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Abstract— This work proposes an improved Imperialist 
Competitive Algorithm (ICA) based algorithm for solving 
constrained combinatorial problems, called ICA with 
Independence and Constrained Assimilation (ICAwICA). The 
proposed algorithm introduces the concept of colony 
independence – a free will to choose between classic ICA 
assimilation to the empire’s imperialist or any other imperialist 
in the population. Furthermore, a constrained assimilation 
process has been implemented that combines classical ICA 
assimilation and revolution operators, while maintaining 
population diversity. In order to evaluate the performance and 
generalisation aspects of the proposed approach, two different 
kinds of combinatorial benchmark problems were selected – 
subset selection and routing, Multiple Knapsack Problem 
(MKP) and Multiple Depot Vehicle Routing Problem 
(MDVRP), respectively. The algorithm showed definite 
improvement over classic ICA and outperformed most of the 
competition on both types of problems across multiple instances, 
indicating the generic, universal nature of the ICAwICA. 
Moreover, it ranked 2nd among the recently published 
algorithms that are customised to the specific problem with the 
use of problem-specific operators, while the proposed algorithm 
had no such operators.   
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knapsack problem (MKP), multi depot vehicle routing problem 
(MDVRP), imperialist competitive algorithm (ICA), meta-
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I. INTRODUCTION 

Optimisation is the process of finding the best solution 
among a pool of possible solutions. Optimisation is applied 
to a wide range of engineering, economic and even social 
systems to minimise cost or maximise profits. There is no 
single optimisation technique that can be efficiently applied 
across all optimisation problems. Hence several optimisation 
methods have been developed for different kinds of 
optimisation problems [1]. A metaheuristic is one of such 
methods; it offers a near-optimal solution in less compute 
time than exact methods  [2]. Metaheuristics include 
algorithms such as Genetic Algorithm (GA) [3], Ant Colony 
Optimization (ACO) [4], Particle Swarm Optimization (PSO) 
[5], more recently Imperialist Competitive Algorithm (ICA) 
[6], etc.  

Imperialist Competitive Algorithm (ICA), intensively 
researched during the last decade, is a subset of metaheuristic 
algorithms that are modelled based on geopolitical behaviour. 
It can also be classified as a social Darwinism that follows 
evolutionary computing principles. Atashpaz-Gargari and 
Lucas first proposed the ICA in [6] for solving continuous 
cost functions and since the algorithm has generated interest 
amongst many researchers. Its application can be found in 
various engineering disciplines – scheduling, assembly line 
balancing, facility layout optimisation, computer engineering 

and other areas of industrial engineering [7]. Most recently, 
applications such as prediction [8][9], clustering [10] and 
encryption [11] have emerged, demonstrating the versatility 
and wide application areas of the algorithm. 

There have been various attempts on improving the 
standard ICA search performance. For example, authors in 
[12] proposed an adaptive ICA (AICA) that uses a 
probabilistic model based on colony positions to escape local 
optimum. Similarly, [13] improved the convergence speed of 
the algorithm by adding additional value to an unfeasible 
solution, based on its distance from the relative imperialist. 
Both [14] and [15] enhanced ICA by implementing an 
attraction and repulsion concept during the search for better 
solutions. Less researched area is the use of local search in 
ICA. Local search has been used to improve convergence on 
other metaheuristics, such as in Ant Colony System [4] by 
local pheromone update rules, or small swarm division in 
PSO [16]. The standard ICA does not implement any form of 
local search and therefore, may get stuck in local optima 
before converging to the global best solution [17]. Only few 
approaches for solving this problem have been proposed in 
the literature, such as simulated annealing-like processes in 
[18], where the local search process is applied for machine-
selection part and the operation-sequence part in flexible job-
shop problem (FJSP). The 2-opt is another popular local-
search operator for routing problems, such as Travelling 
Salesman Problem (TSP). For example, work in [19] uses 2-
opt with ICA to improve the imperialists. For continuous 
optimization problems, local search operator such as random 
line search has been explored in [20], where authors applied 
the problem-specific local search for the imperialist 
solutions. 

However, many of these local search implementations 
rely on problem-specific operators or assimilation. These 
operators exploit the underlying problem dynamics and are 
an effective way to improve the convergence. Although some 
can be transferrable across similar class problems, they are 
rarely generic enough to be applied for a wide range of 
problems. For example, a 2-opt local search would be of no 
use for a knapsack problem. In attempt to overcome this 
issue, paper proposes a modified ICA, where the local search 
process is performed in terms of both an Independence 
operator and a Constrained Assimilation (ICAwICA). 
Compared to existing ICA local search approaches, 
ICAwICA proposes a more generic implementation that does 
not require problem-specific operators. 

Thus, in this paper, we present a more generic algorithm 
with a local search that expands on the classic ICA, with the 
use of novel Independence operator and Constrained 
Assimilation, called ICAwICA. The contributions can be 
summarized into the following to aspects: 
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• A novel generic ICA is proposed, where the standard 
assimilation and revolution process is replaced with 
constrained assimilation and the novel independence 
operator used for local search.  

• The performance of the ICAwICA algorithm is 
comprehensively evaluated via well-known Multiple 
Knapsack Problem (MKP) and Multi Depot Vehicle 
Routing Problem (MDVRP) benchmark instances. 
The experiment results demonstrate the superiority 
over classic ICA and universality of the local search.  

The rest of the paper is structured as follows: first, both 
MKP and MDVRP are introduced and formalised. Next, in 
section two, standard ICA, as well as proposed ICAwICA, is 
presented with example applications. Experimental setup, 
benchmarks used, and comparative results to the state-of-the-
art approaches for both MKP and MDVRP are described in 
section three. And finally, the last section concludes the 
paper.   

