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Abstract

There are several approaches that attempt to minimize the Distance Error that is obtained

by a mobile device when a position is inferred in an indoor environment, although none of them

reaches  full  accuracy.  Due  to  this  fact,  sundry  different  kinds  of  techniques  have  been

developed in order to achieve this goal. In this document, 3 Machine Learning algorithms were

chosen, developed and tested with the same final objective: an Artificial Neural Network, a

Support Vector Machines algorithm and a k-Means Clustering approach. 

Tests were structured using 2 scenarios with different configurations and sizes, using 2

different  kinds  of  training  –  Static  or  Continuous  -,  using  different  numbers  of  Training

Examples and using different numbers of Measured Positions for each one of the algorithms

implemented. Due to the huge amount of tests to perform and the high necessary time taken to

do it, some tests' exclusion criteria was established up to some experiments.

Results were compared and conclusions were taken relatively to the several hypothesis

formulated, that included the study of the influence of the number of Training Examples from

the same Measured Positions in the Mean Distance Error value, the influence of the number of

Measured  Positions  in  the  Mean  Distance  Error  value,  different  correlations  between  the

statistics produced by the algorithms' results, comparisons between the implemented algorithms

and  the  approach  that  does  not  use  any Artificial  Intelligence,  some comparisons  between

algorithms and comparisons with the results found in the Literature Review phase.

The  best  result  achieved  was  through  the  ANN approach  in  the  first  testing  scenario

(approximately 19m² of area) with a Mean Distance Error value of 1.23m, using 150 Training

Examples and the Static Training configuration, representing an improvement of above 78 %

relatively to the approach that does not use any Artificial  Intelligence methodology to infer

positions; in the second testing scenario (approximately 239m²) the best result achieved were

also  the  ones  of  the  ANN algorithm,  but  this  time using  3  Measured  Positions,  the  Static

Training configuration and 150 Training Entries, with a Mean Distance Error value of 1.44m,

representing an improvement of more than 139% of the positioning accuracy in relationship to

the approach that does not implement any Artificial Intelligence.
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Resumo

Várias são as abordagens que tentam minimizar a Distância Média de Erro que é obtida

aquando da inferência da posição de um dispositivo móvel num ambiente  indoor,  apesar de

nenhuma delas atingir total exatidão. Devido a este facto, diversas e diferentes tipos de técnicas

foram estudadas e desenvolvidas com a finalidade de atingir esse objetivo. Neste documento, 3

algoritmos de  Machine Learning foram escolhidos,  desenvolvidos e  testados com a mesma

meta:  uma  Rede  Neuronal  Artificial,  um  algoritmo  de  Support  Vector  Machines  e  uma

abordagem utilizando k-Means Clustering.

Os testes foram estruturados usando 2 cenários com configurações e tamanhos diferentes,

utilizando 2 tipos diferences de treino – Estático e Contínuo -, com recurso a valores variados de

Exemplos de Treino e usando diferentes quantidades de Posições Medidas para cada um dos

algoritmos implementados. Devido à quantidade enorme de testes a fazer e ao elevado tempo

necessário para os fazer, alguns critérios de exclusão de testes foram estabelecidos a partir de

um determinado número de experiências.

Os resultados foram comparados e foram retiradas conclusões relativas às várias hipóteses

formuladas, que incluíram o estudo da influência do número de Exemplos de Treino usando as

mesmas Posições Medidas no valor da Distância Média de Erro, a influência do número de

Posições  Medidas  na  Distância  Média  de  Erro,  diferentes  correlações  entre  as  estatísticas

obtidas  dos  resultados  dos algoritmos,  comparações  entre  os  algoritmos implementados  e a

abordagem que não utiliza Inteligência Artificial, algumas comparações entre os algoritmos e

comparações com os resultados utilizados na fase de Revisão Bibliográfica.

O melhor resultado obtido no primeiro cenário de teste (de aproximadamente 19m²) foi

através da abordagem de Redes Neuronais Artificiais, com uma Distância Média de Erro de

1.23m,  utilizando  150  Exemplos  de  Treino  e  configurada  em  modo  Treino  Estático,

representando  uma  melhoria  de  mais  de  78%  relativamente  à  abordagem  que  não  utiliza

Inteligência  Artificial  para  inferir  posições;  no  caso  do  segundo  cenário  de  teste  (de

aproximadamente 239m²), o melhor resultado obtido foi também através do algoritmo de Redes

Neuronais  Artificiais,  desta  vez  utilizando  3  Posições  Medidas,  a  configuração  de  Treino

Estático  e  150  Entradas  de  Treino,  obtendo uma Distância  Média  de  Erro  de  1.44m,  uma

melhoria de mais de 139% na exatidão do posicionamento relativamente à abordagem que não

implementa nenhum método de Inteligência Artificial.
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1 Introduction

1.1 Context/Scope

This document is in the scope of the final thesis of the Integrated Master in Informatics

and Computation Engineering at Faculdade de Engenharia da Universidade do Porto (FEUP).

The  presented  project  was  proposed  by  LatitudeN  GmbH,  a  start-up  company  based  in

Darmstadt,  Germany,  which  the  main  focus  is  the  development  of  mobile  applications  for

tourism. The company has been developing products targeting outdoor environments, specially

cities' urban areas, but they also aim to develop applications focused on the indoor positioning

inference and that's the reason why this thesis proposal came up.

This  proposal  appeared  as  part  of  an  international  project  that  is  currently  being

developed by LatitudeN GmbH and is the continuation of a previous thesis proposal done by the

company and held also in the scope of the final thesis of the Integrated Master in Informations

and Computation  Engineering.  This  previous work was mainly  focused on implementing a

mobile application that gathered data related with indoor positioning, differentiating between

the  real  mobile  device  position  and  the  inferred  one.  Several  tests  were  done  in  different

environments, which contributed for the data set to have a big diversity of data that needs to be

treated, analyzed and classified in order to minimize the distance error of the current mobile

indoor positioning systems.

The need to obtain a generalized solution for the indoor mobile positioning constraints

has  enabled  several  researchers  to  study,  implement  and  test  different  approaches  to  the

problem. Still, up to the date of this thesis, there is no optimal solution that solves the distance

error constraint between the real position where the mobile device holder is and the inferred

position by the same device. This work does not intend to provide a general optimal solution for

the problem, but to follow approaches suggested by experienced researchers in the field and

implement, test and analyze them in order to understand which could be the add-ons that will
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Introduction

contribute to a future improvement of the current solution and to conclude about several aspects

related with the positioning techniques and the application scenarios.

To approach the error minimization problem, the main focus will be on the application

of Machine Learning (ML) techniques to the existing data set so there's a smarter observation of

the existing patterns, the establishment of comparisons between several different approaches to

this constraint in order to ease future work and to infer conclusions related with the algorithm's

performance,  the  best  training  characteristics,  the  statistics  generated  and  the  application

scenarios.

1.2 Motivation and Goals

In the past few years, the automatic location of people or devices has been an increasing

target  of research and the rising number of established methods and developed applications

related with this theme have ignited more interest in this research field.

Although  outdoor  localization  has  been  achieved  several  years  ago  using  a  Global

Navigation Satellite System (GNSS), the suggested methods for indoor localization are not yet

satisfactory due to high dependency on the mobile devices' sensors, high dependency on the

technology  application  scenario's  obstacles  (walls,  people  moving and change  of  obstacles'

location contribute for the signal impoverishment) and the lack of accuracy in the positioning

inference.

The current thesis is part of a big international project where LatitudeN GmbH is an active

entity. Due to the fact that one of the goals of this work is to improve the accuracy of the

existing  positioning  methods,  the  main  motivations  to  finish  with  success  this  thesis  is  to

contribute with real data, tests and comparisons for the research related with the minimization of

error between the real mobile device position and the position inferred by the device.

Henceforth,  the purpose of this project  is  to  study the best  solution to  solve the error

constraint in these systems, through the implementation, test and evaluation of different ML

algorithms, in order to produce a solution that can be applied in real scenarios.

Thus, the specific goals for this project are:

• Make a State-of-the-art analysis in error minimization techniques oriented to indoor

mobile devices' positioning, focusing on the capabilities of smartphones and tablets

to infer it.

• Evaluate  possible  solutions  for  the  error  minimization  problem and  choose  the

approaches that show the best results as the ones to implement and test.

• Implement the set of those algorithms that prove more accuracy in the positioning

inference.

• Test  those  implementations,  produce  new  results,  correlate  them  and  conclude

about the generated hypothesis.

• Test  this  set of  methods in real scenarios,  gather results  and make comparisons

between them in order to ease future work.
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Introduction

1.3 Dissertation Structure

Beyond this introductory chapter, this document contains 3 more chapters. In chapter 2 it is

explained the ML algorithms and methods that will be taken into account for the purposes of

this study and reviewed the State-of-the-art of the ML techniques that minimize the distance

error  of  the  mobile  device  positioning.  In  chapter  3  there's  a  detailed  explanation  of  the

hypothesis  to  prove  or  disprove,  the  statistical  metrics  that  will  be  used  to  evaluate  the

implemented  algorithms,  the  description  of  the  project's  requirements,  of  the  implemented

algorithms and of the functioning of the whole software. Chapter 4 is where the tests done are

described  and  correlated  in  2  different  scenarios  using  the  3  implemented  algorithms  with

different  training  configurations.  Chapter  5  is  where  the  findings  about  those  correlations

between algorithms, training configurations and performance are detailed.
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2 Literature Review

In  this  chapter,  it  will  be  presented  each  one  of  the  state-of-art  approaches  found

throughout the study of the solutions for the problem. The first sub-chapter reviews the existent

positioning  methods  and  the  second  sub-chapter  considers  the  existent  distance  error

minimization approaches using ML techniques, whereas each of them are divided in two more

sub-sections: one explaining the technique itself and one revising the different applications of

the algorithm applied towards this thesis' solution evaluation. 

2.1 Introduction

In the beginning of the thesis proposal, some important decisions were done in order to

bounder  the signal  transmission technologies,  the Positioning Techniques to be applied,  the

Error Correction approaches and the Scenarios where a possible final  application would be

used. Hence, it was defined that the most important signal transmission technologies were Wi-Fi

and Bluetooth  – due to  the low cost  of  the technologies  and mass  usage worldwide -,  the

Positioning Technique to be studied was the trilateration technique – due to the fact that it was

the technique analyzed and chosen in  [C12] -, that the Error Correction approaches that were

most valuable for this context were ML techniques and that the testing scenarios would be either

places with big areas, wide spaces with several walls and columns and a lot of people moving

from place to place and small areas where the obstacles attenuate the signal more intensively.

These definitions influenced the main focus of the whole Literature Review process.

During this process, already taking into account the above specified theme constraints,

in order to select the approaches who fit into the kind of problem this thesis intends to solve,

each  article  was  classified  respecting  three  different  metrics:  Positioning  Technique,  Error

Correction Technique and Testing Scenario. 
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The classification for each one of these three metrics was done using three different

symbols: , √ ~ and  x. Each one of these symbols represents the importance for this study of each

one of these three criteria in each of the analyzed articles. For instance, an article that was

classified  with  Positioning  Technique  =  x,  Error  Correction  =  x,  Testing  Scenario  =  x is

considered an article with less probability to be selected for intensive study (and consequently,

less probable for the approach explained in the article to be applied in the context of this thesis)

than an article that was classified with Positioning Technique = , Error Correction =  and√ √
Testing Scenario = . This was done exclusively to select relevant information in this problem's√
context, due to time constraints both in the Literature Review as in the Implementation, Testing

and Analysis phases.

Summarizing,  x means  “not  important”,  ~ means  “may  be  important”,   means√
“important”  for  each of the above explained metrics  for  each of  the analyzed bibliography

items. Some other criteria may be added in some comparisons done throughout the document,

but the classification symbols are maintained nevertheless.

2.2 Positioning Methods

Knowing which is the position of a mobile device is a task that can be achieved using

several  different  positioning  methods,  such  as  Lateration,  Angulation,  Scene  Analysis  and

Proximity methods  [LDBL07]. The Lateration and Angulation are the ones explained in the

next sub-sections, because of the following reasons: first, Lateration was the method chosen by

[C12] and due to this thesis time constraints it will be the method used for the purposes of

positioning inference in the work done ahead; second, because Lateration and Angulation are

the two main localization algorithms  [WBLP09] and are computationally cheaper than Scene

Analysis and the Proximity methods [PC11].

The combination between Lateration and Angulation is feasible and although it would

bring better performance to the system, it would add a lot more complexity and would require

higher processing power [C12]. Hence, no combination between them was implemented during

the period in which this dissertation has been developed. Still, both methods will be explained in

this sub-chapter, creating enough documentation for future improvements.

2.2.1 Lateration

The Lateration technique is a derivation of Triangulation. The first goal of the Lateration

technique is to estimate the distance from the mobile device to the Access Point.  The high

sensitivity of the RSSI-based location tracking methodologies is due to environmental changes.

Signal strength varies over time, even if the mobile device doesn't change its position, due to its

dynamic  nature.  Hence,  the  implemented  Lateration  technique  applies  a  low  complexity
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smoothing algorithm, where the basic assumption of this algorithm is that the constant velocity

motion will result on constant data change rate [LC07].

 Due to the fact that in the current project the Lateration technique needs at least 3 Access

Points to  infer position, the kind of implemented Lateration technique is  called trilateration

[FRM13]. Trilateration is a conjunction of three distances between transmitters and one receiver

that provide position. There are diverse possible scenarios for trilateration to infer position: the

best case scenario is when the three circumferences intercept at one point and there's a scenario

where the interception of the three circumferences is an area [YYC11].

 According  to  [C12],  one  of  the  most  difficult  decisions  taken  during  his  thesis

development was the one of which propagation model to use in order to calculate distances

based  on  the  RSSI  metric.  The  propagation  model  chosen  was  the  Hata-Okumura model,

expressed by the Equation 2.1: 

log d=
1

10n
(PTX−PRX+ GTX +GRX−X α+ 20 logλ −20log(4π )) (2.1)

Because the signal measurements have a really high variance, a signal variance attenuation

formula was introduced, based on a weighted Median method:

M final=M 1∗0.02+ M 2∗0.04+ M 3∗0.06+ M 4∗0.08+ M 5∗0.1

+ M 6∗0.14+ M 7∗0.14+ M 8∗0.14+ M 9∗0.14+ M 10∗0.14 (2.2)

Three types of lateration algorithms were tested by  [C12] and the one chosen was the

Linear Least Squares (LLS) algorithm. It starts with the equation  2.3, that is the equation of

circle:

( x−xi)
2
+ ( y− y i)

2
=r i

2
(2.3)

where i=1,2,3,. .. , n is the ith Access Point for the calculations and ri is the  estimated

distance from that Access Point to the mobile unit. In the case of the implemented algorithm, it's

actually prepared for the introduction of any amounts of Access Points, although in the current

dissertation 4 APs where used and the minimum of 3 are needed. Then, the LLS algorithm

obtains a linearized system of the form Ax r
=s r

of (n-1) equations where:

A=

x2−x1 y2− y1

x3−x1 y3− y1

. .

. .

. .
xn−x1 yn− y1

(2.4)

x r
=[x−x1 y− y1]

−1
(2.5)

sr=
1
2
[r j

2
−r i

2
+ d ij

2
] (2.6)
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d ij=√((x i−x j)
2+ ( y i+ y j)

2) (2.7)

Still, instead of solving directly the linear system, it's used a normalized QR decomposition

of A. This method combines the values obtained in x r
and sr and A = QR where Q is an

orthogonal matrix and R is an upper triangular matrix. The equation 2.8 determines the solution:

Rxr
=QT sr (2.8)

2.2.2 Angulation

To use Angulation it's only required to get two reference points and measure their Angle-

of-Arrival  (AoA),  with the need to  know at  least  one length measure such as  the distance

between the two Access Points [Pai11].

Figure 2.1: Angulation method representation. Source: [Pai11].

Ubisense is an example of an AoA-based location sensing system  [WOK13]. The increased

complexity and the hardware requirements are the main hindrances for the wide success of such

systems [PaC11].

2.3 Machine Learning Algorithms

Carbonell, Michalski and Mitchell [CMM83], in 1983, defined Machine Learning as “a

many-faceted  phenomenon  that  includes  the  acquisition  of  new  declarative  knowledge,  the

development of motor and cognition skills, the organization of new knowledge into general,

effective representations, and the discovery of new facts and theories through observation and

experimentation”.
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In fact, it's through the organization of new knowledge into general and through the

discovery of new facts and theories, through observation and experimentation, that the main

problem that this thesis is approaching can be solved, or at least get to an improved solution in

relationship to the existing ones. Therefore, there is no better way to approach the constraint of

error minimization in indoor positioning using mobile devices than using ML techniques.

The  current  sub-chapter  explains  the  most  used  ML  approaches  that  try  to  bring

accuracy  to  indoor  positioning  using  mobile  devices  and  explains  several  experiences  and

results  obtained  by  authors  who  have  done  work  in  this  research  field.  This  will  be  done

detailing  the  most  common techniques  and  algorithms  with  the  goal  of  bringing  scientific

sustainability to the methodology that will be elaborated in order to try to improve the existing

solutions for the current thesis' constraint.

2.3.1 Artificial Neural Networks

Artificial  Neural  Networks  (ANNs)  are  computational  methodologies  inspired  by

networks of biological  neurons that perform multi-factorial  analysis.  They contain layers of

simple  computing  nodes  that  operate  as  nonlinear  summing  devices  and  rich  connections

between the nodes. The connection lines are weighted and these weights are adjusted when data

is presented to the network, during a “training” process” that, if it ends up being successful, can

result in the neural network to perform tasks such as predicting an output value, classifying an

object, approximating a function, recognizing a pattern in multi-factorial data and completing a

known pattern [DLD01].

ANNs are  organized into  layers  of  processing units,  where the units  of  a  layer  are

similar  in  the  sense  that  they  all  have  the  same  activation  dynamics  and  output  function.

Connections between these units can be intra-layer – between units of the same layer –, inter-

layer – between units of different layers – or both intra-layer and inter-layer (see Figure 2.2).

There are methods to implement the learning feature of an ANN, leading to several learning

laws that use local information for adjusting the weight of the connection between two units

[Yeg06].
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Figure 2.2: Artificial Neural Network representation. 

Generally,  obtaining  indoor  positioning  using  ANNs is  done by adopting the  RSSI

values as inputs and the positioning coordinates as targets for the training purposes. After the

training phase, appropriate weights are obtained. Usually, a MLP with one hidden layer is the

kind of ANN chosen for a neural-networks-based positioning system and its output is a two-

element  vector  or  a  three-element  vector  representing  the  inferred  or  estimated  position

[LDBL07]. However, in the case of this dissertation, the structure of the ANN will possess a

different configuration from the ones studied, depending on the features used and on the results

of the processing of the best configuration parameters.

1 Using Wi-Fi

It's possible to use an ANN as algorithm for the inference of indoor positions, instead of

using Lateration, Angulation or any other mathematical models that allow the determination of

the position from the received signals. On the other hand, it's possible also to use a combination

of Lateration and/or Angulation with an ANN approach [TBPA11]. 

Tapia, Bajo et al. [TBPA11], in 2008, developed a multi-layer perceptron with the goal

of enhancing the performance of Real-Time Location Systems (RTLS), using ANNs to mitigate

the ground reflection effect and calculate the position of a mobile device. Basically, Tapia, Bajo

et al. structured and developed an ANN with RSSI readers as input nodes in the input layer, and

each of the perceptrons used one output node that indicated the distance. The performance of

the ANN was tested in a 19m x 19m monitored area with 3 rooms and they compared the results

obtained with this multi-layer  perceptron model with a linear regression model, a logarithmic

model and a Support Vector Regression model. They concluded that the ANN model is the one

that contained the lower Mean Distance Error (MDE).

Lin and Lin  [LL05], in 2005, wrote a comparison article based on their experiences

where they focused on comparing 3 different algorithms: a Bayesian Network (Probabilistic

Model), a k-Nearest-Neighbour algorithm and an ANN. They benchmarked the performance of

each one of these algorithms using accuracy, precision, complexity, robustness and scalability

as the chosen criteria.  The experiments done show that the algorithm who performs better in an

overall evaluation is the k-Nearest-Neighbour, followed by the ANN and the Bayesian Network,

respectively.

Mehmood,  Tripathi  and  Tipdecho  [MTT10],  in  2010,  experimented  an  indoor

positioning system using an ANN and the Back-Propagation algorithm, in a 9mx8m room full

of  obstacles  and compared  the  Distance  Error  (DE)  results  with  the  DE of  a  probabilistic

algorithm. They concluded that the ANN using Back-Propagation is the methodology with the

smaller DE between the estimated position and the real mobile device position (the MDE for the

ANN is of 1.43m and the interval of [minimumDistanceError, maximumDistanceError] for the

ANN is of [0.7, 2.06], while for the probabilistic model the average distance error is of 2.54 and

the interval of [minimumDistanceError, maximumDistanceError] is of [1.04, 4.37]) .
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Gholami,  Cai  and  Brennan  [MCB12],  in  2012,  presented  a  document  where  the

approach was  to  infer  positioning for  a  mobile  device in  a  3.5mx1.4m environment,  using

trilateration to estimate positioning and compared results with an ANN fed exactly with the

same data points. They concluded that an ANN technique can infer the position of a static object

with  higher  accuracy  than  trilateration alone,  despite  all  the  noise  sources  in  a  real-world

environment. They also concluded that the minimum DE using trilateration is 0.058802m and

the average error using an ANN is of  0.0098m, corroborating the previous conclusions.

Table 2.1: ANN references using Wi-Fi comparison.

Reference Positioning  Technique Error  Correction

Technique (s)

Scenario  (dimension,

rooms, obstacles)

[TBPA11] √ √ ~ 

[LL05] √ √ x

[MTT10] √ √ ~

[MCB12] √ √ x

In the first and third articles in the Table 2.2, the scenarios have acceptable dimensions

and they possess several obstacles that attenuate the signal received by the mobile devices in

each of them. Taking into account that the studied results show that the smaller the area of a

testing scenario, the lower the MDE, the main goal of this project is to test intensively in a big-

sized scenario. That's why the ~ classification for the first and third articles; the second article

does  not  disclaim in  which  kind of  scenario  the tests  to  the  proposed solution  were done,

therefore the  x classification was applied; in the fourth article the tests were done in a small

dimension scenario with few obstacles, so  x was the classification attributed to the Scenario

criteria.

Henceforth,  the  implementation  of  ANN using  the  Wi-Fi  technology  may  use  the

suggested approaches in the first and third articles, although some changes in the configurations

of the specified ANN structures may be introduced and/or added some algorithm in order to

improve its functioning.

2 Using Bluetooth

Bluetooth technology is widely implemented in mobile devices, therefore they're cheap

and widely used and it  allows distances to be estimated by link quality within a Bluetooth

covered area around 30~40 meters, approximately. However, there are restrictions related with
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compatibility problems or service restrictions in terms of the implementation of a Bluetooth

service.  Still,  due to this technology's  high commercial  success, it's  expected that  in  a near

future there will be a standardized Bluetooth service [Gen05].

Fonseca, Neves and Ralha [FNR11], in 2011, wrote a case-study that compared results

between the Wi-Fi, Bluetooth and ZigBee approaches using the accuracy criteria and trying to

minimize the distance error through an ANN. The experiments were done in one floor of the

SG11 building in the University of Brasília Campus and they concluded that the technology that

allows better accuracy is the Wi-Fi technology, followed by ZigBee and Bluetooth respectively.

The improvements done in the accuracy percentage using the ANN were of 17% with the Wi-Fi

protocol, 11% with the Bluetooh protocol and 21% with the ZigBee protocol.

Altini  et  al  [ABFB10],  in  2012,  proposed  a  low-cost  Bluetooth-based  localization

system based on multiple ANNs and achieved 90% precision and 0.5m of accuracy during a

walk in an indoor environment. The experiments done showed that  depending on the user's

orientation, the RSSI values change completely and that's the main factor for the necessity of

implementing more than one ANN. They also made comparison tests with only one ANN and

showed that a multiple ANN approach has a higher accuracy than using only one ANN, due to

the fact stated above. The MDE of the walk in the indoor corridor is of 0.6m.

Li, Liu et al [LLCL12], in 2012, developed a mathematical model using two ANNs, one

to obtain a feasible solution and one to improve the previous solution. The experiments done

were in two large environments: the first was done in a tunnel – wide environment without too

many obstacles – and the second done in a 60mx60m supermarket – wide environment with the

presence of several obstacles. They defined Beacon phones as mobile devices with GPS devices

and Blind phones as mobile devices without GPS devices, but both equipped with Bluetooth

devices. Although the experiences done are fully detailed, it wasn't done any results comparison

relatively to accuracy in these environments.

Table 2.2: ANN references using Bluetooth comparison.

Reference Error  Correction  Technique(s) Scenario  (dimension, rooms,

obstacles)

[FNR11] √ ~

[ABFB10] √ ~

[LLCL12] √ √

Although several references that use ANN and the Bluetooth technology were studied

and classified according to the reference classification criteria established, no implementation

using Bluetooth was done.
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2.3.2 Support Vector Machines

Support Vector Machines (SVMs) are usually applied to perform binary classification

and  regression  estimation  and  it's  currently  the  most  popular  approach  for  “off-the-shelf”

supervised learning. This means that for people who don't have any specialized prior knowledge

about a specific domain, then SVM is an excellent method to try first  due to its cleanness,

easiness to be understood and implementation and it is more powerful than the majority of the

other ML techniques. Often, SVMs have the flexibility to represent complex functions, but they

are resistant to  overfitting,  so they combine the advantages of nonparametric and parametric

models [RN10]. The cost function that is usually applied in the SVM algorithm is:

J (θ)=−y i∗log(
1

1+e
(−θ i

Tx
)
)−(1− yi) log(1−

1

1+e
(−θi

Tx
)
) ; (2.9)

where  θ is  the  matrix  that  contains  the  values  of  the  input  features.  Let z=θ
T x and

cost1(z)=max (0,k (1−z)) , where k is an arbitrary constant defining the magnitude of the

slope of the line. To regularize the cost function, we can use a factor C, where C=
1
λ

and

λ  represents a regularization factor, like so:

J (θ)=C∑i=1

m
− yi∗cost1(θ

T x i)−(1−y i)cost0(θ
T x i)+

1
2
∑ j=1

n
Θ j

2 ; (2.10)

In the Equation 2.10, m is the number of Training Examples (TE) and n is the number

of features in the dataset. When the goal is to regularize more in order to reduce overfitting, it's

decreased C and when the goal is to regularize less – to reduce underfitting - it's increased C.

The hypothesis function of the SVM is not interpreted as the probability of y being 1 or 0, but a

discriminant function that outputs 1 or 0 [CV95]:

hθ(x )=
1 if ΘT x≥0
0 if Θ

T x<0

Figure 2.3: Maximum Margin Separator is the area between dashed lines.

The distance of the decision boundary to the nearest example is called  margin. Since

SVMs maximize this margin, they are often called Large Margin Classifiers (LMC). For better

understanding,  the definition of  margin is  twice the distance between the separator and the
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nearest example point or, in other words, the width of the area bounded on both sides of the

separator between the separator and the nearest example, like it can be seen in Figure 2.3.

However, there are two important notes to be made about how to achieve the large

margin: first, the large margin is only achieved when C is very large; second, the large margin is

only  achieved  when  the  data  in  the  dataset  is  linearly  separable  and  data  is  only  linearly

separable when a straight line can separate the positive and negative examples. If, for some

reason,  there  are discrepant  examples that  can affect  the decision boundary and they're not

intended  to  do  that,  then  reducing  C is  the  solution  for  this  problem.  Thus,  summarizing,

increasing and decreasing C can simplify our decision boundary [FS99].

