
978-1-7281-9352-6/20/$31.00 ©2020 IEEE

Imperialist Competitive Algorithm with
Independence and Constrained Assimilation

Ivars Dzalbs
College of Engineering, Design and

Physical Sciences
Brunel University London
London, United Kingdom

Tatiana Kalganova
College of Engineering, Design and

Physical Sciences
Brunel University London
London, United Kingdom

Ian Dear
College of Engineering, Design and

Physical Sciences
Brunel University London
London, United Kingdom

Abstract— This work proposes an improved Imperialist
Competitive Algorithm (ICA) based algorithm for solving
constrained combinatorial problems, called ICA with
Independence and Constrained Assimilation (ICAwICA). The
proposed algorithm introduces the concept of colony
independence – a free will to choose between classic ICA
assimilation to the empire’s imperialist or any other imperialist
in the population. Furthermore, a constrained assimilation
process has been implemented that combines classical ICA
assimilation and revolution operators, while maintaining
population diversity. In order to evaluate the performance and
generalisation aspects of the proposed approach, two different
kinds of combinatorial benchmark problems were selected –
subset selection and routing, Multiple Knapsack Problem
(MKP) and Multiple Depot Vehicle Routing Problem
(MDVRP), respectively. The algorithm showed definite
improvement over classic ICA and outperformed most of the
competition on both types of problems across multiple instances,
indicating the generic, universal nature of the ICAwICA.
Moreover, it ranked 2nd among the recently published
algorithms that are customised to the specific problem with the
use of problem-specific operators, while the proposed algorithm
had no such operators.

Keywords— combinatorial optimisation, multidimensional
knapsack problem (MKP), multi depot vehicle routing problem
(MDVRP), imperialist competitive algorithm (ICA), meta-
heuristics

I. INTRODUCTION

Optimisation is the process of finding the best solution
among a pool of possible solutions. Optimisation is applied
to a wide range of engineering, economic and even social
systems to minimise cost or maximise profits. There is no
single optimisation technique that can be efficiently applied
across all optimisation problems. Hence several optimisation
methods have been developed for different kinds of
optimisation problems [1]. A metaheuristic is one of such
methods; it offers a near-optimal solution in less compute
time than exact methods [2]. Metaheuristics include
algorithms such as Genetic Algorithm (GA) [3], Ant Colony
Optimization (ACO) [4], Particle Swarm Optimization (PSO)
[5], more recently Imperialist Competitive Algorithm (ICA)
[6], etc.

Imperialist Competitive Algorithm (ICA), intensively
researched during the last decade, is a subset of metaheuristic
algorithms that are modelled based on geopolitical behaviour.
It can also be classified as a social Darwinism that follows
evolutionary computing principles. Atashpaz-Gargari and
Lucas first proposed the ICA in [6] for solving continuous
cost functions and since the algorithm has generated interest
amongst many researchers. Its application can be found in
various engineering disciplines – scheduling, assembly line
balancing, facility layout optimisation, computer engineering

and other areas of industrial engineering [7]. Most recently,
applications such as prediction [8][9], clustering [10] and
encryption [11] have emerged, demonstrating the versatility
and wide application areas of the algorithm.

There have been various attempts on improving the
standard ICA search performance. For example, authors in
[12] proposed an adaptive ICA (AICA) that uses a
probabilistic model based on colony positions to escape local
optimum. Similarly, [13] improved the convergence speed of
the algorithm by adding additional value to an unfeasible
solution, based on its distance from the relative imperialist.
Both [14] and [15] enhanced ICA by implementing an
attraction and repulsion concept during the search for better
solutions. Less researched area is the use of local search in
ICA. Local search has been used to improve convergence on
other metaheuristics, such as in Ant Colony System [4] by
local pheromone update rules, or small swarm division in
PSO [16]. The standard ICA does not implement any form of
local search and therefore, may get stuck in local optima
before converging to the global best solution [17]. Only few
approaches for solving this problem have been proposed in
the literature, such as simulated annealing-like processes in
[18], where the local search process is applied for machine-
selection part and the operation-sequence part in flexible job-
shop problem (FJSP). The 2-opt is another popular local-
search operator for routing problems, such as Travelling
Salesman Problem (TSP). For example, work in [19] uses 2-
opt with ICA to improve the imperialists. For continuous
optimization problems, local search operator such as random
line search has been explored in [20], where authors applied
the problem-specific local search for the imperialist
solutions.

However, many of these local search implementations
rely on problem-specific operators or assimilation. These
operators exploit the underlying problem dynamics and are
an effective way to improve the convergence. Although some
can be transferrable across similar class problems, they are
rarely generic enough to be applied for a wide range of
problems. For example, a 2-opt local search would be of no
use for a knapsack problem. In attempt to overcome this
issue, paper proposes a modified ICA, where the local search
process is performed in terms of both an Independence
operator and a Constrained Assimilation (ICAwICA).
Compared to existing ICA local search approaches,
ICAwICA proposes a more generic implementation that does
not require problem-specific operators.

Thus, in this paper, we present a more generic algorithm
with a local search that expands on the classic ICA, with the
use of novel Independence operator and Constrained
Assimilation, called ICAwICA. The contributions can be
summarized into the following to aspects:

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Brunel University Research Archive

https://core.ac.uk/display/362655931?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

• A novel generic ICA is proposed, where the standard
assimilation and revolution process is replaced with
constrained assimilation and the novel independence
operator used for local search.

• The performance of the ICAwICA algorithm is
comprehensively evaluated via well-known Multiple
Knapsack Problem (MKP) and Multi Depot Vehicle
Routing Problem (MDVRP) benchmark instances.
The experiment results demonstrate the superiority
over classic ICA and universality of the local search.

The rest of the paper is structured as follows: first, both
MKP and MDVRP are introduced and formalised. Next, in
section two, standard ICA, as well as proposed ICAwICA, is
presented with example applications. Experimental setup,
benchmarks used, and comparative results to the state-of-the-
art approaches for both MKP and MDVRP are described in
section three. And finally, the last section concludes the
paper.

A. Mulktiple Knapsack Problem (MKP)

The Multidimensional Knapsack Problem (MKP) is a
well-known constrained optimisation problem, that has
multiple real-world engineering applications, such as cutting
stock [21], distributed computing resource allocation [22],
cargo loading [23], satellite management [24], project
selection [25] and capital budgeting [26]. The MKP is an
extension of the 0-1 knapsack problem, where items have
weight vectors in multiple dimensions. The goal is to
maximise the total profit by putting items into knapsacks
while satisfying weight capacity constraints across all
dimensions. MKP is formulated in (1) [27].

max
�𝑝𝑝𝑦𝑦𝑠𝑠𝑦𝑦

𝑛𝑛

𝑦𝑦=1

subject
to: �𝑤𝑤𝑧𝑧𝑧𝑧𝑠𝑠𝑦𝑦 ≤ 𝑊𝑊𝑧𝑧

𝑛𝑛

𝑦𝑦=1

 ∀𝑧𝑧
∈ {1, … ,𝑚𝑚}

(1)

 𝑠𝑠𝑦𝑦 ∈ {0,1} ∀𝑦𝑦
∈ {1, … ,𝑛𝑛}

where every item 𝑦𝑦 in the list of 𝑛𝑛 items (𝑦𝑦 = 1 … 𝑛𝑛) has
a profit 𝑝𝑝𝑦𝑦 and weight 𝑤𝑤𝑧𝑧𝑧𝑧 associated with an 𝑚𝑚 -
dimensional weight vector (𝑧𝑧 = 1 … 𝑚𝑚), that tries to satisfy
a capacity constraint 𝑊𝑊𝑧𝑧 in that dimension. Variable 𝑠𝑠𝑦𝑦
indicates whether the item is selected and included in the
solution. Capacities, weights and profits are assumed to be
positive.

Being an NP-hard problem with practical applications,
many different approaches have been proposed for solving
MKP, which can be divided into two groups – exact,
deterministic, single-solution based algorithms and stochastic
population/meta-heuristic based algorithms, with this paper
focusing on the latter approach.