A. Mulktiple Knapsack Problem (MKP) 

The Multidimensional Knapsack Problem (MKP) is a 
well-known constrained optimisation problem, that has 
multiple real-world engineering applications, such as cutting 
stock [21], distributed computing resource allocation [22], 
cargo loading [23], satellite management [24], project 
selection [25] and capital budgeting [26]. The MKP is an 
extension of the 0-1 knapsack problem, where items have 
weight vectors in multiple dimensions. The goal is to 
maximise the total profit by putting items into knapsacks 
while satisfying weight capacity constraints across all 
dimensions. MKP is formulated in (1) [27].  

max 
�𝑝𝑝𝑦𝑦𝑠𝑠𝑦𝑦

𝑛𝑛

𝑦𝑦=1
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(1) 
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where every item 𝑦𝑦 in the list of 𝑛𝑛 items (𝑦𝑦 = 1 …  𝑛𝑛) has 
a profit 𝑝𝑝𝑦𝑦  and weight  𝑤𝑤𝑧𝑧𝑧𝑧  associated with an 𝑚𝑚 -
dimensional weight vector (𝑧𝑧 = 1 …  𝑚𝑚), that tries to satisfy 
a capacity constraint 𝑊𝑊𝑧𝑧  in that dimension. Variable 𝑠𝑠𝑦𝑦  
indicates whether the item is selected and included in the 
solution. Capacities, weights and profits are assumed to be 
positive.  

Being an NP-hard problem with practical applications, 
many different approaches have been proposed for solving 
MKP, which can be divided into two groups – exact, 
deterministic, single-solution based algorithms and stochastic 
population/meta-heuristic based algorithms, with this paper 
focusing on the latter approach. 

Comprehensive literature review of solving MKPs was 
provided by [28], and a more recent MKP overview by [29] 
summarises algorithms used for solving MKP. This paper 
focuses on the state-of-the-art population and meta-heuristic 
algorithms used for solving MKP instances, such as ant 
colony optimisation [18][19], various types of genetic 
algorithms [32][33][34], evolutionary algorithms [35][36] 

[37], variations of particle swarm optimisation algorithm 
[38][39], binary harmony search [40], binary cuckoo search 
algorithm [41], whale optimisation algorithm [42] and alike.  
Most of the research in population-based algorithms focus on 
small MKP instances with 𝑛𝑛 ≤ 100, while only a few explore 
large instances with 𝑛𝑛 = 500 and above.  This paper tries to 
cover both small and large instances of MKP for a 
comprehensive study. 

B. Multi Depot Vehicle Routing Problem (MDVRP) 

The Vehicle Routing Problem (VRP), first described in 
1959 [43], is an extension of the Traveling Salesman Problem 
(TSP) [44]. Compared to TSP, where an agent has only to 
visit all cities once, VRP introduces demands for each 
customer or stop. Demands need to be satisfied by routing 
vehicles such that they start and finish their paths at the same 
depot. Many real-life problems can be modelled as a form of 
VRP, for example, picking up and delivering mail, packages 
or any other goods or services. Due to the wide range of 
practical applications, many variations of VRP have since 
been explored. For instance, capacitated VRP introduces 
capacity constraints on the vehicles; VRP with Time 
Windows (VRPTW) requires delivery to happen within a 
specific time window; VRP with maximum vehicle distance 
constraints (DVRP) and many others [45].  

A common VRP derivation is the Multi-Depot Vehicle 
Routing Problem (MDVRP). MDVRP is an extension of 
classical VRP by the introduction of multiple depots. 
Vehicles in the MDVRP are subject to capacity constraints 
(how much cargo can be carried on board) and the maximum 
duration for the route before the vehicle needs to return to the 
original depot.  The MDVRP resembles a lot of everyday 
transportation, logistics and distribution problems and, 
therefore, has been a common research area [46]. 
Furthermore, the MDVRP is also an NP-hard combinatorial 
optimisation problem; thus, optimal solutions are hard to find 
[47]. Although exact algorithms for solving these classes of 
problems exist, they are limited to small problem instances 
[48]. A wide range of metaheuristics and population-based 
algorithms have been used [46] to solve larger instances of 
the MDVRP. 

The main aim of the MDVRP is to route a fleet of vehicles 
from multiple depots to multiple customers requiring goods 
or services.. Fig. 1 shows an example of a simple MDVRP 
solution with ten customers (as circles) and two depots (as 
rectangles). Although there exist multi-objective approaches 
for solving MDVRP [49], the most common goal is to 
minimise the total cost.  

 
Fig. 1. Example of an MDVRP with ten customers (as circles) and two 
depots (A and B as rectangles) 



The MDVRP can be formalised in a mathematical model 
based on [50] and [51]. Given a direct graph 𝐺𝐺 =  (𝑆𝑆,𝐸𝐸) 
where 𝑆𝑆 =  𝐶𝐶 ∪ 𝐷𝐷 is a set of customers 𝐶𝐶 =  {𝐶𝐶1,𝐶𝐶2, … ,𝐶𝐶𝑁𝑁} 
and depots 𝐷𝐷 =  {𝐷𝐷1,𝐷𝐷2, … ,𝐷𝐷𝑀𝑀}  and  𝐸𝐸 is a set of edges 
between all the nodes in the graph. In a fully connected graph, 
every edge 𝐸𝐸𝑖𝑖𝑖𝑖  between nodes  𝑆𝑆𝑖𝑖  and 𝑆𝑆𝑗𝑗   (𝑖𝑖 ≠ 𝑗𝑗)  has 
associated positive cost 𝑐𝑐𝑖𝑖𝑖𝑖   - distance or time, for example. 
Each customer has a positive demand 𝑑𝑑𝑖𝑖  ( 𝑖𝑖 ∈ 𝐶𝐶 ). 
Furthermore, there is also a fleet of 𝐾𝐾  identical vehicles 
available at each depot 𝐷𝐷𝑘𝑘 𝜖𝜖 𝐷𝐷 (that are not allowed to exceed 
capacity 𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚  and duration 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚). The goal is to minimise 
the total cost across all vehicles (2).  

