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1 Introduction

The artificial fish swarm algorithm (AFSA) that simulates the behavior of a fish school inside
water was recently designed and applied in an engineering context [20,21,38,39]. A state-of-the-
art regarding hybridizations and applications of AFSA appears in [26]. Fishes desire to stay close to
the school to protect themselves from predators and to look for food, and to avoid collisions within
the group. The artificial fish is a fictitious entity of a true fish. When applied to an optimization
problem, a ‘fish’ within the school is represented by a point, also known as a candidate solution, and
the school is the so-called population, or set of points or solutions. Inspired by fish school behavior,
researchers have developed numerical algorithms aiming to converge to a global optimal solution
of the optimization problem, in an efficient manner. The environment in which the artificial fish
moves, searching for the optimum, is the feasible search space of the problem. The behaviors that a
fish swarm exhibits when looking for food inside water are the following: random behavior, chasing
behavior, swarming behavior, searching behavior and leaping behavior. A new fish swarm heuristic
which gives priority to the chasing behavior in detriment of the swarming one was proposed in a
continuous box constrained global optimization context [31]. In the sequence of this work, Rocha
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et al. [32] developed an augmented Lagrangian fish swarm based method for globally solving a
nonlinear general constrained problem. Improved results were obtained with a novel hyperbolic
augmented Lagrangian paradigm [11].

The 0–1 multidimensional knapsack problem (MKP) is a NP-hard combinatorial optimization
problem that arises in many practical problems, such as capital budgeting and project selection
problem [27,40], allocating processors and databases in a distributed computer system [17], project
selection, cargo loading and so on [35]. The 0–1 MKP is formulated as follows:

maximize z(x) ≡ cx
subject to Ax ≤ b

xj ∈ {0, 1}, j = 1, 2, . . . , n,
(1)

where c = (c1, c2, . . . , cn) is an n-dimensional row vector of profits, x = (x1, x2, . . . , xn)
T is an

n-dimensional column vector of 0–1 decision variables, A = [ak,j ], k = 1, 2, . . . ,m, j = 1, 2, . . . , n
is an m× n coefficient matrix of resources and b = (b1, b2, . . . , bm)T is an m-dimensional column
vector of resource capacities. It should be noted here that, in a 0–1 multidimensional knapsack
problem, each element of c, A and b is assumed to be nonnegative. The goal of the 0–1 MKP is
to find a subset of n items that yields maximum profit z without exceeding resource capacities b.

Several exact as well as heuristic methods have been developed for solving the 0–1 MKP.
Exact methods include dynamic programming methods [5,40], branch-and-bound algorithms [16,
17,35], the Fourier-Motzkin elimination based enumeration algorithms [9], asymptotic analysis
method [34], statistical analysis method [14], linked LP-relaxations, disjunctive cuts and implicit
enumeration [36], core concept based on LP-relaxation [30] and so on. Pisinger [29] has proposed
several exact algorithms for solving knapsack problems in his doctoral thesis.

The exact methods are suitable for small dimensional problems. However, when the dimension
increases, they cannot solve the problems within a reasonable time period. This is the main
motivation to develop stochastic methods and heuristics for solving the MKP. In the context of
constrained problems, the penalty functions are used where a penalty term is added to the objective
function aiming to penalize constraint violation. But the performance of penalty-type method is
not always satisfactory due to the choice of appropriate penalty parameter values. Hence, other
alternative constraint handling techniques have emerged in the last decades.

Several heuristic solution methods for solving the 0–1 MKP have appeared in the literature.
Hanafi and Fréville [18] proposed a tabu search approach for the 0–1 MKP using the surrogate
constraints information. Chu and Beasley [10] proposed the most successful genetic algorithm
(GA) for solving the 0–1 MKP. The authors present the drop-add repair operator based on the
pseudo-utility ratios in order to make the solutions feasible. Vasquez and Vimont in [37] presented
a hybrid method that combines the linear programming with an efficient tabu search. A binary
ant colony optimization, called binary ant system (BAS) algorithm based on the drop-add repair
operator [10] is provided in [23]. Bonyadi and Li [7] presented a discrete electromagnetism-like
mechanism (DEM) by using the drop-add repair operator for solving the 0–1 MKP. Recently a
set-based particle swarm optimization (SBPSO) algorithm has been appeared in [24]. The authors
used the penalty function method for handling the constraints. Drexl [13] proposed a simulated
annealing based on the add-interchange-drop technique for handling the constraints. Sakawa and
Kato [33] introduced a genetic algorithm with double strings based on a decoding algorithm. Some
other heuristics are available in the literature [1,6,8,12,19,28]. An interesting review of different
solution methods for solving the 0–1 MKP is found in [15]. The focus of the paper is on the
theoretical properties and contains an overview of approximate and exact solution methods.