Comprehensive literature review of solving MKPs was
provided by [28], and a more recent MKP overview by [29]
summarises algorithms used for solving MKP. This paper
focuses on the state-of-the-art population and meta-heuristic
algorithms used for solving MKP instances, such as ant
colony optimisation [18][19], various types of genetic
algorithms [32][33][34], evolutionary algorithms [35][36]

[37], variations of particle swarm optimisation algorithm
[38][39], binary harmony search [40], binary cuckoo search
algorithm [41], whale optimisation algorithm [42] and alike.
Most of the research in population-based algorithms focus on
small MKP instances with 𝑛𝑛 ≤ 100, while only a few explore
large instances with 𝑛𝑛 = 500 and above. This paper tries to
cover both small and large instances of MKP for a
comprehensive study.

B. Multi Depot Vehicle Routing Problem (MDVRP)

The Vehicle Routing Problem (VRP), first described in
1959 [43], is an extension of the Traveling Salesman Problem
(TSP) [44]. Compared to TSP, where an agent has only to
visit all cities once, VRP introduces demands for each
customer or stop. Demands need to be satisfied by routing
vehicles such that they start and finish their paths at the same
depot. Many real-life problems can be modelled as a form of
VRP, for example, picking up and delivering mail, packages
or any other goods or services. Due to the wide range of
practical applications, many variations of VRP have since
been explored. For instance, capacitated VRP introduces
capacity constraints on the vehicles; VRP with Time
Windows (VRPTW) requires delivery to happen within a
specific time window; VRP with maximum vehicle distance
constraints (DVRP) and many others [45].

A common VRP derivation is the Multi-Depot Vehicle
Routing Problem (MDVRP). MDVRP is an extension of
classical VRP by the introduction of multiple depots.
Vehicles in the MDVRP are subject to capacity constraints
(how much cargo can be carried on board) and the maximum
duration for the route before the vehicle needs to return to the
original depot. The MDVRP resembles a lot of everyday
transportation, logistics and distribution problems and,
therefore, has been a common research area [46].
Furthermore, the MDVRP is also an NP-hard combinatorial
optimisation problem; thus, optimal solutions are hard to find
[47]. Although exact algorithms for solving these classes of
problems exist, they are limited to small problem instances
[48]. A wide range of metaheuristics and population-based
algorithms have been used [46] to solve larger instances of
the MDVRP.

The main aim of the MDVRP is to route a fleet of vehicles
from multiple depots to multiple customers requiring goods
or services.. Fig. 1 shows an example of a simple MDVRP
solution with ten customers (as circles) and two depots (as
rectangles). Although there exist multi-objective approaches
for solving MDVRP [49], the most common goal is to
minimise the total cost.

Fig. 1. Example of an MDVRP with ten customers (as circles) and two
depots (A and B as rectangles)

The MDVRP can be formalised in a mathematical model
based on [50] and [51]. Given a direct graph 𝐺𝐺 = (𝑆𝑆,𝐸𝐸)
where 𝑆𝑆 = 𝐶𝐶 ∪ 𝐷𝐷 is a set of customers 𝐶𝐶 = {𝐶𝐶1,𝐶𝐶2, … ,𝐶𝐶𝑁𝑁}
and depots 𝐷𝐷 = {𝐷𝐷1,𝐷𝐷2, … ,𝐷𝐷𝑀𝑀} and 𝐸𝐸 is a set of edges
between all the nodes in the graph. In a fully connected graph,
every edge 𝐸𝐸𝑖𝑖𝑖𝑖 between nodes 𝑆𝑆𝑖𝑖 and 𝑆𝑆𝑗𝑗 (𝑖𝑖 ≠ 𝑗𝑗) has
associated positive cost 𝑐𝑐𝑖𝑖𝑖𝑖 - distance or time, for example.
Each customer has a positive demand 𝑑𝑑𝑖𝑖 (𝑖𝑖 ∈ 𝐶𝐶).
Furthermore, there is also a fleet of 𝐾𝐾 identical vehicles
available at each depot 𝐷𝐷𝑘𝑘 𝜖𝜖 𝐷𝐷 (that are not allowed to exceed
capacity 𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚 and duration 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚). The goal is to minimise
the total cost across all vehicles (2).

𝑚𝑚𝑚𝑚𝑚𝑚�� 𝑐𝑐𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖
𝑗𝑗 ∈ 𝑆𝑆𝑖𝑖 ∈ 𝑆𝑆

 (2)

where 𝑥𝑥𝑖𝑖𝑖𝑖 equals to 1 if 𝑖𝑖 comes after 𝑗𝑗 in the customer
sequence on any route of all vehicles and 0 otherwise. The
problem is subject to the following constraints a) each vehicle
route starts and ends at the same depot; b) the total demand
on each route does not exceed vehicle capacity 𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚; c) the
maximum route duration 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 is not exceeded; e) each
customer is served by exactly one vehicle.

Since the first formulation in [43], many exact and
heuristic algorithms have been explored for vehicle routing
problems. Most notably, [52] proposed a heuristic approach
based on the cost savings algorithm that has since been used
in some form in many other algorithms [53]. Another popular
heuristics approach was introduced in [54] that allowed
problems divided into sub-problems based on vehicles and
then solved separately, combining results into a single
solution afterwards. Although heuristic approaches such as
integer programming [55] and variable neighbourhood search
[56] have the potential to find optimal solutions every time,
they generally do not scale well with the problem size and are
limited to smaller MDVRP instances or are very time-
consuming [48].

Meta-heuristic algorithms offer a stochastic approach for
solving highly complex combinatorial problems with near-
optimal or optimal solutions. They have been a growing
interest in many areas [57], and MDVRP is no exception. A
recent survey of metaheuristic algorithms [46] suggests that
two of the most common algorithms used for solving
MDVRP are Ant Colony Optimization (ACO) and Genetic
Algorithm (GA). However, other algorithms like Particle
Swarm Optimization (PSO) [58] and Ant Lion Optimization
(ALO) [59] have also been successfully applied. GA is a
nature-inspired algorithm that is based on the natural
selection process. A comprehensive summary of methods
and approaches used for solving MDVRP with GA is
presented in [45]. ACO is another popular approach for
solving VRP class problems as it mimics ants travelling and
searching for food while creating paths for other ants to
follow. Many implementations of ACO for MDVRP exist in
the literature; the most recent work includes [60] who applied
the ACO algorithm for fresh seafood delivery routing
problems.

II. THE IMPERIALIST COMPETITIVE ALGORITHM WITH
INDEPENDENCE AND CONSTRAINED ASSIMILATION

The following section introduces the classic Imperialist
Competitive Algorithm (ICA) and the novel ICA with
Independence and Constrained Assimilation (ICAwICA)

algorithm. It discusses the changes and advantages of
constrained assimilation. Finally, ICAwICA application to
two different example problems is considered.

A. Classic ICA

Like many other population algorithms, ICA starts its
search by generating a random initial population where each
individual of the population represents a country. Countries
within ICA can be thought of as chromosomes in a genetic
algorithm. The initial population is separated into multiple
groups (so-called empires). Most influential countries
become imperialist within the empire and weakest - their
colonies. Each colony within empire moves closer to their
imperialist in the form of assimilation operator. In order to
provide diversity amongst countries, a revolution operator
(mutation in GA) is implemented. If at any point a colony
becomes stronger than its imperialist, then the two countries
are swapped, such that imperialist is the strongest country in
the empire. The search follows an iterative process, where
after each iteration, the weakest colony within the weakest
empire is assigned to one of the stronger empires – following
the imperialist competition process. An empire is eliminated
once it contains no more colonies. The search usually
continues until the termination criteria are met. Ideally, the
search is terminated once all empires are eliminated and only
one, the best, empire remaining.