𝑚𝑚𝑚𝑚𝑚𝑚�� 𝑐𝑐𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖
𝑗𝑗 ∈ 𝑆𝑆𝑖𝑖 ∈ 𝑆𝑆

 (2) 

where 𝑥𝑥𝑖𝑖𝑖𝑖  equals to 1 if 𝑖𝑖  comes after 𝑗𝑗  in the customer 
sequence on any route of all vehicles and 0 otherwise. The 
problem is subject to the following constraints a) each vehicle 
route starts and ends at the same depot; b) the total demand 
on each route does not exceed vehicle capacity 𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚; c) the 
maximum route duration 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚  is not exceeded; e) each 
customer is served by exactly one vehicle.  

Since the first formulation in [43], many exact and 
heuristic algorithms have been explored for vehicle routing 
problems. Most notably, [52] proposed a heuristic approach 
based on the cost savings algorithm that has since been used 
in some form in many other algorithms [53]. Another popular 
heuristics approach was introduced in [54] that allowed 
problems divided into sub-problems based on vehicles and 
then solved separately, combining results into a single 
solution afterwards. Although heuristic approaches such as 
integer programming [55] and variable neighbourhood search 
[56] have the potential to find optimal solutions every time, 
they generally do not scale well with the problem size and are 
limited to smaller MDVRP instances or are very time-
consuming [48]. 

Meta-heuristic algorithms offer a stochastic approach for 
solving highly complex combinatorial problems with near-
optimal or optimal solutions. They have been a growing 
interest in many areas [57], and MDVRP is no exception. A 
recent survey of metaheuristic algorithms [46] suggests that 
two of the most common algorithms used for solving 
MDVRP are Ant Colony Optimization (ACO) and Genetic 
Algorithm (GA). However, other algorithms like Particle 
Swarm Optimization (PSO) [58] and Ant Lion Optimization 
(ALO) [59] have also been successfully applied. GA is a 
nature-inspired algorithm that is based on the natural 
selection process.  A comprehensive summary of methods 
and approaches used for solving MDVRP with GA is 
presented in [45]. ACO is another popular approach for 
solving VRP class problems as it mimics ants travelling and 
searching for food while creating paths for other ants to 
follow. Many implementations of ACO for MDVRP exist in 
the literature; the most recent work includes [60] who applied 
the ACO algorithm for fresh seafood delivery routing 
problems.  

II. THE IMPERIALIST COMPETITIVE ALGORITHM WITH 
INDEPENDENCE AND CONSTRAINED ASSIMILATION  

The following section introduces the classic Imperialist 
Competitive Algorithm (ICA) and the novel ICA with 
Independence and Constrained Assimilation (ICAwICA) 

algorithm. It discusses the changes and advantages of 
constrained assimilation. Finally, ICAwICA application to 
two different example problems is considered. 

A. Classic ICA 

Like many other population algorithms, ICA starts its 
search by generating a random initial population where each 
individual of the population represents a country. Countries 
within ICA can be thought of as chromosomes in a genetic 
algorithm. The initial population is separated into multiple 
groups (so-called empires). Most influential countries 
become imperialist within the empire and weakest - their 
colonies.  Each colony within empire moves closer to their 
imperialist in the form of assimilation operator. In order to 
provide diversity amongst countries, a revolution operator 
(mutation in GA) is implemented. If at any point a colony 
becomes stronger than its imperialist, then the two countries 
are swapped, such that imperialist is the strongest country in 
the empire. The search follows an iterative process, where 
after each iteration, the weakest colony within the weakest 
empire is assigned to one of the stronger empires – following 
the imperialist competition process. An empire is eliminated 
once it contains no more colonies. The search usually 
continues until the termination criteria are met. Ideally, the 
search is terminated once all empires are eliminated and only 
one, the best, empire remaining.  

B. ICAwICA 

The proposed ICAwICA follows the classic ICA [6] 
principles for both empire initialisation and empire 
competition; however, assimilation and revolution operators 
are replaced with a constrained assimilation and repair 
mechanism. Furthermore, in the classic ICA, each colony 
within an empire is moving closer to the imperialist within 
that empire. In contrast, in ICAwICA all colonies are given a 
free choice to move closer to any of the imperialists of other 
empires (independence), as long as it improves the country’s 
well-being (associated cost). Therefore, at each iteration, a 
colony 𝑘𝑘 has a probability based on a uniform distribution 
( 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ) of either move closer to their own empire’s 
imperialist or to move closer to any other imperialist 𝑗𝑗 , 
determined by 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (0-1.0). Moreover, this 
process is repeated 𝑁𝑁𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 times for each colony to explore 
more search space around its position in the form of local 
search. Pseudocode of the ICAwICA is shown in Fig. 4. The 
flowchart for both classic ICA and ICAwICA is shown in Fig. 
2, with red indicating the changes. 