Based on AFSA for continuous global optimization, a preliminary binary version of the artificial
fish swarm algorithm (bAFSA) was proposed in [3]. The algorithm was tested on a small set of
0–1 MKP problems. However, bAFSA could not solve large dimensional problems satisfactorily
in terms of computational effort. In order to create the trial points from the current ones in a
population, bAFSA chooses each point/fish behavior according to the number of points inside its
‘visual scope’, i.e., inside a closed neighborhood centered at the point. To identify those points,
the Hamming distance between pairs of points is used. Uniform crossover and mutation are used
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in order to create trial points. In order to handle the knapsack constraints, the decoding algorithm
proposed in [33] is used to make the points feasible.

To overcome the drawbacks of bAFSA, a simplified binary version of the artificial fish swarm
algorithm for solving the 0–1 quadratic knapsack problems is proposed in [4]. The algorithm,
therein denoted by S-bAFSA, simplifies the procedures that are used to select the behavior that
should be performed to each current point in order to create the corresponding trial point. The
selection of each fish/point behavior depends solely on two target probability values. Thus, in
S-bAFSA, all the Hamming distances between pairs of points, as well as the comparison between
the Hamming distance and the radius of the ‘visual scope’, are not required. The main goal is to
reduce the computational requirements to reach the optimal solution, mainly in terms of execution
time.

The purpose of this paper is threefold:

– to preserve the previously tested simplified procedures that aim to select the behaviors that
are performed on points of the current population, so that computational burden is kept low;

– to develop a new simplified binary version of AFSA, henceforth denoted by newS-bAFSA, by
incorporating new strategies into the fish behaviors and designing a local search aiming to
enhance the quality of the solutions;

– to carry out a computational study by extending its use to solve large 0–1 MKP (1) and to
compare with other heuristic methods.

In newS-bAFSA, for all points of the population, except the best, the random, chasing and search-
ing behaviors are randomly chosen using two user defined target probability values 0 ≤ τ1 ≤ τ2 ≤ 1.
Thereafter, an effect-based crossover is used to create the trial points. A simple 4 flip-bit mutation
is operated on the best point of the population to create the corresponding trial point. In order to
make the points feasible the newS-bAFSA uses a random heuristic drop item procedure followed
by an add item procedure aiming to increase the profit throughout the adding of more items in
the knapsack. Furthermore, to improve the quality of the solutions obtained by the algorithm,
a local search based on a flip-bit mutation operated on a pre-defined number of points, with a
pre-specified probability, followed by a refinement procedure carried out on the best point alone,
is implemented. We also adopt a cyclic reinitialization of 50% of the population to enlarge the
exploration properties of the algorithm.

A benchmark set of large 0–1 multidimensional knapsack problems is used to test the per-
formance of the newS-bAFSA. Although the proposal is very simple and easy-to-implement, the
comparisons carried out show that the algorithm is a competitive alternative to other heuristic
methods from the literature.

The organization of this paper is as follows. We briefly describe the artificial fish swarm algo-
rithm in Section 2. In Section 3 the proposed new simplified binary artificial fish swarm algorithm
is outlined. Section 4 describes the experimental results and finally we draw the conclusions of
this study in Section 5.

2 Artificial Fish Swarm Algorithm

In this section, we give a brief description of AFSA proposed in [31] for box constrained global
optimization problems of type minimizex∈Ω f(x). Here f : Rn → R is a nonlinear function that
is to be minimized and Ω = {x ∈ Rn : lj ≤ xj ≤ uj , j = 1, 2, . . . , n} is the search space. lj and
uj are the lower and upper bounds of xj , respectively, and n is the number of variables of the
optimization problem.

AFSA works with a population of N points xi, i = 1, 2, . . . , N to identify promising regions
looking for a global solution [38]. xi is a floating-point encoding that covers the entire search
space Ω. The crucial issue of AFSA is the ‘visual scope’ of each point xi. This represents a closed
neighborhood of xi with a radius equal to a positive quantity ν defined by

ν = δ max
j∈{1,2,...,n}

(uj − lj)
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where δ ∈ (0, 1) is a positive visual parameter. This parameter may be reduced along the iterative
process. Let Ii be the set of indices of the points inside the ‘visual scope’ of point xi, where i /∈ Ii

and Ii ⊂ {1, 2, . . . , N}, and let npi be the number of points in its ‘visual scope’. Depending on the
relative positions of the points in the population, three possible situations may occur:

– when npi = 0, the ‘visual scope’ is empty, and the point xi, with no other points in its
neighborhood, moves randomly looking for a better region;

– when the ‘visual scope’ is not crowded, the point xi is able either to chase moving towards
the best point inside the ‘visual scope’, or, if this best point does not improve the objective
function value corresponding to xi, to swarm moving towards the central point of the ‘visual
scope’;

– when the ‘visual scope’ is crowded, the point xi has some difficulty in following any particular
point, and searches for a better region by choosing randomly another point (from the ‘visual
scope’) and moving towards it.