It's useful to think about SVMs as LMCs. For instance, if y = 1, then there's a need of

Θ
T x≥1 - not just  Θ

T x≥0  - and, on the other hand, if y = 0 then there's a need of

ΘT x≤−1 -  not  just  ΘT x<0 .  Now when the  constant  C  is  a  very  large  value  (for

instance, 100000), the optimizing function will constrain Θ such that the equation that sums

the cost of each example equals 0. Therefore, we impose constraints on the function that sums

the cost of each example, such as Θ
T x≥1 if y=1 and Θ

T x≤−1 if y = 0.

Henceforth, if C is very large there's a need of choosing Θ  parameters such that:

∑i=1

m
− yi∗cost1(θ

T x i)−(1− yi)cost0(θ
T x i)=0 ; (2.11)

which reduces the cost function to

 J (θ)=
1
2
∑ j=1

n
Θ j

2 ; (2.12)

In the majority  of the cases  using SVMs, data  that  is  not  linearly separable  in  the

original input space are easily separable in a higher-dimensional space. In order to solve this

constraint, SVMs have the ability to embed the data into a higher-dimensional space, using a

method called kernel.

The kernel method can be applied with any learning algorithms that can be reformulated

to work with dot products of pairs of data points and not only with learning algorithms that find

optimal linear separators. Once this is done, the dot product is replaced by a kernel function and

we have a kernelized version of the algorithm [Her02].

Kernels allow the making of complex non-linear classifiers through the calculation of a

function called “similarity” function [SBWA04]. The “similarity” function basically computes a

new feature x1 depending on proximity to landmarks l1, l 2, l3 . The similarity function can

be expressed as follows:

f i=similarity( x , l(i ))=exp (
−(∑ j=1

n
(x j−l j

(i)
)

2
)

(2 σ
2
)

) (2.13)
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where  σ
2 is  a  parameter  of  the  Gaussian  kernel and  it  can  be  modified  to  increase  or

decrease the drop-off of the feature f i . The “similarity” function is also called a Gaussian

Kernel and it represents a specific example of a kernel. There are a couple of properties for the

similarity function, such as:

• if x≈1 , then f 1=exp (−(
02

(2 σ
2
)
))≈1 ; (2.14)

• if x is far from l(1) , then f1≈exp (−(
(large number)2

(2 σ
2
)

))≈0 . (2.15)

In other words, if x and the landmark are close, then the similarity will be close to 1,

otherwise the similarity will be close to 0. Each landmarks represents now the features

in the hypothesis function:

• l(1)
→ f 1

• l(2)
→ f 2

• l(3)
→ f 3

• …

Hence, hθ(x )=Θ1 f 1+Θ2 f 2+Θ3 f 3+... (2.16)

Combined with looking at the values inside Θ , we can choose these landmarks to get

the general shape of the decision boundary. The easiest way to get the landmarks is to put them

exactly in the same position as all the training examples. This gives us m landmarks, with one

landmark per training example [CGGRC09]. Give an example x:

f 1=similarity (x , l(1)) , f 2=similarity (x , l(2)) , f 3=similarity ( x , l(3)) (2.17)

This allows the representation of a feature vector, for example x (i ) :

x (i )
→

f 1
i
=similarity( x(i) , l(1))

f 2
i
=similarity( x(i) , l(2 )

)

f 3
i
=similarity( x(i) , l(3))

(2.18)

To get the parameters  Θ it can be used the SVM minimization algorithm but with

f (i) substituted in x(i ) :

minΘC∑i=1

m
− yi∗cost1(θ

T f (i )
)−(1− y i)cost0(θ

T f (i)
)+

1
2
∑ j=1

n
Θ j

2 ; (2.19)

Lastly, because of the fact that there are implemented and tested SVM libraries, the 

choices that are needed to put the SVM algorithm running are mainly about the C factor value 

and the choice of the kernel: if a standard linear classifier is needed (when the n – number of 

features – is large and m – number of training examples – is small), then the right choice is no 
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kernel at all; if there's a need to choose a Gaussian Kernel (when n – number of features – is 

small and m – number of training examples – is large) it'll be necessary to choose also the

σ
2 parameter.

1 Using Wi-Fi

Brunatto, Battiti and Villani [BBV05], in 2005, developed a discovery technique based

on SVMs that estimated the location of a mobile user through a classification engine to decide

the area that the user is currently in. They experimented their engine in a 35x25m scenario, with

several different rooms, and concluded that the SVM approach they used bested all the other

approaches they compared with, due to the fact that the SVM had an average of 3.04m error

distance from the real position.

Pan, Kwok and Yan [PKY06], in 2006, developed a method using a  Gaussian Kernel

(based on SVMs technique) for a signal space to adapt to the noisy characteristics of radio-

propagation  channels  and  a  different  type  of  kernel  called  Matérn  kernel for  the  physical

location space. The methodology proposed by the combination of these two kernels showed

results of improvement in comparison with the typical SVM approach. The experiments were

done in a 30x37.5m environment with different rooms of different sizes and the accuracy of the

best combination of kernels is of 81.7 percent when the acceptable error distance is of 1.5m.

Sun, Chen et al.  [SCQL08], in 2008, proposed an algorithm that combines  Laplacian

graphs,  dimensionality reduction and SVMs to train out the data set.  The experiments were

done in an area of 30x15m covering a hallway and five rooms and the results obtained clearly

show that the algorithm proposed, in comparison with other approaches that use only SVMs,

has a better performance over time.

Figuera, Rojo-Alvarez et al  [FAWJC12], in 2012, published a paper that combined a-

priori information with a supervised learning technique based on SVMs. The tests were done in

a scenario with 43x13m of area with several  different rooms and several  obstacles and the

comparisons  were  done  between  SVM  approaches  with  different  kinds  of  kernelization

algorithms  and  it  was  proven  that  a-priori  information  can  enhance  the  performance  of

positioning  systems.  The  results  are  not  shown  using  the  accuracy  percentage,  but  using

intervals of MDE standard deviation, uncertainty and bias as comparison metrics.

There are several publications that address the Wi-Fi based indoor positioning with the

SVM algorithm to train data and help in the inference of a more accurate positioning, each one

of those with their own kernelization methods and optimization techniques. The best of them all

show results that will serve as comparison between the approach that will be implemented in the

context of this thesis and tests in different kinds of scenarios.

Table 2.3: SVM references using Wi-Fi comparisons.

Reference Error  Correction Technique(s) Scenario  (dimensions, rooms, MDE  (m)
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obstacles)

[BBV05] √ √ ~

[PKY06] √ √ √

[SCQL08] ~ √ x

[FAWJC12] √ √ √

The first article in the table is classified with  in Error Correction Technique(s) and√

Scenario because it fills the expected criteria for the current thesis and as ~ in the MDE  criteria

because 3.04 is still a high error value. 

The second and fourth articles are the only studied articles that satisfy all the criteria,

due to the fact that the Error Correction Technique(s) are easy to implement, the scenarios are

big enough and the MDE results are quite good to solve the problem this thesis is aiming to. 

The third article has a ~ classification in the Error Correction Technique(s) criteria, due

to the fact that the implemented algorithm looks complex and time would be required to do it

properly,  therefore,  due to  the time constraints of  the development of this  thesis,  using the

proposed approach may not be the best option. It also does not show MDE results.

2 Using Bluetooth

Tran and Nguyen  [TN08], in 2008, proposed an algorithm called Location based on

Support Vector Machines (LSVM) that offers fast localization in a distributed manner based on

mere connectivity information and uses the SVM approach for classification. LSVM assumes

the existence of a number of beacons and uses them as training data to the learning process. The

experiments were done in a 50x50m scenario and the results show that the MDE decreases with

the increase of the number of beacons' percentage .

Park,  Patel  et  al. [PPCTL12],  in  2012,  proposed  an  approach  for  device  pose

classification and  walking speed estimation based on SVMs, with the goal to learn the walking

speed of a mobile device user and where the device was located in the body of the user. Since

the problem's context is related with the user's movement and not exactly with positioning, the

results presented are in m/s, representing the user's walking speed. It was obtained a [0.22, 0.3]

mean error interval between the two tested approaches and the testing environment was a large

office area with several rooms.

Table 2.4: SVM references using Bluetooth comparisons.

Reference Error  Correction Scenario  (dimensions, Mean Distance  Error
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Technique(s) rooms, obstacles) (m)

[TN08] √ √ ~

[PPCTL12] √ √ ~

In the first article in Table 2.4, the Error Correction Technique(s) and Scenario were

classified as  √ for this thesis' context, since the Error Correction Technique(s) is through the

usage of  an  SVM to minimize the error  between the real  mobile  device's  position and the

inferred position and the Scenario is a wide scenario with several obstacles. The Mean Distance

Error  metric  though,  was  classified  as  ~ due  to  the  fact  that  the  article  does  not  present

numerical  results  regarding  the  DE  and  it  concludes  only  that  the  error  decreases  as  the

percentage of beacons being used increases.

In the second article, both the Error Correction Technique(s) and the Scenario were

classified as √ since it uses SVMs to minimize the error and the scenario is a wide office with

several obstacles and several rooms. The Mean Distance Error has been classified as  ~, only

because the article does not talk about positioning, but about the movement of a user carrying an

handheld mobile device, so the information about this criteria is not applicable to this study's

context.

Even though it  was found references  that  related the SVM algorithm applied using

Bluetooth technologies, no implementation was done using it.

2.3.3 Clustering Algorithms

Clustering  is  an  unsupervised  learning  technique,  which  the  main  goal  is  the

discernment  of  multiple  categories  in  a  collection of objects.  Clustering is  an unsupervised

problem due to the fact that category labels are not given, thus the algorithm works with raw

data and with the need of understanding what kind of probability distribution generated that

data.  The  big  difference  between  this  method  and  the  already  studied  supervised  learning

methods is that, while the other techniques had a labeled training set with a vector y of expected

results,  clustering  techniques  compute  only  a  dataset  of  features  where  the  goal  is  to  find

structure.  The  main  applications  of  clustering  are  in  market  segmentation  analysis,  social

network analysis, astronomical data analysis and in organizing computer clusters [WF05].

There  are  several  kinds  of  these techniques,  each  one of  those containing  different

algorithms that can be applied in order to fulfill its goal. There's not a general rule of which

algorithm  to  apply  to  which  problem,  therefore  the  algorithm  choice  depends  greatly  on

subjective criteria by who applies it. Still, there are algorithms that perform better than others

when solving specific problems and that are more widely used than others [Ber06].
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Nevertheless, in this section it will be detailed the k-Means algorithm, one of the most

commonly used and well-known of the huge set of clustering algorithms and that performs well

in the plurality of its applications. Despite the fact that it has been designed and published in

1955 and thousands of other clustering algorithms have been proposed since then, k-Means is

still the choice of most of the data scientists all over the world every time they need to use this

technique,  due to  its  comprehension  and implementation simplicity  and to  its  capability  of

adaptation to a more specific application algorithm [Jai10]. Henceforth, in the context of this

thesis, the application of the clustering technique will initially be based exclusively in the  k-

Means algorithm.

In order to start the k-Means algorithm, it's necessary to initialize 2 points in the dataset

that  will  be called,  in  the algorithm context,  as  cluster centroids  (step 1).  There are divers

articles discussing how to choose the initial points, some using heuristics to determine which

number of points should be set as cluster centroids [SZQ02], others initializing a certain number

of points randomly [ARS97]. For the purposes of the explanation of the algorithm in this section

and for the initial implementation of the algorithm in the context of this thesis, the 2 points will

be initialized randomly. However, due to the fact that  k-Means can get stuck in local optima

with the randomly generated initial 2 points, there's a method to reduce the possibility of this to

happen. The method consists on verifying that there are less clusters than training examples, to

pick  randomly  K training  examples  and  set  μ1, ... ,μk equal  to  those  training  examples.

Hence, cyclically, N times (N may be defined subjectively by the person who is implementing

the method)  it is done an initialization of k-Means, it is computed c and m and it is computed

the distortion of  J(c,m) –  the cost of centroid  c for the m entry of the dataset. In the end, the

clustering  that  had  the  lowest  cost  is  the  one  chosen  where  the  so  far  computed  best

initialization points are placed.
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Figure 2.4: Example of data set with categorized data.

The step after the initialization is the assignment of the training examples into one of at

least 2 groups, based on which cluster centroid each example is closest to (step 2). The next step

is to move the centroid, computing the averages for all points inside the 2 groups and then move

the cluster centroid points to those averages (step 3). The 4th step is to keep doing step 2 and

step 3 until the algorithm converges and where new iterations do not affect the clusters.

Detailing the algorithm, the main variables are K, that represent the number of clusters,

the training set  x(1) , x(2) , x(3) , ... , x (m ) ,  where  x (i )
∈ℝ

n .  In step 2, it's created a vector

c , where c(i) represents the centroid assigned to x(i ) , Then, it's computed each c(i)

that contains the kth element that has minimal distance to x (i ) . By convention, the right-

hand side of the operation is squared, which makes the minimization function to converge more

sharply. Mathematically, this operation can be written as follows:

c(i)
=mink∣∣x

(i )
−μk∣∣

2 (2.20)

Step 3 is the 'Move Centroid' step and it's done by moving each centroid to the average of its

group of points. Formally,

μk=
1
n
[ x

k1+x
k2+...+x

kn] ,μk∈ℝn
(2.21)
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Figure 2.5: Example of data set with the cluster centroid calculated.

If  there's  a  cluster  centroid with zero points  assigned to it,  it  can randomly be re-

initialized the centroid to a new point and eliminated that cluster group. Some of the datasets

possess no real separation or natural structure, but  k-Means can still evenly segment the data

into K subsets, so the algorithm can still be useful in cases like this.

The optimization objective  of  k-Means algorithm is  to  minimize  all  the  parameters

through the usage of a cost function, that is, to find all the values in sets c , representing all

the clusters,  and μ ,  representing  all  the  centroids,  that  will  minimize the average of  the

distances of every Training Example to its corresponding cluster centroid. This cost function is

called the distortion of the training examples:

minc ,μ J (c(i ) , ... , c(m ) ,μ1 ,... ,μk)=
1
m
∑i=0

m−1
(∣∣x(i)

−μc (i)∣∣)
2

(2.22)

It is clear that with k-Means it is not possible for the cost function to increase anytime, so it will

always descend. It needs to be noted that, in step 2, or the cluster assignment step, the goal is to

minimize J(...) with c(i) ,... , c(m ) , but holding fixed μ1, ... ,μk and in step 3, or the 'Move

Centroid' step, the goal is to minimize J(...) with μ1, ... ,μk .

Choosing how many clusters to use (K) can be quite ambiguous and arbitrary. There are

some different proposed methods to solve this constraint such as [PM00] or [TWH01], but there

are  others  simple  less  time-consuming  methods  that  can  help  too,  like  the  elbow  method

[SCS06]. However, in a big number of cases, it is not possible to use this method to determine

what the K value should be, since the curves are very gradual.

The k-Means algorithm has a computational cost of O(T*k*m), where T is the number

of iterations and m the number of objects in the input data set, so, with large data sets and when
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applying a lot of iterations, the algorithm may be heavy to compute. Furthermore, there was a

necessity to reduce this computational cost and make k-Means a faster algorithm [Hua98]. 

In order to do this, there are several approaches that apply the Principal Component

Analysis (PCA) algorithm, with the motivation of data compression – reducing the dimension of

the data set  features,  if  there's  a  lot  of  redundant data,   rather  than the number of TE and

consequently  reducing  the  total  data  stored  in  computer  memory  –  and  of  easiness  of

visualization  –  allowing  data  of  more  than  3  dimensions  to  be  reduced  to  3  dimensions,

summarizing some features and finding some others, making it possible for the human eye to

understand better the plotted data.

The PCA algorithm reads  n  features and maps them to a ℝ
k space, where k is the

final dimension of our feature reduction. For instance, given two features, x1 and x2 , the

goal is to find a line that effectively describes both features at once and then these old features

are mapped onto this new line in order to get a new single feature. This can be done with any

number of features. The goal of PCA is to reduce the mean of all the distances of every feature

to the projection line, calculating the projection error. 

Before applying PCA, feature scaling is needed, so we process the data such as:

μ j=
1
m
∑i=0

m−1
(x j

i ) (2.23)

and to the original feature it is subtracted its mean and then scaling is applied:

x j
(i )
=

(x j
(i)
−μ j)

s j

(2.24)

where s j is the standard deviation of the element j.

The next step is to compute the covariance matrix, in order to, in the step right after,

compute the eigenvectors of this covariance matrix. The covariance matrix can be computed

with:

Σ=
1
m
∑i=0

m−1
((x(i)

)(x(i )
)
T
) (2.25)

Next,  it  is computed the eigenvectors of this covariance matrix and after,  it's  computed the

vector  Z,  through the assignment of the first  k columns of the eigenvectors matrix (U) to a

variable called Ureduce. So, mathematically,

z(i)=UreduceT
⋅x(i) (2.26)

where z(i) is the vector of the projected data points and the compressed representation is here

finished. To uncompress this representation back to the original feature space, it's not possible

to obtain back the original data but only approximations to the original data:

xapproximation
(i )

=Ureduce⋅z(i) (2.27)
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Summarizing,  the  most  common  use  of  PCA  is  to  speed  up  supervised  learning.

However, it's recommended to only apply PCA to a ML algorithm after it has been fully tested

and shown that its performance is slow [DH04]. 

Clustering algorithms are an effective way of categorizing raw data. They are useful in

problems such as the one that will be dealt with in the context of this thesis, since the gathered

data set from previous work does not possess any classification labels. Through k-Means it can

be obtained a simple, reliable and easily improvable solution (through extensions of k-Means)

for  the data  classification problem and through this  solution some initial  questions  may be

immediately answered.

1 Using Wi-Fi

Youssef, Agrawala et al [YASN02]., in 2002, published an article where they presented

two different approaches to the indoor positioning through Wi-Fi using probabilistic methods

combined with a clustering technique: one called  Joint Clustering technique, the other called

Incremental Triangulation technique, where both techniques depend on probability distributions

to handle the noisy characteristics of the wireless channel  and on clustering to manage the

computational  cost.  Experiences  were done in a scenario with dimensions of 68x26m, with

several rooms and several obstacles and the results show 90% of accuracy until 2.1m radius

distance from any of the Access Points (APs).

Ji, Biaz et al. [JBPA06], in 2006, proposed a system that through the capture of the

characteristics of a floor plan could generate a 3-D model necessary for ray tracing and through

a clustering-based search algorithm was able to locate a mobile device. The experiments were

done in a 43x19m environment with several rooms and several obstacles. The presented results

show that the average distance error was of 2.8m using the proposed clustering technique.

Ma, Li et al. [MLTL08], in 2008, proposed an approach where clustering is used to

partition in different clusters the k-Nearest-Neighbor (kNN) algorithm, choosing one cluster as

delegate.  They  proved  that  this  new approach  outperforms  the  typical  kNN approach.  The

experiments were done in an environment with several rooms and obstacles (the dimensions of

the scenario were not revealed in the paper) and they show that in fifty-percent of the cases the

distance error using the proposed technique varies in the interval [0m, 1.2m] and in the other

fifty-percent it varies in the interval [1.2m, 2.2m].

Mengual,  Marbán and Eibe [MME10],  in  2010,  proposed a  methodology to  locate

mobile  stations  in  an  indoor  environment  using  a  clustering  approach.  Although  in  this

particular article, the authors are not locating mobile devices, it was decided that it should be

included in this section because it's being used the Wi-Fi technology to infer the position of

wireless cards using clustering techniques. The experiments were done in a 300 to 500 m²,

scenario,  with several  different  rooms and several  obstacles and the presented results  show

90.09 % accuracy in the position estimation after the application of the proposed clustering

technique.
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Altintas  and Serif [AS11],  in  2011,  proposed  a  methodology  similar  to  the  one  of

[MLTL08], where clustering is used to partition the  kNN algorithm in different clusters. The

experiment was done in a scenario with an area of around 500 m², with several rooms and

several obstacles. The results presented in the article show that the clustered kNN approach had

a mean error of 4.11m when q = 5, 2.7m when q = 7 and of 2.68 when q = 9, where q represents

the number of nearest neighbors computed.

Wang,  Sen  et  al.  [WSE12],  in  2012,  proposed  an  approach  based  on  the  fact  that

specific locations in indoor environments,  such as elevators,  corridor-corners  and any other

building's  characteristic  points,  present  identifiable  signatures  on  one  or  more  sensing

dimensions. Three different experiments were done, all in scenarios with more than 200 m²,

several rooms and several obstacles and the mean location error was of 1.69m.

The  above  references  propose  some  different  approaches  to  solve  the  error

minimization  between the  real  position and the  mobile  device's  inferred  position  constraint

using Wi-Fi as positioning technology and clustering techniques as ML algorithm, although

some are more important to the context of this study than others. That differentiation is done by

Table  2.5.

Table 2.5: Clustering references using Wi-Fi comparisons.

Reference Positioning
Technique(s)

Scenario (dimensions,
rooms, obstacles)

Mean Distance Error
(m)

[YASN02] ~ √ ~

[JBPA06] ~ √ ~

[MLTL08] √ √ √

[MME10] ~ √ ~

[AS11] √ √ ~

[WSE12] √ √ √

All the articles summarized in this section of the study have a  classification in the√
scenario criteria, because all of the experiences done were in wide areas with several rooms and

obstacles.  The  first,  second  and  fourth  articles  were  classified  as  ~ for  the  Positioning

Technique(s) metric, due to the fact that the combination of algorithms proposed in the articles

is computationally costly and of lengthy implementation or do not achieve the expected results

and ~ for the Average Distance Error criteria, because the evaluation results are based on the

percentage of accuracy between distances or simply because the distance error is still high and

considerable  for  the  problem.  The  fifth  article  was  classified  as   for  the  Positioning√
Technique(s) and that's related with the fact that it uses the  kNN algorithm combined with a

clustering technique, which improves the efficiency of the kNN algorithm. It was classified as ~
for the Mean Distance Error criteria, due to the fact that the presented results show considerably
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high errors that do not allow the proposed methodology to he considered a reliable one. The

third  and  sixth  articles  were  classified  as   for  all  the  classification  metrics,  because  the√
Positioning Techniques of both of them are simple to implement and the performances, as the

MDE criteria shows, are good enough allowing a small DE for both of them, closer to the

optimal indoor positioning inference than any of the other studied and referenced approaches.

2 Using Bluetooth

Throughout the phase of Literature Review, no publications were found that related the

Bluetooth technology applied in indoor positioning systems using mobile devices and clustering

techniques to minimize the error distance between the real position and the inferred position of

the  mobile  device.  Hence,  the  Bluetooth  approach  was  also  not  implemented  during  this

dissertation.

2.3.4 Summary

In  this  Literature  Review chapter,  the  main  goal  was  to  detail  and  explain  all  the

techniques, algorithms and methodologies that may be useful to approach the seamless indoor

positioning using mobile devices error minimization problem using ML techniques. The chapter

starts  by  making an  introduction  to  the  classification  criteria  for  each  one  of  the  analyzed

articles, in order to help to understand their value for the solution and to establish importance

comparisons between each others, respecting the decisions done in the beginning of this thesis'

Literature Review study. After that, it was done a review about the positioning techniques and

explaining  why  some  of  them  were  going  to  be  detailed  and  others  not,  thus  the  chosen

techniques  were  detailed  and  explained  –  in  this  case,  specifically,  the  Lateration  and

Angulation techniques.

The sub-chapter right after is the main core of the whole Literature Review process,

because  it  was  where  important  ML  techniques  were  explained.  The  choosing  of  those

techniques was related with the amount of references found about each of them. Each sub-

chapter was divided in two different parts: the first detailing how each the generic algorithm

works and the second enumerating and comparing – according to the initially defined metrics -

all the publications read throughout this Literature Review process. This sub-chapter starts by

referring the ANNs algorithms and techniques, then going through the SVM technologies and

variants and posteriorly explaining and enumerating the different Clustering approaches, with

specific focus on the k-Means algorithm.

The purposes of this chapter was to help the decision of which approaches to follow and

which  are  the  techniques  or  algorithms  that  show the  best  performances  in  terms  of  error

minimization. The next chapter of this document focuses strictly on the establishment of the

methodology  to  be  used  in  this  thesis  in  order  to  solve  the  current  constraints,  using  the

information gathered and explained throughout this Literature Review chapter.
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3 The Proposed Approach

In this chapter, the different methodologies used to approach this dissertation problem

will be detailed and a comparison between the approaches studied in Chapter 2 will be done

with the goal of choosing which ones to implement, test and apply in order to obtain a smaller

average distance error than the existing techniques of mobile indoor positioning. The chapter is

divided into five sub-chapters, starting by making an introduction to the proposed approaches,

followed by an explanation of how the problem is formalized, how the implementation process

will be done and how the results will be compared. Next, it will be detailed how the algorithms

were implemented, immediately followed by an overview of how the whole Android application

is structured. The chapter finishes by making a summary of what was established and explained

previously, with the goal of grouping together the major details of the implementation process.

3.1 Introduction

As it was discussed throughout Chapter 2, there are several different ML algorithms

that  approach the  indoor  positioning  theme with  the  goal  of  minimizing  the  distance  error

between the real position where the mobile device is located and the inferred position by it. 

Hence, the total number of techniques designed, developed and tested is quite huge,

which implies that choosing a specific one or a small group of approaches to test has to be a

properly constrained process with the goal of developing and testing the most efficient and

accurate ones. Finally it's parametrized the evaluation metrics and concluded which approach is

actually the best, depending on each metric and applied to different application scenarios.

This chapter is where those metrics are specified, where those techniques are chosen,

where it's explained how each of those techniques were developed – if changes were introduced

or  not  and  properly  explained  which  were  the  reasons  to  do  it  –  and  detailed  the  whole

application functioning process, going from the most intrinsic details of ML techniques to the
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whole overview of how each interaction and information exchange in the Android application is

done. 

3.2 Methods and Materials

3.2.1 Problem Formalization

This dissertation's purpose is to minimize the distance error between the real position and

the estimated position of a mobile device in indoor environments, as it was stated some times

throughout this document. Due to the fact that error minimization is a vague statement, the first

part of this section will detail what that means in the context of this study.

The magnitude of the error is dependent on each problem. For the small testing scenario,

achieving  MDE  lower  than  1.0m  is  considered  good  and  achieving  MDE  above  1.0m  is

considered less good. For the big testing scenario, achieving MDE below 2.0m is considered

good and achieving MDE above 2m is considered bad.

The goal of this thesis is not to achieve an optimal solution for the above stated intention.

According to the Literature Review studied documents, it is still not possible to achieve a full

accurate  position  in  indoor  environments  in  all  the  measurements,  because  of  the  high

dependency the  proposed techniques  possess  in  relationship to  the mobile  device's  sensors,

signal  loss and the application environments'  configurations.  Still,  some of the experiments

done, have achieved better accuracy than others using different computational techniques. So,

the goal of this thesis is to study and test the approaches to be chosen and to conclude about

multiple factors related with the techniques themselves and the scenarios configurations.

In order to do this, it will be reminded the positioning technology that is being used in this

project, the implementation of the different algorithms and experiments done. It will also be

taken in account the total remaining time to complete this thesis as a problem constraint, due to

the  fact  that  there  is  a  short  limit  that  implementation,  tests  and  experiments  have  to  be

restrained to.

