we anticipate a wealth of future developments drawing from quantum mechanics, quantum computing, and classical machine learning, enriching the field further. This survey serves as a guide for researchers and practitioners alike, providing a holistic understanding of QiML's current landscape and future directions.Comment: 56 pages, 13 figures, 8 table

    Assessing Seagrass Restoration Actions through a Micro-Bathymetry Survey Approach (Italy, Mediterranean Sea)

    Get PDF
    Underwater photogrammetry provides a means of generating high-resolution products such as dense point clouds, 3D models, and orthomosaics with centimetric scale resolutions. Underwater photogrammetric models can be used to monitor the growth and expansion of benthic communities, including the assessment of the conservation status of seagrass beds and their change over time (time lapse micro-bathymetry) with OBIA classifications (Object-Based Image Analysis). However, one of the most complex aspects of underwater photogrammetry is the accuracy of the 3D models for both the horizontal and vertical components used to estimate the surfaces and volumes of biomass. In this study, a photogrammetry-based micro-bathymetry approach was applied to monitor Posidonia oceanica restoration actions. A procedure for rectifying both the horizontal and vertical elevation data was developed using soundings from high-resolution multibeam bathymetry. Furthermore, a 3D trilateration technique was also tested to collect Ground Control Points (GCPs) together with reference scale bars, both used to estimate the accuracy of the models and orthomosaics. The root mean square error (RMSE) value obtained for the horizontal planimetric measurements was 0.05 m, while the RMSE value for the depth was 0.11 m. Underwater photogrammetry, if properly applied, can provide very high-resolution and accurate models for monitoring seagrass restoration actions for ecological recovery and can be useful for other research purposes in geological and environmental monitoring

    Determination of parking space and its concurrent usage over time using semantically segmented mobile mapping data

    Get PDF
    Public space is a scarce good in cities. There are many concurrent usages, which makes an adequate allocation of space both difficult and highly attractive. A lot of space is allocated by parking cars - even if the parking spaces are not occupied by cars all the time. In this work, we analyze space demand and usage by parking cars, in order to evaluate, when this space could be used for other purposes. The analysis is based on 3D point clouds acquired at several times during a day. We propose a processing pipeline to extract car bounding boxes from a given 3D point cloud. For the car extraction we utilize a label transfer technique for transfers from semantically segmented 2D RGB images to 3D point cloud data. This semantically segmented 3D data allows us to identify car instances. Subsequently, we aggregate and analyze information about parking cars. We present an exemplary analysis of the urban area where we extracted 15.000 cars at five different points in time. Based on this aggregated we present analytical results for time dependent parking behavior, parking space availability and utilization

    A Cognitive Routing framework for Self-Organised Knowledge Defined Networks

    Get PDF
    This study investigates the applicability of machine learning methods to the routing protocols for achieving rapid convergence in self-organized knowledge-defined networks. The research explores the constituents of the Self-Organized Networking (SON) paradigm for 5G and beyond, aiming to design a routing protocol that complies with the SON requirements. Further, it also exploits a contemporary discipline called Knowledge-Defined Networking (KDN) to extend the routing capability by calculating the “Most Reliable” path than the shortest one. The research identifies the potential key areas and possible techniques to meet the objectives by surveying the state-of-the-art of the relevant fields, such as QoS aware routing, Hybrid SDN architectures, intelligent routing models, and service migration techniques. The design phase focuses primarily on the mathematical modelling of the routing problem and approaches the solution by optimizing at the structural level. The work contributes Stochastic Temporal Edge Normalization (STEN) technique which fuses link and node utilization for cost calculation; MRoute, a hybrid routing algorithm for SDN that leverages STEN to provide constant-time convergence; Most Reliable Route First (MRRF) that uses a Recurrent Neural Network (RNN) to approximate route-reliability as the metric of MRRF. Additionally, the research outcomes include a cross-platform SDN Integration framework (SDN-SIM) and a secure migration technique for containerized services in a Multi-access Edge Computing environment using Distributed Ledger Technology. The research work now eyes the development of 6G standards and its compliance with Industry-5.0 for enhancing the abilities of the present outcomes in the light of Deep Reinforcement Learning and Quantum Computing

    Hierarchical Classification of Scientific Taxonomies with Autonomous Underwater Vehicles

    Get PDF
    Autonomous Underwater Vehicles (AUVs) have catalysed a significant shift in the way marine habitats are studied. It is now possible to deploy an AUV from a ship, and capture tens of thousands of georeferenced images in a matter of hours. There is a growing body of research investigating ways to automatically apply semantic labels to this data, with two goals. The task of manually labelling a large number of images is time consuming and error prone. Further, there is the potential to change AUV surveys from being geographically defined (based on a pre-planned route), to permitting the AUV to adapt the mission plan in response to semantic observations. This thesis focusses on frameworks that permit a unified machine learning approach with applicability to a wide range of geographic areas, and diverse areas of interest for marine scientists. This can be addressed through the use of hierarchical classification; in which machine learning algorithms are trained to predict not just a binary or multi-class outcome, but a hierarchy of related output labels which are not mutually exclusive, such as a scientific taxonomy. In order to investigate classification on larger hierarchies with greater geographic diversity, the BENTHOZ-2015 data set was assembled as part of a collaboration between five Australian research groups. Existing labelled data was re-mapped to the CATAMI hierarchy, in total more than 400,000 point labels, conforming to a hierarchy of around 150 classes. The common hierarchical classification approach of building a network of binary classifiers was applied to the BENTHOZ-2015 data set, and a novel application of Bayesian Network theory and probability calibration was used as a theoretical foundation for the approach, resulting in improved classifier performance. This was extended to a more complex hidden node Bayesian Network structure, which permits inclusion of additional sensor modalities, and tuning for better performance in particular geographic regions
    corecore