The condition that decides when the ‘visual scope’ of xi is not crowded is

npi

N
≤ θ, (2)

where θ ∈ (0, 1) is the crowd parameter. In this situation, the point xi has the ability to swarm or
to chase. The swarming behavior is characterized by a movement towards the central point inside
the ‘visual scope’ of xi defined by

x̄ =

∑
l∈Ii x

l

npi
.

We refer the reader to [31,32,38,39] for details.

3 A New Simplified Binary Artificial Fish Swarm Algorithm

In the preliminary binary version of AFSA [3], each trial point is created from the current one
by using the original concept of ‘visual scope’ of a current point. To identify the points inside the
‘visual scope’ of each current point, the Hamming distance is used. For points of equal bits length,
this distance is the number of positions at which the corresponding bits are different. The com-
putational requirement of this procedure grows rapidly with problem’s dimension. Furthermore,
in some cases the population stagnates and the algorithm converges to a non-optimal solution. To
address these issues, the recent S-bAFSA was proposed with the following properties [4]:

– the concept of ‘visual scope’ of an individual point is discarded;
– the selection of each fish/point behavior does not depend on the number of points in the

neighborhood of that point but rather on two target probability values;
– the swarming behavior is never performed since the central point may not depict the center of

the distribution of solutions;
– uniform crossover is used in different fish behaviors, to create the trial points;
– a random heuristic drop item procedure to make infeasible solutions to feasible ones, and an

add item operation, are combined to further improve the feasible solutions;
– drop item and add item are only used for a single linear capacity constraint (in the quadratic

knapsack problem context);
– a simple heuristic search based on swap moves is implemented on a predefined number of points

randomly selected from the population, aiming to obtain more accurate solutions;
– swap moves depend on the number of 0s in a point;
– the population is randomly reinitialized to diversify the search and avoid convergence to a

non-optimal solution.

Nevertheless, in this study, S-bAFSA is further modified in order to increase efficiency and to
enhance the quality of the solutions, for solving large 0–1 MKP of the form (1). The modifications
are the following:

– an effect-based crossover is used instead of an uniform crossover;
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– a random heuristic drop item procedure is extended to handle m knapsack constraints in order
to make infeasible solutions to feasible ones;

– a greedy-like heuristic add item procedure preceded by drop item is implemented to handle m
constraints in order to further improve the feasible solutions;

– a simple local search with two steps is implemented. First, a flip-bit mutation is operated on
a pre-defined number of points randomly selected from the population, with a pre-specified
probability; second, at the end of the selection procedure, the best point is refined using a
flip-bit mutation on a pre-defined number of positions.

Details of the proposed newS-bAFSA for solving the 0–1 multidimensional knapsack prob-
lem (1) are described below.

3.1 Initialization

The first step of newS-bAFSA is to design a suitable representation scheme of an individual point
in a population for solving the 0–1 MKP. Since we consider the 0–1 knapsack problem, N current
points, xi, i = 1, . . . , N , each represented by a binary string of 0/1 bits of length n, are randomly
generated [3,25]. We note that there are at most 2n possible different solutions of binary strings
of 0/1 bits of length n. For example, for n = 12, a current point xi, i = 1, 2, . . . , N randomly
initialized at iteration t = 1 is shown in Fig. 1.

xi,1 = 1 0 0 0 1 1 0 1 0 1 1 0

Fig. 1 Individual representation in newS-bAFSA

3.2 Generating Trial Points in newS-bAFSA

After initializing N current points, crossover and mutation are performed to create trial points in
successive iterations based on the fish behaviors of random, chasing and searching. We introduce
the probabilities 0 ≤ τ1 ≤ τ2 ≤ 1 in order to perform the movements of random, chasing and
searching.

In newS-bAFSA, the fish behaviors that create the trial points are the following.

Random behavior: In random behavior, a fish with no other fish in its neighborhood to follow,
moves randomly looking for food in another region. This behavior is implemented when an uni-
formly distributed random number rand(0, 1) is less than or equal to τ1. In this behavior the trial
point yi is created by randomly setting 0/1 bits of length n.