C. Constrained Assimilation 

Classic ICA was first developed for continuous math’s 
problem with simple assimilation processes [6], ICA has 
since been applied to multiple binary problems, such as 
feature selection [61][62], content-based-image retrieval 
(CBIR) [63] and single-dimensional 0-1 knapsack problems 
[64]. However, binary assimilation approaches cannot always 
be extended to other discrete, non-binary problems.  



 
Fig. 2. Flowchart of classic ICA [6] (to the left) and the proposed ICAwICA (on the right), with red indicating the changes. 

Furthermore, most ICA discrete assimilation 
implementations follow simple genetic-algorithm-like 
crossover operations, where the chromosomes are expected 
to be of equal size [65] [66]. The proposed Constrained 
Assimilation (CA) process does not require equal 
chromosome/solution size and is extendable to other 
constrained discrete problems. CA exploits the fact that two 
solutions cannot always be merged without violating 
constraints. Therefore, CA builds a new incomplete solution 
from the two donor solutions/countries (colony and 
imperialist) according to the assimilation rate and finishes the 
solution by a repair mechanism.  

There are multiple ways to implement the solution repair 
mechanism - based on heuristics, existing solution 
population, sequence-based [67] etc. The most 
straightforward repair mechanism is - scanning through all 
possible entries and trying to add them to the solution without 
violating constraints (used in this paper). Furthermore, this 
incomplete solution repair enables diversity without an 
explicit revolution operator like classic ICA. Although more 
computationally expensive than simple assimilation, this 
approach has potential for broad applications and 
generalisation, as it does not depend on two solutions having 
the same size nor problem-specific assimilation or repair 
mechanism. Furthermore, the generated solutions with CA is 
always within constraints and does not require any penalty 
cost definition at evaluation. 

A CA example is provided in Fig. 3 where both colony 
and imperialist are assimilated, with bold integer values 
corresponding to solution entries (item indices in MKP case, 
or depo indices in MDVRP case) that are passed to the new 
country, determined by assimilation rate. In this simple 
example, a 50% assimilation rate of 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is used to 
build the new country. Due to constraints, not all solution 
entries can be added to the new country and hence the 
solution is in an incomplete state. The repair process iterates 
over all possible solution entries and fills the gaps while 
complying with constraints. Let us consider in detail the 
assimilation process shown in Fig. 3. The colony solution is 
shown in blue and the imperialist in yellow, with the newly 
generated country 𝑛𝑛𝑛𝑛, new entries (index 1 and index 3) were 
introduced to the solution after repair that were not in any of 
the donor countries 

 
Fig. 3. Imperialist and colony constrained assimilation process with solution 
repair. With integer values corresponding to solution entries (item indices in 
MKP case or depo indices in MDVRP case). 



 
Fig. 4. The pseudocode for new assimilation and local search method for 
ICAwICA 

D. ICAwICA solution encoding for MKP and MDVRP 

The ICAwICA is generic and does not rely on any specific 
solution structure or problem-specific assimilation operators 
and, therefore, can be applied to various kinds of discrete 
optimisation problems. We explore two different types of 
combinatorial problems – a subset selection problem in MKP 
and a routing problem in MDVRP. In the MKP case, each 
element in the solution represents an item index that has been 
added in the knapsacks. Thus, the performance of the solution 
is evaluated by iterating over all entries and matching indices 
to the item profits.    

For the MDVRP, first, customer-depot relationships are 
encoded as a country. Each country is represented as a vector 
of the size of the number of customers, where each customer 
is assigned a depot index. An example of new country 
creation via assimilation for the MDVRP is shown in Fig 5, 
where the initial colony has encoded the following grouping: 
Customer 2 and 8 will be routed from Depot 1; Customers 1, 
3 and 6 will be routed from Depot 2; Customers 5,7,9 and 10 
will be routed from Depot 3, and finally, Customer 4 will be 
routed from Depot 4. Each time a new country is created as 
part of the ICAwICA assimilation process, capacity 
constraints are considered such that the total demand for all 

customers assigned to the depot does not exceed the 
maximum capacity available across all vehicles to the given 
depot. 

 
Fig 5. Customer assignment to depots in MDVRP using ICAwICA 
assimilation. Where C1-C10 are customer indices and the encoded integers 
are depot indices that are assigned to a given customer, with bold 
representing assimilated changes.   

Furthermore, the example in Fig 5 also shows an 
assimilation process for the colony and imperialist; considers 
ten customers that are grouped into four depots. Bold type 
represents assimilated changes. For example, Customer 2 
(C2) demand was previously supplied by Depot 1 but now is 
supplied by Depot 4. Similarly, Customer 6 (C6) demand was 
previously supplied by Depot 2 but now is supplied by Depot 
3.  

Finally, solution performance is evaluated by first 
grouping all depot indices in the solution, then constructing 
routes based on the sequence it was added to the solution 
(from left to right). Thus, in the example in Fig 5, the new 
country solution would be Depot 1 supplying customer 8, 
Depot 2 supplying customers 1 and 3, Depot 3 supplying 
customer sequence 5-6-7-9-10, and finally, Depot 4 
supplying customers 2 and 4.  

III. EXPERIMENTS 

In this section, the proposed ICAwICA algorithm 
performance is compared to classic ICA. Next, the dynamics 
of independence operator are analysed. Finally, extensive 
computational experiments on classical MKP and MDVRP 
benchmark instances are conducted and compared to the 
current state-of-the-art algorithms. 

A. Benchmark instances 

Multidimensional knapsack problem instances were 
chosen because of their availability, ease of implementation 
and the frequent use as benchmarks across the research 
community. ICAwICA was tested across 41 accessible 
benchmark instances, all available from the compiled library 
in [68]. 