B. ICAwICA

The proposed ICAwICA follows the classic ICA [6]
principles for both empire initialisation and empire
competition; however, assimilation and revolution operators
are replaced with a constrained assimilation and repair
mechanism. Furthermore, in the classic ICA, each colony
within an empire is moving closer to the imperialist within
that empire. In contrast, in ICAwICA all colonies are given a
free choice to move closer to any of the imperialists of other
empires (independence), as long as it improves the country’s
well-being (associated cost). Therefore, at each iteration, a
colony 𝑘𝑘 has a probability based on a uniform distribution
(𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) of either move closer to their own empire’s
imperialist or to move closer to any other imperialist 𝑗𝑗 ,
determined by 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (0-1.0). Moreover, this
process is repeated 𝑁𝑁𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 times for each colony to explore
more search space around its position in the form of local
search. Pseudocode of the ICAwICA is shown in Fig. 4. The
flowchart for both classic ICA and ICAwICA is shown in Fig.
2, with red indicating the changes.

C. Constrained Assimilation

Classic ICA was first developed for continuous math’s
problem with simple assimilation processes [6], ICA has
since been applied to multiple binary problems, such as
feature selection [61][62], content-based-image retrieval
(CBIR) [63] and single-dimensional 0-1 knapsack problems
[64]. However, binary assimilation approaches cannot always
be extended to other discrete, non-binary problems.

Fig. 2. Flowchart of classic ICA [6] (to the left) and the proposed ICAwICA (on the right), with red indicating the changes.

Furthermore, most ICA discrete assimilation
implementations follow simple genetic-algorithm-like
crossover operations, where the chromosomes are expected
to be of equal size [65] [66]. The proposed Constrained
Assimilation (CA) process does not require equal
chromosome/solution size and is extendable to other
constrained discrete problems. CA exploits the fact that two
solutions cannot always be merged without violating
constraints. Therefore, CA builds a new incomplete solution
from the two donor solutions/countries (colony and
imperialist) according to the assimilation rate and finishes the
solution by a repair mechanism.

There are multiple ways to implement the solution repair
mechanism - based on heuristics, existing solution
population, sequence-based [67] etc. The most
straightforward repair mechanism is - scanning through all
possible entries and trying to add them to the solution without
violating constraints (used in this paper). Furthermore, this
incomplete solution repair enables diversity without an
explicit revolution operator like classic ICA. Although more
computationally expensive than simple assimilation, this
approach has potential for broad applications and
generalisation, as it does not depend on two solutions having
the same size nor problem-specific assimilation or repair
mechanism. Furthermore, the generated solutions with CA is
always within constraints and does not require any penalty
cost definition at evaluation.

A CA example is provided in Fig. 3 where both colony
and imperialist are assimilated, with bold integer values
corresponding to solution entries (item indices in MKP case,
or depo indices in MDVRP case) that are passed to the new
country, determined by assimilation rate. In this simple
example, a 50% assimilation rate of 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is used to
build the new country. Due to constraints, not all solution
entries can be added to the new country and hence the
solution is in an incomplete state. The repair process iterates
over all possible solution entries and fills the gaps while
complying with constraints. Let us consider in detail the
assimilation process shown in Fig. 3. The colony solution is
shown in blue and the imperialist in yellow, with the newly
generated country 𝑛𝑛𝑛𝑛, new entries (index 1 and index 3) were
introduced to the solution after repair that were not in any of
the donor countries

Fig. 3. Imperialist and colony constrained assimilation process with solution
repair. With integer values corresponding to solution entries (item indices in
MKP case or depo indices in MDVRP case).

Fig. 4. The pseudocode for new assimilation and local search method for
ICAwICA

D. ICAwICA solution encoding for MKP and MDVRP

The ICAwICA is generic and does not rely on any specific
solution structure or problem-specific assimilation operators
and, therefore, can be applied to various kinds of discrete
optimisation problems. We explore two different types of
combinatorial problems – a subset selection problem in MKP
and a routing problem in MDVRP. In the MKP case, each
element in the solution represents an item index that has been
added in the knapsacks. Thus, the performance of the solution
is evaluated by iterating over all entries and matching indices
to the item profits.

For the MDVRP, first, customer-depot relationships are
encoded as a country. Each country is represented as a vector
of the size of the number of customers, where each customer
is assigned a depot index. An example of new country
creation via assimilation for the MDVRP is shown in Fig 5,
where the initial colony has encoded the following grouping:
Customer 2 and 8 will be routed from Depot 1; Customers 1,
3 and 6 will be routed from Depot 2; Customers 5,7,9 and 10
will be routed from Depot 3, and finally, Customer 4 will be
routed from Depot 4. Each time a new country is created as
part of the ICAwICA assimilation process, capacity
constraints are considered such that the total demand for all

customers assigned to the depot does not exceed the
maximum capacity available across all vehicles to the given
depot.

Fig 5. Customer assignment to depots in MDVRP using ICAwICA
assimilation. Where C1-C10 are customer indices and the encoded integers
are depot indices that are assigned to a given customer, with bold
representing assimilated changes.

Furthermore, the example in Fig 5 also shows an
assimilation process for the colony and imperialist; considers
ten customers that are grouped into four depots. Bold type
represents assimilated changes. For example, Customer 2
(C2) demand was previously supplied by Depot 1 but now is
supplied by Depot 4. Similarly, Customer 6 (C6) demand was
previously supplied by Depot 2 but now is supplied by Depot
3.

Finally, solution performance is evaluated by first
grouping all depot indices in the solution, then constructing
routes based on the sequence it was added to the solution
(from left to right). Thus, in the example in Fig 5, the new
country solution would be Depot 1 supplying customer 8,
Depot 2 supplying customers 1 and 3, Depot 3 supplying
customer sequence 5-6-7-9-10, and finally, Depot 4
supplying customers 2 and 4.

III. EXPERIMENTS

In this section, the proposed ICAwICA algorithm
performance is compared to classic ICA. Next, the dynamics
of independence operator are analysed. Finally, extensive
computational experiments on classical MKP and MDVRP
benchmark instances are conducted and compared to the
current state-of-the-art algorithms.

A. Benchmark instances

Multidimensional knapsack problem instances were
chosen because of their availability, ease of implementation
and the frequent use as benchmarks across the research
community. ICAwICA was tested across 41 accessible
benchmark instances, all available from the compiled library
in [68].

The simplest benchmarks used in this paper are derived
from the WEISH dataset, containing 30 problems with the
number of items ranging from 30 to 90 and with five
knapsacks each. Furthermore, to explore the performance of
the proposed algorithm across a range of datasets, large MKP
instances, generated by Glover and Kochenberger (GK) [69],
were also selected. The GK dataset contains 11 instances with
the number of items ranging from 100 to 2500 with 15 to 100
knapsacks each and provides a broad spectrum of complexity.

Moreover, the ICAwICA was also tested on the 23
Cordeau’s MDVRP benchmark instances obtained from [70].
The benchmark dataset offers a wide range of complexity,
from the number of customers ranging from 50 to 360 and the
number of depots from 2 to 9; and specifies the current Best-
Known Solution (BKS).

1. Initialize ICA parameters.
2. Create the population randomly.
3. Initialize empires:
 for 𝑖𝑖 = 1 to 𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

Compute the cost function 𝐶𝐶𝑖𝑖;
Sort the computed cost 𝐶𝐶𝑖𝑖 in descending order for the entire
population;
Select 𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 out of 𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝;
Normalize the cost of each imperialist 𝐶𝐶𝑛𝑛;
Calculate the normalized power of each imperialist 𝑃𝑃𝑛𝑛;
Assign remaining countries 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 to the imperialists;

 end loop
do
 4. Assimilation and local search process for ICAwICA:
 for k = 1 to 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
 for 𝑙𝑙 = 1 to 𝑁𝑁𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
 if 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 < 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

 for 𝑗𝑗 = 1 to 𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
 assimilate colony 𝑘𝑘 closer to 𝑗𝑗
 if cost for new position is less than original position
 keep assimilated position

 else
 discard and move back to original position

 endif
 end loop
 else
 assimilate colony 𝑘𝑘 closer to empire’s Imperialist
 endif
 end loop
 end loop
 for 𝑗𝑗 = 1 to 𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

if the cost of any colony is less than cost of imperialist
 exchange the position of the colony and imperialist;
endif

 end loop
 Pick the weakest colony (colonies) from the weakest empire and
 assign it to the empire with highest probability to possess it;
 5. Elimination process:
 If there is imperialist with no colonies

eliminate the imperialist;
 endif
while stopping condition not met;

TABLE 1. COMPARISON OF BEST AND AVERAGE SCORES BETWEEN CLASSIC ICA AND ICAWICA ACROSS SIX TEST PROBLEM INSTANCES. AVERAGE AND BEST
OUT OF 10 RUNS WITH STANDARD DEVIATION (STD), BKS – BEST KNOWN SOLUTION.