Chasing behavior: The chasing behavior is implemented when a fish, or a group of fish in the
swarm, discover food and the others find the food dangling quickly after it. This behavior is
implemented when rand(0, 1) ≥ τ2 and it is related to the movement towards the best point found
so far in the population, xbest. Here, the trial point yi is created using an effect-based crossover
(see Algorithm 1) between xi and xbest.

Searching behavior: When fish discovers a region with more food, by vision or sense, it goes
directly and quickly to that region. This is the searching behavior and is related to the movement
towards a point xrand where ‘rand’ is an index randomly chosen from the set {1, 2, . . . , N}. This
behavior is implemented in newS-bAFSA when τ1 < rand(0, 1) < τ2. An effect-based crossover
between xrand and xi is performed to create the trial point yk.

Trial point corresponding to the best point: In newS-bAFSA, the three fish behaviors
previously described are implemented to create N − 1 trial points; the best point xbest is treated
separately. A 4 flip-bit mutation is performed on the point xbest to create the corresponding trial
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point y. In this operation four positions are randomly selected and the bits of the corresponding
positions are changed from 0 to 1 or vice versa.

Assuming that fish move mostly together, it is natural to argue that the searching behavior
is operated mostly since in the original AFSA this behavior occurs when the ‘visual scope’ is
crowded. This argument has been transposed into the newS-bAFSA, since with a small value for
τ1 and a large value for τ2, the likelihood that the searching behavior be implemented is higher
than those of random or chasing behaviors.

3.3 The Effect-based Crossover

In the earlier work of bAFSA [3], both one point crossover and uniform crossover were implemented
and found that the uniform crossover gives better results. Now, in newS-bAFSA, an effect-based
crossover [7] is used in chasing and searching behaviors in order to create the trial points. In this
crossover, each bit of the trial point is created by copying the corresponding bit from one or the
other current point based on the effect ratio. To compute the effect ratio ERu,xi of u on the
current point xi, where

– u = xbest when chasing is performed;
– u = xrand when searching is performed;

we use

ERu,xi =
q(u)

q(u) + q(xi)

where
q(xi) = exp

[
−(z(xbest)− z(xi))/(z(xbest)− z(xworst))

]
and xworst is the worst point of the population. The effect-based crossover to compute the trial
point yi is displayed in Algorithm 1.

Algorithm 1 Effect-based crossover

Require: current point xi, u and ERu,xi

1: for j = 1 to n do
2: if rand(0, 1) < ERu,xi then

3: yij = uj

4: else
5: yij = xj

6: end if
7: end for
8: return trial point yi

3.4 Dealing with Knapsack Constraints

In binary represented population-based solution methods there exist different techniques for deal-
ing the constraints. To obtain feasible solutions in newS-bAFSA, a general random heuristic proce-
dure called drop item to handlem knapsack constraints is used (see Algorithm 2). In this procedure
one item is dropped from the knapsack (changing bit 1 to 0) if it does not satisfy all the knapsack
constraints and it continues until the feasible solution is reached. A set I = {I1, I2, . . . , In} is
defined with n randomly generated indices. Then the drop item is performed on xi using the set I
to make the point feasible. The advantage of this procedure is that dropping an item starts from
any index and randomly continues selecting an index until the feasible solution is reached, aiming
to obtain a promising solution.

After making the points feasible, a greedy-like heuristic procedure called add item (Algorithm
3) that can handle m knapsack constraints is implemented to each feasible point aiming to improve
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Algorithm 2 Drop item algorithm used in newS-bAFSA

Require: Point xi and the set I = {I1, I2, . . . , In}
1: Compute sumk =

∑n
j=1 ak,jx

i
j , for k = 1, 2, . . . ,m

2: Set flag := 1
3: for k = 1 to m do
4: if sumk > bk then
5: Set flag := 0
6: break
7: end if
8: end for
9: if flag = 0 then
10: for j = 1 to n do
11: if xi

Ij
= 1 then

12: Set flag1 := 1
13: for k = 1 to m do
14: if sumk − ak,Ij > bk then
15: Set flag1 := 0
16: break
17: end if
18: end for
19: if flag1 = 0 then
20: Set xi