Making a connection between linear programming mathematics and the stated problem,

the referred goal and the explained constraints, it was decided to summarize the whole problem

as a linear programming approach. Henceforth, let:

• t i - time necessary (in months) to complete the task i;

• N - the total number of tasks;

• A x - area of the small scenario (in square meters);

• Ay - area of the big scenario (in square meters);

• εmax
x - maximum imposed MDE for the small scenario;

• εmax
y - maximum imposed MDE for the big scenario;

• εobtained
x - error obtained using the best ML technique or algorithm for the small

scenario;

26

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34



The Proposed Approach

• εobtained
y - error obtained using the best ML technique or algorithm for the big

scenario;

For the obtained solution to  be optimal  in the context  of  this  thesis,  the  the objective

function is:

min Z=εobtained
x

+ εobtained
y , subject to:

• R1: εobtained
x

≤εmax
x ;

• R2: εobtained
y

≤εmax
y

• R3: Ax≥15 ;

• R4: Ay≥200 ;

• R5: ∑i=1

N
( ti)≤4.5 ;

where t i , N , Ax , A y εmax
x ,εmax

y ,εobtained
x ,εobtained

y
≥0 .

3.2.2 Implementation Process

The  implementation  process  will  be  define  as  a  step-by-step  approach  in  order  to

achieve the final goal of this thesis. The steps defined to do it are:

1. Gather data in the selected testing environment, store it in a database and use them as

training entries for the algorithms to learn.

2. Select the three most promising technique to implement according to Table 3.1 – for

Wi-Fi positioning.

3. Implement the 3 most promising techniques.

4. Experiment the implemented approaches in 2 scenarios, one with more than 15 m² and

other with more than 200 square meters of area, gather results and compare them.

Table 3.1: Classification of approaches using the Wi-Fi technology.

Reference ML Technique Positioning Scenario Average Distance

27

2

4

6

8

10

12

14

16

18

20



The Proposed Approach

Technique Error vs Maximum
Defined Error

[TBPA11] ANN √ ~ ~

[LL05] ANN, BN, kNN √ x ~

[MTT10] ANN, PM √ ~ √

[MCB12] ANN √ x ~

[BBV05] SVM ~ √ x

[PKY06] SVM + Gaussian kernel √ √ ~

[SCQL08]  Dimensionality Reduction

and SVM

x √ x

[FAWJC12] A-priori information + SVM √ √ √

[YASN02] Joint-Clustering ~ √ ~

[JBPA06] Clustering-based ~ √ ~

[MLTL08] kNN + k-Means √ √ √

[MME10] k-Means ~ √ √

[AS11] kNN + k-Means √ √ x

[WSE12] Clustering-based √ √ x

Table 3.2: Classification of approaches using the Bluetooth technologies.

Reference ML Technique Scenario Average Distance
Error vs

Maximum
Defined Error

[FNR11] ANN ~ ~

[ABFB10] ANN ~ ~

[LLCL12] 2 ANNs √ x

[TN08] LSVM √ ~

[PPCTL12] SVM √ ~

As it  was explained before, although the Literature Review chapter allowed for the

study the combination of indoor positioning ML techniques and the Bluetooth technology, that
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technology  was  not  implemented  throughout  the  development  phase,  mainly  due  to  time

constraints and changes in the initial dissertation requirements. Hence, Table  3.2 serves as a

study of those studied algorithms using the Bluetooth technology eventually oriented for future

improvements that include the implementation of these technologies.

3.2.3 Results evaluation

From the moment it was understood how the implemented algorithms behave in the

current context and which were the approaches each one was using to minimize the Distance

Error, it was specified which were the hypothesis that needed to be tested. Those hypothesis are

mainly  related  with  the  behavior  of  the  implemented  algorithms,  the  characteristics  of  the

testing scenarios and the configuration and amount of the scenarios' positions used as training

set for the algorithms. The hypothesis that the tests intend to give answers to are:

1. Hypothesis 1:  All of the implemented ML algorithms obtain a lower Mean Distance

Error  than  the  approach  that  does  not  use  any  Artificial  Intelligence,  in  the  same

measured positions and in positions that were not used for training of the implemented

approaches.

2. Hypothesis 2: One of the implemented ML algorithms obtains a lower Mean Distance

Error than the other implemented ML algorithms.

3. Hypothesis 3: One of the implemented ML algorithms learns at a faster rate as the

number of different measured positions for training grows.

4. Hypothesis 4: Measured Positions from which more samples were gathered have a

lower Mean Distance Error than the ones from which less samples were gathered.

5. Hypothesis 5:  Until a certain limit of Measured Positions, the number of Measured

Positions used for training decreases the Mean Distance Error of each one of the ML

algorithms.

6. Hypothesis 6:  One of the implemented ML algorithms learns at a faster rate than the

other implemented ML techniques, as the number of samples from the same Measured

Positions grows .

7. Hypothesis 7:  The Mean Distance Error in smaller-sized scenarios is lower than the

one in bigger-sized scenarios.

8. Hypothesis 8: Using a kind of Training that per each classification entry added to the

database  uses  that  same  entry  as  a  valid  Training  Example  for  the  next  position

inference has a lower Mean Distance Error than a Training with a static number of

entries.

 The  set  of  tests  planned  was  thought  taking  into  account  the  goal  of  answering

positively or negatively the hypothesis above. Some of them can't be tested by a single test or

evaluated  individually,  since  they  are  global  enough  in  terms  of  the  evaluation  of  all  the
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algorithms, the testing scenarios and the amount of samples necessary to obtain better results for

each one of them.

3.3 Implemented Algorithms

3.3.1 Supervised Learning Algorithms

In the beginning of the development phase, some constraints related with the chosen

algorithms were evaluated according to the following premises: first, the fact that the author

never  developed  a  ML algorithm before,  although he  had  worked with  some classification

algorithms – specifically, ID3 and C4.5; second, the development of the current dissertation

time constraints – namely, four months and a half, where part of this time was dedicated to

testing, results evaluation and writing. These two facts contributed for making the choice of

choosing a library for each one of the algorithms in order to ease the process and reduce the

time spent developing each one of them, instead of implementing the algorithms from scratch.

From the moment this decision was final,  the step that followed was to  choose the

library to  be used according to  a number  of  parameters  that  were important  for  the whole

project. Those parameters are different for each of the algorithms, due to the fact that they all

have totally different kinds of functioning. In the case of the Supervised Learning algorithms,

namely the Artificial Neural Networks and the Support Vector Machine algorithms, there are

common parameters like the Efficiency of the library, the Results Reliability and the Parameter

Configuration  possibility.  Specifically  for  the  SVM  chosen  approach,  there  is  an  extra

parameter: Kernel Specification possibility.  

To each one of these chosen parameters was attributed a classification number, from 1

to 5, where 1 is the worst case and 5 is the best case. It was also specified that, in the case of the

choice for the ANN, the parameters Efficiency, Results Reliability and Parameter Configuration

have 20%, 50% and 30% of weights – chosen according to the developer's requirements - to

make a final decision of which one to use, respectively; in the case of the choice for the SVM

library,  the  parameters  Kernel  Specification,  Efficiency,  Results  Reliability  and  Parameter

Configuration  have  30%,  10%,  40%,  20%  as  weights  for  the  final  decision,  respectively.

Therefore, the following tables were built in order to make a final decision, either for the ANN

library and the SVM library:

Table 3.3: Comparison between libraries that implement ANN.

Library Name Reference Efficiency (1-5) Results
Reliability (1-5)

Parameter
Configuration
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Encog v2.4 [Hea10] 5 5 5

Neuroph v2.4 [JTR10] 2 4 5

JOONE v2 RC1 [Hea02] 3 4 5

Table 3.4: Comparison between libraries that implement SVM.

Library Name Reference Kernel
Specification
(Yes/No)

Efficiency 
(1-5)

Results
Reliability
(1-5)

Parameter
Configuration
(1-5)

libSVM [CL11] Yes 4 4 5

JNI SVM Light [Tho99] Yes 5 3 5

The  scores  for  each  parameter  were  given  according  to  the  existent  information  in  the

References  field  and  comparing  to  each  one  of  the  other  libraries  information.  

As it can be seen in Table 3.4, Encog v2.4 has the best scores for each one of the

evaluated parameters for the implementation of the ANN algorithm and according to Table 3.5,

libSVM ends  up being the right  choice,  mainly due to  the fact  that  the Results  Reliability

parameter weights more than the Efficiency parameter. Hence, the chosen libraries for the ANN

and SVM algorithm were Encog v2.4 and libSVM, respectively. 

1 Artificial Neural Networks

The Artificial Neural Network algorithm has 6 input nodes and 2 output nodes. The 6 input

nodes correspond to the features necessary to train the network and 2 output nodes are the x and

y values  of  the position  inferred by the network after  training.  The features  of  the current

approach were defined as:  the  distance from the  mobile  device to  the Access  Point  1,  the

distance from the mobile device to the Access Point 2, the distance from the mobile device to

the Access Point 3, the distance from the mobile device to the Access Point 4, the x inferred

value and the y inferred value. Each one of the distances to each of the Access Points – in the

our case, they are four – are calculated using a formula developed by [C12] and explained in

Section 2.2.1. The inferred values, the x and the y, are calculated using the Lateration technique,

also developed by [C12]. The 2 output nodes are the x and y values, obtained after training the

network with the entry data available.
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Figure 3.1: Artificial Neural Network without Hidden Layers or connections.

As it can be seen in Figure 3.1, at this point of explanation,  the ANN does not have any

Hidden Layers or weighted connections between nodes either inter-layers. To determine how

many Hidden Layers  and how many nodes those layers  need to  achieve the best  solutions

possible in the current problem using an ANN, there is a need to perform a search in order to

accomplish the best configuration possible, 

With that goal  in mind, it  was developed a function that  calculates the accuracy of

different Artificial Neural Networks, using different numbers of Hidden Layers and different

numbers of Hidden Nodes inside them. All nodes possess inter-layers connections to each one

of the nodes of the layers ahead – including the from Input Layer to the first Hidden Layer, from

each Hidden Layer to the next, and from the last Hidden Layer to the Output Layer – and the

Encog v2.4 API was configured to use as Activation Function the Sigmoid function  3.1, and

Resilient Propagation as learning algorithm [RB93]:

 f (x)=
1

1+e−x (3.1)

Each created ANN was trained while the Mean Square Error was higher than 0.1% and

the number of iterations was smaller or equal than 1500 iterations. These criteria were chosen

taking  into  account  that  the  computational  time  to  train  each  network  would  increase

considerably above the 1500 iterations of training if the goal was to achieve a Mean Square

Error  smaller than 0.1 %. The Mean Square Error, in Encog v2.4, is calculated by

MSE=
1
n∑i=1

n
( y i− y ' i)

2
(3.2)
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where y i is the ideal value and y ' i is the actual value. After the training process using the

current configuration is finished, the function will go back to the first Training Entry and it will

use its data as input for classification in the current weighted ANN. It will keep doing it, for

each Training Entry in the data set, until the last one of them. The last step of the function is the

calculation of the Accuracy of the current ANN configuration and the saving of that data in a

data structured that is printed to a file. The Accuracy function is calculated with

Acc (x )=
correctGuesses
totalGuesses

∗100 (3.3)

where  the  correctGuesses  is  the  number  of  entries  that  were  correctly  classified  and  the

totalGuesses variable  is  the number of entries  in the data set.  The output  generated by the

function  through the  whole  process  is  available  in  Appendix  A:  Calculation of  Number  of

Hidden Layers and Hidden Nodes in each layer for ANN. 

As it can be seen there, the maximum Accuracy value obtained was of 93.548387 % -

with 7 Hidden Layers and 10 Nodes in each HL -, although the computational time to train such

a  network  was  of  7.266924  seconds  in  a  computer  with  more  processing  power  than  the

standard mobile devices in the market nowadays. In a mobile device, the processing time would

be  much higher  which  brought  the  necessity  of  choosing  the  second best  one  in  terms  of

Accuracy. The second highest Accuracy value was of 87.09677 %, achieved by several different

configurations, so the final choice became dependent of the computational time as a tiebreaker.

The configuration that had the lowest Computational Time for training an ANN is the one with

3 Hidden Layers and 9 Nodes in each HL, so the choice fell on that one.

Therefore,  the  final  structural  configuration  of  the  implemented  ANN had  6  Input

Nodes in the Input Layer, 3 Hidden Layers with 9 Nodes in each HL and 2 Output Nodes in the

Output Layer, as it can be seen in Figure 3.2:
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Figure 3.2: Final structure of the implemented ANN.s

The classification process using an ANN in the Android application, has several steps being the

training just one of them. It starts by loading the data available in the database to data structures,

then it normalizes the data by multiplying each one of the features by 0.1, in order that the ANN

does not need to do difficult memory and time-consuming calculations. It's also recommended

by the documentation of the Encog v2.4 API to normalize all the input data before they are fed

in the Input Layer and denormalize it after it comes out of the Output Layer. 

Next, the ANN is trained using exactly the same training parameters as the ones when searching

for the best ANN structure – it trains while the MSE is higher than 0.1% and while the number

of iterations done is lower than 1500. After the training process is over, the new entry data is

normalized  and fed into the trained network,  producing results  in  the Output  Layer.  Those

results are denormalized and passed for the last step of the process, the one that it was decided

that  it  should  be  called  Approximation.

This process consists of approximating the values output in the Output Layer to Real

Position values of the closest entry in the data set to the input values of this new entry that have

been fed to the Input Layer. Going into detail, it's calculated the Euclidean Distance between the

new entry input distance features and the distance features from each one of the entries in the

data  set,  being  assigned  as  closest  entry  the  entry  that  possesses  the  minimum  Euclidean

Distance to this new entry. Let TEi represent the ith  Training Entry  in the data set and

NE the New Entry; let  TEd1
i ,TEd2

i , TEd3
i ,TE d4

i , TEinfX
i ,TE infY

i represent the TE distance

to AP1, distance to AP2, distance to AP3, distance to AP4, inferred x and inferred y features,

respectively;  NEd1 , NEd2 , NEd3 ,NEd4 ,NEinfX , NEinfY represent  the  same  features  for  the

New Entry. The Euclidean Distance – d -, in this case is calculated by the expression:
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d (TEi ,NE)=√(TEd1
i
−NEd1)

2
+(TEd2

i
−NEd1)

2
+(TEd3

i
−NEd3) ²+(TEd4

i
−NE d4)

2 (3.4)

The expression  3.4 is  calculated for all  the entries in the data set  and the one that  has the

minimum value is assigned as the closest TE to the current NE. Let  n  be the number of

Training  Entries  in  the  data  set.  Let z be  the  minimum  distance  value.  Hence,

z=min(d (TEi ,NE), d (TE(i+1) , NE) , d (TE(i+2) ,NE) ,... , d (TEn , NE)) (3.5)

and let m be the index of the obtained z value in the data set.

After the minimum value and its respective index are found, it's calculated the error between 

this entry's Real Position and the Inferred Position:

err (TERP
m , TEIP

m
)=√(∣TERPx

m
−TEInfX

m ∣+∣TERPy
m

−TE InfY
m ∣) (3.6)

If this error is lower or equal than a predefined value of 0.5 – the value was chosen with the goal

of having close-to-optimal solutions with less than 0.5 meters of Distance Error – the final value

that will be attributed to x and y would be the values of TERPx
m and TERPy

m , respectively,

due to the fact that the distances to the APs calculated by the Lateration algorithm were pretty

similar with each others, which may mean it's the same position or a very similar one. If the

error is higher than the predefined value of 0.5, then the following conditions are verified:

C1 :TE InfX
m

<TERPx
m ,∣TE InfX

m
=TE InfX

m
+∣TERPx

m – TEInfX
m ∣∣ (3.7)

C2 :TEInfX
m

>TERPx
m ,∣TEInfX

m
=TE InfX

m
−∣TERPx

m – TE InfX
m ∣∣ (3.8)

C3 :TE InfX
m

=TERPx
m ,TE InfX

m
=TEInfX

m (3.9)

C4 :TEInfY
m

<TERPy
m ,∣TEInfY

m
=TE InfY

m
+∣TERPY

m – TEInfY
m ∣∣ (3.10)

C5 :TE InfY
m

>TERPy
m ,∣TEInfY

m
=TE InfY

m
−∣TERPy

m – TE InfY
m ∣∣ (3.11)

C6 :TE InfY
m

=TERPy
m , TE InfY

m
=TE InfY

m (3.12)

The conditions C1, C2 and C3 are related with the final value of x. C1 verifies if the

inferred x of the TE m is lower than the real x of the same TE. If this condition is confirmed, it

adds the module of the difference between real x and the inferred x of the mth TE to the current

inferred value of x; if not, it goes to C2. C2 verifies if the inferred x of the TE m is higher than

the real x of the same TE. If this is true, it subtracts the module of the difference between x and

the inferred x of the mth TE from the current inferred value of x; if not, it goes to C3 that keeps

the  same value for  the  inferred x.  The  conditions  C3,  C4 and C5 verify exactly  the same

conditions as C1, C2 and C3, respectively, but now using y and always operating on the final

value of the inferred y. 
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Figure 3.3: The states of the ANN whole classification process.

When these operations are over, it's obtained the final values for the current inference of x and

y, therefore we got our final position and the algorithm is over when this state is achieved, as it

can be seen in Figure 3.3.

2 Support Vector Machines

Despite  the  fact  that  the  choice  of  a  library  to  implement  the  Support  Vector  Machines

algorithm fell  on the usage of libSVM, as it  was explained in  Section  3.3,  there are  some

restraints associated with it. 

First  of  all,  although through libSVM it  is  possible  to  implement  multi-label  classification

solutions for such kind of problems, the library just allows solutions with one numerical output.

In the case of the indoor positioning inference using mobile devices, there's the need of a data

structure to output the position or of two numerical outputs that can represent either x and y.

Because of this fact, it was necessary to make a decision about how this constraint should be
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approached  and  it  was  decided  to  basically  repeat  two  times  the  processing  of  the  SVM

algorithm: the first time for x and the second time for y, using exactly the same features but

different labels, these last ones corresponding to the values of x and y, respectively in each of

the times. 

The second restraint is related with class labeling. Because SVM is a classification algorithm,

the solutions that the algorithm produces are always the exact same known labels that were used

for training. This means that the SVM algorithm that libSVM structures and implements will

never produce any new positions other than the ones known in the training process, which is not

minimally  useful  in  this  problem's  case.  In  order  to  solve  this,  it  was  developed  an

approximation  algorithm  –  the  same  developed  for  approximating  solutions  in  the  ANN

approach – in order to enable the possibility of the generation of new positions.

The libSVM has some spescific objects than can be configured and manipulated in order to treat

and transform the whole data needed for the algorithm to work properly. Those set of objects

include:

1. the object  nodes, that is a container of Training Entries – including the classes'

labels and each one of the features defined for the problem;

2.  the object  svm_problem that has three attributes (the length of the dataset, the

array of Training Entries and the expected classes labels);

3.  the object  svm_parameter that  is  used to  configure the data  related with the

kernel of the SVM and the variables related with it;

4. the object  svm_model that  uses the object  svm_problem and the data from the

svm_parameter object to build a model from which the SVM algorithm will train

with the Training Entries and test using the testing data defined.

Due to this problem's context and to the data that the previously developed Android application

by [C12] is able to receive and transform, the features chosen to approach the problem using the

SVM algorithm were: 

1. the calculated distance to AP1 from the Lateration algorithm;

2. the calculated distance to AP2 from the Lateration algorithm;

3. the calculated distance to AP3 from the Lateration algorithm;

4. the calculated distance to AP4 from the Lateration algorithm;

5.  inferred x or y, because of the fact that it was decided to create two SVM iterations due

to the restraints of the libSVM library, the first for the calculation of x and the second

for the inference of y, as it was stated before. 

38

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32



The Proposed Approach

Figure 3.4: The states of the SVM algorithm classification for the x coordinate.

 The content of these features is stored in the software database and are read into a two-

dimensional array called dataMatrix. There is a one-dimensional array in the application, called

classesValues, that contains all the information from Real Positions of each one of the Training

Entries stored in the database. Through the SVM algorithm, this  classesValues array is filled

twice,  once  with  the  corresponding  label  of  the  x  value  and  the  second  time  with  the

corresponding label of the y value. 

Before these two arrays are assigned in the svm_problem object along with the size of

the data set to train the SVM, the dataMatrix suffers an operation of data scaling. This consists

in the transformation of every single value of each feature in a new value that ranges from 0 to 1

and the main goal of this operation is to keep the sparsity of the data so that the chosen kernel

works properly. Right after this process is finished, the process of labeling starts. Labeling, in

this case, consists in converting the Real Position values allocated in the  classesValues array
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into  numbered  integers  corresponding  to  each  one  of  the  positions  of  the  map.  This  is  a

necessary process because libSVM only accepts classes values as being labels represented by an

integer and, in this case, each integer represents a position far away 0.1m from the previous

position. Hence, the bigger the scenario, the more labels will be calculated for it. The next step

is to allocate all the inputData and classesValues information into the nodes structure and then

to  the  svm_problem object.  Posteriorly,  the  problem  is  initialized  by  filling  in  the

svm_parameter object attributes, that are mainly related with the kernel specifications (such as

kernel_type, C and gamma) and with the definition if there is a will of attributing probabilities

to  each  of  the  known  classes  values  during  the  training  process.  In  our  case,  more  than

necessary, that's helpful since it's a multi-label classification problem (and therefore uses a one-

vs-all approach for each one of the known labels). The probability generation for each one of

the classes may be of interest for future improvements in the SVM algorithm too, if that's the

case at some point.

The main choices that need to be done when using a SVM algorithm for a practical

application is the choosing of the kernel and the C attributes to use. The choice of the kernel

was obvious, in this case, since we want to compare the results the algorithm will obtain with

the ones from the best approach in the literature ([FAWJC12]), furthermore the same kernel

type was used – Gaussian kernel. When the choice is a Gaussian kernel, there's the need of

choosing γ
2 . The “squared gamma” parameter has strong influence in the way the algorithm

classifies entries, making strong variations in the bias and variance of a whole distribution. It

was chosen to have a low gamma parameter, of 0.5 and then γ
2
=0.25 , so the bias is small

also  (which  means  the  algorithm will  produce  different  positions  as  output),  attempting  to

minimize the average distance error. Due to the fact that when gamma is low, the bias is low

and the variance is high and because it's necessary to balance the bias/variance relationship from

the beginning, it  was chosen a low C parameter (valued 2),  in order to attempt to decrease

variance and increase the bias levels all over the distribution of classified entries. Lastly, the

probability parameter was set to 1 because like that it would generate probabilities for all the

known labels to be the correct one, due to the reasons stated before. Also, it helped to control

the development of the algorithm and check how far the classification of a certain entry was

from the correct label at each one of the tests done during development.

The next step is to create the svm_model object. It receives as attributes the svm_param

object, the array of labels and the number of class labels.  Then it trains the SVM using those

parameters..  Supposedly,  after  training,  the  SVM  should  do  the  cross-validation  step,  that

consists in testing part of the training set and check if the accuracy of the algorithm is as good as

what the programmer defines as good. If it's not,  the parameters are changed and it's tested

again, repeatedly, until it achieves the goal the programmer defined. This is an important part of

the SVM algorithm and libSVM allows an easy implementation of it, but it's a time-consuming

process and that's the main reason why it was decided that our approach of the SVM algorithm

would not do it. Instead, the parameters were chosen for the reasons explained previously.

When the model is created and the SVM is trained, the algorithm evaluates the new

entry and classifies  it.  During this process,  the algorithm decodifies the label  output  to the
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position it corresponds, so it can actually be shown on the map of the mobile device where the

user is located. Then it performs exactly the same approximation algorithm over that decodified

value  as  the  one  that  ANNs  use,  attempting  either  to  minimize  the  error  between the  real

position where the mobile device is located and the inferred position by the SVM and adding a

new entry to the data set  that  will  be used for Training posteriorly,  which means that  new

known labels will be added too, since the approximation algorithm will output a new position.

Figure 3.5: The states of the SVM algorithm for the y coordinate.

This whole algorithm is repeated twice, as it was said before, once for x the other time

for y. 

3.3.2 Unsupervised Learning Algorithms

Unsupervised  Learning  algorithms  differ,  conceptually,  from  Supervised  Learning

algorithms because they use unlabeled training sets instead of  labeled ones.  Applied to the

problem being solved by this Dissertation,  this means that the Training Entries available in
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Unsupervised Learning algorithms do not have any Real Position classes values, but they be

used as Training features instead.

Similarly with what happened when planning the Supervised Learning algorithms, in the

beginning of the development phase it was decided that it would be preferable that a library

would be used for the implementation of the Clustering approach, due to the same reasons

presented in Section 3.3.1, rather than implementing everything from scratch. Due to the fact

that there was some experience already with the functioning of Encog v2.4, since this library

offers support for Clustering algorithms' development and since all  the other libraries found

possess the same exact possibilities as Encog v2.4, it was decided that the implementation of the

K-Means  Clustering  approach  would  be  done  using  it.

Henceforth, of the three selected and implemented algorithms, the K-Means Clustering

was the one that  took less time being developed,  mainly because there  was some previous

experience with the Encog v2.4 library.

1 Clustering

The main goal  of  any  approach using the k-Means  algorithm is  to  group data into

coherent subsets. One of the first decisions to be done when initializing a k-Means Clustering

algorithm is how many of those subsets are necessary to group data the most accurate way

possible. There are several different methods that solve this constraint, from which the Elbow

Method is one of the most well-known, of the most straightforward in terms of implementation

and one of the less time-consuming techniques. But in order to compute how many clusters this

application  of  the  algorithm  would  need,  it  was  necessary  to  know,  at  each  point  of  the

algorithm, how many Training Entries are available for the Clustering process. Due to this fact,

implementing an Elbow Method technique to know how many clusters the software needed at

each time a positioning inference required too many calculations. Instead, it was decided to

implement a technique called Rule of Thumb, that basically computes the number of entries

divided by 2 and calculates its square root, converting the result to an integer, as it can be seen

in Equation 3.13.

k≈√( nentries2
) (3.13)

The variable  nentries represents the number of entries to be grouped by the algorithm and

k is  the  number  of  clusters  calculated  by  the  formula.  Using  this  simple  operation,  it's

possible to calculate, at every position inference instance, how many clusters are necessary.

Quite similarly to the algorithms explained in Section 3.3.1, it was decided that the features of

the k-Means algorithm should be:

1. The distance value from the mobile device to the AP1;

2. The distance value from the mobile device to the AP2;

3. The distance value from the mobile device to the AP3;
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4. The distance value from the mobile device to the AP4;

5. The inferred value for coordinate x;

6. The inferred value for coordinate y;

7. The real value of coordinate x;

8. The real value of coordinate y.

 Unlike what happened with the Supervised Learning algorithms list of features, that did

not include the real  values  as  features,  but  as  of classes  values  or  labels  for  the presented

algorithms, in the k-Means Clustering approach, since it's an Unsupervised Learning algorithm,

the values of the real coordinates are used as features for grouping data. The remaining features

are exactly the same used either in the ANN and the SVM algorithms and are all calculated by

the software developed by [C12]. 

As you can see in Figure 3.6, the algorithm starts by reading each one of the entries to

group from the system's database and allocates them in a two-dimensional array called 
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Figure 3.6: The states of the Clustering whole grouping and classification process.

inputData.  Next,  it  computes  the  number  of  clusters  necessary  using  the  Rule  of  Thumb,

according to the number of input entries (Equation 3.13). Right after, it executes the Clustering

process, dividing the input data in different clusters depending on the similarities between the

feature values of each one of them (Chapter 2.3.3). Posteriorly, the entry to classify is passed to

the algorithm. The entry data has  all  the features  from the grouped entries,  unless the real

positions' ones, since they are not known at this point of execution.

 The  next  step  is  to  compute  which  cluster  centroid  is  closer  to  the  entry  data,  by

calculating the Euclidean Distance between the features related with distances to the APs of

those two points.  Let ED(i ,c) represent  the Euclidean Distance value from the entry to be

classified i to the centroid c and let  d1i ,  d2 i ,  d3i and  d4 i be the distances

from the entry to be classified to AP1, AP2, AP3 and AP4, respectively and d1c , d2c ,

d3c and d4c be the distances from the centroid of the current cluster to AP1, AP2, AP3

and AP4, also respectively. Hence, the Euclidean Distance from the entry i to the centroid

c is calculated by the equation 3.14.