The simplest benchmarks used in this paper are derived 
from the WEISH dataset, containing 30 problems with the 
number of items ranging from 30 to 90 and with five 
knapsacks each. Furthermore, to explore the performance of 
the proposed algorithm across a range of datasets, large MKP 
instances, generated by Glover and Kochenberger (GK) [69], 
were also selected. The GK dataset contains 11 instances with 
the number of items ranging from 100 to 2500 with 15 to 100 
knapsacks each and provides a broad spectrum of complexity. 

Moreover, the ICAwICA was also tested on the 23 
Cordeau’s MDVRP benchmark instances obtained from [70]. 
The benchmark dataset offers a wide range of complexity, 
from the number of customers ranging from 50 to 360 and the 
number of depots from 2 to 9; and specifies the current Best-
Known Solution (BKS). 

1. Initialize ICA parameters. 
2. Create the population randomly. 
3. Initialize empires: 
     for 𝑖𝑖 = 1 to 𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  

Compute the cost function 𝐶𝐶𝑖𝑖;  
Sort the computed cost 𝐶𝐶𝑖𝑖  in descending order for the entire 
population; 
Select 𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 out of 𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝; 
Normalize the cost of each imperialist 𝐶𝐶𝑛𝑛; 
Calculate the normalized power of each imperialist 𝑃𝑃𝑛𝑛; 
Assign remaining countries 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 to the imperialists; 

    end loop 
do  
     4. Assimilation and local search process for ICAwICA: 
        for k = 1 to 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 
            for 𝑙𝑙 = 1 to 𝑁𝑁𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 
                if 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 <  𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 

     for 𝑗𝑗 = 1 to 𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 
           assimilate colony 𝑘𝑘 closer to 𝑗𝑗 
           if cost for new position is less than original position 
 keep assimilated position 

             else 
  discard and move back to original position 

           endif  
      end loop  
               else 
 assimilate colony 𝑘𝑘 closer to empire’s Imperialist 
               endif 
          end loop 
       end loop 
       for 𝑗𝑗 = 1 to 𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 

if the cost of any colony is less than cost of imperialist 
         exchange the position of the colony and imperialist; 
endif 

      end loop 
     Pick the weakest colony (colonies) from the weakest empire and 
     assign it to the empire with highest probability to possess it; 
   5. Elimination process: 
         If there is imperialist with no colonies 

eliminate the imperialist; 
         endif 
while stopping condition not met; 

 
 



TABLE 1. COMPARISON OF BEST AND AVERAGE SCORES BETWEEN CLASSIC ICA AND ICAWICA ACROSS SIX TEST PROBLEM INSTANCES. AVERAGE AND BEST 
OUT OF 10 RUNS WITH STANDARD DEVIATION (STD), BKS – BEST KNOWN SOLUTION.  

Dataset 
 Classic ICA [6]   ICAwICA 

BKS Average Best Std Average Best Std 
MKP-gk01 3766 3753.8 3766 8.11 3766.0 3766 0.00 
MKP-gk03 5656 5631.5 5638 5.12 5649.2 5650 0.90 
MKP-gk06 7680 7629.7 7639 8.16 7669.7 7671 1.19 

MDVRP-p01 576.87 587.20 580.70 8.92 576.87 576.87 0.00 
MDVRP-p03 641.19 658.10 645.16 7.55 655.29 641.19 3.25 
MDVRP-p06 876.5 893.80 885.84 10.83 887.71 876.50 3.93 

 

B. Experimental setup 

The proposed ICAwICA algorithm was implemented in 
C++ using the Visual Studio 2019 (v142) compiler. The 
computation was performed on a workstation with AMD 
Threadripper 2990WX processor (3.0 GHz, 64GB RAM), 
running Windows 10 Pro operating system.  

Like classic ICA, ICAwICA also has multiple algorithmic 
hyper-parameters that were empirically set and are as follows 
for all tested instances unless specified otherwise:  

MKP - total number of countries 𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  is set to 
4096 for all instances with the number of items 𝑛𝑛 < 500 and 
value of 512 for all instances with 𝑛𝑛 ≥ 500 . Out of all 
countries, 40% are initialised as imperialists 𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 . 
Local iterations 𝑁𝑁𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 are set to 3.  Assimilation rate β set 
to 0.5; coefficient associated with an average power of 
empire’s colonies 𝜉𝜉  set to 0.05; 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 set to 
0.7 (70% probability of independence). Due to constrained 
computing resources, limited time and a large problem set, 
termination criteria of stagnation were implemented, where 
the search terminates if no improvement has been made to the 
best solution for ε number of iterations. For problem 
instances with 𝑛𝑛 < 500 , ε is set to 0.1𝑛𝑛 , and for MKP 
instances with  𝑛𝑛 ≥ 500, 𝜀𝜀  =  𝑛𝑛.   

MDVRP - the total number of countries 𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 is set 
to 4096 for all instances. Out of all countries, 40% are 
initialised as imperialists 𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 . Local iterations 
𝑁𝑁𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙  are set to 16.  Assimilation rate β set to 0.05; 
coefficient associated with an average power of empire’s 
colonies 𝜉𝜉  set to 0.05; 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 set to 0.7 (70% 

probability of independence). Finally, stagnation iterations ε 
set to 10.  

Due to the stochastic nature of the algorithm, 30 
independent runs were computed for each problem instance. 
Best and average solution performance, as well as the average 
time in seconds 𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎(𝑠𝑠) (average time in minutes 𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎(𝑚𝑚)) 
required to reach such performance value, were recorded for 
all problem instances. 

C. Comparison to classic ICA 

Novel ICAwICA was first compared to classic ICA based 
on [6]. Three problem instances from both MKP (gk01, gk03, 
gk06) and MDVRP (p01, p03, p06) were selected for 
comparison, and the results are summarised in Table 1.  