Dataset
 Classic ICA [6] ICAwICA

BKS Average Best Std Average Best Std
MKP-gk01 3766 3753.8 3766 8.11 3766.0 3766 0.00
MKP-gk03 5656 5631.5 5638 5.12 5649.2 5650 0.90
MKP-gk06 7680 7629.7 7639 8.16 7669.7 7671 1.19

MDVRP-p01 576.87 587.20 580.70 8.92 576.87 576.87 0.00
MDVRP-p03 641.19 658.10 645.16 7.55 655.29 641.19 3.25
MDVRP-p06 876.5 893.80 885.84 10.83 887.71 876.50 3.93

B. Experimental setup

The proposed ICAwICA algorithm was implemented in
C++ using the Visual Studio 2019 (v142) compiler. The
computation was performed on a workstation with AMD
Threadripper 2990WX processor (3.0 GHz, 64GB RAM),
running Windows 10 Pro operating system.

Like classic ICA, ICAwICA also has multiple algorithmic
hyper-parameters that were empirically set and are as follows
for all tested instances unless specified otherwise:

MKP - total number of countries 𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 is set to
4096 for all instances with the number of items 𝑛𝑛 < 500 and
value of 512 for all instances with 𝑛𝑛 ≥ 500 . Out of all
countries, 40% are initialised as imperialists 𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 .
Local iterations 𝑁𝑁𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 are set to 3. Assimilation rate β set
to 0.5; coefficient associated with an average power of
empire’s colonies 𝜉𝜉 set to 0.05; 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 set to
0.7 (70% probability of independence). Due to constrained
computing resources, limited time and a large problem set,
termination criteria of stagnation were implemented, where
the search terminates if no improvement has been made to the
best solution for ε number of iterations. For problem
instances with 𝑛𝑛 < 500 , ε is set to 0.1𝑛𝑛 , and for MKP
instances with 𝑛𝑛 ≥ 500, 𝜀𝜀 = 𝑛𝑛.

MDVRP - the total number of countries 𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 is set
to 4096 for all instances. Out of all countries, 40% are
initialised as imperialists 𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 . Local iterations
𝑁𝑁𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 are set to 16. Assimilation rate β set to 0.05;
coefficient associated with an average power of empire’s
colonies 𝜉𝜉 set to 0.05; 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 set to 0.7 (70%

probability of independence). Finally, stagnation iterations ε
set to 10.

Due to the stochastic nature of the algorithm, 30
independent runs were computed for each problem instance.
Best and average solution performance, as well as the average
time in seconds 𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎(𝑠𝑠) (average time in minutes 𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎(𝑚𝑚))
required to reach such performance value, were recorded for
all problem instances.

C. Comparison to classic ICA

Novel ICAwICA was first compared to classic ICA based
on [6]. Three problem instances from both MKP (gk01, gk03,
gk06) and MDVRP (p01, p03, p06) were selected for
comparison, and the results are summarised in Table 1.

Results show a significant improvement in the best scores
obtained - ICAwICA reaching best-known solution (BKS) in
four out of six instances, while classic ICA only once.
Furthermore, average scores are consistently higher, and the
standard deviation suggests that ICAwICA results are also
more consistent. It is worth noting that MKP objective is to
maximise profit, while MDVRP is to minimise the total route
cost. Therefore, the average error gap (3) against the best-
known solution is used for easier comparisons and are
summarised in Fig. 6. The average error for ICAwICA is
consistently smaller than classic ICA across all six test
instances.

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑔𝑔𝑔𝑔𝑔𝑔 (%)

=
1
𝑛𝑛
�

𝑜𝑜𝑖𝑖 − 𝑝𝑝𝑖𝑖
𝑜𝑜𝑖𝑖

𝑛𝑛

𝑖𝑖=1

∗ 100%

(3)

where 𝑜𝑜𝑖𝑖 is the optimal score for instance 𝑖𝑖, and 𝑝𝑝𝑖𝑖 – achieved
best or average score on the instance.

Fig. 6. Comparison between Classic ICA [6] and ICAwICA for six test problem instances. Expressed as average error percentage to the best know solution.
The graph demonstrates ICAwICA achieves average erorr of 0.62% while Classic ICA achieves 1.3%, relative improvement of over two times.

TABLE 2. SENSITIVITY ANALYSIS OF INDEPENDENCE RATE AS AN AVERAGE ERROR PERCENT GAP FOR SIX TEST PROBLEM INSTANCES. WITH 0 REPRESENTING
ICA WITH NO INDEPENDENCE OPERATOR, 𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎(𝑠𝑠) REPRESENTING THE AVERAGE TIME IN SECONDS TO CONVERGE TO THE BEST SOLUTION, BKS – BEST

KNOWN SOLUTION

Dataset BKS
Independence rate

0 0.2 0.4 0.6 0.8 1
MKP-gk01 3766 3.02% 0.00% 0.00% 0.00% 0.00% 0.00%
MKP-gk03 5656 2.75% 0.13% 0.12% 0.12% 0.12% 0.12%
MKP-gk06 7680 2.36% 0.34% 0.20% 0.14% 0.12% 0.13%

MDVRP-p01 576.87 4.79% 0.61% 0.04% 0.00% 0.00% 0.00%
MDVRP-p03 641.19 10.98% 3.07% 2.67% 2.12% 2.12% 2.17%
MDVRP-p06 876.5 7.79% 2.72% 1.53% 1.25% 1.36% 1.46%

Average error 5.28% 1.14% 0.76% 0.61% 0.62% 0.65%
𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎(𝑠𝑠) 40 570 836 1033 1315 1524

D. Sensitivity analysis of independence rate

The newly implemented mechanism of colony
independence was tested by altering the 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
parameter from 0 to 1, with 0.2 increments and the average
error gap (3) as well as execution time
𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎(𝑠𝑠) recorded. The experimental results are summarised
in Table 2.

Results in Table 2 show a definite improvement in the
introduction of the Independence operator within ICA.
Compared to ICA with no independence (independence rate
of 0) and ICA with independence rate higher than 0, the
average error across all test instances reduced by a factor of
4.6 (5.28% and 1.14% respectively). However, there is also a
time penalty associated with doing the extra work of
assimilating to all imperialists compared to a single
imperialist, with an average time to reach the final solution
increasing from seconds to minutes. The best average error
was achieved with the Independence rate between 0.6 and
0.8, and therefore independence rate at 0.7 was adopted for
use throughout all further experiments.

E. Comparison to the state-of-the-art metaheuristics for MKP

To evaluate performance of the proposed ICAwICA
algorithm, 12 state-of-the-art population-based/heuristic
algorithms were compared across 41 common MKP
instances.

First, a comparison was performed on simple WEISH
instances, where most algorithms in the literature can achieve
the optimum solution. Therefore, performance is measured in
terms of the success rate (how many times the algorithm was
able to achieve optimum) or in terms of the average error
percentage error (3) across all instances. For the comparison,
the six best-performing algorithms were selected from the
literature, which includes Ant Colony Optimization with
Dynamic impact (ACOwD) described in [31], Improved
Whale Optimization Algorithm (IWOA) [42], two variations
of binary differential search TE-BDS and TR-BDS proposed
in [71], and two implementations of Particle Swarm
Optimization (PSO) with self-adaptive check and repair -
SACRO-CBPSOTVAC and SACRO-BPSOTVAC [39].

Fig. 7. The average error of the mean profit across all WEISH (1-30)
instances. Average of 30 independent runs.

Results in Fig. 7 show that all compared algorithms can
reach the optimal solution in most cases. However, only 2 of
them ICAwICA and ACOwD can do it consistently across 30
runs with 100% success rate. ICAwICA achieved the optimal
solution every time (100% success rate), at the first iteration,
and on average took 1.5 seconds.