 ED(i ,c)=√((d1i−d1c)
2
+(d2 i−d2c)

2
+(d3i−d3c)

2
+(d4i−d4c)

2
) (3.14)

If the ED(i ,c) , where c∈[1,.., k ] and where k represents the number of clusters is lower

than the minimum distance up to the current iteration of the current operation, then:

min(ED )(i ,c)=ED(i ,c) (3.15)

If not, the same calculations are done with the next cluster centroid, until all centroids have been

checked. It is returned the centroid with the minimum distance. Let that centroid be represented 

by min(i , c) .

 Then, it's computed which is the closest point from the points that are part of the closest

cluster.  Let CP represent the closest point and the set S be the set that contains all the

points of the cluster where the centroid is min(i , c) and let p be the number of elements in

the set S . This calculation operates cyclically, from the first point assigned in the set S
until all points are iterated. In each iteration, the operations applied are:

min((ED(i ,min (i,c))
)1 ,(ED(i ,min (i,c))

)2, ..., (ED(i ,min( i,c))
)p) , S∈[1,... , p] (3.16)

which  represents  the  calculation  of  the  minimum of  the  distances  between the  entry  to  be

classified i to  each  one  of  the  points  belonging  to  the  cluster S where  the  centroid  is

min(i , c) . 

The element from the cluster S which possesses the minimum distance  to the entry

point i will be the one used in the approximation phase, during the next step, in order to serve

as comparison for the new entry, since it is the closest point from the closest cluster centroid,
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which means that their features are the most similar between all points of the same cluster, so

most probably they should have a numerically close real position.

 Finally, the approximation algorithm is done, exactly like the one implemented either

by the ANN and the SVM approaches, where it's calculated an error C error - meaning Current

Error -  between the real position of the closest point CP and the position inferred by the

Lateration algorithm for the entry data i and it's defined a maximum error allowed – that in

this case, was set to 0.5m – because it was defined that a very good positioning inference was

one which had an error lower or equal to that value. Let the inferred position be represented by

i , the maximum error constant by M error and the final inferred positions by FPosx and

FPosy , being FPos correspondent to the point with coordinates (FPosx ,FPos y) . Let

also CPI
x and CPI

y represent  the coordinates  x and y of  the inferred position of CP ,

CPR
x and CPR

y represent the coordinates x and y of the real position of CP and ix and

i y represent coordinates x and y of the inferred position of the entry data i :

A1 :C error
x

=∣CPR
x
−ix∣ (3.17)

C1 : if C error
x

<M error (3.18)

C2 : if ix>CPR
x (3.19)

C3: if ix<CPR
x (3.20)

A2 :FPosx=ix (3.21)

A3 :FPos x=∣ix−∣CPR
x
−CPI

x∣∣ (3.22)

A4 :FPos x=∣i x+∣CPR
x
−CPI

x∣∣ (3.23)

A1 is  the representation of the expression that  calculates the value of C error
x ,  the

current error for the x coordinate, which is given by the module of the subtraction of the closest

point's real x coordinate and the entry data's inferred x coordinate. The condition C1, compares

if C error
x is lower than the maximum error constant M error and if true assigns the value of

the  entry data's  inferred  x  coordinate  to  the  final  position's  x  coordinate;  the  condition  C2

compares  if  the  value  of  the  entry  data's  inferred  x  coordinate  is  higher  than  the  real  x

coordinate of the closest point and if it is true, calculates the module of the subtraction between

entry data's inferred x coordinate and the module of the subtraction between the real x of the

closest point and the inferred x of the closest point; C3 verifies if the entry data's inferred x

coordinate is lower than the closest point's real x coordinate and if it is true, assigns to the final

position's x coordinate the module of the value of the addition between the entry data's inferred

x coordinate and the the module of the subtraction between closest point's real x and closest

point's  inferred  x;  A2  assigns  the  value  of  entry  data's  inferred  x  coordinate  to  the  final

position's x coordinate. The way these conditions are linked, in order to produce the value of the

final position of x, is:
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//for the inference of the x coordinate

if C1 then A1

else {

if C2 then A3

else if C3 then A4 

else A2

}

After the inference of the x coordinate for the final position, it was still necessary to

infer the y coordinate for the final position. It was used exactly the same conditions as in the x

coordinate position inference, now changing only the coordinates to be compared, assigned or

calculated from x to y. It also has the exact same structure of grouping the conditions together,

in order to obtain the final position's y coordinate.

A3 :C error
y

=∣CPR
y
−i y∣ (3.24)

C5: if Cerror
y

<M error (3.25)

C6 : if i y>CPR
y (3.26)

C7 : if i y<CPR
y (3.27)

A4 :FPos y=i y (3.28)

A5 :FPos y=∣i y−∣CPR
y
−CP I

y∣∣ (3.29)

A6 :FPos y=∣i y+∣CPR
y
−CP I

y∣∣ (3.30)

//for the inference of the x coordinate

if C5 then A4, A3

else {

   if C6 then A5

else if C7 then A6

else A4

}

When this process is completed, the final inferred position of the mobile device is given

by the point composed with the values of the inferred x and the inferred y. That's when the

algorithm stops, shows the final position to the user of the mobile device and asks him to insert

the real position in order to write the results in the database.

3.4 Application Overview
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This section presents the changes introduced in the developed prototype of  [C12]. It

starts by listing the Requirements Specification, then it details the System Physical Architecture

– that did not change much from what was specified by [C12] -, going to an explanation of the

application functioning steps and further it describes the database structure and it finishes by

showing screen shots of the Android application interface.

3.4.1 System Requirements' Specification

This  section  will  summarize  the  requirements  established  for  this  research  project,

although  the  majority  of  them  have  been  described  and  reported  throughout  the  previous

document parts. The list of requirements will be divided in 4 parts: the functional requirements,

the non-functional requirements and the assumptions. The following list is a continuation of the

list written in [C12], due to the fact that all the implementation and testing done was on top of

the work developed in that document.

Functional Requirements:

• The Lateration results have to be organized in data structures, in order for the

algorithms  implemented  and/or  algorithms  that  may  be  implemented  in  a

posterior iteration of the current project to be done without too many structural

changes.

• The algorithm of ANN has to work according to the definition of an Artificial

Neural Network, although changes may be done throughout the process with

the goal of improving the final results.

• The algorithm of SVM has to work according to the definition of a Support

Vector Machine, although changes may be done throughout the process with

the goal of improving the final results.

• The algorithm of k-Means Clustering has to work according to the definition of

a k-Means Clustering algorithm, although changes may be done throughout the

process with the goal of improving the final results.

• The results of each one of the ML algorithms implemented, using a smaller or

higher  number  of  Training  Examples,  have  to  improve  the  results  obtained

without using any Artificial Intelligence.

• The application has to be able to ask the user to insert the real position and save

it to the database.

• It should be fast to select the algorithm to use and the kind of test that needs to

be done at each time.

Non-functional Requirements:
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• The application has to run on Android devices.

• The implemented algorithms should be processed on the Android device.

• At least three ML algorithms should be implemented for comparison.

• The application may use Wi-Fi and Bluetooth signals as combination, or Wi-Fi

or Bluetooth signals alone.

Assumptions:

• The results obtained are valid only for the used hardware.

• The Access Points are fixed in a position.

• The  scenario  information  and  the  Access  Points  coordinates  in  the  testing

environment are stored in the database.

3.4.2 System Physical Architecture

The physical architecture of the system is briefly described in this section through a

diagram that represents all the active components in the position inference process. As it can be

seen in Figure  3.7,  the architecture is  divided in two parts,  being them the Device and the

External Hardware.

The External Hardware is composed by a minimum of 4 Access Points that send RSSI

signals to the Device in order for it to infer the current position in a determined scenario. The

Access Points used were all equal in order to avoid the introduction of errors due to different

signal providers.

The  Device  has  two  main  components:  the  Application  and  the  Database.  The

Application  communicates  several  times  with  the  Database  during  the  position  inference

process, since it's in the Database that all the data is saved and from there that it's loaded. The

Database contains the environment information,  received from the Wi-Fi Access Points and

treated with calculations done in the Device. These transactions of environment information

from the  Database  to  the  Device and of  results  in  the opposite  direction  composes  all  the

interactions  done  between  the  two  components.  The  Application  contains  four  main

components: The Wi-Fi Signal Scan, the Position Estimation using the Lateration algorithm, the

Position  Estimation  using  an  ML algorithm –  ANN,  SVM or  k-Means  Clustering  and  the

visualization of the results.
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Figure 3.7: Deployment Architecture of the system.

3.4.3 Application Functioning Steps

1 Main Menu and Options

The  Main  Menu  of  the  TouAReg  Indoor  application  is  composed  with  5  different

options that the user can choose:

1. Locate

2. Select Scenario

3. Options

4. About
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5. Exit

 Each one of these options has a button, where the user can click and select the action

he/she wants to execute. Each one of these actions is a different Activity and as the options

names explicit, the first one is to start the location process, the second is to select a different

scenario where to apply the location process, the third is to choose some options related with the

location and the algorithms to use to infer positioning, the fourth shows some information about

the app and the fifth is to exit it.

 The Options Menu contains only testing options until the end of this Dissertation. Those

options include the possibility to select the algorithm to use – the possibilities are the Artificial

Neural Network, Support Vector Machines and Clustering algorithms – and the possibility to

choose which test it is to be done. The options related with the tests are:

1. Test with Static Training using first 30 Training Examples, then 100 TE and finally 150

TE. For each of these configurations, test first with no Artificial Intelligence, then using

the ANN, followed by using the SVM and finally using the k-Means Clustering.

2. Test  with Continuous Training using  first  30 Training Examples, then 100 TE and

finally  150  TE.  For  each  of  these  configurations,  test  first  with  no  Artificial

Intelligence, then using the ANN, followed by using the SVM and finally using the k-

Means Clustering.

 These options may disappear once the application becomes commercial and may be

replaced by options more related with the end user's own preferences. For the purpose of this

study and all the tests done in this problem's context, these options were extremely useful due to

the fact they allowed the author to select which test he wanted to do at each moment, it would

save the information in different databases, organizing it  better and in an easier way and it

would automatically generate statistics about each one of the collections of data gathered and

the algorithms'  usage and performance, allowing the author to spare time organizing all  the

information stored and preventing the loss of time doing calculations that the software can do by

itself.

2 Signal Scan
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Figure 3.8: Wi-Fi scan and validation process. Source: [C12].

The step of Signal Scan did not suffer changes in its functioning. The option taken from

the beginning was that it shouldn't be changed, since it's functioning properly and there will be
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need of comparing the results obtained by the algorithms developed in the context of this study

with the ones of [C12].

As it can be seen in Figure 3.8, the scanning process starts by verifying if the Access

Points positions is available in the database for the specified scenario. If false, the software

doesn't start the scan, considering it invalid; if true, it received the RSSI signal and saves it in

the database, using it also for conversions between Signal Strength to Distance to the AP that

sent it. 

The software does this for all the Access Points available and posteriorly verifies if the

Maximum Distance between 2 scans is of 5 meters to a AP, in order to stabilize the results that

will be obtained after. This process is the calculation of Valid Distances and only if the number

of Valid Distances is higher or equal to 3 it is considered a valid scan. 

3 Learning Process

The Learning Process depends on the algorithm that may have been selected to infer

position. Still, there is a similar work flow before and after the algorithm's usage, whichever the

option that was chosen. 

Figure 3.9: General view of the learning process.

It starts by reading the Training Examples from the database and allocates them in the

data structures defined on each one of the ML algorithm's classes appropriately. Meanwhile, the

training process – in the cases of the ANNs and the SVM algorithms – or the clustering process
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starts and either trains the inherent structures to each one of the algorithms or groups the data

into clusters according to the parameters configured for each one of them. The functioning of

each one of the ML algorithms is very specific to each one of them and it was detailed already

in the section 3.3.1 and 3.3.2.

Since the goal is to classify the data calculated by the Lateration algorithm and this

process is not part of the Learning process anymore, Figure 3.9 as this moment of the general

algorithm as end state.

4 Positioning Inference and Real Position Insertion

Figure  3.10 shows  a  diagram  with  the  summarization  of  how  all  the  positioning

inference and real position insertion is done. The starting point of  this  process is when the

Training or Clustering process is finished and the first  step is to use the Lateration data for

classification, meaning that the output of the Lateration process is allocated in a data structure

that is fed in the ANN or SVM algorithm, or computed through the Clustering technique.  After

this is done, the output of this process is received and the approximation algorithm is started. 

The approximation algorithm, as it  was explained before, basically finds an existent

closest  point in the data set  and makes some comparisons and operations between the new

inferred point and this closest  point  found.  The output  of  these operations goes through an

optimization process, that basically checks if the final inferred positions are out of the scenario's

dimensions. If x or y or both are, each one is changed for the scenario's dimension, making sure

that the point can be shown on map.

The next step is the presentation of this final point on map, so the user can see where

the mobile device inferred the position in relationship to the scenario where he/she is located.

Then an input window appears and the user has to input his real position. When that is done, the

real position and all the other information related with the inference of the position is stored in

the database. Then or the user leaves the Locate Activity or the process of location starts again.
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Figure 3.10: Position inference and Real Position insertion states.

3.4.4 Database

The information about the places and Access Points available is stored in the mobile

device's SD card and the database is developed with SQLite, which is the standard for databases

used by Android. The model of the implementation done is in the following image.
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Figure 3.11: Prototype data model.

Comparing with the database of [C12], it can immediately be seen that minor changes

were  done  in  the  database  structure.  The  table  Lateration  was  the  only  one  that  suffered

changes, specifically the addition of the rPosX, rPosY, algorithm and computationalTime fields.

The fields rPosX and rPosY were added because there was a need of saving in the database the

real position's coordinates; the field  algorithm was added because it was necessary to select

which ML algorithm to use and hence each entry had to have the information about which

technique inferred its position; the  computationalTime was created to know how much time

each entry's inferred position actually took to be inferred.

The  remaining  tables  were  not  changed  or  modified,  although  it  was  implemented

several SQL functions to retrieve information from them.

3.4.5 Interface

The goal of the current Dissertation is not the one of having a commercial application

where  the  end-user  can  infer  positions  in  each  one  of  his/her  scenarios.  Hence,  since  the

previous  iteration  of  the  current  project,  not  too  many changes were  done  in  terms  of  the
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interface, apart from the addition of some options that ease the testing process and the insertion

of data necessary for the algorithms to work properly.

3.5 Summary

The purpose of the whole Chapter 3 was to explain which were the approaches chosen,

how they were implemented, how they are supposed to be evaluated, how the whole application

is structured and how the final application looks like.

As it was stated several times before, this is an ongoing project and it was already when

this Dissertation started. This means that all the decisions taken were done accordingly to what

has been done before. The iteration of the project has different goals than the previous one,

which were to build a system that through the RSSI signals sent by Access Points and through

the usage of the Lateration algorithm, could infer a position in an indoor environment. The

implemented techniques achieved the main goals of the thesis, although the position inference

contained a high Distance Error if compared to the real position where the mobile device was

located. 

Hence, this second iteration of the project intends to minimize that error using different

Machine Learning techniques,  testing and applying them in the same scenarios  as the ones

chosen for the first iteration. Because of the fact that there are too many different approaches

using these ML techniques, three were chosen to be implemented and tested. The goal is to, in

the end, be able to choose one that has better overall performance than others, based on several

comparison  criteria,  either  using  descriptive  statistical  analysis  and  other  metrics  that  are

intrinsically purposed for algorithms of this kind.

That is what the next chapter is about. It will be evaluated, using different metrics, tools

and for different application scenarios, which is the most effective algorithm in terms of each

one  of  the  most  important  of  the  measured  data,  which  is  the  influence  of  the  number  of

positions used for training/grouping in the accuracy of each technique and an evaluation will be

done according to it in order to infer the final conclusions about the whole project. 
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4 Tests, Results and Discussions

This  chapter  is  where  the  results  achieved  through  the  usage  of  the  implemented

algorithms in the two scenario setups are revealed, compared and discussed. An introduction to

how that  presentation  will  be  done  is  the  first  part  of  the  chapter,  followed by  a  detailed

description of the scenarios. Further, the results without and with the usage of ML techniques

will be listed, analyzed and discussed. Posteriorly, comparisons between the obtained results

using  each  one  of  the  implemented  algorithms  and  the  position  inference  without  any  AI

method will be done. Ahead, comparisons between the obtained results and the results presented

in the chosen literature pieces will be established. The chapter finishes with a summary, with the

goal of grouping the different conclusions obtained by the analysis done in the previous parts,

evaluating all the work done.

4.1 Introduction

Structurally, it is possible to use different approaches to the way results are exposed and

compared, according to the dissertations and papers studied in Chapter 2. In this chapter's case,

it will be done a description of the statistical analysis metrics related with the samples of data

gathered,  either  using  no  Artificial  Intelligence  in  the  position's  inference  and  using  the

implemented  ML techniques.  Further,  it  will  be  presented  the  ML metrics  to  evaluate  the

performance of each one of the implemented algorithms. Each one of the tests that were done

will be evaluated according to the details explained above. Lastly, this sub-chapter will explain

which was the approach used to validate the data gathered for the Training process and the one

for algorithm testing. The target of this last process presented in this chapter is to demonstrate

that the improvements or deterioration of the Mean Distance Error obtained by each one of the

algorithms is dependent on the algorithms themselves and not in the chaos of the RSSI signal

reception.
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Tests, Results and Discussions

 In order to evaluate the results that will be presented throughout this chapter, it will be

used a set of statistical variables that can be easily and automatically calculated by the software

itself. Each one of those metrics intends to conclude different facts about the tests and about the

way the algorithms behave in each of them. Basically, the goal of analyzing the results through

these metrics is to understand if the results presented by each of the algorithms are valid and in

case they're not, to be able to explain in each case why they are behaving the way they are.

Also,  these  calculated  metrics  can  be  used  in  the  future  work  in  order  to  adapt  training

parameters and consequently, to build better training models that can minimize the Distance

Errors of every inference.

 The above referred metrics are:

• Mean Distance  Error  (MDE):  defined  by  the  Equation  4.1,  which  calculates  the

square root of the sum of the distance errors in x and y.

• Standard Deviation of Distance Error ( σ ):  defined  by the Equation  4.2,  the

Standard Deviation metric represents the variation or dispersion that there is from the

Average Distance Error.

• Variance of Distance Error ( σ
2 ):  defined by the Equation  4.3, it represents the

average of squared differences from the mean.

• Maximum  Distance  Error  (m)  :  defined  by  the  Equation  4.4,  it  represents  the

maximum obtained distance error between the real position and the inferred one by the

mobile device in a certain population of data.

• Minimum  Distance  Error  (n)  :  defined  by  the  Equation  4.5,  it  represents  the

minimum obtained distance error between the real position and the inferred one by the

mobile device in a certain population of data.

• Bias of x and y inferred positions ( bx and b y ) :  defined by the Equations 4.6

and  4.7 - respectively for x and y -,  it  represents how non-randomly the Measured

Positions where selected. A low bias in the inference of x and/or y means the ML

algorithms implemented are outputting disperse solutions for different positions and a

high bias represents that they are producing similar solutions for different positions. 

Let  R x represent  the  real  x  coordinate,  R y the  real  y  coordinate,  I x the

inferred x coordinate, I y the inferred y coordinate, N the number of samples in a

population  P , DEt the  Distance  Error  of  the  position t ,  where

t∈{1,.. ,N } ,  m the  Maximum  Distance  Error,  n the  Minimum  Distance

Error, bx the bias of the inferences  of the coordinate x and  b y the bias of the

inferences of the coordinate y:

MDEt=
√((R x

t
−I x

t
)
2
+(Ry

t
−I y

t
)
2
)

N
(4.1)
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σ =
√((∑(i=1)

(N−1)
(DEi−MDEi)

2
))

N
(4.2)

σ
2
=
∑(i=1)

(N−1)
(DEi−MDEi)

2

N
(4.3)

m=max (DEi , DE(i+1 ), DE(i+2 ), ... ,DE(N−1 )) , i∈{1,... , N } (4.4)

n=min(DE i ,DE(i+1) ,DE(i+2) ,... , DE(N−1)), i∈{1,... ,N } (4.5)

bx=
(∣∑(i=1)

(N−1)
R x
i∣−I x

i
)

N
(4.6)

b y=
(∣∑(i=1 )

(N−1)
R y

i∣−I y
i
)

N
(4.7)

 The equations above represent how these metrics are automatically calculated by the

Android application. Intense reviewing was done either to the code that produce the results and

to  the  results  themselves  in  order  to  guarantee  that  they  were  being  properly  calculated.

Although these metrics are necessary do to a descriptive statistical analysis of the generated

populations, there is a set of metrics that is also necessary to analyze the performance of each

one  of  the  Machine  Learning  implemented  algorithms.  Hence,  according  to  [TII10],  the

evaluation metrics that determine if an algorithm is performing better or worse than others are:

• Hamming Loss (HL): the amount of incorrectly classified labels in relationship with

the total number of labels. The optimal value is 0, since this is a loss function.

• Exact Match Ratio (EMR): Indicates the percentage of samples which labels were all

correctly classified.

 Since the problem its being solved is a multi-label classification problem (the system

has to infer x and y), achieving a high EMR and a low HL would be ideal. This is a difficult

achievement to do, since the number of existent positions in a certain scenario is massively big.

For instance, if an algorithm infers (1,5m; 3,1m) and the real position is (1,55m; 3,15m), this

classification would not count as an EMR, hence it would contribute for the increase of HL.

Because of this fact, it was decided to establish that:

1. A position inference is  classified  as  correct,  if  the  Distance Error  between the real

position and the position inferred by the mobile device is lower or equal to 1m in the

Meeting Room scenario and lower or equal to 2m in the TiZ Entrance Hall scenario.

2. A position inference is classified as incorrect, if the Distance Error between the real

position and the position inferred by the mobile device is higher than 1m in the Meeting

Room scenario and higher than 2m in the TiZ Entrance Hall scenario.
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Like this, the evaluation of the implemented ML algorithms using the ML evaluation metrics

will  be  useful  to  understand which  one  is  better,  which  would  not  happen if  they  all  had

Hamming Loss close to 100% and Exact Match Ratio close to 0 %.

 Although the results that matter for comparisons are the Mean Distance Errors obtained

by each test, the statistical comparisons have to use as input the variables that generates them.

Because of the fact that the information that is commonly used by the approach of [C12] and the

one implemented throughout this Dissertation is the distances from the mobile device to the

existent  Access  Points  –  that  is  calculated  by  the  Lateration  algorithm –  and  since  those

distances are dependent on the RSSI signals sent by each Access Point, it won't be detailed any

statistical evaluation of those in this document, due to the fact that it was previously done by

[C12] in similar testing conditions. Hence, comparisons between the approaches that do not use

any  Artificial  Intelligence  will  be  presented  and  explained  through  descriptive  statistical

analysis, with no statistical correlation established between them. 

 Relatively to comparisons done between the approach with no AI and the approaches

where ML algorithms were implemented, correlations will be established. The first step will be

of proving/disproving the null  hypothesis  and only then comparisons between them can be

done.  The  data  gathered  either  in  the  Meeting  Room scenario  and  the  TiZ  Entrance  Hall

scenario, throughout the tests done in each one of them, varies from test to test. The intention of

comparing  results  between  ML  techniques  is  to  understand  which  Training  configurations

improve or deteriorate the variation of the calculated Distance Error between the real position of

the mobile device and the position inferred by it. Because the amounts of data gathered per each

test done were small and due to the fact that comparisons between each training configuration

were needed in order to prove the Hypothesis established in Chapter 4.1, it was decided to use

the Wilcoxon Signed Ranks as a statistical analysis tool.

 The  Wilcoxon  Signed  Ranks  test  has  several  steps.  It  starts  by  formulating  2

Hypothesis, being Hypothesis 0 the null hypothesis and Hypothesis 1 the research Hypothesis.

The null Hypothesis defines that there was no changed between the first set of values and the

second to be compared, while the research Hypothesis asserts the opposite. The next step is to

compute the differences between the values in the first and second sets and after they're ranked

in ascending order. Posteriorly, it's calculated the numbers of positive and negative differences

between the values in the first and second set. The smallest number of these two numbers is

used to calculate z. Then, after z is calculated, it will be checked if the z value is lower than

-1.96 or higher than 1.96 (in order to be able to achieve conclusions with a confidence interval

of 95%). If it is, the null Hypothesis is rejected, hence it's possible to infer that there was a

change from the first to the second set; if not, the research Hypothesis is rejected, hence it's

possible to infer the opposite. In the context of the current Dissertation, since the goal is to

minimize the Distance Error between the real position of the mobile device and the inferred

position it calculates, if the number of positive differences calculated is higher than the number

of negative differences and if z is lower than -1.96 or higher than 1.96, then it's possible to

conclude there was an improvement in the Distance Error, meaning that the Mean Distance

Error is smaller in the second set. If the number of positive differences is lower than the number
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of  negative  differences  and  if  z  is  lower  than  -1.96  and  higher  than  1.96,  it's  possible  to

conclude  that  the  Mean  Distance  Error  is  higher  in  the  second  set,  meaning  there  was  a

deterioration in the accuracy of the position inference.

 Decisions relatively to which algorithms perform better or worse in each scenario and in

each test, will be taken accordingly to the results obtained by the Wilcoxon Signed Ranks test

validation. Further, detailed comparisons will be established according to each algorithm, if the

validation occurs; if not, a smaller comparison will be done since the algorithm did not improve

in that scenario with that Training configuration.

4.2 Scenarios Setups

Although the  goals  of  the  current  Dissertation  do  not  include  the  deployment  of  a

commercial  application  that  infers  positions  in  different  scenarios  with  high  accuracy,

LatitudeN intends to be able to release commercially such piece of technology in some time.

Therefore, the application is targeted mainly to shopping centers and museums, or using other

words, spaces that vary either from 15m² to 250m². Henceforth, two different testing scenarios

were chosen. The first tests were done in the meeting room of LatitudeN headquarters' office,

representing the small scenario setup, with dimensions of 3.12m x 6.25m (19.5 m²). The second

tests were performed in the main hall of the TiZ building in Darmstadt, representing the wide

areas' scenario specification, with dimensions of 14m x 17.1m (approximately 250 m²). 

Figure 4.1: TiZ Entrance Hall testing scenario (250 m²).

Table 4.1: Access Points coordinates in the TiZ Entrance Hall scenario.
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AP ID X Y

1 2 0.4

2 12.5 4.65

3 0.1 9.65

4 12.9 11.8

The blue points in Figure 4.1 represent the Access Points that were used to emit RSSI signals to

the  mobile  device.  These  positions  were  not  chosen  randomly:  they  follow  the  same

configuration  as  the one of  [C12].  Table  4.1 shows the numerical  positions  of  each of  the

Access Points.

Figure 4.2: Meeting Room scenario (19.5 m²).

Table 4.2: Access Points coordinates in the Meeting Room scenario.

AP ID X Y

1 0 6.25

2 3 6.1

3 0.1 0.2

4 3.02 0.1

The blue points in Table  4.2 also represent the Access Points in the Meeting Room

scenario. They were placed as close as possible to the corners of the room, so the mobile device

used for testing could cover the best signal possible from each one of them in each one of the

Measured Positions.

Relatively  to  the  Measured  Positions  used  for  data  gathering  in  order  to  train  the

algorithms, they differ from test to test. Several different tests were done in an initial testing
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phase, starting by doing them in the Meeting Room scenario and moving on after to the TiZ

Entrance Hall scenario. The goal of this initial phase of testing was to test Hypothesis 1, in order

to confirm that the implemented ML algorithms were performing better than the approach that

does  not  use  any  Artificial  Intelligence,  which  means  they  were  achieving  a  lower  Mean

Distance Error than it. The tests done after were in the TiZ Entrance Hall scenario, where all the

other stated Hypothesis – apart from Hypothesis 6, in this initial phase – were put to test.