Ij
:= 0

21: for k = 1 to m do
22: Set sumk := sumk − ak,Ij
23: end for
24: end if
25: end if
26: end for
27: end if
28: return Feasible point xi

the point and keep it feasible. When solving a single knapsack problem, this add item utilizes only
the information of the pseudo-utility ratios, δj , which are defined as the ratios of the objective
function coefficients (cj ’s) to the coefficients of the constraint (aj ’s). The greater the ratio, the
higher the chance that the corresponding variable will be equal to one in the solution [10]. In
the generalization of this add item heuristic for the 0–1 multidimensional knapsack problems, the
pseudo-utility ratios of every item in every constraint are calculated, and only the lowest value
for each item is considered (i.e., δj = min{(cjbk)/ak,j} j = 1, . . . , n, k = 1, . . . ,m). Then δj are
sorted in decreasing order and a set J = {J1, J2, . . . , Jn} is defined with the indices of the δj in
decreasing order. One item is added each time in the knapsack (changing bit 0 to 1) if it satisfies
all the constraints following the sequence of indices in the set J. This procedure is continued until
the entire sequence of indices has been used.

The pseudo-utility ratios can also be used to make the solutions feasible. In this case the ratios
are sorted in increasing order and one item is dropped from the knapsack, if with this item the
solution violates any constraint. This procedure is continued until the feasible solution is reached.

3.5 Selection of a New Population

At each iteration, each trial point yi competes with the current xi, in order to decide which one
should become a member of the population in the next iteration. Hence, if z(yi) ≥ z(xi), then the
trial point becomes a member of the population in the next iteration, otherwise the current point
is preserved to the next iteration.



8

Algorithm 3 Add item algorithm used in newS-bAFSA

Require: Feasible point xi and set J = {J1, J2, . . . , Jn}
1: Compute sumk =

∑n
j=1 ak,jx

i
j , for k = 1, 2, . . . ,m

2: for j = 1 to n do
3: if xi

Jj
= 0 then

4: Set flag := 1
5: for k = 1 to m do
6: if sumk + ak,Jj

> bk then
7: Set flag := 0
8: break
9: end if
10: end for
11: if flag = 1 then
12: Set xi

Jj
:= 1

13: for k = 1 to m do
14: Set sumk := sumk + ak,Jj

15: end for
16: end if
17: end if
18: end for
19: return Improved feasible point xi

3.6 Reinitialization of the Population

When testing bAFSA [3], it was noticed that, in some cases, the points in a population converge to
a non-optimal point. In a fish swarm context, this may be considered a region with food shortage
for all the swarm, which may lead to the departure of part of the swarm looking for a better
region. Considering that this situation may be occurring only in a seasonal way, we adopt a
reinitialization of part of the population only at every R iterations. The parameter R gives the
seasonal time period.

Hence in newS-bAFSA, to diversify the search and look for a promising region, a randomly
reinitialization of 50% of the population, guaranteeing that the best solution found so far is main-
tained, is implemented. In practical terms, this technique has greatly improved the quality of the
solutions.

3.7 Local Search

A local search is often important to improve a current set of solutions since further exploitation
around a particular good region may provide high quality solutions. If a solution better than the
current ones is found then it replaces one solution of the current set. In a fish swarm context,
our local search may be interpreted by the swarm as a procedure that allows first of all a small
percentage of the swarm to progress towards food and thereon confers to the best one further
progress into a promising region.

In newS-bAFSA, the local search is based on a flip-bit mutation that is operated on Nloc

points selected randomly from the population, where Nloc = τ3N with τ3 ∈ (0, 1). This flip-bit
mutation that operates on a point changes the value of a 0 bit to 1 and vice versa according to a
probability pm. After the flip-bit operation, the new points are made feasible by using the random
drop item procedure and thereon the add item. Then they become members of the population
if they improve the objective function value with respect to the corresponding current points.
This flip-bit operation is repeated L times in order to find good solutions. At the end, the best
point of the population is identified and a flip-bit mutation is operated on Nref, with Nref = τ3n,
randomly selected positions of the point. Each time a new point is created, the random drop item
and thereon the add item are implemented to make the point feasible. Then this new point will
replace the best point if it improves the objective function value with respect to the current best
point.
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3.8 Termination Conditions

The proposed newS-bAFSA terminates when the known optimal solution is reached within a
tolerance ϵ > 0, or a maximum number of iterations, Tmax, is exceeded, i.e., when

t > Tmax or |zbest − zopt| ≤ ϵ (3)

holds, where zbest is the best objective function value attained at iteration t and zopt is the known
optimal value available in the literature. However, if the optimal value of the given problem is not
known, the algorithm may use another condition, for example, one based on the total number of
function evaluations or the computational time since the start of the algorithm.

3.9 The Algorithm

The pseudocode of the herein proposed newS-bAFSA for solving the 0–1 MKP (1) is shown in
Algorithm 4.