Next, large Glover and Kochenberger (GK) instances
were solved and compared to eight heuristic algorithms from
the literature in terms of average error percent (3) gap against
best-known profit (BKS) from the literature. Compared
algorithms include ACOwD, IWOA, Two-phase tabu-
evolutionary algorithm (TPTEA) [35], harmony search based
algorithm NBHS2 proposed in [40], evolutionary algorithm
with logic gates LGEA [36], shuffled complex evolution
algorithm SCEcr [37], hyper-heuristic inspired CF-LAS [72]
and BCSA – binary cuckoo search algorithm [41]. Table 3 is
colour coded from red (worst average error %) to the best
average error percent, in green, for each problem instance
with dashes (-) representing scores that were not available.
Compared to 8 other algorithms in the literature, ICAwICA
shows competitive results, coming in second place for gk01-
gk09 and in top three for gk10 and in fourth place for the
largest gk11 instance. The best achieved error percentage
along with the average time 𝑡𝑡𝑎𝑎𝑎𝑎𝑔𝑔(𝑠𝑠) and standard deviation
(Std) have been included for reference. The proposed
algorithm performs well on medium to large MKP instances,
however, struggles on very large instances (gk11). Further
investigation needs to be conducted to improve performance
on the most complex benchmarks.

0.007

0.005

0.023

0.07

0.002

0

0

0 0.02 0.04 0.06 0.08

SACRO-BPSOTVAC

SACRO-CBPSOTVAC

TR-BDS

TE-BDS

IWOA

ACOwD

ICAwICA (this work)

Average error of mean profit on
WEISH1-30 instances

TABLE 3. ALGORITHM COMPARISON ACROSS LARGE GLOVER AND KOCHENBERGER (GK) KNAPSACK INSTANCES. RESULTS ARE EXPRESSED AS AVERAGE
ERROR PERCENTAGE GAP % AGAINST BEST-KNOWN PROFIT. COLOUR CODED FROM THE BEST GAP (GREEN) TO WORST GAP (RED) FOR ANY GIVEN DATASET.

WITH DASH (-) REPRESENTING RESULTS THAT ARE NOT AVAILABLE. BKS – BEST KNOWN SOLUTION, STD – STANDARD DEVIATION OF THE ABSOLUTE VALUE.

Data
set

Problem
size

(n x m) BKS

ACOwD
[31]

NBHS2
[40]

IWOA
[42]

LGEA
[36]

TPTEA
[35]

SCEcr
[37]

CF-
LAS
[72]

BCSA
[41]

ICAwICA (this work)

Average Best Std 𝒕𝒕𝒂𝒂𝒂𝒂𝒂𝒂(𝒔𝒔)

gk01 100x15 3766 0.14% 0.29% 0.68% 0.66% 0.00% 0.76% 0.31% 0.23% 0.00% 0.00% 0.00 16.8
gk02 100x25 3958 0.05% 0.30% - 0.55% 0.00% 1.06% 0.36% 0.27% 0.05% 0.03% 0.99 19.4
gk03 150x25 5656 0.26% 0.55% 0.85% 0.97% 0.06% 0.91% 0.37% 0.17% 0.12% 0.11% 0.90 62.5
gk04 150x50 5767 0.17% 0.45% 0.89% 1.02% 0.01% 1.48% 0.45% 0.15% 0.07% 0.05% 0.93 84.4
gk05 200x25 7561 0.21% 0.44% 0.94% 1.32% 0.01% 0.73% 0.24% 0.18% 0.09% 0.04% 1.54 145.7
gk06 200x50 7680 0.26% 0.52% 0.77% 1.05% 0.08% 1.14% 0.46% 3.54% 0.13% 0.12% 1.19 247.7
gk07 500x25 19221 0.20% 0.26% 1.09% 1.08% 0.04% 0.46% 0.13% 0.70% 0.11% 0.07% 5.89 280.3
gk08 500x50 18806 0.22% 0.56% 0.85% - 0.06% 0.67% 0.20% 0.77% 0.12% 0.08% 2.98 357.8
gk09 1500x25 58091 0.18% 0.27% 1.54% 1.08% 0.02% 1.78% 1.77% 0.98% 0.14% 0.09% 14.61 1611.0
gk10 1500x50 57295 0.20% 0.54% 0.80% 1.01% 0.04% 0.36% 0.10% - 0.18% 0.12% 13.67 2219.1
gk11 2500x100 95238 0.32% 0.64% 1.07% 1.13% 0.07% 0.30% 0.09% - 0.31% 0.24% 61.54 7200.6

Average 0.20% 0.44% 0.95% 0.99% 0.04% 0.88% 0.41% 0.78% 0.12% 0.09% 9.48 1113.2

TABLE 4. BEST SOLUTION OBTAINED BY ICAWICA COMPARED TO OTHER ALGORITHMS IN THE LITERATURE ACROSS CORDEAU’S MDVRP BENCHMARK
INSTANCES AND THE BEST-KNOWN SOLUTION (BKS). THE BEST SCORES REPRESENTED IN BOLD, N REPRESENTING THE NUMBER OF CUSTOMERS, M – THE

NUMBER OF DEPOTS. AVERAGE ERROR PERCENTAGE CALCULATED USING BKS AS A REFERENCE, 𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎(𝑚𝑚) – AVERAGE TIME TO CONVERGE TO A SOLUTION, IN
MINUTES, STD – STANDARD DEVIATION

Data
set N M BKS

CoES,
2016
[73]

IACO,
2017
[60]

TSH,
2019
[74]

ACO+,
2020
[51]

ICAwICA (this work)

Best Average Std 𝒕𝒕𝒂𝒂𝒂𝒂𝒂𝒂(𝒎𝒎)
p01 50 4 576.87 576.87 576.87 576.87 576.87 576.87 576.87 0.00 4.2
p02 50 4 473.53 473.87 473.53 473.53 473.53 473.53 481.24 3.00 6.2
p03 75 5 641.19 641.19 641.19 641.19 641.19 641.19 655.29 3.25 7.9
p04 100 2 1001.59 1007.40 1001.49 1008.47 1003.52 1006.66 1015.11 3.97 12.4
p05 100 2 750.03 750.11 750.26 758.87 751.90 753.40 789.15 4.39 20.3
p06 100 3 876.50 876.50 876.50 881.76 881.60 876.50 887.71 3.93 14.7
p07 100 4 885.80 888.41 885.69 896.96 884.66 895.53 916.79 8.12 11.5
p08 249 2 4420.94 4445.37 4482.44 4430.36 4428.00 4420.94 4493.66 17.87 65.2
p09 249 3 3900.22 3895.70 3912.23 3971.59 3897.33 3900.22 3975.29 23.52 67.6
p10 249 4 3663.02 3666.35 3663.00 3779.10 3657.03 3666.35 3696.71 10.88 82.2
p11 249 5 3554.18 3569.68 3648.95 3652.01 3549.99 3554.18 3604.88 22.75 71.0
p12 80 2 1318.95 1318.95 1318.95 1318.95 1318.95 1318.95 1359.49 4.88 10.0
p13 80 2 1318.95 1318.95 1318.95 1318.95 1318.95 1318.95 1320.79 0.82 8.9
p14 80 2 1360.12 1360.12 1365.68 1365.69 1360.12 1365.68 1394.01 6.71 6.7
p15 160 4 2505.42 2526.06 2505.29 2552.79 2505.42 2565.67 2644.14 6.13 25.5
p16 160 4 2572.23 2572.23 2587.87 2572.23 2572.23 2572.23 2577.66 1.6 16.0
p17 160 4 2709.09 2709.09 2708.99 2731.37 2709.09 2709.09 2742.93 5.51 12.3
p18 240 6 3702.85 3771.35 3781.04 3802.29 3710.49 3710.49 3756.70 20.83 73.2
p19 240 6 3827.06 3827.06 3827.06 3831.71 3827.06 3827.06 3857.36 5.21 42.3
p20 240 6 4058.07 4058.07 4058.07 4097.06 4091.78 4058.07 4134.88 21.06 73.6
p21 360 9 5474.84 5608.26 5474.84 5617.53 5505.39 5495.54 5564.61 24.90 81.9
p22 360 9 5702.16 5702.16 5702.06 5706.81 5702.16 5702.16 5753.71 25.14 86.0
p23 360 9 6095.46 6129.99 6095.46 6145.58 6140.53 6145.58 6205.46 24.05 83.7

Average error gap 0.33% 0.33% 0.96% 0.13% 0.28%

E. Comparison to the state-of-the-art metaheuristics for
MDVRP

The ICAwICA algorithm was next evaluated for the
MDVRP compared to other state-of-the-art approaches.
Although there have been many algorithms applied to the
MDVRP, the most recent approaches in literature were
selected and are summarised in Table 4. A cooperative
coevolutionary algorithm called CoES [73], Improved Ant
Colony Optimization (IACO) [60], Tabu Search Heuristic
(TSH) in [74], as well as hybrid Ant Colony with simulated
annealing and local search algorithm called ACO+ [51] were
selected for the comparison. The ICAwICA algorithm was
also compared to the best-known solutions (BKS) in [70]; it

is worth mentioning that these solutions are outdated as better
results are reported in the literature. Nevertheless, the best-
known solutions of [70] are included for reference.