Figure 4.3: Test phase I in both scenarios.

Two kinds  of  tests  were done  in  the  first  phase  of  testing:  one  using the gathered

Training Examples and each new classification done would not count to the next – to which it

was called Static Training – and other that each new entry added to the database would count

for the next classification process as a Training Example – to which it  was decided to call

Continuous Training. In other words, the Static Training mode always used the same amount of

Training Entries while the Continuous Training one would add each of the classified examples

to the next classification to be done. This was done to test the Hypothesis 8.

As it  can be seen in Figure  4.3, in the first  phase of testing involved testing the 3

implemented ML algorithms in each one of the scenarios, using 10 Measured Positions in the

Meeting Room scenario and 3 Measured Positions in the TiZ Entrance Hall scenario. For each

one of the scenarios, three different kinds of tests were done using 30, 100 and 150 Training

Examples.  For  the  case  of  the  Meeting  Room  scenario  test  using  10  different  Measured

Positions, it was gathered 3, 10 and 15 Training examples per Measured Position and for the
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tests in the TiZ Entrance Hall using 3 different Measured Positions the number of Training

Examples per Measured Position was of:

• 10 entries per Measured Position for the 30 Training Examples test;

• 34 entries  for  Measured  Position 1,  33 entries  for  the Measured Position  2 and 33

entries for the Measured Position 3 for the 100 Training Examples test;

• 50 entries per Measured Position for the 150 Training Examples test.

Either Static Training and Continuous Training was done per each one of the test configurations

explained previously, in order to be able to test Hypothesis 8.

Figure 4.4: Meeting Room scenario with Access Points and Measured Positions.

Table 4.3: Coordinates of the Measured Positions in the Meeting Room scenario.

MP ID X Y

1 1 4,65

2 1,2 2,35

3 2,3 2,35
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4 2,35 0,85

5 1 0,85

6 1 6,25

7 1,7 5,95

8 1,5 4,65

9 0,3 3,95

10 3,1 3,95

 As it's described in Figure  4.4 and detailed in Table  4.3, 10 different positions were

measured to use as Training for the ML algorithms implemented. The choice of these positions

combined  several  factors  for  the  Measured  Position  selection:  first,  positions  were  chosen

according to some reference points in the room, in order to be avoiding the work of manually

measure distances every time tests were done, such as MP1, MP2, MP3, MP4, MP5 and MP8;

second, other positions were chosen due to supposed difficulties in obtaining good results, such

as MP6, MP7. MP9 and MP10.

Figure 4.5: TiZ Entrance Hall scenario with APs and MPs .

Table 4.4: Coordinates of the Measured Positions in the TiZ Entrance Hall scenario.

MP ID X Y

1 7,2 8

2 1,45 4

3 11 10
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 In the case of the positions that  can be seen at Figure  4.5 and whose positions are

detailed at Table 4.4, the choice of them was made taking into account the fact that [C12] did

tests in the same positions and henceforth, the 3 Measured Positions are the same as the ones

used there. This was done with the goal of easing comparisons between the implemented ML

algorithms and the algorithm with no Artificial Intelligence, in order to understand which were

the improvements brought to his approach, in terms of Mean Distance Error minimization.

 Due to the fact that it  was necessary to test Hypothesis 6 in the TiZ Entrance Hall

scenario, in order to conclude posteriorly about the dependency of the Mean Distance Error of a

wide area scenario with the number of Measured Positions, it was necessary to do another phase

of testing. This second phase has different characteristics in relationship to the first phase: in the

end  of  the  first  phase  of  testing,  statistical  analysis  was  done  and  tests  were  eliminated

according to following established criteria: each algorithm that the Mean Distance Error rises

with  the  growth  of  the  Number  of  Training  entries,  being  the  type  of  Training  Static  or

Continuous, will not be tested again. 

 This was decided because of several reasons: first, the amount of time spent configuring

the databases for Training and actually doing the tests was quite high; second, it was necessary

to start making decisions out of the gathered data and cutting off options, using the tests done

until  then;  third,  the  second  reason  does  not  invalidate  the  test  of  any  of  the  established

Hypothesis since, up to the moment of the beginning of the second phase of testing, all of them

except Hypothesis 6 can be answered positively or negatively and justified accordingly. Hence,

the tests done will be detailed in the sub-chapters ahead with a special focus on the Hypothesis

established  and on making a final  decision about  which algorithm behaves better  in  which

situation. Also, all the statistical analysis done will be presented in order to guarantee that the

results obtained are valid to justify those hypothesis and consequently the conclusions that will

be taken from them.

4.3 Position Inference without ML Techniques

The  positioning  method  that  [C12] implemented  is  done  through  Lateration  (see

Chapter 2.2.1). Several approaches were tested and the one chosen was the Linear Least Squares

Lateration technique.  The goal  of  the current  Dissertation,  as it  was explained before, is  to

improve  the  results  achieved  by  that  technique  through  the  add-on  of  different  Machine

Learning algorithms and compare either between them to choose the one that behaves better and

with the results achieved by  [C12]. Because the testing scenarios changed, before testing the

ML techniques, it was necessary to gather data to train the algorithms. That process was done

using exclusively the approach of [C12] in the testing scenarios.

The first scenario where the data was gathered was the Meeting Room of LatitudeN's

office. The data corresponds to 10 different Measured Positions that were used posteriorly to

train the algorithms. The results achieved can be seen in Table 4.5.
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Table 4.5: Statistical metrics of the Meeting Room scenario using No-AI.

Number of Training Examples

30 100 150

Mean Distance Error (m) 1.9 1.93 2.2

Mean Variance of Distance Error (m) 0.83 1.09 2.03

Mean Bias X (m) 0.1 0.17 0.24

Mean Bias Y (m) 0.74 0.44 0.53

Mean Standard Deviation of DE (m) 0.91 1.04 1.42

Maximum Distance Error (m) 4.89 4.89 6.2

Minimum Distance Error (m) 0.36 0.1 0.1

◦

The statistical metrics gathered show that the MDE grows in a non-significant way from

the 30 to the 100 Training Examples and rises a bit more from the 100 to the 150 TE. Still, the

difference of MDE between the 30 TE and the 150 TE (5 times more data gathered) is of 0.3m,

which is not a significant change, In terms of Mean Variance of Distance Error, there are barely

no differences between 30 and 100 TE, but from 100 to the 150 TE population it doubles. This

means that, between the 100 TE population and the 150 one, the variation between the mean

difference between the samples' DE is the double in the 150 TE case. The Mean Bias of X and

the Mean Bias of Y was stable in the 3 cases. The Maximum DE is the same in the 30 TE and

100 TE cases and higher in the 150 TE (difference of 1.31m between the 30/100 and the 150 TE

case) and Minimum DE was close to 0 in the 100 and 150 TE cases and of 0.36m in the 30 TE

case which is a small value too.

These 3 presented populations of data were used in both the Continuous and Static

Training test configurations for all the 3 implemented ML algorithms in the tests done in the

Meeting Room scenario. This means that the calculated statistics for each of the 3 examples had

an influence either in the way the algorithms behaved and in the way comparisons will  be

established.

The second scenario where the data was gathered was the Entrance Hall of the building

where  LatitudeN's  headquarters  are.  The  first  test  was  done  using  3  different  Measured

Positions to train the algorithms. The results achieved can be seen in Table 4.6.

Table 4.6:  Statistical metrics of the TiZ Entrance Hall (3 Mps) scenario using No-AI. 

Number of Training Examples

30 100 150

Mean Distance Error (m) 3.24 3.4 3.45
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Mean Variance of Distance Error (m) 1.57 1.75 1.47

Mean Bias X (m) 0.44 0.45 0.42

Mean Bias Y (m) 0.98 0.79 0.56

Mean Standard Deviation of DE (m) 1.25 1.32 1.22

Maximum Distance Error (m) 6.07 6.48 6.48

Minimum Distance Error (m) 1.45 0.67 0.67

As Table 4.6 shows, the MDE grows lightly as the number of TE grows from 30 to 150.

That growth is a bit more accentuated between the 30 and the 100 TE examples than between

the 100 and 150 TE examples. The Mean Variance of DE is stable in the 3 different cases and

such is the Mean Standard Deviation of DE and the Mean Bias of X, representing no significant

change between the different populations of data. The Mean Bias of Y decreases from 30 to 100

and  from 100 to  150  TE cases,  meaning  that  the  inferred  positions  are  more  variate.  The

Maximum Distance Error is increases from the 30 to the 100 TE case and stabilizes from the

100 to the 150 case. The Minimum Distance Error decreases from the 30 to the 100 TE case and

also maintains the same value from the 100 to the 150 TE population. 

Because of the fact that in the 3 different populations gathered the MDE increases as the

number of TE per Measured Position increases and the only statistical variable that changes

consistently as they do is the Mean Bias of Y, it can be asserted that the fact that the algorithm

is inferring more variate final values of y is what is provoking the growth in the MDE. This

affirmation can be sustained by observing the change of the Mean Variance of DE, that does not

grow consistently as the number of TE per MP increases, which means that it's not affecting the

change of the MDE as much as the Mean Bias of Y is, in this case.

Since one of the Hypothesis to test was the influence of the growth in the number of MP

in the MDE using the implemented ML algorithms and due to the fact that it's necessary to

establish comparisons between the results  achieved by them and the ones achieved without

them, data was gathered using 6 Measured Positions, for 30, 100 and 150 TE.

Table 4.7: Statistical metrics of the TiZ Entrance Hall (6 MPs) using No-AI.

Number of Training Examples

30 100 150

Mean Distance Error (m) 4.62 4.66 4.31

Mean Variance of Distance Error (m) 6.92 5.7 6.69

Mean Bias X (m) 0.9 0.84 0.72

Mean Bias Y (m) 1.9 0.77 0.65

Mean Standard Deviation of DE (m) 2.63 2.39 2.59

Maximum Distance Error (m) 10.77 10.77 13.25
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Minimum Distance Error (m) 0.99 0.1 0.1

Table 4.7 shows the values of the statistical metrics calculated using the data gathered

in the TiZ Entrance Hall scenario for 6 different Measured Positions. The MDE increases from

the 30 to the 100 TE populations and it decreases from the 100 to the 150 TE cases, although

the change between them is in the order of the tens of centimeters, which is not significant. The

Mean Variance of DE significantly decreases from the 30 to the 100 TE cases and increases

again from the 100 to the 150 TE populations. The same happens with the Mean Standard

Deviation of DE, although the change is  less significant than in the Mean Variance of DE

metric. The Means Bias of X decreases slightly as the number of TE per Measured Position

grows, which means the algorithm is generating more variate x coordinates. In terms of Means

Bias of Y, from the 30 to the 100 TE it decreases from 1.92m to 0.77m, which is a huge change.

From the 100 to the 150 TE cases it also decreases, but this time the change is not as high as

from 30 to 100 TE. The Maximum Distance Error has the value of 10.77m in both the 30 and

100 TE and it  finds  a new maximum value of 13.25m in the 150 TE case.  The Minimum

Distance Value goes from 0.99m to 0.1m in the 30 and 100 TE respectively. In the 150 TE case

it stays 0.1m.

In these specific sets of tests, the MDE depends less on the Mean Bias of both x and y

because the Mean Variance is  quite high in all  of  them, creating instability  in  the position

inference and huge either small and huge distances between the real position and the inferred

position. From this fact, it can be concluded that, more than just trying to keep a stabilized value

of the Mean Bias of x and y, it's also necessary to try to keep a low value of the Mean Variance

of DE.

Due to the fact that every time a data set of data had been gathered in the TiZ Entrance

Hall scenario, it had been followed by tests using the implemented ML techniques in the same

scenario with the same configurations, in the case of the 9 MPs test, the only number of TE that

was necessary to gather because of the exclusion of tests done between each test phase, was the

30 TE case, which the statistical metrics are presented in Table 4.8. 

Table 4.8: Statistical metrics of the TiZ Entrance Hall without the usage of ML for 9

MPs.

                                                      Number of Training Examples

30

Mean Distance Error (m) 5.6

Mean Variance of Distance Error (m) 7.33

Mean Bias X (m) 0.97

Mean Bias Y (m) 2.49

Mean Standard Deviation of DE (m) 2.71
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Maximum Distance Error (m) 10.77

Minimum Distance Error (m) 1.45

In this case, the MDE was of 5.6m, the Mean Variance of the DE, the Mean Standard

Deviation of DE and the Mean Bias of Y were quite high, although the Mean Bias of X is low.

The Maximum Distance Error obtained was of 10.77m and the Minimum Distance Error of

1.45m. Because of the high Mean Variance of the DE and the Mean Bias of y high values, the

MDE reached the highest value seen without usage of ML techniques to infer position.

4.4 Position Inference using ML Techniques

Three different ML techniques were implemented as an approach to the Distance Error

minimization  problem:  Artificial  Neural  Networks,  Support  Vector  Machines  and  k-Means

Clustering. This sub-chapter demonstrates the results obtained from the tests done with each one

of them in the two testing scenarios using different test configurations. For each one of the

algorithms, the process to demonstrate their practical performance will have the following steps:

1. Demonstrate the correlation between the Distance Errors obtained in each one

of the testing configurations for the two scenarios.

2. Establish comparisons between the descriptive statistics metrics.

3. Establish comparisons between the ML evaluation metrics.

 As it was stated before, the depth of these comparisons will be done depending on the

improvement  or  deterioration  the  technique  that  is  being  analyzed  shows.  This  means  that

algorithms that,  in a certain scenario configuration, show that the Mean Distance Error was

reduced from a number of Training Entries to another or from a number of Measured Positions

to the next will be compared more minutely than ones that show deterioration with the same

scenario factors change.

4.4.1 Using Artificial Neural Networks

Let's start by the tests done in the Meeting Room Scenario (Figure  4.4). Three tests

were done in the Meeting Room of LatitudeN's office for each of the types of Training (Static

and Continuous), with 10 Measured Positions used to feed the Artificial Neural Network. These

tests were done in order to study the behavior of the ANN approach in a small-sized scenario.

Table 4.9: MDE using ANN in the Meeting Room Scenario (Static Training).

Number of Training Examples

30 100 150
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Mean Distance Error (m) 2,57 1,73 1,23

Mean Distance Error Change from the Previous test (%) - 35,54% 23,74%

As it can be seen in Table 4.9, the Mean Distance Error was reduced from 2.57m in the

test using 30 Training Entries to 1.73m using 100 Training Entries and to 1.23m using 150

Training Entries. It should be noted that there was no change in the Measured Positions that

were used to feed the ANN and that the number of samples gathered was of 39 (3 for each one

of  the  10  Measured  Positions,  equalizing  30,  and  3  for  each  one  of  the  New  Positions,

equalizing 9). The Mean Distance Error change from the 30 Training Entries test to the 100

Training Entries test was of 35.54% and the MDE change from the 100 Training Entries test to

the 150 Training Entries test was of 23.74%. The MDE change from 30 Training Entries to 150

Training Entries (5 times more samples that fed the algorithm) is even more significant, with a

value of 50.84 %. In terms of accuracy, this means that the ANN in the Meeting Room scenario

increased its accuracy in 50.84% with only 5 times more samples used to train it. 

The  question  after  this  first  calculation,  right  after  finishing  the  tests,  was  if  these

improvements were because the algorithm was actually improving the accuracy in the testing

configuration and if there was enough change in the positioning inferences in order to show that

they were valid results. In order to prove that, correlations between the Distance Errors of each

of the tests were done using the Wilcoxon Signed Rank test. 

Table 4.10: WSR test for ANN between the Meeting Room scenario tests (Static

Training).

Training Examples Correlations

30 – 100 30 - 150 100 - 150

Number of positive differences 30 31 21

Number of negative differences 9 8 18

T 45 36 171

z -4,81 -4,94 -3,06

 

 Table  4.10 shows the variables output  from the Wilcoxon Signed Rank Test.  Since

α=0.05 , then z had to be lower than -1.96 or higher than 1.96. As it can be seen, z is lower

than -1.96 in each one of the correlations done and the number of positive differences between

the first and second sets of Distance Errors is higher than the number of negative ones, which

means that as the number of entries per position, in the Meeting Room scenario using Static

Training improves the accuracy of the solution using ANN.

Table 4.11: Statistical metrics of ANN in the Meeting Room Scenario (Static Training).

Number of Training Examples
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30 100 150

Mean Variance of DE (m) 1,8 1,18 0,56

Mean Standard Deviation of DE (m) 1,34 1,34 0,75

Mean Bias Inferred x (m) 0,04 0,13 0,12

Mean Bias Inferred y (m) 1,94 0,96 0,3

Max DE (m) 5,5 5,55 2,95

Min DE (m) 0,35 0,18 0,13

Hamming Loss (%) 82 % 62% 59 %

Exact Match Ratio (%) 0 % 0 % 0 %

Figure 4.6: Variation of DE per Tested Sample using ST in the MR scenario.

Figure 4.6 shows the variation of DE per Measured testing sample. As it can be seen in

the chart, the tests with 30 and 100 Training Examples present huge differences between the

Maximum and Minimum Distance Errors and strong variations between position inferences,

when compared against the 150 TE test. 

Table 4.11 confirms it, by showing that the Mean Variance of either the 30 and the 100

Training Examples tests was above 1m (1.8m and 1.18m, respectively). The Mean Variance of

the  150 TE test  was  of  0.56m,  showing  an  improvement  in  the  Mean Variance  of  68.8%

relatively to the 30 TE test and of 52.5 % in comparison to the 100 TE test. In terms of Mean

Standard Deviation of DE, the 150 TE test had the lowest also, meaning that all the Distance

Errors were closer to the Mean DE than in the cases of the 30 and 100 TE test. This becomes

clear just by observing the Figure 4.6, where it can be seen that the variations in the Distance

Error per measured testing sample was lower than the ones either in the 100 and the 150 TE

tests. The Mean Variance of DE and the Mean Standard Deviation of DE shown in Table 4.11

prove the observation. 
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 When it comes to analyzing the Mean Bias of x, Table  4.11 shows that it was quite

stable for all the tests. On the other hand, the Mean Bias of y was problematic for the 30 and

100 Training Examples tests,  because the first  was of 1.94m and the second of 0.96m. The

lowest of the Mean Bias of the y inference was the one of 150 TE test, which was of 0.3m. Due

to the fact that the Mean Bias of x and y metrics are related with the variation of inferences of

both coordinates  in the scenario and because the measured Test  samples go throughout the

whole scenario area – meaning that they are quite diverse -, this allows to conclude that the

Mean DE of the 150 TE test was lower than the ones of 30 and 100 Training Examples because

the inference of the y coordinate in these last ones had generally more DE than the inference of

the x coordinate. The Max DE was the lowest also in the 150 TE test (2.95m) when compared to

the 30 and the 100 TE tests (5.5 and 5.55m, respectively). The Min DE was also the lowest in

the 150 TE test, although they are quite stable and close to 0  in all the three different tests.

Regarding the ML evaluation metrics, the Hamming Loss was the highest in the 30 TE

test and the lowest in the 150 TE test (82% and 59% respectively), although the change was

more significant from the 30 to the 100 TE test (from 82 % to 62%, hence a reduction of 20% in

the Distance Errors above 1m). The Exact Match Ratio, representing the percentage of times the

positioning inference was totally accurate – Distance Error between the real position and the

inferred one of 0m -, is 0% for all the cases, hence none of the tests had a 0m Distance Error

case.

 Some  practical  conclusions  can  be  taken  from these  3  tests  in  the  Meeting  Room

scenario. As the number of Training Examples rise, the Mean Variance, the Mean Standard

Deviation, the Mean Bias of the inferred y coordinate and, consequently, the Maximum and

Minimum DE obtained decrease. As a result from that, the Hamming Loss ML metric decreases

too, meaning the accuracy of the algorithm is improving as the number of Training Examples

rise. Although there was no change in the Exact Match Ratio in each of the tests, if the same

statistical characteristics were maintained as the number of Training Examples would rise from

150, most probably the Exact Match Ratio would increase too, decreasing the MDE.

Table 4.12: MDE using ANN in the Meeting Room Scenario (Continuous Training).

Number of Training Examples

30 100 150

Mean Distance Error (m) 1,71 1,76 1,47

Mean Distance Error Change from the Previous test (%) - -3.46% 16.52%

When Static  Training  tests  were  finished,  Continuous  Training  tests  started  for  the

Meeting Room scenario. As Table  4.12 shows, the variation of the MDE between the 30 and

100 Training Examples  test  is  close to  0 and the one between 100 and 150 TE tests  is  of

16.52%. The same process for validation was used as in the Static Training case, where the step

right after doing the tests was of evaluating if the improvement achieved in this case between 30
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and 150 TE for training of the ANN was due to the fact that the algorithm performed better

when the number of TE would grow. Hence,  using the same statistical test as in the Static

Training statistical evaluation case, it was chosen to use the Wilcoxon Signed Rank test, due to

the same reasons as then.

Table 4.13: WSR test between the Meeting Room scenario tests (Continuous Training).

Training Examples Correlations

30 – 100 30 - 150 100 - 150

Number of positive differences 16 25 29

Number of negative differences 23 14 10

T 504 105 55

z 1.59 -3.97 -4.67

Table  4.13 shows the output variables from the Wilcoxon Signed Rank test. Because

α =0.05 , then z had to be lower than -1.96 or higher than 1.96 for the null Hypothesis to be

rejected. In the case of the 30 to 100 TE correlation, z = 1.59, which is lower than 1.96 and

higher  than  -1.96,  meaning  that  the  null  Hypothesis  can't  be  rejected,  hence  there  is  no

difference from the DE obtained by each population. The correlations 30-150 and 100-150 TE

tests show values below -1.96, which means that, in both cases, the null Hypothesis has to be

rejected, henceforth there was change in the two populations compared. Because the number of

negative differences is lower than the number of positive differences in the 30-150 and 100-150

TE correlations,  it  can  be  concluded that  the  existent  change  by  increasing  the  number  of

Training  Examples  per  Measured  Position  enhanced the  accuracy  of  the  algorithm to infer

positions. 

Table 4.14: Statistical metrics of ANN in the Meeting Room Scenario (CT).

Number of Training Examples

30 100 150

Mean Variance of DE (m) 1,48 1,7 1,26

Mean Standard Deviation of DE (m) 1,24 1,3 1,12

Mean Bias Inferred x (m) 0,01 0,2 0,18

Mean Bias Inferred y (m) 0,04 0,07 0,42

Max DE (m) 4,72 4,99 5,81

Min DE (m) 0,07 0.44 0,1

Hamming Loss (%) 62 % 33.3% 59%

Exact Match Ratio (%) 0 0 0
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Figure 4.7: Variation of DE per Tested Sample using ST in the MR scenario.

As it can be seen in Figure 4.7, in all the 3 tests the variation of DE was full of highs

and lows. By looking at the Mean Variance of DE and the Mean Standard Deviation of DE

inTable  4.14,  it  can be seen that,  although either  the Mean Variance of  DE and the Mean

Standard Deviation of DE values were quite similar with each others, they were all high values

in relationship to the scenario's dimensions. This explains the variation that can be observed in

Figure 4.7.

Relatively to Mean Bias of the inferred x and y coordinates, all the values were low too,

meaning that the algorithms inferred a range of positions close to the dimensions of the testing

scenario, which was a good sign due to the fact the measured Testing Positions were spread all

over the room. Still, because the Mean Variance of DE and the Mean Standard Deviation of DE

for all the tests was so high and the Mean Bias of either x and y is so low for the same cases, it

was concluded that using Continuous Training and ANN would produce errors almost as high

as the scenarios size. For instance, in the Meeting Room scenario that has dimensions of 3.12m

x 6.25m, if a test is done in the position (0m,0m) the algorithm will have times that it will infer

a really close position and other times that it will infer, as an example, (3m,3m). The Maximum

DE were all really high for the 3 tests and the Minimum DE were all close to 0, specially in the

30 TE test and the 150 TE test. It was slightly higher in the 100 TE test, with the value of

0.44m.

In terms of ML metrics evaluation, the Hamming Loss values were of 62% for the 30

TE test,  of  72% for  the  100 TE test  and  of  59% for  the  150 TE test.  There  was a  slight

deterioration of accuracy from the 30 TE test to the 100 TE test of 10% less and a 13% more,

respectively. In terms of Exact Match Ratio, none of the tests obtained a single sample that had

0 of DE.
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Tests, Results and Discussions

There are no practical conclusions that can be taken directly from the analysis of the

Continuous Training tests in the Meeting Room scenario, apart from the fact that there is no

equilibrium between Mean Bias and Mean Variance, which results in a strange progression of

MDE as the number of Training Examples grow.

Table 4.15: Comparison of MDE between ST and CT in the MR scenario.

Number of Training Examples

30 100 150

MDE (m) of Static Training 2,69 1,73 1,23

MDE (m) of Continuous Training 1,71 1,73 1,47
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Figure 4.8: Comparison of MDE between Static and Continuous Training.

As it can be seen in Figure 4.8 and in Table 4.15, the Static Training starts with a higher

MDE than the Continuous Training approach (2.69m and 1.71m, respectively) in the 30 TE

tests, achieving the same MDE in the 100 TE test (1.73m both) and in the 150 TE test, the Static

approach had a significantly lower DE. 

Even  though  these  comparisons  can  be  established  directly,  because  both  the

approaches were done in the same scenario with the same conditions, there were variables that

demonstrate how these changes happened. The Static Training approach suffered a decrease in

the Mean Variance levels as the number of TE rose, while the Continuous Training method had

its Mean Variance stabilized. The same happened in terms of Mean Standard Deviation and in

terms of Mean Bias of y, which allowed the inferred positions to approximate further to the real

positions as the number of TE increased.

Conclusively about the ANN approach in the Meeting Room scenario, the Continuous

Training was shown not to be able to improve the results as well as the Static Training in terms

of MDE minimization using ANN. Henceforth,  from that  moment on,  Continuous Training

stopped being an option when using ANN to infer positions, even when the testing scenario

changed to the TiZ Entrance Hall.

Table 4.16: MDE using ANN in the TiZ Entrance Hall Scenario (3 MPs).

 Number of Training Examples
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30 100 150

Mean Distance Error (m) 1.83 1.73 1.44

Mean Distance Error Change from the Previous test (%) - 5,46 % 16,9 %

As Table  4.16 shows,  the MDE in TiZ Entrance Hall  using  3 MPs test  and Static

Training as training configuration decreases as the number of Training Examples increase. From

the 30 to the 100 TE tests, the decrease was of 5.46% and from the 100 to the 150 TE tests it

was of 16.9 %. The same approach of using the Wilcoxon Signed Rank test used before was

done for these populations also, in order to understand if there was a significant change in the

DE values between populations of data.

Table 4.17: WSR test between the TiZ Entrance Hall scenario tests (3 MPs).

Training Examples Correlations

30 - 100 30 - 150 100 - 150

Number of positive differences 8 7 11

Number of negative differences 7 8 4

T 77 84 10

z 0.97 1.36 -2.83

Table 4.17 shows the output variables of the Wilcoxon Signed Rank test. As it can be

seen,  from  the  30-100  TE  correlation  we  can  conclude  there  was  no  significant  change,

confirming the null Hypothesis, since the value of z = 0.97 is lower than 1.96 and higher than

-1.96. The same happened from the 30-150 TE correlation, where z = 1.36 was lower than 1.96

and higher -1.96, confirming the null hypothesis for this correlation. Between 100 and 150 TE

though,  the value  of  z  was of  -2.83,  which  was lower  than -1.96,  confirming the  research

hypothesis. In this last correlation, the number of positive differences is much higher than the

number of negative differences, which indicates that the change was towards the improvement

of the accuracy of the algorithm. 