Algorithm 4 newS-bAFSA
Require: Tmax and zopt and other values of parameters
1: Set t := 1. Initialize population xi, i = 1, 2, . . . , N
2: Perform random drop item and add item, evaluate the population and identify xbest and zbest
3: while ‘termination conditions are not met’ do
4: if MOD(t, R) = 0 then
5: Reinitialize 50% of the population (keep xbest)
6: Perform random drop item and add item, evaluate population and identify xbest and zbest
7: end if
8: for i = 1 to N do
9: if i = best then
10: Perform 4 flip-bit mutation to create trial point yi

11: else
12: if rand(0, 1) ≤ τ1 then
13: Perform random behavior to create trial point yi

14: else if rand(0, 1) ≥ τ2 then
15: Perform chasing behavior to create trial point yi

16: else
17: Perform searching behavior to create trial point yi

18: end if
19: end if
20: end for
21: Perform random drop item and add item to get yi, i = 1, 2, . . . , N and evaluate them
22: Select the population of next iteration xi, i = 1, 2, . . . , N
23: Perform local search (identifying xbest and zbest)
24: Set t := t+ 1
25: end while

4 Experimental Results

We code newS-bAFSA in C and compile with Microsoft Visual Studio 10.0 compiler in a PC
having 2.5 GHz Intel Core 2 Duo processor and 4 GB RAM. We consider large-sized benchmark
0–1 MKP test instances (described in [10]) from OR-library1. These are instances with 5, 10 and
30 constraints and 100, 250 and 500 variables. The values of the tightness ratio α for resource
capacities bk (bk = α

∑n
j=1 akj , k = 1, 2, . . . ,m) are 0.25, 0.50 and 0.75. Ten instances for each

n×m× α combination give a total of 270 instances.

1 http://people.brunel.ac.uk/~mastjjb/jeb/info.html

http://people.brunel.ac.uk/~mastjjb/jeb/info.html
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At first and to check the effectiveness of the local search, we compare two variants of the newS-
bAFSA, one with the local search (LS) and the other without it. After several experiments, we set
N = n, Tmax = 2000, R = 100, L = 30, τ1 = 0.1, τ2 = 0.9, τ3 = 0.1, pm = 0.1 and ϵ = 10−4. We
use the best solution reported in OR-library as a termination condition with error tolerance along
with Tmax. Thirty independent runs were carried out for each instances using each variant. We
compare the performance of the obtained results measured by the percentage (%) gap between the
best objective function value and the optimal value of the LP (linear programming) relaxation,
i.e.,

Gap % =
optimal LP value− best objective value

optimal LP value
× 100.

The comparison of the two variants using box plots is shown in Figures 2 – 4. In a box plot, the
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Fig. 2 Box plots of percentage gap for 100× 5, 100× 10 and 100× 30

box contains 50% of the data, from lower quartile (box bottom line) to upper quartile (box top
line), where the median is represented by the solid line inside the box. The lowest datum (lower
whisker) is within 1.5IQR (inter quartile range) of the lower quartile, and the highest datum
(higher whisker) is within 1.5IQR of the upper quartile. Any data not included between the
whiskers is considered an outlier. From the figures we may conclude that the variant newS-bAFSA
with LS improves over the other without LS, when solving the 270 0–1 MKP test instances.

Now, newS-bAFSA with LS is compared with other population-based heuristic methods avail-
able in the literature: genetic algorithm, GA [10], discrete electromagnetism-like mechanism,
DEM [7] and set-based particle swarm optimization, SBPSO [24]. See Table 1, where the ex-
perimental results of the other methods were taken from the corresponding literature.

GA [10] is a heuristic based solution method for the 0–1 multidimensional knapsack problems. It
uses N = 100 points of binary string in a population. The trial points are created using the uniform
crossover and mutation after selecting parents using binary tournament selection procedure. The
knapsack constraints are handled using drop-add repair operator based on pseudo-utility ratios.
The algorithm terminates when 106 non-duplicate children are created. GA was tested on the
270 large 0–1 MKP instances. Just a single run was performed and the percentage gap, the
computational time (in seconds) to find the best solution at first time were reported.