Compared with other algorithms in Table 4, ICAwICA
was able to obtain the same best score in 11 out of 23
instances and outperformed the four rival algorithms on p08
instance. On average error percentage in respect to BKS,
ICAwICA fell short compared to ACO+ (0.13% vs 0.28%
error), however, outperformed other compared approaches.

IV. CONCLUSIONS AND FUTURE WORK

This work proposes a novel generic Imperialist
Competitive Algorithm (ICA) based algorithm for solving

constrained combinatorial problems called ICA with
Independence and Constrained Assimilation (ICAwICA).
The algorithm implements a new Independence operator for
ICA, where each of the colonies has a free will to choose
between assimilating to its imperialist or any other imperialist
in the population. Besides, a generic constrained assimilation
process is proposed as part of the local search. The
constrained assimilation exploits the fact that two solutions
cannot be merged without violating constraints. Furthermore,
it combines the classic ICA assimilation and revolution
operators in one, in a generic manner.

To evaluate the performance and versatility of the
ICAwICA algorithm, two different kinds of combinatorial
benchmark problems were selected – subset selection and
routing, Multiple Knapsack Problem (MKP) and Multiple
Depot Vehicle Routing Problem (MDVRP), respectively.
First, the ICAwICA was compared to classic ICA, and results
showed a definite improvement in all benchmark test
instances. Next, the sensitivity of Independence operator was
performed, analysis shows that independence probability of
greater than zero, improves the results at the expense of
computing time. Finally, the ICAwICA was compared to the
current state-of-the-art population-based algorithms for both
MKP and MDVRP. The proposed algorithm outperformed
the majority of the competition on both types of problems
across multiple instances, indicating the generic, universal
nature of the ICAwICA.

The proposed algorithm can be improved in multiple
ways. First, instead of simply iterating over all possibilities
as part of repair mechanism, a more efficient selection
process based on heuristics can be explored. Similarly, the
proposed independence operator is slow as it is required to
assimilate to all imperialists, smarter selection of top
imperialists can be implemented. Furthermore, although this
paper focuses on solving MKP and MDVRP, other discrete
constrained optimisation problems can be explored.

REFERENCES
[1] S. S. Rao, Engineering Optimization, 5th ed. Hoboken: John Wiley &

Sons, Ltd, 2019.
[2] S. Desale, A. Rasool, S. Andhale, and P. Rane, “Heuristic and Meta-

Heuristic Algorithms and Their Relevance to the Real World: A
Survey,” Int. J. Comput. Eng. Res. Trends, vol. 351, no. 5, pp. 2349–
7084, 2015.

[3] M. J. Fogel, L. J., Owens, A. J., & Walsh, Artificial intelligence through
simulated evolution. John Wiley & Sons, 1966.

[4] M. Dorigo and L. M. Gambardella, “Ant colony system: a cooperative
learning approach to the traveling salesman problem,” IEEE Trans.
Evol. Comput., vol. 1, no. 1, pp. 53–66, Apr. 1997, doi:
10.1109/4235.585892.

[5] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in
Proceedings of ICNN’95 - International Conference on Neural
Networks, 1995, vol. 4, no. 2, pp. 1942–1948, doi:
10.1109/ICNN.1995.488968.

[6] E. Atashpaz-Gargari and C. Lucas, “Imperialist competitive
algorithm: An algorithm for optimization inspired by imperialistic
competition,” 2007 IEEE Congr. Evol. Comput. CEC 2007, pp. 4661–
4667, 2007, doi: 10.1109/CEC.2007.4425083.

[7] S. Hosseini and A. Al Khaled, “A survey on the Imperialist Competitive
Algorithm metaheuristic: Implementation in engineering domain and
directions for future research,” Appl. Soft Comput. J., vol. 24, pp.
1078–1094, 2014, doi: 10.1016/j.asoc.2014.08.024.

[8] Q. Fang, H. Nguyen, X.-N. Bui, and T. Nguyen-Thoi, “Prediction of
Blast-Induced Ground Vibration in Open-Pit Mines Using a New
Technique Based on Imperialist Competitive Algorithm and M5Rules,”
Nat. Resour. Res., vol. 29, no. 2, pp. 791–806, Apr. 2020, doi:
10.1007/s11053-019-09577-3.

[9] B. Tashayo, K. Behzadafshar, M. Soltani Tehrani, H. Afkhami
Banayem, M. H. Hashemi, and S. S. Taghavi Nezhad, “Feasibility of
imperialist competitive algorithm to predict the surface settlement
induced by tunneling,” Eng. Comput., vol. 35, no. 3, pp. 917–923, Jul.
2019, doi: 10.1007/s00366-018-0641-3.

[10] Z. Aliniya and S. A. Mirroshandel, “A novel combinatorial merge-split
approach for automatic clustering using imperialist competitive
algorithm,” Expert Syst. Appl., vol. 117, pp. 243–266, 2019, doi:
10.1016/j.eswa.2018.09.050.

[11] Z. Aliniya and S. A. Mirroshandel, “A novel combinatorial merge-split
approach for automatic clustering using imperialist competitive
algorithm,” Expert Syst. Appl., vol. 117, no. January 2018, pp. 243–
266, Mar. 2019, doi: 10.1016/j.eswa.2018.09.050.

[12] M. Abdechiri, H. Bahrami, and K. Faez, “Adaptive Imperialist
Competitive Algorithm (AICA),” Proc. 9th IEEE Int. Conf. Cogn.
Informatics, ICCI 2010, pp. 940–945, 2010, doi:
10.1109/COGINF.2010.5599776.

[13] M. R. Maheri and M. Talezadeh, “An Enhanced Imperialist
Competitive Algorithm for optimum design of skeletal structures,”
Swarm Evol. Comput., vol. 40, no. November, pp. 24–36, 2018, doi:
10.1016/j.swevo.2017.12.001.

[14] L. D. Afonso, V. C. Mariani, and L. Dos Santos Coelho, “Modified
imperialist competitive algorithm based on attraction and repulsion
concepts for reliability-redundancy optimization,” Expert Syst. Appl.,
vol. 40, no. 9, pp. 3794–3802, 2013, doi: 10.1016/j.eswa.2012.12.093.

[15] A. Rabiee, M. Sadeghi, and J. Aghaei, “Modified imperialist
competitive algorithm for environmental constrained energy
management of microgrids,” J. Clean. Prod., vol. 202, pp. 273–292,
2018, doi: 10.1016/j.jclepro.2018.08.129.

[16] J. J. Liang and P. N. Suganthan, “Dynamic Multi-Swarm Particle
Swarm Optimizer with Local Search,” in 2005 IEEE Congress on
Evolutionary Computation, 2005, vol. 1, no. May 2014, pp. 522–528,
doi: 10.1109/CEC.2005.1554727.

[17] M. Li, D. Lei, and H. Xiong, “An imperialist competitive algorithm with
the diversified operators for many-objective scheduling in flexible job
shop,” IEEE Access, vol. 7, pp. 29553–29562, 2019, doi:
10.1109/ACCESS.2019.2895348.