Results show a significant improvement in the best scores 
obtained - ICAwICA reaching best-known solution (BKS) in 
four out of six instances, while classic ICA only once. 
Furthermore, average scores are consistently higher, and the 
standard deviation suggests that ICAwICA results are also 
more consistent.  It is worth noting that MKP objective is to 
maximise profit, while MDVRP is to minimise the total route 
cost. Therefore, the average error gap  (3) against the best-
known solution is used for easier comparisons and are 
summarised in Fig. 6. The average error for ICAwICA is 
consistently smaller than classic ICA across all six test 
instances. 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑔𝑔𝑔𝑔𝑔𝑔 (%)

=  
1
𝑛𝑛
�

𝑜𝑜𝑖𝑖 −  𝑝𝑝𝑖𝑖
𝑜𝑜𝑖𝑖

𝑛𝑛

𝑖𝑖=1

∗ 100% 

 
(3) 

where 𝑜𝑜𝑖𝑖 is the optimal score for instance 𝑖𝑖, and 𝑝𝑝𝑖𝑖 – achieved 
best or average score on the instance.

 

 
Fig. 6. Comparison between Classic ICA [6] and ICAwICA for six test problem instances. Expressed as average error percentage to the best know solution. 
The graph demonstrates ICAwICA achieves average erorr of 0.62% while Classic ICA achieves 1.3%, relative improvement of over two times.  



TABLE 2. SENSITIVITY ANALYSIS OF INDEPENDENCE RATE AS AN AVERAGE ERROR PERCENT GAP FOR SIX TEST PROBLEM INSTANCES. WITH 0 REPRESENTING 
ICA WITH NO INDEPENDENCE OPERATOR,  𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎(𝑠𝑠)  REPRESENTING THE AVERAGE TIME IN SECONDS TO CONVERGE TO THE BEST SOLUTION, BKS – BEST 

KNOWN SOLUTION 

Dataset BKS 
Independence rate 

0 0.2 0.4 0.6 0.8 1 
MKP-gk01 3766 3.02% 0.00% 0.00% 0.00% 0.00% 0.00% 
MKP-gk03 5656 2.75% 0.13% 0.12% 0.12% 0.12% 0.12% 
MKP-gk06 7680 2.36% 0.34% 0.20% 0.14% 0.12% 0.13% 

MDVRP-p01 576.87 4.79% 0.61% 0.04% 0.00% 0.00% 0.00% 
MDVRP-p03 641.19 10.98% 3.07% 2.67% 2.12% 2.12% 2.17% 
MDVRP-p06 876.5 7.79% 2.72% 1.53% 1.25% 1.36% 1.46% 

Average error 5.28% 1.14% 0.76% 0.61% 0.62% 0.65% 
𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎(𝑠𝑠) 40 570 836 1033 1315 1524 

  
D. Sensitivity analysis of independence rate 

The newly implemented mechanism of colony 
independence was tested by altering the 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 
parameter from 0 to 1, with 0.2 increments and the average 
error gap (3) as well as execution time  
𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎(𝑠𝑠)  recorded. The experimental results are summarised 
in Table 2.  

Results in Table 2 show a definite improvement in the 
introduction of the Independence operator within ICA. 
Compared to ICA with no independence (independence rate 
of 0) and ICA with independence rate higher than 0, the 
average error across all test instances reduced by a factor of 
4.6 (5.28% and 1.14% respectively). However, there is also a 
time penalty associated with doing the extra work of 
assimilating to all imperialists compared to a single 
imperialist, with an average time to reach the final solution 
increasing from seconds to minutes. The best average error 
was achieved with the Independence rate between 0.6 and 
0.8, and therefore independence rate at 0.7 was adopted for 
use throughout all further experiments.  

 
E. Comparison to the state-of-the-art metaheuristics for MKP 

To evaluate performance of the proposed ICAwICA 
algorithm, 12 state-of-the-art population-based/heuristic 
algorithms were compared across 41 common MKP 
instances.  

First, a comparison was performed on simple WEISH 
instances, where most algorithms in the literature can achieve 
the optimum solution. Therefore, performance is measured in 
terms of the success rate (how many times the algorithm was 
able to achieve optimum) or in terms of the average error 
percentage error (3) across all instances. For the comparison, 
the six best-performing algorithms were selected from the 
literature, which includes Ant Colony Optimization with 
Dynamic impact (ACOwD) described in [31], Improved 
Whale Optimization Algorithm (IWOA) [42], two variations 
of binary differential search TE-BDS and TR-BDS proposed 
in [71], and two implementations of Particle Swarm 
Optimization (PSO) with self-adaptive check and repair - 
SACRO-CBPSOTVAC and SACRO-BPSOTVAC [39].  

 
Fig. 7. The average error of the mean profit across all WEISH (1-30) 
instances. Average of 30 independent runs. 

Results in Fig. 7 show that all compared algorithms can 
reach the optimal solution in most cases. However, only 2 of 
them ICAwICA and ACOwD can do it consistently across 30 
runs with 100% success rate. ICAwICA achieved the optimal 
solution every time (100% success rate), at the first iteration, 
and on average took 1.5 seconds. 