DEM [7] utilizes the operators of genetic algorithm in order to perform the movements of points
(particles) instead of standard movement of the electromagnetism-like mechanism. It generates
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Fig. 3 Box plots of percentage gap for 250× 5, 250× 10 and 250× 30
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Fig. 4 Box plots of percentage gap for 500× 5, 500× 10 and 500× 30

binary string to create N = n points in a population. In order to create trial points, DEM uses
max min effects-based uniform crossover and mutation after calculating the force of each point.
An annihilation/creation is also used to overcome the stagnation of points in search space. It
also uses the procedure drop-add repair operator described in [10] to make the solutions feasible.
A local search described in [23] is also implemented. Hence the variant of DEM is referred as
AMMDEM+LS [7]. The algorithm terminates when the maximum number of objective function
evaluations is reached 104. AMMDEM+LS was also tested with the 270 large 0–1 MKP instances.
Twenty five runs were carried out and the percentage gap, the computational time (in seconds)
to find the best solution at first time were reported.

SBPSO [24] is a variant of standard PSO that can solve discrete optimization problems. It
defines a point’s (particle’s) position and velocity as mathematical sets. SBPSO uses N = 50
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points that are randomly initialized to form a population. The initial velocities are initialized as
empty sets. The velocities and positions are updated by using sets of operation pairs and sets of
elements from an universe set, respectively. In order to handle constraints SBPSO penalizes an
infeasible solution by setting the objective function value to −∞ (for maximization case). The
algorithm stops if the obtained best objective function value is equal to the LP relaxed bound,
the obtained best objective function value is not improved for 2500 iterations or the number
of iterations exceeds 5000. SBPSO solved the 270 large 0–1 MKP instances, thirty runs were
performed and the percentage gap was reported. Based on different topologies the global best
set-based particle swarm optimization, GBSBPSO is reported as the best one among others [24].

Table 1 Comparative results of different algorithms

Prob. set GA AMMDEM+LS GBSBPSO newS-bAFSA

m n Gap Ta Gap ATa Gap ATa Gap AT∗
a

5 100 0.59 20.0 0.58 13.0 1.11 – 0.59 14.9
250 0.14 174.4 0.14 25.0 1.86 – 0.22 127.4
500 0.05 70.5 0.05 95.0 2.66 – 0.17 696.6

10 100 0.94 314.4 0.94 19.0 1.14 – 1.00 19.5
250 0.30 276.8 0.28 31.0 1.53 – 0.46 164.6
500 0.14 734.1 0.12 155.0 1.86 – 0.35 860.7

30 100 1.69 128.5 1.68 14.0 1.50 – 1.73 44.2
250 0.68 847.9 0.65 57.0 1.86 – 0.90 328.8
500 0.35 1384.0 0.34 252.0 1.98 – 0.70 1487.3

Average 0.54 438.9 0.53 73.4 1.72 – 0.68 416.0

– Not available, ∗ average of total execution time

In Table 1, ‘Ta’ represents the average computational time (in seconds) of a problem set, ‘ATa’
represents the average computational time (in seconds) of a problem set among 30 runs. From the
table we may observe that AMMDEM+LS outperforms the other methods in comparison with
respect to the both performance criteria. Based on criterion ‘Gap’, newS-bAFSA gives better per-
formance than GBSPSO, except on problem set 100×30. Overall newS-bAFSA gives a percentage
gap of 0.68% and requires 416.0 seconds of computational time.

Finally, we compare the proposed newS-bAFSA with a binary ant system (BAS) presented in
[23], for the problem sets 100 × 5 and 100 × 10. BAS uses N = 30 ants/points in a population
that are initialized randomly of binary string. In order to make the solutions feasible, BAS uses
the procedure drop-add repair operator described in [10], and also implements a local search.
The algorithm terminates when the number of iterations exceeds Tmax = 3000 or when the best
available solution is reached. Thirty independent runs were carried out for each instance. We note
that our newS-bAFSA algorithm was run with N = n and Tmax = 2000 since these values provide
the best performance among others. Our experiments also showed that a larger value for Tmax has
no significant effect on the quality of the solutions.

The comparative results are shown in Tables 2 and 3. The results of BAS are taken from the
corresponding literature. The performance criteria are ‘zbest’, the obtained best objective function
value and ‘ATa’, the average computational time (in seconds) of a problem set among 30 runs.

From Tables 2 and 3, it is shown that BAS gives better performance based on the performance
criterion zbest, while newS-bAFSA gives in general better performance based on ATa for both
sets of problems, although we note that the machine used for both algorithms are different. When
comparing the best objective function value, BAS wins on 10 instances, newS-bAFSA wins on one
and 49 values are ties. Thus, from the 82% of ties, BAS has smaller average computational time
on 43% of the instances and newS-bAFSA has smaller ATa on 57% of the instances.