Table 4.18: Statistical metrics of ANN in the TiZ Entrance Hall scenario (ST – 3 MPs)

Number of Training Examples

30 100 150

Mean Variance of DE (m) 1,48 1,7 1,26

Mean Standard Deviation of DE (m) 1,24 1,3 1,12

Mean Bias Inferred x (m) 0,01 0,2 0,18

Mean Bias Inferred y (m) 0,04 0,07 0,42

Max DE (m) 4,72 4,99 5,81
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Min DE (m) 0,07 0.44 0,1

Hamming Loss (%) 62 % 72% 59%

Exact Match Ratio (%) 0 0 0

Table 4.18 presents the values obtained by doing the statistical analysis of the algorithm

using different numbers of Training Examples, where it can be seen that the values of Mean

Variance of DE and the Mean Standard Deviation of DE are quite stable between all the tests,

being slightly higher in the 100 TE test than in the other two. The Mean Bias of Inferred x is

close to 0 in the 30 TE test and grows slightly to 0.2 in the 100 TE test, stabilizing in 0.78 in the

150 TE case. The Mean Bias of Inferred y is close to 0 in the 30 TE test, grows lightly in the

100 TE case and grows severely in the 150 TE test. This indicates a positive uplift, since a

higher Mean Bias means less positions inferred by the algorithm and in this case the tests were

done in  only 3 MPs, which is a small value of Measured Positions.

The Hamming Loss values increase 10% from the 30 to the 100 TE test and decrease 13

% from the 100 to the 150 TE case, which means that more inferred positions possessed a DE

lower than 2 meters in the last test. The Exact Match Ratio is 0 % for the 3 cases, hence no

position  inference  achieved full  accuracy  in  relationship  to  the  real  position  of  the  mobile

device.

As  it  was  explained  before,  no  tests  were  done  using  the  Continuous  Training

configuration since it was shown that it was not bringing any improvements to the minimization

of the DE in each inference. The step after was to do exactly the same tests in the TiZ Entrance

Hall using 6 MPs, in order to study if it would improve the accuracy of ANN in such a big-sized

scenario. 

Table 4.19: MDE using ANN in the TiZ Entrance Hall Scenario (6 MPs).

 Number of Training Examples

30 100 150

Mean Distance Error (m) 1.91 2.4 2.35

Mean Distance Error Change from the Previous test (%) 0 % -25,65% 2,08%

Table 4.19 shows the MDE obtained by the 30,100 and 150 TE tests using 6 Measured

Positions in the TiZ Entrance Hall scenario. The 30 TE test obtained a MDE of 1.91m for the 30

TE test, 2.4m for the 100 TE test and 2.35m in the 150 TE test – from the 30 to the 100 TE test

there was a deterioration of the MDE of 25.65 % and from the 100 to the 150 TE test there was

an improvement of 2.08%, which is not significant. Comparing with the 3 MPs tests, the 30 TE

test of the 6 MPs MDE value is quite close to the one obtained with the 3 MPs 30 TE value

(1.91 and 1.83m, respectively), which does not happen between both the 100 TE tests and the

150 TE tests  where the differences  between the respective Mean Distance Errors are much

higher (1.73m to 2.4m in the 100 TE tests and 1.44m to 2.35m in the 150 TE cases). 
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Despite this deterioration when rising the number of Measured Positions in the 100 and

150 TE cases, correlations between the populations were done anyway, in order to be able to

understand if the diminish in the accuracy of the algorithm was related with the algorithm itself

or to any other external factor, like the chaos in the RSSI signal transmissions.

Table 4.20: WSR test between the TiZ Entrance Hall scenario tests (6 MPs).

Training Entries Correlations

30 - 100 30 - 150 100 - 150

Number of positive differences 8 6 5

Number of negative differences 22 24 25

T 312 374 345

z 1.63 2.91 2.31

Table  4.20 shows  the  values  output  by  the  Wilcoxon  Signed  Rank  test  from  the

correlations between 30 and 100 TE tests, 30 and 150 TE tests and 100 and 150 TE tests. The

value of z is of 1.63 in the 30 and 100 TE correlation test, which is lower than 1.96 and higher

than -1.96, confirming the null hypothesis, proving there are no changes between the Distance

Errors obtained in the first and second tests done for 6 MPs. The value of z in the 30 and 150

TE correlation test was of 2.91, which is higher than 1.96, meaning that the null hypothesis was

rejected and that there is change between the two populations. The same happened in the 100 to

150 TE correlation test, which z had a value of 2.31 that is higher also than 1.96, hence the

research hypothesis was confirmed and it's proved there is change between these 2 populations

of  Distance  Errors.  

In the 30 to 150 TE correlation test, the number of negative differences is much higher

than  the  number  of  positive  ones,  indicating  that  the  change  between the  2  populations  is

towards the deterioration of the accuracy of the ANN in this environment, confirming what

Table  4.19 shows. The same happens with between the 100 and 150 TE tests, meaning that

although Table 4.19 shows an improvement of 2.08% in the MDE, the change is still negative in

relationship to the growth of the number of Training Examples between the 2 tests.

Table 4.21: Statistical metrics of ANN in the TiZ Entrance Hall scenario (ST – 6 MPs) 

Number of Training Examples

30 100 150

Mean Variance of DE (m) 1,48 1,7 1,26

Mean Standard Deviation of DE (m) 1,24 1,3 1,12

Mean Bias Inferred x (m) 0,01 0,2 0,18

Mean Bias Inferred y (m) 0,04 0,07 0,42
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Max DE (m) 4,72 4,99 5,81

Min DE (m) 0,07 0.44 0,1

Hamming Loss (%) 62 % 72% 59%

Exact Match Ratio (%) 0 0 0

Table 4.21 presents the descriptive statistical metrics obtained by the 3 tests done using

Static Training in the TiZ Entrance Hall scenario for 6 MPs. As it can be observed, the value of

the Mean Variance of the DE and the value of the Mean Standard Deviation of DE does not

change significantly between tests. Also, these values are quite similar to the ones obtained by

the 3 MPs test, which means that the algorithm behaved similarly in terms of position inference

for the 2 different configurations. The Mean Bias either of x and y also have the same kind of

progression as the ones in the 3 MPs test, strengthening the affirmation done in the previous

sentence. The Maximum DE grows progressively when comparing test-by-test, from the value

of 4.72m in the 30 TE test, to 4.99m in the 100 TE test and to 5.81m in the 150 TE test. The

Minimum DE is close to 0 in the 30 and 150 TE tests and of 0.44m in the 100 TE test, which is

also not far from the real position in that single case in such a wide scenario as the TiZ Entrance

Hall is.

The Hamming Loss and the Exact Match Ratio have the same exact values as the ones

obtained  by  the  3  MPs  test,  which  shows  that  the  algorithm  did  not  improvement  its

performance by adding more different Measured Positions to the training data set.

The last test done using ANN to infer positions in the TiZ Entrance Hall was done using

9 MPs and the only test done was with 30 TE. This was a decision taken based on the lack of

improvements in the MDE in the 6 MPs tests by adding a higher number of TE.

Table 4.22: MDE using ANN in the TiZ Entrance Hall Scenario (9 MPs).

 Number of Training Entries

30

Mean Distance Error
(m)

2,07

The obtained MDE in the 9 MPs test using 30 TE was of 2.07m. It shows again a very

slight deterioration when comparing with the 3 MPs and the 6 MPs 30 Training Examples tests,

which allowed the conclusion that the increase of number of MPs in the TiZ Entrance Hall

scenario did not improve the accuracy of the ANN algorithm when inferring a position. Still,

due to the fact that in each one of the tests more MPs were added but the total number of TE

was maintained, this small worsening in the MDE as the number of MPs rise can be assigned to

the fact that the number of TE per MP decreased from test to test – in the case of the 3 MP test,

the number of TE per MP was of 10, in the case of the 6 MP test the number of TE per MP was
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of 5 and in the case of the 9 MP test the number of TE per MP was of 3 or 4, in some randomly

chosen Measured Positions.

Table 4.23: Statistical metrics of ANN in the TiZ Entrance Hall scenario (ST – 9 MPs) 

Number of Training Examples

30

Mean Variance of DE (m) 1,48

Mean Standard Deviation of DE (m) 1,24

Mean Bias Inferred x (m) 0,01

Mean Bias Inferred y (m) 0,04

Max DE (m) 4,72

Min DE (m) 0,07

Hamming Loss (%) 62 %

Exact Match Ratio (%) 0

The value of the obtained statistics of the 9 MPs 30 TE test are very similar or equal, in

some cases, to the ones obtained either in the 3 MPs 30 TE test and the 6 MPs 30 TE test. This

proves that the behavior of the ANN algorithm, as the number of MP increased, did not change

much in terms of position inference, although the number of TE per MP changed from test to

test.

Table 4.24: Comparison of MDE of ANN in the TiZ Entrance Hall Scenario between 3,

6 and 9 MPs.

Number of Training Entries
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30 100 150

MDE of 3 MPs (m) 1.83 1.73 1.44

MDE of 6 MPs (m) 1.91 2.4 2.35

MDE of 9 MPs (m) 2,07 - - 

As it can be observed in Table 4.24, in the case of the 3 MPs test, as the number of TE

grows the MDE decreases, which means that the rise of the number of the TE increase the

accuracy of the ANN algorithm. The 6 MPs shows a different change, since when the number of

TE grows from 30 to 100, the MDE increases and it stabilizes from 100 to 150 TE. Comparing

vertically the results, the only case between different number of MPs used as test in which the

MDE does not increase much is the 30 TE case.

Figure 4.9: Comparison of MDE between 30, 100 and 150 TE.

Figure 4.9 proves that. It can be seen that in the 30 TE case, the MDE slightly increases,

although that increase can be asserted to the fact that the number of TE per MP decreases when

the number of MP rises, as it was stated before. In the other hand, either the 100 and the 150 TE

cases show a growing curve when the number of MP rises. This was the main reason why in the

9 MP tests, the only one that was done was the one that didn't show deterioration in terms of

accuracy, hence only the 30 TE test was chosen. Since it also did not show improvements in the

accuracy, it was decided not to do another tests with 12 MP using ANN.

4.4.2 Using Support Vector Machines
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Exactly like with the ANN approach, the first tests done using the SVM algorithm were

in the Meeting Room scenario, right after the data without usage of ML was gathered. The

criteria to remove further tests followed the same rules as in the ANN approach, meaning that if

Continuous  Training  didn't  show  improvements  in  terms  of  accuracy  in  a  specific  testing

scenario  and  if  it  didn't  improve  the  accuracy  when  comparing  with  the  results  of  Static

Training, it would be removed from further tests; also, if some configuration using the SVM

obtained results was worse than the approach without the usage of ML algorithms, further tests

with the SVM algorithm would not be done.

Table 4.25: MDE using SVM in the Meeting Room Scenario (Static Training).

Number of Training Examples

30 100 150

Mean Distance Error (m) 2.37 2.27 2.66

Mean Distance Error Change from the Previous test (%) - 4.2 % -17,18 %

The  first  test  done  with  the  SVM  algorithm was  using  Static  Training  as  training

configuration  and  using  the  same  tests  structured  used  until  this  point.  As  Table  4.25

demonstrates, the MDE in the Meeting Room scenario decrease slightly from the 30 TE test to

the 100 TE test and increased a bit more slightly from the 100 TE test to the 150 TE one. Still,

again  with  the  goal  of  proving  or  disproving  the  hypothesis  that  the  change  between  the

generated Distance Errors of all the inferred positions using SVM did not change between the

different number of TE, the Wilcoxon Signed Rank test was used.

Table 4.26: WSR test for SVM between the Meeting Room scenario tests (ST).

Training Examples Correlations

30 – 100 30 - 150 100 - 150

Number of positive differences 23 18 14

Number of negative differences 16 21 25

T 136 549 455

z -3.54 2.21 0.9

Table  4.26 shows  the  output  variables  of  the  Wilcoxon  Signed  Rank  test,  used  to

correlate the populations generated by the usage of the SVM algorithm with different Training

Examples. It can be observed that the value of z in the 30 TE to 100 TE correlation test is of
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-3.54,  which  is  lower  than  -1.96,  hence  the  null  hypothesis  is  rejected  and  the  research

hypothesis can be asserted. The same happened in the correlation between 30 and 150 Training

Examples' tests, with an output z of 2.21, higher than 1.96. In the 100 to 150 correlation test, the

output z is of 0.9, which is higher than -1.96 and lower than 1.96, proving the null hypothesis,

meaning that there is no change between those two tests. In the cases where there was change,

the change was towards more accuracy in the 30 TE to the 100 TE correlation test, due to the

fact that there are more positive differences than negative ones and towards less accuracy in the

inferred positions by the mobile device in the 30 TE to 150 TE correlation tests, since there are

more negative differences than positive ones. This proves what Table  4.25 shows in terms of

percentile change from test to test.

Figure 4.10: Variation of DE in the 3 tests done in the MR scenario using ST.

Figure  4.10 shows that the variation between Distance Errors obtained in the 150 TE

test is bigger than in the other 2 tests. Also, the number of samples which the Distance Error is

above 2m of distance is quite big for all the tests. In order to understand better these facts, a

descriptive statistical analysis was done, evaluating several metrics that were obtained from the

population of test samples gathered.

Table 4.27: Statistical metrics of SVM in the Meeting Room Scenario (ST).

Number of Training Examples

30 100 150

Mean Variance of DE (m) 1.24 1.21 1.8

Mean Standard Deviation of DE (m) 1.12 1.1 1.34

Mean Bias Inferred x (m) 0.92 0.21 0.54

Mean Bias Inferred y (m) 0.8 0.92 1.48

Max DE (m) 4.64 5.58 5.64

Min DE (m) 0.58 0.39 0.43
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Hamming Loss (%) 87.18 % 94.49 % 87.18%

Exact Match Ratio (%) 0 % 0 % 0 %

In terms of descriptive statistics generated using the obtained populations of data from

the tests using the SVM algorithm in the Meeting Room scenario and Static Training as training

configuration, Table 4.27 shows that the Mean Variance of DE and the Standard Deviation of

DE slightly decreases from the 30 to 100 TE cases and increases fairly again in the 150 TE test.

This may be one of the reasons why the MDE in the 150 TE test increased. In terms of Mean

Bias of Inferred x, decreased significantly from the 30 TE test to the 100 TE test, indicating

more variations in the x coordinate inference and increases again between the 100 TE to the 150

TE tests.  The Mean Bias  of  Inferred y is  quite  stable in  the 30 TE and 100 TE tests  and

increases significantly from the 100 TE test to the 150 TE one. This may be another reason why

the MDE increased in the 150 TE test, when compared to the previous ones. The Maximum DE

is high in the 3 cases, being the lowest in the 30 TE one. The Minimum DE is low for the 3 TE

tests and the change between them is also low, in the order of tens of centimeters.

The Hamming Loss is always close to 90% in the 3 cases, meaning that the majority of

the inferred positions are more than 2 meters of distance away of the real positions, which for

such a small scenario is huge. The Exact Match Ratio is 0 in every sample of the 3 tests done.

After  the  Static  Training  test,  it  was  done  a  Continuous  Training  test  in  the  same

scenario using  SVM and with the same test  structure  as  the ones  before.  The goal  was to

compare the behavior between Static Training and Continuous Training tests.

Figure 4.11: Variation of DE in the 3 tests done in the MR scenario using CT.

Figure  4.11 shows the variation of Distance Errors in the Meeting Room scenario using

Continuous Training. As it can be observed, all the tests done contain big differences between

their Maximum Distance Errors and Minimum Distance Errors, which means that although the
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Mean Variance of DE and Mean Standard Deviation of DE were stable when compared with

each others, it was still high.

 

Table 4.28: MDE using SVM in the Meeting Room Scenario (CT).

Number of Training Examples

30 100 150

Mean Distance Error (m) 2.65 2.54 2.1

Mean Distance Error Change from the Previous test (%) 0 4.15 % 17.32 %

As Table 4.28 shows, the MDE decreases as the number of TE increases in this case. It

starts at 2.65m in the 30 TE, going to 2.54m in the 100 TE test and finishing in 2.1m in the 150

TE one.  This  is  an  indicator  that  the  Continuous  Training  in  the  Meeting  Room scenario

performed better than the Static Training approach in terms of position inference accuracy. Still,

it was necessary to correlate the data of the different tests done in order to prove/disprove the

hypothesis that this change really exists or if the data gathered was biased by external factors.

Table 4.29: WSR test for SVM between the Meeting Room scenario tests (CT).

Training Examples Correlations

30 – 100 30 - 150 100 - 150

Number of positive differences 21 25 24

Number of negative differences 18 14 15

T 171 105 78

z -0.31 -0.4 -0.44

These  correlations  were  done  through  the  Wilcoxon  Signed  Rank  test.  The  results

output by the WSR test are organized in Table 4.29, where it can be observed that none of the z

values is lower than 1.96 or higher than 1.96, meaning the null hypothesis is confirmed for all

the  correlations,  which  indicates  that  there  was  no  significant  change  between  tests  when

α=0.05 .

Because Continuous Training does not improve the accuracy of the position inference

by adding Training Examples in the Meeting Room scenario, it was decided to remove it from

the tests in the TiZ Entrance Hall scenario, a much bigger and wider one, where this training

configuration would not improve the results also, like it didn't in the Meeting Room one.
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The step after was to test the Static Training approach in the TiZ Entrance Hall scenario

with the goal of evaluating how the algorithm behaved in a bigger area to infer positions and to

compare  its  results  with  the  ones  of  the  other  implemented  algorithms.  The  test  structure

followed the same one that was used in all the previous tests.

Table 4.30: MDE using SVM in the TiZ Entrance Hall Scenario (ST – 3 MPs).

Number of Training Examples

30 100 150

Mean Distance Error (m) 5.52 3.96 4,56

Mean Distance Error Change from the Previous test (%) - 28.26 % -15.15 %

The Mean Distance Error obtained by the test done using 3 Measured Positions and the

SVM algorithm in the TiZ Entrance Hall scenario using Static Training as training configuration

are organized in Table 4.30. As it can be seen, the value of MDE decreased significantly in the

100 TE test when comparing with the 30 TE one and increased again in the 150 TE test when

comparing with the 100 TE one. In order to verify the correlations between the different tests,

the Wilcoxon Signed Rank test was done.

Table 4.31: WSR test for SVM between the TiZ Entrance Hall Scenario tests (ST – 3

MPs).

Training Examples Correlations

30 – 100 30 - 150 100 - 150

Number of positive differences 9 10 5

Number of negative differences 6 5 10

T 21 15 65

z -2.21 -.2.56 0.28

Table 4.31 shows the output values of the WSR test. As it can be seen by the row of the

values of z, the null hypothesis of the correlations 30-100 and 30-150 was rejected, since the

values of z are below -1.96 and the research hypothesis in the correlation 100-150 was rejected,

since the value of z is higher than -1.96 and lower than 1.96, when α=0.05 . This means

that between the 30 TE test and the 100 TE test and between the 30 TE test and the 150 TE test

there was an improvement  of the accuracy of the SVM algorithm, due to  the fact  that  the

number  of  positive  differences  is  higher  than  the  number  of  negative  ones  in  both  the

correlations.
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Figure 4.12: Variation of DE using SVM in the TiZ Entrance Hall and ST (3 MPs).

Figure 4.12 shows the Distance Errors per each of the training samples gathered in the

TiZ Entrance Hall scenario using Static Training. As it can be seen, the variation of Distance

Errors obtained is big for the 3 tests done, being more marked in the 30 TE test (with more

highs and lows). The 100 TE test was the one with the DE are more equilibrated and the 150 TE

test also possessed big variations, specially in the last inferences done where the DE grows

almost consistently. In order to understand better these variations in the Distance Errors of the

samples, a statistical analysis that evaluates several metrics was done.

Table 4.32: Statistical metrics of SVM in the TiZ Entrance Hall Scenario (ST – 3 MPs).

Number of Training Examples

30 100 150

Mean Variance of DE (m) 15.67 2.96 6,48

Mean Standard Deviation of DE (m) 3.95 1.72 2,54

Mean Bias Inferred x (m) 3.25 1.21 2,34

Mean Bias Inferred y (m) 2.52 1.93 1,05

Max DE (m) 13.82 6.14 11,14

Min DE (m) 0 1.98 1,39

Hamming Loss (%) 86.67% 100% 80%

Exact Match Ratio (%) 6.67% 0% 0%

Although  the  WSR test  confirms  improvement  in  the  accuracy  of  the  technique  if

instead of 30 TE the algorithms use 100 or 150 TE, the calculated statistical metrics organized

in  Table  4.32 demonstrate  an  abnormal  amount  of  Mean Variance  of  DE,  Mean Standard
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Deviation of DE and Mean Bias for both x and y, both  in the 30 TE test and in the 150 one. In

the case of the 100 TE test, the Mean Variance of DE is still high but a bit more acceptable than

in the other cases. Still, the Hamming Loss is 100% in the 100 TE case, which means all the

inferred values were more than 2 meters of distance away from the real positions of the mobile

device. 

Due to the fact that the MDE obtained in the tests done using 3 MPs in the TiZ Entrance

Hall scenario are worse than the ones obtained without usage of any ML techniques, no more

tests were done using this algorithm.

4.4.3 Using k-Means Clustering

The  tests  done  using  the  k-Means  Clustering  approach  followed  exactly  the  same

structure as the ones using the ANN and SVM algorithms. It was started by doing tests in the

Meeting Room scenario, then it was evaluated the produced results and only after tests in the

TiZ Entrance Hall scenario were done. The tests exclusion criteria are the same as the ones used

for the tests of the other 2 implemented algorithms.

Table 4.33: MDE using k-Means Clustering in the MR Scenario (ST).

Number of Training Examples

30 100 150

Mean Distance Error (m) 2.43 1.37 1.52

Mean Distance Error Change from the Previous test (%) - 43,62 % -10,94 %

The first testing scenario used was the Meeting Room of Latitude N's office. As usual, 3

tests with 3 different Measured Positions using Static Training were done. The Mean Distance

Errors obtained can be seen in Table 4.33, where the 30 TE test had a 2.43m MDE, the 100 TE

test had a 1.37m MDE and the 150 TE test had a 1.52m MDE. The accuracy of the position

inference increase significantly from the 30 TE test to the 100 TE test – in 43.62 % - and

decreased  slightly  from  the  100  TE  test  to  the  150  TE  one  –  in  10.94%.  Still,  before

comparisons  were  done,  it  was  necessary  to  evaluate  if  the  change  in  the  populations  of

Distance Errors obtained actually existed or not. In order to do this, correlations between the

results of the tests were done using the Wilcoxon Signed Rank test.

Table 4.34: WSR test for k-Means Clustering between the MR scenario tests (ST).

Training Examples Correlations
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30 – 100 30 - 150 100 - 150

Number of positive differences 30 29 19

Number of negative differences 9 10 20

T 45 55 570

z -4.81 -4.67 2.51

Table  4.34 has  the  outputs  of  the  Wilcoxon  Signed  Rank  tests  done  between  the

different  Training Examples  populations of Distance Errors.  It  can be observed that  all  the

correlations possess values of z either below -1.96 and above 2.51, which means that for all of

them the null hypothesis was rejected and the research hypothesis was confirmed. In the 30 –

100 Training Examples and in the 30 - 150 correlations, the number of positive differences

exceeds the number of negative differences, which means that there was an improvement in the

accuracy of the position inference by adding Training Examples in these two cases. In the 100-

150 TE correlation, there were more negative differences than positive ones, which means that

there was a negative correlation between the 2 tests, even though it was small since the number

of negative differences exceeds by only 1 the number of positive ones.

Table 4.35: Statistical metrics of k-Means Clustering in the MR Scenario (ST).

Number of Training Examples

30 100 150

Mean Variance of DE (m) 1.23 0.68 0.68

Mean Standard Deviation of DE (m) 1.11 0.82 0.82

Mean Bias Inferred x (m) 0 0.28 0

Mean Bias Inferred y (m) 1.29 0.05 0.35

Max DE (m) 4.58 4.52 4.4

Min DE (m) 0.64 0.31 0.24

Hamming Loss (%) 92.31% 58.97 % 69.23%

Exact Match Ratio (%) 0 % 0 % 0 %

Table  4.35 presents  the  statistics  obtained  by  the  usage  of  the  k-Means  Clustering

algorithm in the Meeting Room scenario using Static Training. As it can be seen, the Mean

Variance of the DE and the Mean Standard Deviation of the DE decreases from the 30 TE test

to the 100 TE test and is maintained from the 100 TE test to the 150 TE one. The values of the

Mean Bias of Inferred x are always close to 0, and it can be seen that the test where the MDE

was smaller is the one that possesses the Mean Bias of x that is 0.28 – the 100 TE test. The

Mean Bias of Inferred y is quite high in the 30 TE test comparatively to the Mean Bias of

Inferred y of the 100 TE and the 150 TE tests, that are close to 0m. The Maximum DE decreases
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slightly as the number of Training Examples increased from test to test and the same happened

with the Minimum DE. 

The Hamming Loss is of 92.63% in the 30 TE test, which reflects a very high number

of position inferences with DE above 1m. Comparatively to the 30 TE test, the Hamming Loss

decreases significantly in the 100 TE test with a value of 58.67% and it increases lightly again

in the 150 TE test to a value of 69.23%. The Exact Match Ratio is 0 % in all the 3 tests done,

demonstrating that there were no position inferences done with full accuracy.

The tests done after the Static Training ones in the Meeting Room scenario were the

same kind of  tests  but  then  using  the  Continuous Training  configuration.  The goal  was  of

comparing the 2 approaches results using the same data set and the same training and testing

conditions.

Table 4.36: MDE using k-Means Clustering in the MR Scenario (CT).

Number of Training Examples

30 100 150

Mean Distance Error (m) 1.74 1.99 1.85

Mean Distance Error Change from the Previous test (%) 0 % -14.38 % 7.04 %

Table 4.36 present the obtained MDE for the 3 tests done using Continuous Training in

the Meeting Room scenario. The first test, using 30 TE, obtained a MDE of 1.74m; the second

test, using 100 TE, obtained a MDE of 1.99m; the third, using 150 TE, obtained a MDE of

1.85m. Although apparently there were significant changes in the population of DE obtained by

each one of the tests, that resulted in different Mean Distance Errors, the populations of data

were submitted to the Wilcoxon Signed Rank test to confirm it.

Table 4.37: WSR test for k-Means Clustering between the MR scenario tests (CT).

Training Examples Correlations

30 – 100 30 - 150 100 - 150

Number of positive differences 19 18 23

Number of negative differences 20 21 16

T 570 549 136
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z 2.51 2.21 -3.54

Table 4.37 presents the output values of the WSR test. As it can be observed, the values

of z are all below -1.96 or above 1.96, using α=0.05 , which means that there was change

between the populations correlated. In the first case, the correlation between the 30 TE test and

the 100 TE test, show that the number of negative differences is higher than the number of

positive ones, meaning that from the 30 TE test to the 100 TE one there was deterioration of the

accuracy of the positioning inferences. The same happened in the second correlation, from the

30  TE  to  the  150  TE  tests,  confirming  the  MDE data  available  in  Table  4.36.  The  third

correlation is the only one of the 3 that shows improvement in the accuracy of the positioning

inferences, from the 100 TE test to the 150 TE one, since it has more positive differences than

negative ones. This means that, using this configuration in a small scenario like the Meeting

Room scenario,  increasing the number of Training Examples from 100 to 150 will  produce

better results than any other change. Still, the test that presents the lower MDE is the 30 TE one,

as it was stated previously.

Table 4.38: Statistical metrics of k-Means Clustering in the MR Scenario (CT).

