23 research outputs found

    Neural, Genetic, And Neurogenetic Approaches For Solving The 0-1 Multidimensional Knapsack Problem

    Get PDF
    The multi-dimensional knapsack problem (MDKP) is a well-studied problem in Decision Sciences. The problem’s NP-Hard nature prevents the successful application of exact procedures such as branch and bound, implicit enumeration and dynamic programming for larger problems. As a result, various approximate solution approaches, such as the relaxation approaches, heuristic and metaheuristic approaches have been developed and applied effectively to this problem. In this study, we propose a Neural approach, a Genetic Algorithms approach and a Neurogenetic approach, which is a hybrid of the Neural and the Genetic Algorithms approach. The Neural approach is essentially a problem-space based non-deterministic local-search algorithm. In the Genetic Algorithms approach we propose a new way of generating initial population. In the Neurogenetic approach, we show that the Neural and Genetic iterations, when interleaved appropriately, can complement each other and provide better solutions than either the Neural or the Genetic approach alone. Within the overall search, the Genetic approach provides diversification while the Neural provides intensification. We demonstrate the effectiveness of our proposed approaches through an empirical study performed on several sets of benchmark problems commonly used in the literature

    Solving large 0–1 multidimensional knapsack problems by a new simplified binary artificial fish swarm algorithm

    Get PDF
    The artificial fish swarm algorithm has recently been emerged in continuous global optimization. It uses points of a population in space to identify the position of fish in the school. Many real-world optimization problems are described by 0-1 multidimensional knapsack problems that are NP-hard. In the last decades several exact as well as heuristic methods have been proposed for solving these problems. In this paper, a new simpli ed binary version of the artificial fish swarm algorithm is presented, where a point/ fish is represented by a binary string of 0/1 bits. Trial points are created by using crossover and mutation in the different fi sh behavior that are randomly selected by using two user de ned probability values. In order to make the points feasible the presented algorithm uses a random heuristic drop item procedure followed by an add item procedure aiming to increase the profit throughout the adding of more items in the knapsack. A cyclic reinitialization of 50% of the population, and a simple local search that allows the progress of a small percentage of points towards optimality and after that refines the best point in the population greatly improve the quality of the solutions. The presented method is tested on a set of benchmark instances and a comparison with other methods available in literature is shown. The comparison shows that the proposed method can be an alternative method for solving these problems.The authors wish to thank three anonymous referees for their comments and valuable suggestions to improve the paper. The first author acknowledges Ciˆencia 2007 of FCT (Foundation for Science and Technology) Portugal for the fellowship grant C2007-UMINHO-ALGORITMI-04. Financial support from FEDER COMPETE (Operational Programme Thematic Factors of Competitiveness) and FCT under project FCOMP-01-0124-FEDER-022674 is also acknowledged

    A multi-level search strategy for the 0–1 Multidimensional Knapsack Problem

    Get PDF
    AbstractWe propose an exact method based on a multi-level search strategy for solving the 0–1 Multidimensional Knapsack Problem. Our search strategy is primarily based on the reduced costs of the non-basic variables of the LP-relaxation solution. Considering that the variables are sorted in decreasing order of their absolute reduced cost value, the top level branches of the search tree are enumerated following Resolution Search strategy, the middle level branches are enumerated following Branch & Bound strategy and the lower level branches are enumerated according to a simple Depth First Search enumeration strategy. Experimentally, this cooperative scheme is able to solve optimally large-scale strongly correlated 0–1 Multidimensional Knapsack Problem instances. The optimal values of all the 10 constraint, 500 variable instances and some of the 30 constraint, 250 variable instances of the OR-Library were found. These values were previously unknown

    Imperialist Competitive Algorithm with Independence and Constrained Assimilation for Solving 0-1 Multidimensional Knapsack Problem

    Get PDF
    The multidimensional knapsack problem is a well-known constrained optimization problem with many real-world engineering applications. In order to solve this NP-hard problem, a new modified Imperialist Competitive Algorithm with Constrained Assimilation (ICAwICA) is presented. The proposed algorithm introduces the concept of colony independence, a free will to choose between classical ICA assimilation to empires imperialist or any other imperialist in the population. Furthermore, a constrained assimilation process has been implemented that combines classical ICA assimilation and revolution operators, while maintaining population diversity. This work investigates the performance of the proposed algorithm across 101 Multidimensional Knapsack Problem (MKP) benchmark instances. Experimental results show that the algorithm is able to obtain an optimal solution in all small instances and presents very competitive results for large MKP instances

    Hybrid tabu search – strawberry algorithm for multidimensional knapsack problem

    Get PDF
    Multidimensional Knapsack Problem (MKP) has been widely used to model real-life combinatorial problems. It is also used extensively in experiments to test the performances of metaheuristic algorithms and their hybrids. For example, Tabu Search (TS) has been successfully hybridized with other techniques, including particle swarm optimization (PSO) algorithm and the two-stage TS algorithm to solve MKP. In 2011, a new metaheuristic known as Strawberry algorithm (SBA) was initiated. Since then, it has been vastly applied to solve engineering problems. However, SBA has never been deployed to solve MKP. Therefore, a new hybrid of TS-SBA is proposed in this study to solve MKP with the objective of maximizing the total profit. The Greedy heuristics by ratio was employed to construct an initial solution. Next, the solution was enhanced by using the hybrid TS-SBA. The parameters setting to run the hybrid TS-SBA was determined by using a combination of Factorial Design of Experiments and Decision Tree Data Mining methods. Finally, the hybrid TS-SBA was evaluated using an MKP benchmark problem. It consisted of 270 test problems with different sizes of constraints and decision variables. The findings revealed that on average the hybrid TS-SBA was able to increase 1.97% profit of the initial solution. However, the best-known solution from past studies seemed to outperform the hybrid TS-SBA with an average difference of 3.69%. Notably, the novel hybrid TS-SBA proposed in this study may facilitate decisionmakers to solve real applications of MKP. It may also be applied to solve other variants of knapsack problems (KPs) with minor modifications
    corecore