[18] S. Karimi, Z. Ardalan, B. Naderi, and M. Mohammadi, “Scheduling
flexible job-shops with transportation times: Mathematical models and
a hybrid imperialist competitive algorithm,” Appl. Math. Model., vol.
41, pp. 667–682, 2017, doi: 10.1016/j.apm.2016.09.022.

[19] Z. Ardalan, S. Karimi, O. Poursabzi, and B. Naderi, “A novel
imperialist competitive algorithm for generalized traveling salesman
problems,” Appl. Soft Comput. J., vol. 26, pp. 546–555, 2015, doi:
10.1016/j.asoc.2014.08.033.

[20] J. L. Lin, H. C. Chuan, Y. H. Tsai, and C. W. Cho, “Improving
imperialist competitive algorithm with local search for global
optimization,” Proc. - Asia Model. Symp. 2013 7th Asia Int. Conf.
Math. Model. Comput. Simulation, AMS 2013, pp. 61–64, 2013, doi:
10.1109/AMS.2013.14.

[21] R. E. G. P. C. Gilmore, “The Theory and Computation of Knapsack
Functions,” Oper. Res., vol. 14, no. 6, pp. 1045–1074, 1966.

[22] H. P. B. Gavish, “Allocation of databases and processors in a
distributed data processing,” in Management of Distributed Data
Processing, J. Akola, Ed. Amsterdam: North-Holland, 1982, pp. 215–
231.

[23] W. Shish, “A branch & bound method for the multiconstraint zero-one
knapsack problem,” J. Oper. Res. Soc., vol. 30, pp. 369–378, 1979.

[24] M. Vasquez and J. K. Hao, “A ‘logic-constrained’ knapsack
formulation and a tabu algorithm for the daily photograph scheduling
of an earth observation satellite,” Comput. Optim. Appl., vol. 20, no.
2, pp. 137–157, 2001, doi: 10.1023/A:1011203002719.

[25] C. C. Petersen, “Computational Experience with Variants of the Balas
Algorithm Applied to the Selection of R&D Projects,” Manage. Sci.,
vol. 13, no. 9, pp. 609–772, 1967.

[26] D. N. N. H. Martin Weingartner, “Methods for the Solution of the
Multidimensional 0/1 Knapsack Problem,” Oper. Res., vol. 15, no. 1,
pp. 83–103, 1967.

[27] T. Setzer and S. M. Blanc, “Empirical orthogonal constraint
generation for Multidimensional 0/1 Knapsack Problems,” Eur. J.
Oper. Res., vol. 282, no. 1, pp. 58–70, 2020, doi:
10.1016/j.ejor.2019.09.016.

[28] A. Fréville, “The multidimensional 0-1 knapsack problem: An
overview,” Eur. J. Oper. Res., vol. 155, no. 1, pp. 1–21, 2004, doi:
10.1016/S0377-2217(03)00274-1.

[29] M. J. Varnamkhasti, “Overview of the Algorithms for Solving the
Multidimensional Knapsack Problems,” Adv. Sudies Biol., vol. 4, no.
1, pp. 37–47, 2012.

[30] M. Kong, P. Tian, and Y. Kao, “A new ant colony optimization
algorithm for the multidimensional Knapsack problem,” Comput.
Oper. Res., vol. 35, no. 8, pp. 2672–2683, 2008, doi:
10.1016/j.cor.2006.12.029.

[31] J. Skackauskas, T. Kalganova, I. Dear, and M. Janakram, “Dynamic
Impact for Ant Colony Optimization algorithm,” Feb. 2020.

[32] A. Rezoug, M. Bader-El-Den, and D. Boughaci, “Knowledge-based
Genetic Algorithm for the 0-1 Multidimensional Knapsack Problem,”
2017 IEEE Congr. Evol. Comput. CEC 2017 - Proc., no. 2, pp. 2030–
2037, 2017, doi: 10.1109/CEC.2017.7969550.

[33] A. Rezoug, M. Bader-El-Den, and D. Boughaci, “Guided genetic
algorithm for the multidimensional knapsack problem,” Memetic
Comput., vol. 10, no. 1, pp. 29–42, 2018, doi: 10.1007/s12293-017-
0232-7.

[34] I. K. Gupta, “A hybrid GA-GSA algorithm to solve multidimensional
knapsack problem,” Proc. 4th IEEE Int. Conf. Recent Adv. Inf.
Technol. RAIT 2018, pp. 1–6, 2018, doi: 10.1109/RAIT.2018.8389069.

[35] X. Lai, J. K. Hao, F. Glover, and Z. Lü, “A two-phase tabu-
evolutionary algorithm for the 0–1 multidimensional knapsack
problem,” Inf. Sci. (Ny)., vol. 436–437, pp. 282–301, 2018, doi:
10.1016/j.ins.2018.01.026.

[36] A. A. Ferjani and N. Liouane, “Logic gate-based evolutionary
algorithm for the multidimensional knapsack problem,” 2017 Int. Conf.
Control. Autom. Diagnosis, ICCAD 2017, pp. 164–168, 2017, doi:
10.1109/CADIAG.2017.8075650.

[37] M. Daniel Valadao Baroni and F. M. Varejao, “A shuffled complex
evolution algorithm for the multidimensional knapsack problem using
core concept,” 2016 IEEE Congr. Evol. Comput. CEC 2016, pp. 2718–
2723, 2016, doi: 10.1109/CEC.2016.7744131.

[38] B. Haddar, M. Khemakhem, S. Hanafi, and C. Wilbaut, “A hybrid
quantum particle swarm optimization for the Multidimensional
Knapsack Problem,” Eng. Appl. Artif. Intell., vol. 55, pp. 1–13, 2016,
doi: 10.1016/j.engappai.2016.05.006.

[39] M. Chih, “Self-adaptive check and repair operator-based particle
swarm optimization for the multidimensional knapsack problem,”
Appl. Soft Comput. J., vol. 26, pp. 378–389, 2015, doi:
10.1016/j.asoc.2014.10.030.

[40] X. Kong, L. Gao, H. Ouyang, and S. Li, “Solving large-scale
multidimensional knapsack problems with a new binary harmony
search algorithm,” Comput. Oper. Res., vol. 63, pp. 7–22, 2015, doi:
10.1016/j.cor.2015.04.018.

[41] K. K. Bhattacharjee and S. P. Sarmah, “Modified swarm intelligence
based techniques for the knapsack problem,” Appl. Intell., vol. 46, no.
1, pp. 158–179, 2017, doi: 10.1007/s10489-016-0822-y.

[42] M. Abdel-Basset, D. El-Shahat, and A. K. Sangaiah, “A modified
nature inspired meta-heuristic whale optimization algorithm for
solving 0–1 knapsack problem,” Int. J. Mach. Learn. Cybern., vol. 10,
no. 3, pp. 495–514, 2019, doi: 10.1007/s13042-017-0731-3.

[43] G. B. Dantzig and J. H. Ramser, “The Truck Dispatching Problem,”
Manage. Sci., vol. 6, no. 1, pp. 80–91, Oct. 1959, doi:
10.1287/mnsc.6.1.80.

[44] E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys,
“Erratum: The Traveling Salesman Problem: A Guided Tour of
Combinatorial Optimization,” J. Oper. Res. Soc., vol. 37, no. 6, pp.
655–655, Jun. 1986, doi: 10.1057/jors.1986.117.

[45] S. Karakatič and V. Podgorelec, “A survey of genetic algorithms for
solving multi depot vehicle routing problem,” Appl. Soft Comput. J.,
vol. 27, pp. 519–532, 2015, doi: 10.1016/j.asoc.2014.11.005.

[46] S. Samsuddin, M. S. Othman, and L. M. Yusuf, “a Review of Single and
Population-Based Metaheuristic Algorithms Solving Multi Depot
Vehicle Routing Problem,” Int. J. Softw. Eng. Comput. Syst., vol. 4, no.
2, pp. 80–93, 2018, doi: 10.15282/ijsecs.4.2.2018.6.0050.

[47] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness, W.H. Freem. 1979.

[48] N. Sharma and M. Monika, “A Literature Survey on Multi Depot
Vehicle Routing Problem,” IJSRD -International J. Sci. Res. Dev., vol.
3, no. 04online, pp. 2321–613, 2015.