Based on the numerical experiments carried out, we may conclude that the new proposed
simplified binary version of the artificial fish swarm algorithm is rather effective when solving the
0–1 multidimensional knapsack problems.
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Table 2 Comparison of BAS and newS-bAFSA for 100× 5 set (bold values show the best obtained results)

BAS newS-bAFSA

Inst. α zbest ATa zbest ATa

1 24381 1.52 24381 18.97
2 24274 22.63 24274 18.18
3 23551 82.40 23551 19.85
4 23534 141.45 23534 19.91
5 0.25 23991 12.87 23991 19.65
6 24613 3.20 24613 19.43
7 25591 0.25 25591 10.30
8 23410 0.95 23410 18.29
9 24216 135.60 24216 18.34
10 24411 11.50 24411 19.45

11 42757 38.96 42757 16.83
12 42545 203.08 42536 17.38
13 41968 173.23 41967 17.25
14 45090 74.74 45071 17.15
15 0.50 42218 4.18 42218 12.84
16 42927 1.63 42927 16.61
17 42009 1.28 42009 10.84
18 45020 14.26 45020 16.95
19 43441 60.58 43441 16.90
20 44554 11.22 44554 16.51

21 59822 6.61 59822 9.73
22 62081 139.41 62081 11.25
23 59802 113.73 59802 10.79
24 60479 69.74 60479 8.44
25 0.75 61091 59.42 61091 11.35
26 58959 3.77 58959 10.23
27 61538 35.20 61538 11.87
28 61520 52.15 61520 9.79
29 59453 2.03 59453 9.38
30 59965 50.87 59965 11.04

Average 50.95 14.85

5 Conclusions

In this paper, a new simplified binary version of the artificial fish swarm algorithm for solving large
0–1 MKP has been presented. In this method, denoted by newS-bAFSA, a point in the population
is represented by a binary string of 0/1 bits. The movement of a point is characterized by random,
chasing or searching behavior according to two user defined probability values. To create the trial
points, chasing and searching behaviors are carried out by means of an effect-based crossover.
However, a 4 flip-bit mutation is performed on the current best point to create the corresponding
trial point. A random heuristic drop item procedure is implemented to make the points feasible.
A simple greedy-like algorithm add item is also used to improve the quality of the solutions. To
enhance the search for an optimal solution, a flip-bit mutation based local search is performed on
some randomly selected points from the population and thereon on some randomly chosen positions
of the best point. A cyclic reinitialization of 50% of the population is also introduced to improve
the quality of the solutions. A final remark concerned with the design of newS-bAFSA. The most
time consuming procedures of the original binary AFSA are the computation of the Hamming
distances and the comparison between those distances and the ‘visual scope’. Both procedures
are required to select the behavior for each fish move in the swarm. Although newS-bAFSA relies
on other procedures to choose better and better solutions, the selection of fish behaviors, their
implementations, and the local search have indeed been the focus of this simplification process.
They were replaced by simple and easy to implement randomization processes.
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Table 3 Comparison of BAS and newS-bAFSA for 100× 10 set (bold values show the best obtained results)

BAS newS-bAFSA

Inst. α zbest ATa zbest ATa

1 23064 28.89 23064 25.24
2 22801 38.85 22801 17.49
3 22131 26.61 22081 26.88
4 22772 5.90 22772 25.18
5 0.25 22751 130.27 22751 25.25
6 22777 247.77 22725 27.02
7 21875 31.81 21841 27.02
8 22635 14.63 22635 25.32
9 22511 91.87 22423 26.93
10 22702 0.87 22702 12.11

11 41395 38.53 41395 23.67
12 42344 163.70 42344 15.18
13 42401 57.83 42401 23.55
14 45624 186.84 45475 24.22
15 0.50 41884 359.18 41884 21.19
16 42995 18.62 42995 14.06
17 43574 67.44 43559 23.70
18 42970 18.62 42970 24.04
19 42212 0.58 42212 21.90
20 41207 218.88 41123 24.39

21 57375 25.59 57375 2.17
22 58978 83.20 58978 17.81
23 58391 34.22 58391 15.82
24 61966 141.42 61966 16.51
25 0.75 60803 3.24 60803 3.65
26 61437 227.48 61437 18.71
27 56353 133.99 56377 18.22
28 59391 5.26 59391 18.13
29 60205 194.22 60205 13.85
30 60633 10.18 60633 5.06

Average 86.88 19.48

A comparison of newS-bAFSA with other solution methods available in the literature has been
carried out with 270 benchmark test instances. It is found that the proposed method is rather
competitive when solving large 0–1 multidimensional knapsack problems. Future work will consider
using newS-bAFSA to solve general multidimensional knapsack problems effectively. Other NP-
hard challenging combinatorial optimization problems will be also addressed in the future.
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