Next, large Glover and Kochenberger (GK) instances 
were solved and compared to eight heuristic algorithms from 
the literature in terms of average error percent (3)  gap against 
best-known profit (BKS) from the literature. Compared 
algorithms include ACOwD, IWOA, Two-phase tabu-
evolutionary algorithm (TPTEA) [35], harmony search based 
algorithm NBHS2 proposed in [40], evolutionary algorithm 
with logic gates LGEA [36], shuffled complex evolution 
algorithm SCEcr [37], hyper-heuristic inspired CF-LAS [72] 
and BCSA – binary cuckoo search algorithm [41]. Table 3 is 
colour coded from red (worst average error %) to the best 
average error percent, in green, for each problem instance 
with dashes (-) representing scores that were not available. 
Compared to 8 other algorithms in the literature, ICAwICA 
shows competitive results, coming in second place for gk01-
gk09 and in top three for gk10 and in fourth place for the 
largest gk11 instance. The best achieved error percentage 
along with the average time  𝑡𝑡𝑎𝑎𝑎𝑎𝑔𝑔(𝑠𝑠) and standard deviation 
(Std) have been included for reference. The proposed 
algorithm performs well on medium to large MKP instances, 
however, struggles on very large instances (gk11). Further 
investigation needs to be conducted to improve performance 
on the most complex benchmarks.  
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TABLE 3. ALGORITHM COMPARISON ACROSS LARGE GLOVER AND KOCHENBERGER (GK) KNAPSACK INSTANCES. RESULTS ARE EXPRESSED AS AVERAGE 
ERROR PERCENTAGE GAP % AGAINST BEST-KNOWN PROFIT. COLOUR CODED FROM THE BEST GAP (GREEN) TO WORST GAP (RED) FOR ANY GIVEN DATASET. 

WITH DASH (-) REPRESENTING RESULTS THAT ARE NOT AVAILABLE. BKS – BEST KNOWN SOLUTION, STD – STANDARD DEVIATION OF THE ABSOLUTE VALUE. 

Data 
set 

Problem 
size  

(n x m) BKS 

ACOwD 
[31] 

NBHS2 
[40] 

IWOA 
[42] 

LGEA 
[36] 

TPTEA 
[35] 

SCEcr 
[37] 

CF-
LAS 
[72] 

BCSA 
[41] 

ICAwICA (this work)  

Average Best Std 𝒕𝒕𝒂𝒂𝒂𝒂𝒂𝒂(𝒔𝒔) 

gk01 100x15 3766 0.14% 0.29% 0.68% 0.66% 0.00% 0.76% 0.31% 0.23% 0.00% 0.00% 0.00 16.8 
gk02 100x25 3958 0.05% 0.30% - 0.55% 0.00% 1.06% 0.36% 0.27% 0.05% 0.03% 0.99 19.4 
gk03 150x25 5656 0.26% 0.55% 0.85% 0.97% 0.06% 0.91% 0.37% 0.17% 0.12% 0.11% 0.90 62.5 
gk04 150x50 5767 0.17% 0.45% 0.89% 1.02% 0.01% 1.48% 0.45% 0.15% 0.07% 0.05% 0.93 84.4 
gk05 200x25 7561 0.21% 0.44% 0.94% 1.32% 0.01% 0.73% 0.24% 0.18% 0.09% 0.04% 1.54 145.7 
gk06 200x50 7680 0.26% 0.52% 0.77% 1.05% 0.08% 1.14% 0.46% 3.54% 0.13% 0.12% 1.19 247.7 
gk07 500x25 19221 0.20% 0.26% 1.09% 1.08% 0.04% 0.46% 0.13% 0.70% 0.11% 0.07% 5.89 280.3 
gk08 500x50 18806 0.22% 0.56% 0.85% - 0.06% 0.67% 0.20% 0.77% 0.12% 0.08% 2.98 357.8 
gk09 1500x25 58091 0.18% 0.27% 1.54% 1.08% 0.02% 1.78% 1.77% 0.98% 0.14% 0.09% 14.61 1611.0 
gk10 1500x50 57295 0.20% 0.54% 0.80% 1.01% 0.04% 0.36% 0.10% - 0.18% 0.12% 13.67 2219.1 
gk11 2500x100 95238 0.32% 0.64% 1.07% 1.13% 0.07% 0.30% 0.09% - 0.31% 0.24% 61.54 7200.6 

Average 0.20% 0.44% 0.95% 0.99% 0.04% 0.88% 0.41% 0.78% 0.12% 0.09% 9.48 1113.2 

TABLE 4. BEST SOLUTION OBTAINED BY ICAWICA COMPARED TO OTHER ALGORITHMS IN THE LITERATURE ACROSS CORDEAU’S MDVRP BENCHMARK 
INSTANCES AND THE BEST-KNOWN SOLUTION (BKS). THE BEST SCORES REPRESENTED IN BOLD, N REPRESENTING THE NUMBER OF CUSTOMERS, M – THE 

NUMBER OF DEPOTS. AVERAGE ERROR PERCENTAGE CALCULATED USING BKS AS A REFERENCE, 𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎(𝑚𝑚) – AVERAGE TIME TO CONVERGE TO A SOLUTION, IN 
MINUTES, STD – STANDARD DEVIATION 

Data 
set N M BKS  

CoES, 
2016 
[73] 

IACO, 
2017 
[60] 

TSH, 
2019  
[74] 

ACO+, 
2020  
[51]  

ICAwICA (this work) 