[49] L. F. Galindres-Guancha, E. M. Toro-Ocampo, and R. A. Gallego-
Rendón, “Multi-objective MDVRP solution considering route balance
and cost using the ILS metaheuristic,” Int. J. Ind. Eng. Comput., vol. 9,
no. 1, pp. 33–46, 2018, doi: 10.5267/j.ijiec.2017.5.002.

[50] J. Renaud, G. Laporte, and F. F. Boctor, “A tabu search heuristic for
the multi-depot vehicle routing problem,” Comput. Oper. Res., vol. 23,
no. 3, pp. 229–235, 1996, doi: 10.1016/0305-0548(95)O0026-P.

[51] P. Stodola, “Hybrid ant colony optimization algorithm applied to the
multi-depot vehicle routing problem,” Nat. Comput., vol. 6, 2020, doi:
10.1007/s11047-020-09783-6.

[52] G. Clarke and J. W. Wright, “Scheduling of Vehicles from a Central
Depot to a Number of Delivery Points,” Oper. Res., vol. 12, no. 4, pp.
568–581, Aug. 1964, doi: 10.1287/opre.12.4.568.

[53] P. Surekha and S. Sumathi, “Solution To Multi-Depot Vehicle Routing
Problem Using Genetic Algorithms,” World Appl. Program., no. 13,
pp. 118–131, 2011.

[54] B. E. Gillett and J. G. Johnson, “Multi-terminal vehicle-dispatch
algorithm,” Omega, vol. 4, no. 6, pp. 711–718, 1976, doi:
10.1016/0305-0483(76)90097-9.

[55] D. Gulczynski, B. Golden, and E. Wasil, “The multi-depot split delivery
vehicle routing problem: An integer programming-based heuristic,
new test problems, and computational results,” Comput. Ind. Eng., vol.
61, no. 3, pp. 794–804, 2011, doi: 10.1016/j.cie.2011.05.012.

[56] A. Imran, “A Variable Neighborhood Search-Based Heuristic for the
Multi-Depot Vehicle Routing Problem,” J. Tek. Ind., vol. 15, no. 2, pp.
95–102, Dec. 2013, doi: 10.9744/jti.15.2.95-102.

[57] T. Dokeroglu, E. Sevinc, T. Kucukyilmaz, and A. Cosar, “A survey on
new generation metaheuristic algorithms,” Comput. Ind. Eng., vol.
137, no. September, p. 106040, Nov. 2019, doi:
10.1016/j.cie.2019.106040.

[58] Y. M. Shen and R. M. Chen, “Optimal multi-depot location decision
using particle swarm optimization,” Adv. Mech. Eng., vol. 9, no. 8, pp.
1–15, 2017, doi: 10.1177/1687814017717663.

[59] S. B. Sarathi Barma, J. Dutta, and A. Mukherjee, “A 2-opt guided
discrete antlion optimization algorithm for multi-depot vehicle routing
problem,” Decis. Mak. Appl. Manag. Eng., vol. 2, no. 2, pp. 112–125,
2019, doi: 10.31181/dmame1902089b.

[60] B. Yao, C. Chen, X. Song, and X. Yang, “Fresh seafood delivery routing
problem using an improved ant colony optimization,” Ann. Oper. Res.,
vol. 273, no. 1–2, pp. 163–186, 2019, doi: 10.1007/s10479-017-2531-
2.

[61] S. J.MousaviRad, F. Akhlaghian Tab, and K. Mollazade, “Application
of Imperialist Competitive Algorithm for Feature Selection: A Case
Study on Bulk Rice Classification,” Int. J. Comput. Appl., vol. 40, no.
16, pp. 41–48, 2012, doi: 10.5120/5068-7485.

[62] D. S. Huang, K. Han, and A. Hussain, “Improved Binary Imperialist
Competition Algorithm for Feature Selection from Gene Expression
Data,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif.
Intell. Lect. Notes Bioinformatics), vol. 9773, p. V, 2016, doi:
10.1007/978-3-319-42297-8.

[63] M. Mirhosseini and H. Nezamabadi-pour, “BICA: a binary imperialist
competitive algorithm and its application in CBIR systems,” Int. J.
Mach. Learn. Cybern., vol. 9, no. 12, pp. 2043–2057, 2018, doi:
10.1007/s13042-017-0686-4.

[64] S. Nozarian, H. Soltanpoor, and M. Vafaei, “A Binary Model on the
Basis of Imperialist Competitive Algorithm in Order to Solve the
Problem of Knapsack 1-0,” Proc. third Int. Conf. Serv. Emerg. Mark.
2012, vol. 34, pp. 67–71, 2012.

[65] S. Xu, Y. Wang, and A. Huang, “Application of imperialist competitive
algorithm on solving the traveling salesman problem,” Algorithms, vol.
7, no. 2, pp. 229–242, 2014, doi: 10.3390/a7020229.

[66] S. H. Mirhoseini, S. M. Hosseini, M. Ghanbari, and M. Ahmadi, “A
new improved adaptive imperialist competitive algorithm to solve the
reconfiguration problem of distribution systems for loss reduction and
voltage profile improvement,” Int. J. Electr. Power Energy Syst., vol.
55, pp. 128–143, 2014, doi: 10.1016/j.ijepes.2013.08.028.

[67] S. S. Ray, S. Bandyopadhyay, and S. K. Pal, “Genetic operators for
combinatorial optimization in TSP and microarray gene ordering,”
Appl. Intell., vol. 26, no. 3, pp. 183–195, 2007, doi: 10.1007/s10489-
006-0018-y.

[68] J. H. Drake, “Benchmark instances for the Multidimensional Knapsack
Problem,” 20215. [Online]. Available:
https://www.researchgate.net/publication/271198281_Benchmark_ins
tances_for_the_Multidimensional_Knapsack_Problem.

[69] G. A. K. Glover, Fred, “Critical event tabu search for multidimensional
knapsack problems,” Meta-Heuristics.

[70] “Multiple Depot VRP Instances,” University of Malaga, Spain.
[Online]. Available: http://neo.lcc.uma.es/vrp/vrp-instances/multiple-
depot-vrp-instances/.

[71] J. Liu, C. Wu, J. Cao, X. Wang, and K. L. Teo, “A Binary differential
search algorithm for the 0–1 multidimensional knapsack problem,”
Appl. Math. Model., vol. 40, no. 23–24, pp. 9788–9805, 2016, doi:
10.1016/j.apm.2016.06.002.

[72] J. H. Drake, E. Özcan, and E. K. Burke, “A case study of controlling
crossover in a selection hyper-heuristic framework using the

multidimensional Knapsack problem,” Evol. Comput., vol. 24, no. 1,
pp. 113–141, 2016, doi: 10.1162/EVCO_a_00145.

[73] F. B. De Oliveira, R. Enayatifar, H. J. Sadaei, F. G. Guimarães, and J.
Y. Potvin, “A cooperative coevolutionary algorithm for the Multi-
Depot Vehicle Routing Problem,” Expert Syst. Appl., vol. 43, pp. 117–
130, 2016, doi: 10.1016/j.eswa.2015.08.030.

[74] M. E. H. Sadati, D. Aksen, and N. Aras, “The r-interdiction selective
multi-depot vehicle routing problem,” Int. Trans. Oper. Res., vol. 27,
no. 2, pp. 835–866, 2020, doi: 10.1111/itor.12669.

	I. Introduction
	A. Mulktiple Knapsack Problem (MKP)
	B. Multi Depot Vehicle Routing Problem (MDVRP)

	II. The Imperialist Competitive Algorithm with Independence and Constrained Assimilation
	A. Classic ICA
	B. ICAwICA
	C. Constrained Assimilation
	D. ICAwICA solution encoding for MKP and MDVRP

	III. Experiments
	A. Benchmark instances
	B. Experimental setup
	C. Comparison to classic ICA
	D. Sensitivity analysis of independence rate
	E. Comparison to the state-of-the-art metaheuristics for MKP
	E. Comparison to the state-of-the-art metaheuristics for MDVRP

	IV. Conclusions and future work
	References