Number of Training Examples

30 100 150

Mean Variance of DE (m) 1.7 1.33 1.85

Mean Standard Deviation of DE (m) 1.3 1.15 1.18

Mean Bias Inferred x (m) 0.2 0.42 0.4

Mean Bias Inferred y (m) 0.08 0.36 0.31

Max DE (m) 4.99 4.62 6.08

Min DE (m) 0 0 0.16

Hamming Loss (%) 71.79 % 74.36 % 76.92 %

Exact Match Ratio (%) 5.13 % 2.56 % 0 %

Table  4.38 contains the statistical metrics obtained by the populations of the 3 tests

done in the Meeting Room scenario using Continuous Training. As it can be seen, the Mean

Variance of DE was lower in the 100 TE test with a value of 1.33m, when in the 30 TE and 150

TE cases the values are of 1.7 and 1.85m, respectively. The Standard Deviation of DE is similar

in the 3 tests and such is the Mean Bias of the Inferred x. The Mean Bias of the Inferred y is

close to 0 in the 30 TE test while it's a bit higher in the 100 and 150 Training Examples cases

(0.36m and 0.31m, respectively). This means that in these 2 last tests, the variety of positions

inferred is bigger. The Maximum DE is of 4.99m in the 30 TE case, lightly lower on the 100 TE

test – with a value of 4.62m – and reaches the highest of the 3 tests in the 150 TE case, with a

value of 6.08m. The Minimum DE is of 0m in both the 30 TE and the 100 TE cases and of
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0.16m in the 150 TE test.  Relatively to ML statistical  metrics,  the Hamming Loss  is  quite

similar in the 3 tests, as it can be observed. The Exact Match Ratio is of 5.13% in the 30 TE test,

of 2.56% in the 100 TE test and of 0% in the 150 TE case.

Figure 4.13: Comparison between the MDE of the 3 tests using ST and CT.

As it happened in the tests done using the SVM algorithm, the Continuous Training

approach behaves worse than Static Training. Figure 4.13 compares the MDE obtained by the 2

different training configurations for the 3 different tests. The only time Continuous Training

obtained a lower MDE than the Static Training configuration was in the 30 TE case. In the other

2 tests done, Static Training performs better in terms of algorithm accuracy than the Continuous

Training one. This conclusion allowed for the Continuous Training approach not to be used in

the tests in the TiZ Entrance Hall scenario, since it meets one of the tests' exclusion criteria. 

Table 4.39: MDE using k-Means Clustering in the TiZ Entrance Scenario (ST – 3 MPs).

Number of Training Examples

30 100 150

Mean Distance Error (m) 2.93 2.2 1.9

Mean Distance Error Change from the Previous test (%) - 24.89 % 13.96 %

The next step was to test the k-Means Clustering approach in the TiZ Entrance Hall

scenario using 3 MPs. Table 4.39 presents the obtained Mean Distance Errors obtained for each
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one of  the different  tests  using  Static  Training.  The MDE decreased as  the number  of  TE

increased,  as  it  can  be  observed.  The  next  step  was  to  correlate  the  data  to  confirm this

improvement  in  the  accuracy  of  the  technique  as  the  number  of  TE rose.  To do  that,  the

Wilcoxon Signed Rank test was used, once again.

Table 4.40: WSR test for k-Means Clustering between the TiZ Entrance Hall (ST – 3

MPs).

Training Examples Correlations

30 – 100 30 - 150 100 - 150

Number of positive differences 11 11 9

Number of negative differences 4 4 6

T 10 10 21

z -2.84 -2.84 -2.22

Table 4.40 presents the output data from the Wilcoxon Signed Rank test that correlates

the populations of the tests done with different TE in the TiZ Entrance Scenario using Static

Training and 3 different Measured Positions. Due to the fact that all the values of z are either

above 1.96 or below -1.96, it means that in all the 3 shown correlations the null hypothesis was

rejected  and  the  research  hypothesis  was  accepted,  meaning  that  there  was  change  as  the

number of TE rose. That change is positive in all the 3 correlations, since the number of positive

differences is higher than the number of negative differences. This means that from 30 TE to

100 TE, from 30 TE to 150 TE and from 100 TE to 150 TE, the accuracy of the position

inference is enhanced.

Table 4.41: Statistical metrics of k-Means Clustering in the TiZ Entrance Hall (ST – 3

MPs).

Number of Training Examples

30 100 150

Mean Variance of DE (m) 2.68 1.2 0.73

Mean Standard Deviation of DE (m) 1.64 1.10 0.85

Mean Bias Inferred x (m) 1.16 0.63 0.86

Mean Bias Inferred y (m) 0.6 0.21 0.21

Max DE (m) 6.12 4.49 3.08

Min DE (m) 0.75 0.7 0.32
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Hamming Loss (%) 66.67% 53.33% 40 %

Exact Match Ratio (%) 0 % 0 % 0 %

Ahead, it was generated the statistics that correspond to each one of the 3 tests done

using the k-Means algorithm.  Table 4.41 contains the values obtained. As it can be observed,

the Mean Variance of DE and the Mean Standard Deviation of DE, decrease as the number of

TE increase. They were actually quite high in the 30 TE test, but from the 100 TE test on it

reaches common values. The Mean Bias of the Inferred x and y are also higher in the 30 TE test

and stabilize in the 100 and 150 TE tests. The Maximum DE and Minimum DE decrease also as

the number of TE increases, achieving an unseen low value for the Minimum DE in this testing

scenario of 3.08m in the 150 TE test. 

The Hamming Loss decreases also as the number of TE increase, hitting 40% in the 150

TE test, which means that only 40% of the data gathered had DE higher than 2m. The Exact

Match  Ratio  had  0% for  all  the  3  tests,  meaning that  no  entries  were  gathered  where  the

accuracy in the position inference was total.

Since the Mean Distance Errors obtained by the k-Means Clustering approach were so

low and were lower than the ones of the technique that does not use any AI, it was decided to

repeat the test in the same scenario but then with 6 MPs, in order to study the behavior of the

algorithm with this new configuration and compare it with the one with 3 MPs.

Table 4.42: MDE using k-Means Clustering in the TiZ Entrance Hall (ST– 6 MPs).

Number of Training Examples

30 100 150

Mean Distance Error (m) 3.24 3.23 2.7

Mean Distance Error Change from the Previous test (%) 0 % 0.3 % 16.4 %

Table  4.42 shows the  MDE for  each of  the tests  done  using  6 MPs.  As  it  can be

observed, the MDE decreases as the number of TE increase, starting from an MDE of 3.24m in

the 30 TE test, decreasing very slightly to 3.23m in the 100 TE test and achieving the value of

2.7m in the 150 TE test. Hence, this configuration shows the same behavior as the one with 3

MPs, although the Mean Distance Errors are higher in this configuration. In order to correlate

the populations of Distance Errors obtained and verify if there was significant change between

them, the Wilcoxon Signed Rank test was used.
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Table 4.43: WSR test for k-Means Clustering between the TiZ Entrance Hall (ST – 6

MPs).

Training Examples Correlations

30 – 100 30 - 150 100 - 150

Number of positive differences 15 16 19

Number of negative differences 15 14 11

T 345 105 66

z 2.31 -2.62 -3.42

Table  4.43 contains  the  output  values  of  the  WSR  test.  The  z  value  for  all  the

correlations is either above 1.96 or below -1.96, which means that in all the correlations the null

hypothesis  was  rejected  and the research  hypothesis  accepted,  hence there  were significant

changes between them. The change is positive in the 30-150 TE tests correlation and in the 100-

150 TE tests one, since the number of positive differences is higher than the number of negative

ones.  In  the 30-100 TE tests  correlation,  the number of positive differences is  equal  to the

number of negative ones, meaning that even with the null hypothesis being rejected, the change

is not significant.

Table 4.44: Statistical metrics of k-Means Clustering in the TiZ Entrance Hall (ST – 6

MPs).

Number of Training Examples

30 100 150

Mean Variance of DE (m) 4.74 6.17 4

Mean Standard Deviation of DE (m) 2.18 2.48 2

Mean Bias Inferred x (m) 0.58 0.44 0.31

Mean Bias Inferred y (m) 0.98 0.1 0.4

Maximum DE (m) 8.22 8.44 10.17

Minimum DE (m) 0.01 0.2 0.37

Hamming Loss (%) 73.33% 63.33 % 63.33 %

Exact Match Ratio (%) 0 % 0 % 0 %

As Table  4.44 shows, the Mean Variance of DE and the Mean Standard Deviation of

DE are quite high. This allows the conclusion that as the number of MPs rise, the chaos in the

current model rises too, allowing for higher Maximum DE and really low Minimum DE. The
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Mean Inferred x is similar in the 3 tests done and the Mean Inferred y is higher in the 30 TE

example, lowering considerably in the 100 TE example and achieving an expected bias value in

the 150 TE case. Relatively to the ML statistics, the Hamming Loss assumed a value of 73.33%

in the 30 TE test and of 63.33% in the 100 and 150 TE tests. The Exact Match Ratio is of 0% in

all the 3 cases.

Table 4.45: Comparison of MDE of the k-Means Clustering in the TiZ Entrance Hall

(3-6 MPs).

Number of Training Entries

30 100 150

MDE of 3 MPs (m) 2.93 2.2 1.9

MDE of 6 MPs (m) 3.24 3.23 2.7

Although as the number of Training Examples increases and the Mean Distance Error

decreases using 6 Measured Positions, the MDE obtained by the 3 tests done in the current test

were worse than the ones obtained in the 3 MPs tests. Henceforth, this was the last test done in

the TiZ Entrance Hall scenario, due to the fact that the data gathered until that moment was

enough to prove/disprove the hypothesis formulated initially and properly justify them. Table

4.46 contains the MDE of all the tests done both with 3 and 6 MPs using Static Training.

4.5 Intelligent Position Inference vs. Common Position Inference

Due to the fact that the amount of tests done is quite high and the goal of this sub-

chapter is to compare the ML approaches with the data gathered in the same environments and

with the same configurations, only the tests with the best scores for each scenario will be submit

to comparison with its equivalent No-ML data. 

In the majority of the comparisons that will be established throughout this sub-chapter,

the amount of data of the No-ML approaches were submit to a reduction of the amount of

samples  to  be  used.  This  was  done  because  the  number  of  examples  gathered  using  the

implemented ML algorithms was usually less than the number of samples gathered by the No-

ML approach. However, the selection of the No-ML samples used for comparison was done

carefully,  taking  into  consideration  the  fact  that  they  had  to  correspond  to  the  same  real

positions and in order that the Mean Distance Error obtained did not change significantly.

For each of the algorithms, comparisons will be made towards the 2 different testing

scenarios  (the Meeting Room and the TiZ Entrance Hall,  respectively).  Also,  the statistical

metrics will all be presented and compared, in order to understand better which were the major

differences between the populations generated by each of the algorithms.

98

2

4

6

8

10

12

14

16

18

20

22

24

26



Tests, Results and Discussions

4.5.1 ANN vs No-ML

The configuration that achieved the lowest MDE in the Meeting Room scenario using

Artificial Neural Networks to infer position was the one of 150 Training Examples using Static

Training.  Hence,  for  the Meeting Room scenario,  the values  used  for  comparison  with  the

approach that does not use any ML algorithm to infer position will be the ones of the specific

test. But first of all, it's necessary to evaluate if there was significant change between the two

populations to be compared and if there was, to evaluate if that change is positive or negative.

The Wilcoxon Signed Rank test was used for that purpose and it output z with the value of -4.35

and  with  27  out  of  39  positive  differences.  This  means  that  when  comparing  the  No-ML

technique and the ANN approach with this configuration, there was an improvement in the

accuracy of the positioning inference.

Table 4.46: Results of the best ANN test and the No-ML approach in the MR.

No-ML ANN Change (%)

Mean Distance Error (m) 2.2 1.23 -83.3

Mean Variance of DE (m) 2.03 0.56 -262.5

Mean Standard Deviation (m) 1.42 0.75 -89.3

Mean Bias of Inferred x (m) 0.24 0.12 -100

Mean Bias of Inferred y (m) 0.53 0.3 -73,3

Maximum DE (m) 6.19 2.95 -109,8

Minimum DE (m) 0.1 0.13 23.07

Hamming Loss (%) - 59 -

Exact Match Ratio (%) - 0 -
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Figure 4.14: Best MDE of ANN in the MR scenario in comparison with No-AI.

As Table 4.46 shows, the Mean Distance Error of the No-ML approach using 150 TE

and Static Training in the Meeting Room scenario was of 2.2m, while the MDE of the ANN

approach with the same configuration was of 1.23m, a cutback of 83.3%. The Mean Variance of

DE is 262.5 % higher than in the ANN approach – 2.03m against 0.56m. The Mean Standard

Deviation of DE 1.42m and the one of ANN is of 0.75m, a reduction of 89.3 %. The Mean Bias

of Inferred x is of 0.24m and the one of the ANN approach is of 0.12m, which represents a

retrenchment of 100%. In the case of the Bias of the Inferred x, although the one of the ANN

approach is lower, the values don't make that much numerical difference, which ends up being

not so much significant.  With the Mean Bias of Inferred y the same thing happens, with a

cutback of 73.3% although it's not very significant since both values are pretty similar. The

Maximum DE was reduced from 6.19m to 2.95m, representing a shrinkage of 109.8 %. The

Minimum DE was the only statistical metric that rose, even though the difference is of only

0.03m. Figure  4.14 shows the Distance Errors per samples that correspond to the same real

positions.  It  can  be  noticed  that  there  is  a  clear  gap  between  the  No-AI  and  the  ANN

approaches, which indicates a big difference between the amount of DE produce by each one of

the methods.

In the TiZ Entrance Hall scenario, the test that possessed the lowest MDE was the one

of 150 TE using 3 MPs. Hence, the statistics produced by that test will be the ones compared

with the ones from the No-AI population statistics. As usual, the first step is to verify if there

was change between the 2  populations  of  DE to  be compared  posteriorly.  It  was  used  the

Wilcoxon Signed Rank test to check that.  The test output z with the value of -2.83 and 11

positive differences out of 15. This means that there was an improvement in the accuracy of the

positioning inference technique, using the same testing conditions as the ones in the 150 TE

using 3 MPs test.
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Table 4.47: Results of the best ANN test and the No-AI in the TiZ Entrance Hall.

No-ML ANN Change (%)

Mean Distance Error (m) 3.45 1.43 -141.26

Mean Variance of DE (m) 1.48 1.41 -4.9

Mean Standard Deviation (m) 1.22 1.19 -2.52

Mean Bias of Inferred x (m) 0.42 0.57 14.04

Mean Bias of Inferred y (m) 0.56 0.18 -211.1

Maximum DE (m) 6.48 3.65 -77,53

Minimum DE (m) 0.67 0.37 -81.08

Hamming Loss (%) - 33.3 -

Exact Match Ratio (%) - 0 -

Figure  4.15: Best MDE of ANN in the TiZ Entrance Hall in comparison with

No-AI.

Table 4.47 contains the descriptive statistical metrics of the ANN approach with 150 TE

using 3 MPs in the TiZ Entrance Hall scenario in direct comparison with the same approach

using No-ML to infer positions. As it can be seen, there was a decrease of 141.26 % in the

Mean Distance Error, from 3.45m in the No-ML approach to 1.43m using the ANN technique.

In terms of Mean Variance of DE, the values are quite similar, differing both techniques by

4.9%,  which  is  not  a  significant  change.  The  Mean  Standard  Deviation  change  between

approaches is even lower, with a reduction of 2.52% from the first to the second. The Mean

Bias of Inferred x increase 14.04%, from the value of 0.42m in the No-ML approach to 0.57m

of the ANN algorithm. The Mean Bias of Inferred y decreased 211.1%, although numerically

the differences are not severe – from 0.56m to 0.18m, in the No-ML and the ANN approaches,

respectively. The Maximum DE reduced from 6.48m in the No-ML technique to 3.65m using

the ANN algorithm, which is reflected also in the Mean Distance Error values. The Minimum
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DE suffered a cutback of 81.08 %, from 0.67m to 0.37, although the change is not so significant

due to low numerical difference and no reflection in any of the other metrics or on the Mean

Distance Error. Figure 4.15 confirm the huge improvement in terms of accuracy introduced by

the ANN algorithm when comparing to the No-AI approach, where it's noticeable a gap between

the evolution of Distance Errors through the generated data during the tests.

4.5.2 SVM vs No-ML

The  configuration  that  obtained  the  best  results  when  using  the  Support  Vector

Machines approach in the Meeting Room scenario was the one with 150 TE and Continuous

Training. Hence, the comparisons for the Meeting Room scenario will be done using the data

from the position inferences using that configuration and the data from the respective population

using no ML technique. First of all, it was necessary to compare the 2 populations in order to

verify if there was some significant change between them. To do that, the Wilcoxon Signed

Rank test was used and the output value of z was of -2.79, which is lower than -1.96, meaning

that there is an improvement in the accuracy of the position inference, since the number of

positive differences was higher than number of negative ones.

Table 4.48: Results of the best SVM test and the No-ML approach in the MR.

No-ML SVM Change (%)

Mean Distance Error (m) 3.45 2.1 -64.29

Mean Variance of DE (m) 1.48 1.49 0,67

Mean Standard Deviation (m) 1.22 1.22 0

Mean Bias of Inferred x (m) 0.42 0.35 -20

Mean Bias of Inferred y (m) 0.56 0.99 -43.43

Maximum DE (m) 6.48 4.86 -33.33

Minimum DE (m) 0.67 0.83 19.28

Hamming Loss (%) - 74.36 -

Exact Match Ratio (%) - 0 -
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Figure 4.16: Best MDE of SVM in the Meeting Room scenario in comparison with

No-AI.

According to Table 4.48, Mean Distance Error was reduced in 64.29% from the No-ML

approach to the one using SVM – from 3.45m to 2.1m. Both the Mean Variance of DE and the

Mean  Standard  Deviation  of  DE  have  almost  the  same  values,  demonstrating  that  the

differences in the distributions of data are almost none. The Mean Bias of Inferred x has a

difference of 20% from the No-ML approach to the SVM algorithm and the Mean Bias of

Inferred y decreased 43.33% between the first and the second techniques. The Maximum DE is

33.33% lower in the SVM algorithm approach and the Minimum DE is 19.28% higher than in

the  No-ML technique,  although the values  are  quite  similar  numerical,  having no  practical

influence in the MDE of both the approaches.

Relatively to the TiZ Entrance Hall scenario, the tests done with the SVM algorithm

demonstrate that the Mean Distance Error obtained by them is higher than the MDE obtained by

the  approach without  ML.  This  means  that  the  SVM algorithm failed  also  to  improve  the

accuracy of the existent indoor positioning system in the TiZ Entrance Hall scenario.

4.5.3 Clustering vs No-ML

The setup that achieved the best results when using the k-Means Clustering technique in

the Meeting Room scenario was the one with the 100 TE and Continuous Training. Henceforth,

the comparisons for the Meeting Room scenario will be done using the data from the position

inferences using that configuration and the data from the respective population using no ML

technique. The first step was to verify if the changes between the 2 populations were significant

or not. It was used the Wilcoxon Signed Rank test and the output value of z was of  -4.67, which

means the null hypothesis is rejected and the research hypothesis is accepted and because there

were  more  positive  differences  than  negative  ones,  it  can  be  concluded  there  was  an

improvement  in  the  accuracy  of  the  position  inference  by  adding  the  k-Means  Clustering

algorithm. 

Table 4.49: Results of the best k-Means Clustering test and the No-AI approach in

the MR.

No-ML K-Means Clustering Change (%)

Mean Distance Error (m) 1.93 1.37 -40.88

Mean Variance of DE (m) 1.07 0.68 -57.35

Mean Standard Deviation (m) 1.04 0.82 -26.83

Mean Bias of Inferred x (m) 0.17 0.28 39.29

Mean Bias of Inferred y (m) 0.44 0.05 -780

Maximum DE (m) 4.89 4.52 -8,19

Minimum DE (m) 0.1 0.31 67,77
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Hamming Loss (%) - 58.97 % -

Exact Match Ratio (%) - 0 % -

Figure 4.17: Best MDE of k-Means in the MR in comparison with No-AI.

Table 4.49 presents the results of the approach of the k-Means Clustering algorithm that

obtained the best value of MDE – 100 TE using Continuous Training - and the results of the

No-ML algorithm for the same configuration in the Meeting Room scenario. The MDE was

reduce by 40.88% from the No-ML approach to the k-Means Clustering one, from the value of

1.97m to  1.37m,  the  Mean  Variance  of  DE was  cutback  from  the  value  of  1.07m in  the

technique that does not use ML to 0.68m of the k-Means Clustering – representing a curtailment

of 57.35% and the Mean Standard Deviation of DE was retrenched in 26.83 % - from 1.04m to

0.82m in the No-ML technique and in the k-Means Clustering, respectively. All the other values

are  very  similar  numerically,  although  some  of  the  changes  were  accentuated  in  terms  of

percentage.

With respect to the TiZ Entrance Hall scenario, the configuration in which the k-Means

obtained the best results is the one with 150 Training Examples and Static Training using 3

Measured  Positions  for  training.  Before  comparisons  were  established,  it  was  necessary  to

correlate the populations of Distance Errors of both the approaches. To do that, it was use the

Wilcoxon Signed Rank test  with the  goal  of  understanding if  the  change between the two

populations of Distance Errors was significant or not. The WSR test output z with a value of

-2.22, which allowed the rejection of the null hypothesis and the acceptation of the research

hypothesis,  meaning that there was change between the two populations of Distance Errors.

That change is positive, since the number of positive differences is higher than the number of

negative  differences.  This  allowed  the  conclusion  that  the  k-Means  Clustering  algorithm

improved the accuracy of the positioning inferences in relationship to the no-ML technique.
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Table 4.50: Results of the best k-Means and the No-ML in the TiZ Entrance Hall.

No-ML K-Means Clustering Change (%)

Mean Distance Error (m) 3.45 1.9 -81.58

Mean Variance of DE (m) 1.48 0.73 -102.74

Mean Standard Deviation (m) 1.22 0.85 -43.53

Mean Bias of Inferred x (m) 0.42 0.86 51,16

Mean Bias of Inferred y (m) 0.56 0.21 -166.67

Maximum DE (m) 6.48 3.08 -110.39

Minimum DE (m) 0.67 0.32 -109.38

Hamming Loss (%) - 0.4 -

Exact Match Ratio (%) - 0 -
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Figure 4.18: Best MDE of k-Means in the TiZ Entrance Hall in comparison with

No-AI.

Table  4.50 presents the results obtained both by the No-ML algorithm in the 150 TE

case in the TiZ Entrance Hall scenario and the k-Means Clustering algorithm using also 150 TE

and Static Training. It was proven before that this ML approach increased the accuracy of the

indoor positioning system in relationship to the No-ML technique, but the Table 4.50 and the

Figure 4.18 demonstrates it more minutely. The Mean Distance Error decreased 81.58 %, from

the value of 3.45m in the No-ML algorithm to the value of 1.9m in the k-Means Clustering

approach. The Mean Variance of De decreased 102.74%, from 1.48m to 0.73m, while the value

of the Mean Standard Deviation of DE decrease 43.53 % - from 1.22m to 0.85m. The Maximum

DE and Minimum DE decrease both to a bit less than half of the values of the No-ML technique

and although there were some changes in the Mean Bias both for x and y, they remained quite

stable.  Figure  Error:  Reference  source  not  found represents  the  different  Distance  Errors

obtained by each one of the samples of both populations. It's noticeable a gap between the No-

AI Distance Errors and the k-Means Clustering algorithm, where the No-AI DE are almost in all

the cases above the k-Means Clustering Distance Errors.

4.6 Related Works

The comparisons between the results obtained through the test of the 3 implemented

Machine Learning algorithms in the 2 different scenarios and the ones expressed in the studied

literature  are  of  difficult  achievement,  mainly  due  to  the  fact  that  the  equipment  used  is

different,  the training setups are not the same and the scenario configurations are not alike.

Also, none of the papers tests their approaches in 2 different scenarios, which means that the

comparisons per each of the algorithms implemented will be done only with one of the obtained

results in relationship always with the most similar scenario in terms of dimensions or then with

both of them but without the necessary rigor to validate them properly.
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4.6.1 ANN

As it was stated before, the training configuration that presents the lower Mean Distance

Error is the one with 150 Training Examples and using Static Training as training configuration.

The MDE obtained is of 1.23m in the Meeting Room scenario. The best approach found in the

Literature Review phase was [MTT10]. In this approach, the authors implemented a ANN with

4 Input Neurons and 2 Output Neurons, using a Sigmoid Activation function, 4 Hidden Layers

and 5000 training iterations.  The MDE obtained by the authors  was  of 1.43m in a  8x9 m

scenario, which is bigger than the Meeting Room scenario used for testing in this Dissertation's

case. 

Still, if it's compared directly the Meeting Room scenario's obtained results with the

ones obtained by the authors, in the Meeting Room scenario this implementation's best result is

of  1.23m in  an  3.12x6.25m scenario  against  1.43m in  a  8x9 scenario  and of  1.44m in  an

14x17.1m against,  again,  1,43  in  a  8x9  scenario.  This  means  that,  when  compared  to  the

literature results using ANN, the results that the ANN approach here implemented was able to

obtain are quite positive and optimistic, even though direct comparisons are not possible due to

the reasons stated before.

4.6.2 SVM

The article which was selected as the one that the testing scenario was the most similar

with  the  ones  tests  during  this  Dissertation  was  [FAWJC12].  The  authors  developed  and

experimented several different kinds of Support Vector Machines and tested their approaches in

a 49x19m (941 m² of total area) scenario with several different rooms and several obstacles

and the comparisons were done between SVM approaches with different kinds of kernelization

algorithms  and  it  was  proven  that  a-priori  information  can  enhance  the  performance  of

positioning systems. The results are not displayed correctly in order to compare with the ones

achieved with  this  implemented  of  the SVM algorithm,  hence,  direct  comparisons  can't  be

established with this approach.

4.6.3 k-Means Clustering

The article which was selected as the one which application and tests could be more

useful to compare against was the [MLTL08]. The authors tested a variant of the kNN algorithm

applied with Clustering that they developed themselves and they were able to show it would

outperform the kNN approach. The dimensions of the scenario were not revealed in the paper

and the results were shown as 50% of the errors obtained were in the interval [0m ; 1.2m] and

the other 50% were in the interval [1.21m;2.2m].  

The best results obtained in the approach this Dissertation developed of the k-Means

Clustering algorithm, achieved a 1.37m MDE in the Meeting Room scenario and of 1.9m in the
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TiZ Entrance Hall scenario. The population of DE obtained is far from being 50% in the interval

[0m;1.2m]  and  the  other  50%  on  the  interval  [1.21m;2.2m],  hence  it's  possible  that  the

algorithm the authors implemented easily outperforms the one that was implemented throughout

this work, using the current training configuration.

4.7 Summary

This  Chapter's  goal  were  to  enunciate  the  Hypothesis  that  needed  to  be  tested,  to

describe the testing scenarios, to compare the implemented algorithms between each others, to

analyze statistically their performances in different environments with different configurations

and  to  compare  the  results  obtained  from  the  implemented  approaches  with  the  approach

implemented by [C12] and with the ones studied and chosen as the ones which performed better

in the Literature Review phase (Chapter 2). 

This  was  all  achieved  throughout  the  current  Chapter.  The  Hypothesis  have  been

explained and all the tests done were in order to be able to respond to them. The statistical

metrics used for comparison were also detailed and so were the ML intrinsic statistics for multi-

class multi-label classification, that is the type of classification problem that is being dealt with

in this Dissertation. The structure of the tests was also referred several times and so was the

tests  exclusion  criteria.  The  results  were  shown,  analyzed  and  compared,  always  oriented

towards the answering to the Hypothesis established in the beginning of the current Chapter.  