Best Average Std 𝒕𝒕𝒂𝒂𝒂𝒂𝒂𝒂(𝒎𝒎) 
p01 50 4 576.87 576.87 576.87 576.87 576.87 576.87 576.87 0.00 4.2 
p02 50 4 473.53 473.87 473.53 473.53 473.53 473.53 481.24 3.00 6.2 
p03 75 5 641.19 641.19 641.19 641.19 641.19 641.19 655.29 3.25 7.9 
p04 100 2 1001.59 1007.40 1001.49 1008.47 1003.52 1006.66 1015.11 3.97 12.4 
p05 100 2 750.03 750.11 750.26 758.87 751.90 753.40 789.15 4.39 20.3 
p06 100 3 876.50 876.50 876.50 881.76 881.60 876.50 887.71 3.93 14.7 
p07 100 4 885.80 888.41 885.69 896.96 884.66 895.53 916.79 8.12 11.5 
p08 249 2 4420.94 4445.37 4482.44 4430.36 4428.00 4420.94 4493.66 17.87 65.2 
p09 249 3 3900.22 3895.70 3912.23 3971.59 3897.33 3900.22 3975.29 23.52 67.6 
p10 249 4 3663.02 3666.35 3663.00 3779.10 3657.03 3666.35 3696.71 10.88 82.2 
p11 249 5 3554.18 3569.68 3648.95 3652.01 3549.99 3554.18 3604.88 22.75 71.0 
p12 80 2 1318.95 1318.95 1318.95 1318.95 1318.95 1318.95 1359.49 4.88 10.0 
p13 80 2 1318.95 1318.95 1318.95 1318.95 1318.95 1318.95 1320.79 0.82 8.9 
p14 80 2 1360.12 1360.12 1365.68 1365.69 1360.12 1365.68 1394.01 6.71 6.7 
p15 160 4 2505.42 2526.06 2505.29 2552.79 2505.42 2565.67 2644.14 6.13 25.5 
p16 160 4 2572.23 2572.23 2587.87 2572.23 2572.23 2572.23 2577.66 1.6 16.0 
p17 160 4 2709.09 2709.09 2708.99 2731.37 2709.09 2709.09 2742.93 5.51 12.3 
p18 240 6 3702.85 3771.35 3781.04 3802.29 3710.49 3710.49 3756.70 20.83 73.2 
p19 240 6 3827.06 3827.06 3827.06 3831.71 3827.06 3827.06 3857.36 5.21 42.3 
p20 240 6 4058.07 4058.07 4058.07 4097.06 4091.78 4058.07 4134.88 21.06 73.6 
p21 360 9 5474.84 5608.26 5474.84 5617.53 5505.39 5495.54 5564.61 24.90 81.9 
p22 360 9 5702.16 5702.16 5702.06 5706.81 5702.16 5702.16 5753.71 25.14 86.0 
p23 360 9 6095.46 6129.99 6095.46 6145.58 6140.53 6145.58 6205.46 24.05 83.7 

Average error gap 0.33% 0.33% 0.96% 0.13% 0.28%    
  

 
E. Comparison to the state-of-the-art metaheuristics for 
MDVRP 

The ICAwICA algorithm was next evaluated for the 
MDVRP compared to other state-of-the-art approaches. 
Although there have been many algorithms applied to the 
MDVRP, the most recent approaches in literature were 
selected and are summarised in Table 4. A cooperative 
coevolutionary algorithm called CoES [73], Improved Ant 
Colony Optimization (IACO) [60], Tabu Search Heuristic 
(TSH) in [74], as well as hybrid Ant Colony with simulated 
annealing and local search algorithm called ACO+ [51] were 
selected for the comparison. The ICAwICA algorithm was 
also compared to the best-known solutions (BKS) in [70]; it 

is worth mentioning that these solutions are outdated as better 
results are reported in the literature. Nevertheless, the best-
known solutions of [70] are included for reference. 

Compared with other algorithms in Table 4, ICAwICA 
was able to obtain the same best score in 11 out of 23 
instances and outperformed the four rival algorithms on p08 
instance. On average error percentage in respect to BKS, 
ICAwICA fell short compared to ACO+ (0.13% vs 0.28% 
error), however, outperformed other compared approaches.  

 

IV. CONCLUSIONS AND FUTURE WORK 

This work proposes a novel generic Imperialist 
Competitive Algorithm (ICA) based algorithm for solving 



constrained combinatorial problems called ICA with 
Independence and Constrained Assimilation (ICAwICA). 
The algorithm implements a new Independence operator for 
ICA, where each of the colonies has a free will to choose 
between assimilating to its imperialist or any other imperialist 
in the population. Besides, a generic constrained assimilation 
process is proposed as part of the local search. The 
constrained assimilation exploits the fact that two solutions 
cannot be merged without violating constraints. Furthermore, 
it combines the classic ICA assimilation and revolution 
operators in one, in a generic manner.   

To evaluate the performance and versatility of the 
ICAwICA algorithm, two different kinds of combinatorial 
benchmark problems were selected – subset selection and 
routing, Multiple Knapsack Problem (MKP) and Multiple 
Depot Vehicle Routing Problem (MDVRP), respectively. 
First, the ICAwICA was compared to classic ICA, and results 
showed a definite improvement in all benchmark test 
instances. Next, the sensitivity of Independence operator was 
performed, analysis shows that independence probability of 
greater than zero, improves the results at the expense of 
computing time.  Finally, the ICAwICA was compared to the 
current state-of-the-art population-based algorithms for both 
MKP and MDVRP.  The proposed algorithm outperformed 
the majority of the competition on both types of problems 
across multiple instances, indicating the generic, universal 
nature of the ICAwICA.  

The proposed algorithm can be improved in multiple 
ways. First, instead of simply iterating over all possibilities 
as part of repair mechanism, a more efficient selection 
process based on heuristics can be explored. Similarly, the 
proposed independence operator is slow as it is required to 
assimilate to all imperialists, smarter selection of top 
imperialists can be implemented. Furthermore, although this 
paper focuses on solving MKP and MDVRP, other discrete 
constrained optimisation problems can be explored. 
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