Several conclusions were taken throughout the Chapter,  relatively to the algorithms'

behavior in the different scenarios and using different configurations. From those conclusions

taken it's easier to compare the implemented approaches and the statistical outcomes that they

accomplish.  Those  conclusions  will  all  be  detailed  in  the  next  Chapter,  where  the  initially

established Hypothesis will be put to test using the data presented in the current Chapter.
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5 Conclusions

5.1 Overall Analysis

The first phase of every study, dissertation or thesis, after defining the goals of it and

the process of how to achieve it, is to review the existent literature related with the field of study

and with the subjects that compose the theme. When that phase is over, it's necessary to define

which kinds of variables are in need of an evaluation, in order to add value to the subject being

studied. In order to do that, the right approach is to elaborate several Hypothesis that either

haven't been answered specifically by the reviewed literature or that, by providing answers to

them, value is added to the current field of study.

That  is  precisely  what  has  been  done  before  the  implementation  phase  in  this

dissertation. Several hypothesis have been established and written down and all the efforts put

in  the testing  phase are  in  order  to  answer  them.  Each one  of  those  hypothesis  should  be

answered easily and directly after the tests are done and the results analyzed, although to do it it

may be needed to do more than just one test. This chapter is dedicated to the answering of those

Hypothesis,  justifying  the  answers  with  the  data  produced  from  the  tests  done  and  with

comparisons already established in Chapter 4. 

Hypothesis 1:  All of the implemented ML algorithms obtain a lower Mean Distance

Error than the approach that does not use any Artificial Intelligence, in the same Measured

Positions and in positions that were not used for training of the implemented approaches.
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Figure 5.1: MDE in the Meeting Room scenario per tested approach.

As Figure  5.1 shows, from all the tests done in the Meeting Room scenario, the only

ones that did not achieve a lower Mean Distance Error than the No-AI approach were the ANN

Static  Training  30  TE,  the  k-Means  Clustering  Static  Training  using  30  TE,  the  k-Means

Continuous Training using 100 TE and the whole SVM tests. All the other performed tests

showed a lower MDE than the No-AI approach.

Figure 5.2: MDE in the TiZ Entrance Hall using 3 MP per approach tested.

Figure 5.2 demonstrates the MDE obtained in the TiZ Entrance Hall scenario using 3

Measured Positions for all the approaches tested. As it can be observed, the only approaches

that performed worse than the No-AI approach, in these set of tests, were the ones using the

SVM algorithm. All the approaches using the ANN and the k-Means Clustering algorithms

obtained lower MDE than the No-AI approach in the same circumstances.
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Figure 5.3: MDE in the TiZ Entrance Hall using 6 MP per approach tested.

Figure 5.3 shows the obtained MDE in the tests done in the TiZ Entrance Hall scenario

using 6 Measured Positions per each approach tested. It confirms the fact that each test done,

either with the ANN and the k-Means Clustering approaches, have lower Mean Distance Errors

than the No-AI approach.

 Figure 5.4: MDE in the TiZ Entrance Hall using 9 MP using ANN 30 TE.

Figure 5.4 shows the obtained MDE in the ANN 30 TE test done in the TiZ Entrance

Hall scenario using 9 Measured Positions. It demonstrates that the MDE of the ANN 30 TE

approach using 9 MPs is almost 3 times smaller that the MDE of the No-AI approach.

It can be concluded that not all of the implemented ML algorithms in all the situations

show a lower MDE than the No-AI approach, although in the majority of them do, as it was

shown and discussed above.

Hypothesis 2: One of the implemented ML algorithms obtains a lower Mean Distance

Error than the other implemented ML algorithms.
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In order to answer to this Hypothesis, data will be used from Hypothesis 1, in order to

establish a comparison between all the tests that obtained a lower Mean Distance Error than the

approach that does not used AI. From all of those approaches, there has to be at least one that

obtains the lowest of the Mean Distance Errors. That approach will be the answer to Hypothesis

2.

Figure 5.5: MDE of tests that obtained lower MDE than No-AI.

Figure 5.5 shows the Mean Distance Errors of the tests that obtained lower MDE than

the  No-AI  approach.  The  answer  for  Hypothesis  2  in  the  Meeting  Room scenario  can  be

obtained by the observation of it. The answer is that the configuration that obtained the lowest

Mean Distance Error in the Meeting Room scenario is the ANN using Static Training and with

150 TE.
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Figure 5.6: MDE of tests which MDE is lower than the respective No-AI MDE.

Figure 5.6 demonstrates the Mean Distance Errors of the tests that obtained lower MDE

than the respective No-AI MDE approach. The answer for Hypothesis 2 in the TiZ Entrance

Hall scenario can be obtained through the observation of it. The answer is that the test that

obtained the lowest Mean Distance Error in the TiZ Entrance Hall is the ANN approach using 3

MPs, Static Training and 150 Training Examples.

Henceforth,  it  can  be  concluded  from  the  tests  done  towards  the  answer  of  this

Hypothesis, that in the Meeting Room scenario the approach that obtained the lowest MDE was

the  ANN using Static  Training  and 150 Training Entries  with  the value of  1.23m and the

approach that achieved the lowest MDE in the TiZ Entrance Hall scenario was the ANN using 3

MPs, Static Training and 150 Training Examples with the value of 1.44m.

Hypothesis 3: One of the implemented ML algorithms learns at a faster rate as the 

number of Training Examples grows.

Table 5.1: Change metrics in the MR scenario between TE.
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30-100
TE

100-150 TE Mean
Change

Change 30
– 150 TE

ANN – Static Training -55,49% -40,65% -48,07% -118,70%

ANN – Continuous Training 1,16% -17,69% -8,27% -16,33%

SVM – Static Training -4,40% 14,66% 5,13% 10,90%

SVM – Continuous Training -4,33% -20,96% 2,50% 5,95%

K-Means Clustering – Static Training -77,37% 9,87% -33,75% -59,87%

K-Means Clustering – Continuous Training 12,56% -7,57% -12,64% -26,19%

Table  5.1 aggregates the percentile changes from the previous test  of the same test

configuration,  the  Mean  of  percentile  changes  and  the  overall  percentile  change  from  30

Training  Examples  to  150  Training  Examples  of  the  Mean  Distance  Errors  results  in  the

Meeting Room scenario. The highest percentile change from 30 to the 100 Training Examples

test was the one of the k-Means Clustering algorithm using Static Training, with a reduction of

77.37 % in the Mean Distance Error; the highest percentile change from the 100 to the 150

Training  Examples  test  was  the  one  of  the  ANN  approach  using  Static  Training,  with  a

shrinkage of 40.65%; the lowest  value of the Mean Change,  representing the highest  mean

curtailment of all the percentile changes was also the one of the ANN approach using Static

Training, with a mean cutback of 48.07 %; the highest value of retrenchment between the 30

Training Examples test and the 150 Training Examples case was again the one of the ANN

algorithm using Static Training, with the value of 118.7 % of reduction of the Mean Distance

Error.

Commenting the statement that Hypothesis 3 does, the implemented ML algorithm that

learns at a faster rate as the number of Training Examples grows is the ANN algorithm using

Static Training for the case of the Meeting Room scenario.

Table 5.2: Percentile change metrics in the TiZ Entrance Hall between TE.

30-100 TE 100-150  TE Mean  Change Change 30-150

ANN – 3 MP -5,78% -20,14% -12,96% -27,08%

ANN – 6 MP 20,42% -2,13% 9,14% 18,72%

SVM – 3 MP -39,39% 13,16% -13,12% -21,05%

K-Means Clustering – 3 MP -33,18% -15,79% -24,49% -54,21%

K-Means Clustering – 6 MP -0,31% -19,63% -9,96% -20,00%

Table 5.2 contains the percentile changes from the test to test done in the TiZ Entrance

Hall scenario when using each one of the algorithms and configurations tested. From the 30

Training Examples to the 100 TE tests, the approach that has the highest reduction is the one of

the SVM algorithm using 3 Measured Positions; in the case of the percentile change between

the 100 and 150 TE tests, the approach that has the highest shrinkage of the MDE is the ANN
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algorithm using 3 Measured Positions,  with a value of 20.14 %; the approach that  had the

highest Mean of percentile changes was the k-Means Clustering using 3 Measured Positions,

with  a  value  of  24.49%; the approach which,  overall,  had  a  higher  percentile  of  reduction

between the 30 TE test and the 150 TE test was also the k-Means Clustering with 3 Measured

Positions, with a value of 54.21%.

Hence,  the implemented ML algorithm that learns at a faster  rate as the number of

Training Examples rises in the is the k-Means Clustering algorithm using 3 different Measured

Positions for training.

Hypothesis 4: Measured Positions from which were gathered more samples have a lower Mean

Distance Error than the ones from which were gathered less samples.

Not necessarily. It depends from algorithm to algorithm. In the 3 MPs using ANN and 

Static Training case, for instance, as the number of TE grows the value of MDE decreases. But 

in the 6 MPs test that does not happen anymore. In this last case the value of MDE rises slightly,

stabilizing as the number of TE grows. In the case of the k-Means Clustering algorithm, the 

same happens in the 3MPs and 6MPs case. With the k-Means algorithm and taking into 

consideration that this affirmation is based only in the gathered data and in the tests done with it

in the TiZ Entrance Hall scenario, it's a fact that for 3 MPs and 6MPs, the MDE decreases as the

number of Training Examples grows.

Hypothesis 5: Until a certain limit of Measured Positions, the number of Measured Positions 

used for training decreases the Mean Distance Error of each one of the ML algorithms.

It's false, according to the tests presented in this document (Chapter 4). As the number 

of Measured Positions rises, the MDE Error rises slightly too. In some cases it rises more than 

the first test done with the previous number of MPs. Still, the only algorithm that achieves a 

stabilization in the MDE metric as the number of MPs grow is the ANN.

Hypothesis 6: One of the implemented ML algorithms learns at a faster rate than the other 

implemented ML techniques, as the number of samples from the same Measured Positions 

grows .

The cases where the number of samples from the same Measured Positions influence 

the learning process were the ANN in the TiZ Entrance Hall Scenario (3 MPs) test, k-Means 

Clustering in the TiZ Entrance Scenario (Static Training – 3 MPs) and the k-Means Clustering 

in the TiZ Entrance Scenario (Static Training – 6 MPs) cases. The one that presents a faster 

learning rate as the number of Training Examples grow for the same Measured Positions is the  

k-Means Clustering in the TiZ Entrance Scenario (Static Training – 3 MPs).

Hypothesis 7: The Mean Distance Error in smaller-sized scenarios is lower than in bigger-

sized scenarios.

True for all the tested cases, when comparing algorithm by algorithm using the same 

configuration. The bigger the scenario, the higher the MDE for the same algorithm using the 

same training configuration.
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Hypothesis 8: Using a kind of Training that per each classification entry added to the database

uses that same entry as a valid Training Example for the next position inference has a lower 

Mean Distance Error than a Training with a static number of entries.

It was an Hypothesis built around the concept that Continuous Training would bring 

improvements every time a new sample from the same real position was gathered, since it 

would allow the algorithms to train in the next iteration with the new data from the real position 

just before. It's actually false, because Continuous Training almost always behaves in the 

opposite direction, misleading the algorithm to infer more distance positions in relationship to 

the real one of the mobile device.

5.2 Contributions

Several contributions were given through the development of this project. The first of

them was the implementation and test of 3 different Machine Learning algorithms with the goal

to  enhance the  accuracy of  the  previous indoor  positioning  technique  that  did not  use any

Artificial Intelligence methodology. 

Other of the contributions was the analysis of the obtained results and the correlations

established between the influence that some descriptive statistical values have in the quality of

the position inferences. The results gathered and the analysis done will allow the creation of

better learning models based on several already calculated factors and metrics. 

Other of the contributions is related with the answering to all the hypothesis formulated

in the beginning of the project, which allowed to conclude about the influences that the number

of Measured Positions and Training Examples have in this kind of learning process.

5.3 Benefits for the Company

Several  decisions  can  be  taken  from  the  current  Dissertation.  First,  the  amount  of

decisions taken was based on either scientific facts or on parametrized and evaluated decisions.

Hence,  one of the benefits  for the company in keep going with the development of such a

project is that actually the work developed here will ease some decisions in the future and create

shorter paths between the goals and their achievement. Second, although the resources and time

were very limited, the presented work produces better results than the ones with the usage of a

non-intelligent technique, which means that the project is going on the right direction, although

there is still a lot of things to improve.

The company benefited from the data gathered in real testing scenarios. Even in the

possibility  that  the  company  chooses  not  to  use  the  current  implementation  of  any  of  the

algorithms, the testing data can be the same for the same scenarios, since its configuration does

not change drastically meanwhile.
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The company benefited from the knowledge acquired relatively to Machine Learning

algorithms and their way of processing information and learning with it. This document makes a

review of the latest ML approaches to the indoor positioning constraint and implements 3 of the

ones that show the best results. The company benefits with that knowledge, that application of

the ML techniques and the comparisons and conclusions taken from the whole study.

5.4 Future Improvements

Towards obtaining inferred positions closer to the real mobile device's real positions

using the implemented,  tested and analyzed indoor  positioning techniques  there  are  several

possible  improvements.  They  can  be  applied  in  different  sectors  of  the  implemented

methodology  to  infer  position  in  indoor  environments.  The  first  proposed  improvement  is

related  with  developing  a  filter  of  the  RSSI values.  There  are  several  different  established

methodologies that correlate space and time between consecutive RSSI signals -  [SBDO13]  -

or that propose an improved approach for the Least-Squares  algorithm  [RA13]. The second

proposed improvement,  still  related with the RSSI signal treatment is  to add estimations of

signal  attenuations  and  change  due  to  the  presence  of  obstacles  which  characteristics  and

locations are determined - [CL13] and [SX13]. Theoretically it seems to be a good approach to

determined  the  influence  of  certain  obstacles  –  depending  on  their  sizes  and  material

characteristics -  in the RSSI values. A study would have to be done in order to understand

which attenuation each obstacles have in the RSSI values and a model should be proposed to

add that to the current Lateration algorithm developed in the project.

Due to the fact that one of the global goals of the current project is that the produced

software has the lowest configuration possible, one of the proposals for future improvements is

to add evolutionary computing to generate populations of data based on previous populations'

characteristics and, in the current project's case, in the scenario's configurations. Taking into

account  that  the  data  available  in  the  used  data  set  for  ML algorithm training  are  mainly

distances to the Access Points and inferred positions, this data can be classified as Low-Quality

Data  (which  is  generated  with  high  amounts  of  noise)  -  [PSC13].  Hence,  up-sampling  for

skewed classes is necessary, in order that data from positions that do not exist in the data set

starts  existing. This process can be done via the generation of synthetic data using existing

interpolation techniques - [D10] and [JZ10].

Several  improvements  can  be  done  in  the  ML algorithms,  mainly  related  with  the

process of cross-validation  [O12]. This process can be improved either by tuning the model

parameters  -  [SKM07] -  and/or  by  analyzing  the  bias-variance  trade-off  and  through

modifications in  the training process  achieve some desired equilibrium in that  correlation -

[SNA14] and [B13]. In order to do that, a complete study will have to be developed applying
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modifications to the models of the implemented algorithms or of the model of the algorithm that

show the best performance in the position inference process. 

The last proposed improvement is  the division of the whole process using Machine

Learning algorithms to infer positioning in two parts: a server-side part, that trains the chosen

algorithm and generates the model outputs that will be used for the positioning inference, with

the goal of sparing computational time in the consumers' mobile devices; a client-side that is

basically the Android application that with the less amount of data possible accurately infers the

position of the user's mobile device. This improvement would bring scalability to the whole

system and would spare the client-side of the heaviest task of the whole process. Although one

of the implemented techniques  improved the accuracy  in  a  ratio  of  more than 110 %, this

process still needs to become more accurate. Hence, the first future efforts should be in that

direction and only when the results would be satisfactory enough it should be done the last

proposed improvement.

5.5 Lessons Learned 

Although  the  goals  of  this  dissertation  were  successfully  achieved,  some  mistakes

related  with  several  aspects  of  the  work,  methodologies  and  choices  were  done,  which

contributed for the project to flow out in the most appropriate and productive way. This sub-

chapter explains each one of those mistakes in a reflective mode, useful to the author himself in

order t improve his work methodology and useful also to whoever works on top of the work

done.

The mistakes identified are mainly related with the timing of some of the tasks done

throughout the followed methodology and not with the content itself. These mistakes were done

mainly  because  of  lack  of  experience  when  implementing  ML  or  Statistical  Learning

algorithms,  of  poor  time  management  in  some  phase  of  the  whole  10  months  of  this

Dissertation's  development and of big time restraints relatively to the development of some

tasks.

Starting by the first  phase of  the Dissertation's  development,  the Literature  Review

phase,  more  approaches  should  have  been  considered  to  evaluate  which  algorithms  to

implement. Although choosing 3 algorithms to implement and test is already good content to

guarantee some comparisons' quality, the inclusion of Statistical Learning algorithms was not

even considered  back  in  that  phase.  Due  to  the  fact  that  Machine  Learning  and  Statistical

Learning are complementary fields nowadays, the integration of a Statistical Learning algorithm

in the Artificial  Neural  Networks algorithm, for instance,  would have guaranteed improved

results,  specially  when considering  the integration of  one  of  those  techniques  in  the  cross-

validation process. That would have allowed some extra capacity for the ANN algorithm to

improve its solutions through time and data. On the other hand, as it was already stated, time

constraints did not allow such study to happen, hence it was proposed in Chapter 5.4 as an add-

on to the project – obviously, it will be necessary that some different approaches are studied and
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chosen and that some of those are implemented, tested and compared in order to understand

which  performs better  so  it  can  be  produced an  improved solution  to  the  current  project's

problem.

Still  in  the  Literature  Review,  it  should  have  been  allocated  time  to  study  and

implement the Future Improvements proposed by [C12]. It would have contributed highly for

the understanding of how the RSSI signals should be treated, bringing progress to the promises

of  achieving  higher  quality  entry  data  for  the  algorithms,  more  accurate  results  for  the

Lateration process and, consequently, a lower MDE overall.

In  the Development  and Testing phases,  the main mistake done is  related with the

timings of how each task was done. In this Dissertation case, the approach was to develop the 3

algorithms, then test them all in different scenarios and only then treat the achieved results.

Obviously, some conclusions were taken too late in the time available to finish the Dissertation,

which meant that new tests could not be done taking into account conclusions taken in previous

tests. Hence, it can be concluded that the right methodology should have been to implement one

of the algorithms, test it and analyze the results, in order to understand and conclude about its

performance and statistical  metrics immediately and so it  would be possible to apply some

conclusions – mainly related with training configurations – in the tests to do after. This would

have saved time in the testing phase and would have allowed to an earlier understanding of the

results  analysis,  which  would  have  meant  that  the  testes  to  do  after  would  have  been

reconsidered, in some cases.

Definitely these are learned lessons and there will be some effort put in avoiding these

same mistakes in the future, contributing to more robust conclusions about the several available

algorithms and about the right methodology to be followed. Surely this will allow the project to

flow more naturally, avoiding time spent in tasks that are not necessary or do not matter much

for the conclusions to take in each moment.
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Appendix A: Calculation of Number of 
Hidden Layers and Hidden Nodes in 
each layer for ANN

Iteration Number of
Hidden
Layers

Number of
Nodes/HL

Accuracy 
(%)

Number of
Training
Epochs

Computational
Time (s)

1 1 1 25.80645161 1500 0.989802

2 1 2 38.70967741 1500 0.933423

3 1 3 45.16129032 1500 1.056648

4 1 4 58.064516129 1500 1.114759

5 1 5 58.064516129 1500 1.371655

6 1 6 80.645161290 1500 1.322614

7 1 7 74.1935483 1500 1.353572

8 1 8 83.870967741 1500 1.497172

9 1 9 83.870967741 1500 1.632598

10 1 10 74.193548387 1500 1.691649

11 1 11 74.193548387 964 1.086988

12 1 12 77.419354838 1389 1.790549

13 1 13 83.870967741 1500 1.910371

14 1 14 80.645161290 1500 2.01684999

15 1 15 87.09677419 1500 2.098537

16 2 1 12.9032258 1500 0.899995

17 2 2 45.1612903 1500 1.080226

18 2 3 64.516129 1500 1.276193
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19 2 4 74.19354838 1427 1.368215

20 2 5 83.8709677 1500 1.626511

21 2 6 80.645161 855 0.9868149

22 2 7 80.645161 904 1.219611

23 2 8 83.870967 1359 2.131844

24 2 9 80.645161 758 1.223009

25 2 10 80.64516 380 0.715453

26 2 11 83.87096 575 1.052385

27 2 12 87.0967741 567 1.247403

28 2 13 87.09677419 579 1.31147

29 2 14 83.87096774 681 1.67885

30 2 15 80.645161 383 0.959101

31 3 1 29.03225 1500 0.899804

32 3 2 9.677419354 1500 1.099405

33 3 3 74.193548387 1500 1.501153

34 3 4 80.6451612 1500 1.741761

35 3 5 74.1935483 1143 1.501669

36 3 6 80.645161 1122 1.6320009

37 3 7 87.096774 874 1.52384

38 3 8 80.6451612 595 1.131878

39 3 9 87.09677 427 0.933737

40 3 10 80.64516129 538 1.249331

41 3 11 83.8709677 310 0.875379999

42 3 12 80.645161 460 1.373801

43 3 13 87.096774 427 1.33675

44 3 14 74.193548 496 1.749088

45 3 15 83.870967 331 1.287708

46 4 1 12.90322 1500 1.014183

47 4 2 38.7096774 1500 1.3603

48 4 3 48.387096 1500 1.6977

49 4 4 58.0645161 1500 1.910457

50 4 5 87.096774193 680 1.074357

51 4 6 87.096774193 846 1.074357

52 4 7 77.4193548 482 1.010293

53 4 8 83.8709677 458 1.061704999

54 4 9 80.6451612 315 0.800299

55 4 10 74.193548 633 1.829711
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56 4 11 80.64516129 489 1.740961

57 4 12 87.096774 429 1.618796

58 4 13 80.64516129 270 1.12945

59 4 14 87.0967741 400 1.843493

60 4 15 83.8709677 264 1.311692

61 5 1 29.032258 1500 0.985792

62 5 2 41.9354838 1500 1.4122799

63 5 3 32.258064 1500 2.022662001

64 5 4 54.8387096 1500 2.230267

65 5 5 54.8387096 1500 3.041701

66 5 6 83.870967 1035 2.266035999

67 5 7 74.19354838 1500 3.702572

68 5 8 74.19354838 1500 4.503097999

69 5 9 80.6451612 431 1.330525

70 5 10 45.16129 1500 5.93492599

71 5 11 80.64516129 373 1.495337

72 5 12 83.870967 599 2.693128

73 5 13 83.870967 341 1.639249

74 5 14 77.4193548 500 2.776538

75 5 15 74.1935483 396 2.446818

76 6 1 12.903225 1500 1.116268

77 6 2 9.6774193 1500 1.400619

78 6 3 48.3870967 1500 2.056651

79 6 4 51.6129032 1500 2.449998

80 6 5 80.64516129 1104 2.135619

81 6 6 41.9354838 1500 3.629033999

82 6 7 77.419354838 1199 3.147441

83 6 8 83.8709677 1089 3.499297

84 6 9 64.516129 1500 5.5723

85 6 10 74.19354838 551 2.250825

86 6 11 83.870967 894 4.0878889

87 6 12 83.870967 643 3.50676

88 6 13 77.4193548 318 1.889457

89 6 14 74.1935483 487 3.390775

90 6 15 77.41935483 452 3.156806

91 7 1 0.0 1500 1.143237

92 7 2 12.9032258 1500 1.7261159
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93 7 3 12.9032258 1500 1.99594

94 7 4 3.22580 1500 2.6714969

95 7 5 54.8387 1500 3.231032

96 7 6 45.16129 1500 4.031078

97 7 7 77.419354838 1500 4.668905

98 7 8 80.6451612 786 2.69309

99 7 9 77.4193548 565 2.387752999

100 7 10 93.548387 1500 7.266924

101 7 11 83.870967 1500 7.957937999

102 7 12 83.870967 597 3.688105

103 7 13 87.0967741 403 2.77424999

104 7 14 80.6451612 660 5.185798

105 7 15 83.870967 811 6.6860429

106 8 1 12.9032258 1500 1.2604989

107 8 2 12.9032258 1500 1.848066

108 8 3 35.4838709 1500 2.21327

109 8 4 51.612903 1500 3.072878

110 8 5 54.8387096 1500 3.558075

111 8 6 48.3870967 1500 4.521462

112 8 7 61.2903225 1500 5.256088

113 8 8 83.8709677 1441 5.80868

114 8 9 80.6451612 1500 7.344836

115 8 10 67.7419354 1500 7.8961

116 8 11 80.6451612 1500 9.511596

117 8 12 83.8709677 1500 10.425561

118 8 13 77.4193548 1500 12.16762

119 8 14 70.9677419 1500 13.262474

120 8 15 77.41935483 478 4.501536

121 9 1 12.9032258 1500 1.456837

122 9 2 25.806451 1500 1.9446659

123 9 3 3.225806 1500 2.583706

124 9 4 16.129032 1500 3.231458

125 9 5 3.225806 1500 3.899017998

126 9 6 38.709677 1500 5.099651

127 9 7 3.22580645 1500 5.487026

128 9 8 54.8387096 1500 7.061505

129 9 9 58.0645161 1500 7.751884
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130 9 10 64.516129 1500 9.171317

131 9 11 61.2903225 1500 10.493027

132 9 12 77.4193548 1500 11.557368

133 9 13 74.1935483 1500 13.565326

134 9 14 80.6451612 838 8.131084

135 9 15 83.87096774 1314 14.58897199

136 10 1 12.9032258 1500 1.455706999

137 10 2 12.9032258 1500 1.917088

138 10 3 25.8064516 1500 2.858711

139 10 4 9.677419354 1500 3.346744

140 10 5 29.032258 1500 4.38179

141 10 6 12.9032258 1500 5.203436

142 10 7 25.80645161 1500 6.359293

143 10 8 51.612903 1500 7.505463998

144 10 9 51.612903 1500 8.580824

145 10 10 64.516129 1500 10.297119

146 10 11 51.612903 1500 11.251641

147 10 12 67.7419354 1500 13.39752

148 10 13 64.516129 1500 14.421187

149 10 14 54.8387 1500 16.835034

150 10 15 87.0967741 1500 18.3140659

151 11 1 12.9032258 1500 1.464941

152 11 2 12.9032258 1500 2.253488

153 11 3 12.9032258 1500 2.724257

154 11 4 9.67741935 1500 3.784749

155 11 5 3.2258064 1500 4.455126

156 11 6 38.709677 1500 5.899604

157 11 7 35.483870 1500 6.719255

158 11 8 48.387096 1500 8.183712

159 11 9 38.709677 1500 9.554694

160 11 10 16.1290322 1500 10.8472489

161 11 11 74.1935483 1500 12.846828

162 11 12 70.9677419 1500 13.981578

163 11 13 38.709677 1500 16.6262

164 11 14 77.419354 1500 17.78696

165 11 15 83.870967 1500 20.469057002

166 12 1 12.9032258 1500 1.658594
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167 12 2 12.9032258 1500 2.216495

168 12 3 12.9032258 1500 3.157143

169 12 4 16.129032258 1500 3.900647

170 12 5 12.9032258 1500 5.068064

171 12 6 45.16129 1500 5.910134

172 12 7 74.193548 1500 7.552242

173 12 8 29.032258 1500 8.981192

174 12 9 19.3548387 1500 10.256665

175 12 10 19.3548387 1500 11.791726

176 12 11 35.48387 1500 13.588489

177 12 12 35.48387 1500 15.6256169

178 12 13 74.19354838 1500 17.596353

179 12 14 67.74193548 1500 20.0501759

180 12 15 58.0645161 1500 21.449264
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